WorldWideScience

Sample records for modis lst based

  1. Use of LST images from MODIS/AQUA sensor as an indication of frost occurrence in RS

    Directory of Open Access Journals (Sweden)

    Débora de S. Simões

    2015-10-01

    Full Text Available ABSTRACTAlthough frost occurrence causes severe losses in agriculture, especially in the south of Brazil, the data of minimum air temperature (Tmin currently available for monitoring and predicting frosts show insufficient spatial distribution. This study aimed to evaluate the MDY11A1 (LST – Land Surface Temperature product, from the MODIS sensor on board the AQUA satellite as an estimator of frost occurrence in the southeast of the state of Rio Grande do Sul, Brazil. LST images from the nighttime overpass of the MODIS/AQUA sensor for the months of June, July and August from 2006 to 2012, and data from three conventional weather stations of the National Institute of Meteorology (INMET were used. Consistency was observed between Tmin data measured in weather stations and LST data obtained from the MODIS sensor. According to the results, LSTs below 3 ºC recorded by the MODIS/AQUA sensor are an indication of a favorable scenario to frost occurrence.

  2. Detection of geothermal anomalies in Tengchong, Yunnan Province, China from MODIS multi-temporal night LST imagery

    Science.gov (United States)

    Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.

    2012-12-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  3. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  4. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  5. Assessment of urban heat Island for Craiova from satellite-based LST

    Science.gov (United States)

    Udristioiu, Mihaela Tinca; Velea, Liliana; Bojariu, Roxana; Sararu, Silviu Constantin

    2017-12-01

    The urban heat island is defined as an excess of heating in urban areas compared with surrounding rural zones which is illustrated by higher surface and air temperatures in the inner part of the cities. The aim of this study is to identify the UHI effect for Craiova - the largest city in the South-Western part of Romania - and to assess its intensity during summer. To this end, MODIS Land surface temperature (LST) for day and night for summer months (June, July, August), in the interval 2002-2017, as well as yearly Land Cover Type (LCT) data also from MODIS were employed. Furthermore, measurements of air and soil temperature from meteorological station Craiova, available from the National Meteorological Administration database, were used to investigate their relation with LST. The analysis shows that in the urban area of Craiova the long-term summer mean LST is about 4 °C (2 °C), higher than in the rural area during daytime (nighttime). During high temperatures episodes, the mean daytime LST reaches 45-47 °C in the city, while the difference from the rural surrounding area is of 2-3 °C. A high correlation (0.77-0.83) is found between LST and air temperature for all land-use types in the area considered. Both LST and 2m-air temperature time-series manifest an increasing linear tendency over the period considered, being more pronounced during the day.

  6. Improving Soil Moisture Estimation with a Dual Ensemble Kalman Smoother by Jointly Assimilating AMSR-E Brightness Temperature and MODIS LST

    Directory of Open Access Journals (Sweden)

    Weijing Chen

    2017-03-01

    Full Text Available Uncertainties in model parameters can easily result in systematic differences between model states and observations, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this research, a soil moisture assimilation scheme is developed to jointly assimilate AMSR-E (Advanced Microwave Scanning Radiometer-Earth Observing System brightness temperature (TB and MODIS (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (LST products, which also corrects model bias by simultaneously updating model states and parameters with a dual ensemble Kalman filter (DEnKS. Common Land Model (CoLM and a Radiative Transfer Model (RTM are adopted as model and observation operator, respectively. The assimilation experiment was conducted in Naqu on the Tibet Plateau from 31 May to 27 September 2011. The updated soil temperature at surface obtained by assimilating MODIS LST serving as inputs of RTM is to reduce the differences between the simulated and observed TB, then AMSR-E TB is assimilated to update soil moisture and model parameters. Compared with in situ measurements, the accuracy of soil moisture estimation derived from the assimilation experiment has been tremendously improved at a variety of scales. The updated parameters effectively reduce the states bias of CoLM. The results demonstrate the potential of assimilating AMSR-E TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study indicates that the developed scheme is an effective way to retrieve downscaled soil moisture when assimilating the coarse-scale microwave TB.

  7. Investigation of Cyprus thermal tenancy using nine year MODIS LST data and Fourier analysis

    Science.gov (United States)

    Skarlatos, D.; Miliaresis, G.; Georgiou, A.

    2013-08-01

    Land Surface Temperature (LST) is an extremely important parameter that controls the exchange of long wave radiation between surface and atmosphere. It is a good indicator of the energy balance at the Earth's surface and it is one of the key parameters in the physics of land-surface processes on regional as well as global scale. This paper utilizes monthly night and day averaged LST MODIS imagery over Cyprus for a 9 year period. Fourier analysis and Least squares estimation fitting are implemented to analyze mean daily data over Cyprus in an attempt to investigate possible temperature tenancy over these years and possible differences among areas with different land cover and land use, such as Troodos Mountain and Nicosia, the main city in the center of the island. The analysis of data over a long time period, allows questions such as whether there is a tenancy to temperature increase, to be answered in a statistically better way, provided that `noise' is removed correctly. Dealing with a lot of data, always provides a more accurate estimation, but on the other hand, more noise in implemented on the data, especially when dealing with temperature which is subject to daily and annual cycles. A brief description over semi-automated data acquisition and standardization using object-oriented programming and GIS-based techniques, will be presented. The paper fully describes the time series analysis implemented, the Fourier method and how it was used to analyze and filter mean daily data with high frequency. Comparison of mean monthly daily LST against day and night LSTs is also performed over the 9 year period in order to investigate whether use of the extended data series provide significant advantage over short.

  8. Quantifying the clear-sky bias of satellite-derived infrared LST

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  9. Characterising fire hazard from temporal sequences of thermal infrared modis measurements

    NARCIS (Netherlands)

    Maffei, C.; Alfieri, S.M.; Menenti, M.

    2012-01-01

    The objective of the present research was the characterisation of fire hazard using temporal sequences of land surface temperature (LST) derived from Terra-MODIS measurements. The investigation was based on a complete sequence of MODIS LST data from 2000 to 2006 on Campania (Italy) and on a dataset

  10. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  11. Land surface temperature retrieval from MODIS and VIRR data in northwest China

    International Nuclear Information System (INIS)

    Wang, L J; Zuo, H C; Ren, P C; Qiang, B

    2014-01-01

    By using the Gulang Heterogeneous Underlying Surface Layer Experiment (GHUSLE) data, the accuracy of land surface temperature (LST) in Northwest China retrieved by the Moderate-Resolution Imaging Spectroradiometer(MODIS) and Visible and InfraRed Radiometer(VIRR) data is verified. Furthermore, a new LST algorithm for heterogeneous underlying surface is developed and the LST retrieved by the two remote sensing data using three algorithms are compared with the observed data. Results suggest that the new algorithm is the best one in the case of heterogeneous underlying surface, Kerr algorithm accuracy is not satisfying and Becker algorithm is ranked just ahead Kerr algorithm. Especially, the differences in retrieval accuracy among them are more obvious when using the VIRR data. Compared with the observed LST, the root mean square errors of the LST retrieved by MODIS and VIRR data are the least when using the new algorithm, the specific values are 2.55 K and 3.78 K, respectively. The LST retrieved by MODIS data are closer to observed values and higher than its counterpart retrieved by VIRR data. When the new LST retrieval algorithm used, the LST retrieved by MODIS and VIRR data are the closest

  12. Fusion of MODIS and landsat-8 surface temperature images: a new approach.

    Science.gov (United States)

    Hazaymeh, Khaled; Hassan, Quazi K

    2015-01-01

    Here, our objective was to develop a spatio-temporal image fusion model (STI-FM) for enhancing temporal resolution of Landsat-8 land surface temperature (LST) images by fusing LST images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS); and implement the developed algorithm over a heterogeneous semi-arid study area in Jordan, Middle East. The STI-FM technique consisted of two major components: (i) establishing a linear relationship between two consecutive MODIS 8-day composite LST images acquired at time 1 and time 2; and (ii) utilizing the above mentioned relationship as a function of a Landsat-8 LST image acquired at time 1 in order to predict a synthetic Landsat-8 LST image at time 2. It revealed that strong linear relationships (i.e., r2, slopes, and intercepts were in the range 0.93-0.94, 0.94-0.99; and 2.97-20.07) existed between the two consecutive MODIS LST images. We evaluated the synthetic LST images qualitatively and found high visual agreements with the actual Landsat-8 LST images. In addition, we conducted quantitative evaluations of these synthetic images; and found strong agreements with the actual Landsat-8 LST images. For example, r2, root mean square error (RMSE), and absolute average difference (AAD)-values were in the ranges 084-0.90, 0.061-0.080, and 0.003-0.004, respectively.

  13. MODIS Land Surface Temperature time series reconstruction with Open Source GIS: A new quality of temperature based ecological indicators in complex terrain (Invited)

    Science.gov (United States)

    Neteler, M.

    2009-12-01

    In complex terrain like the Central European Alps, meteorological stations and ground surveys are usually sparsely and/or irregularly distributed and often favor agricultural areas. The application of traditional geospatial interpolation methods in complex terrain remains challenging and difficult to optimize. An alternative data source is remote sensing: high temporal resolution satellite data are continuously gaining interest since these data are intrinsically spatialized: continuous field of observations is obtained with this tool instead of point data. The increasing data availability suggests using these time series as surrogate to certain measures from meteorological stations, especially for temperature and related derivatives. The Terra and Aqua satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS) provide four Earth coverages per day at various resolutions. We analyzed 8 years (2000 to 2008) of daily land surface temperature (LST) data from MODIS in an area located in the Southern European Alps. A method was developed to reconstruct incomplete maps (cloud coverage, invalid pixels) based on image statistics and on a model that includes additional GIS layers. The original LST map resolution of 1000m could be improved to 200m in this process which renders the resulting LST maps applicable at regional scales. We propose the use of these reconstructed daily LST time series as surrogate to meteorological observations especially in the area of epidemiological modeling where data are typically aggregated to decadal indicators. From these daily LST map series, derivable indicators include: 1) temperatures minima, means and maxima for annual/monthly/decadal periods; 2) unusual hot summers;3) the calculation of growing degree days, and 4) spring temperature increase or autumnal temperature decrease. Since more than 8 years of MODIS LST data are available today, even preliminary gradients can be extracted to assess multi-annual temperature trends

  14. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  15. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  16. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  17. Correction of the angular dependence of satellite retrieved LST at global scale using parametric models

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.; Ghent, D.

    2017-12-01

    Land surface temperature (LST) values retrieved from satellite measurements in the thermal infrared (TIR) may be strongly affected by spatial anisotropy. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a parametric model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. Two models are consistently analyzed to evaluate their performance of and to assess their respective potential to correct directional effects on LST for a wide range of surface conditions, in terms of tree coverage, vegetation density, surface emissivity. We also propose an optimization of the correction of directional effects through a synergistic use of both models. The models are calibrated using LST data as provided by two sensors: MODIS on-board NASA's TERRA and AQUA; and SEVIRI on-board EUMETSAT's MSG. As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is stratified by means of a cluster analysis using information on land cover type, fraction of vegetation cover and topography. The models are then adjusted to LST data corresponding to each cluster. It is shown that the quality of the cluster based models is very close to the pixel based ones. Furthermore, the reduced number of parameters allows improving the model trough the incorporation of a

  18. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water

  19. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  20. Downscaling of Aircraft, Landsat, and MODIS-bases Land Surface Temperature Images with Support Vector Machines

    Science.gov (United States)

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at s...

  1. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Xiaokang Kou

    2016-01-01

    Full Text Available Land surface temperature (LST plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR remotely sensed data. Although passive microwaves (PMWs are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME method was introduced to merge 0.01° and 0.25° LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 °C to 2.31 °C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

  2. Regional urban area extraction using DMSP-OLS data and MODIS data

    International Nuclear Information System (INIS)

    Zhang, X Y; Cai, C; Li, P J

    2014-01-01

    Stable night lights data from Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper proposed two new methods of extracting regional urban extents using DMSP-OLS data, MODIS NDVI data and Land Surface Temperature (LST) data. MODIS NDVI data were used to reduce the over-glow effect, since urban areas generally have lower vegetation index values than the surrounding areas (e.g. agricultural and forest areas). On the other hand, urban areas generally show higher surface temperatures than the surrounding areas. Since urban area is the only class of interest, a one-class classifier, the One-Class Support Vector Machine (OCSVM), was selected as the classifier. The first method is classification of different data combinations for mapping: (1) OLS data and NDVI data, (2) OLS data and LST data, and (3) OLS data, NDVI data and LST data combined. The second one is a morphological reconstruction based method which combines classification results from OLS plus NDVI data and from OLS plus LST data. In the morphological reconstruction based method, the classification result using OLS and NDVI data was used as a mask image, while the classification result using OLS and LST data was used as a marker image. The north China area covering 14 provinces was selected as study area. Classification results from Landsat TM/ETM+ data from selected areas with different development levels were used as reference data to validate the proposed methods. The results show that the proposed methods effectively reduced the over-glow effect caused by DSMP-OLS data and achieved better results compared to the results from the traditional thresholding technique. The combination of all three datasets produces more accurate results than those of using any two datasets. The proposed morphological reconstruction based method achieves the best result in urban extent mapping

  3. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  4. Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

    Directory of Open Access Journals (Sweden)

    Gemma Simó

    2016-10-01

    Full Text Available Land Surface Temperature (LST as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same observation time, for the very heterogeneous Campus of the University of the Balearic Islands (Mallorca, Western Mediterranean, with an area of about 1 km 2 , for a period between 2014 and 2016. Variations of LST between 10 and 20 K are often found at the sub-kilometre scale. In addition, MODIS values are compared to the ground truth for one point in the Campus, as obtained from a four-component net radiometer, and a bias of 3.2 K was found in addition to a Root Mean Square Error (RMSE of 4.2 K. An indication of a more elaborated local measurement strategy in the Campus is given, using an array of radiometers distributed in the area.

  5. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    International Nuclear Information System (INIS)

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  6. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    Science.gov (United States)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is

  7. An Analysis of the Discrepancies between MODIS and INSAT-3D LSTs in High Temperatures

    Directory of Open Access Journals (Sweden)

    Seyed Kazem Alavipanah

    2017-04-01

    Full Text Available In many disciplines, knowledge on the accuracy of Land Surface Temperature (LST as an input is of great importance. One of the most efficient methods in LST evaluation is cross validation. Well-documented and validated polar satellites with a high spatial resolution can be used as references for validating geostationary LST products. This study attempted to investigate the discrepancies between a Moderate Resolution Imaging Spectro-radiometer (MODIS and Indian National Satellite (INSAT-3D LSTs for high temperatures, focusing on six deserts with sand dune land cover in the Middle East from 3 March 2015 to 24 August 2016. Firstly, the variability of LSTs in the deserts of the study area was analyzed by comparing the mean, Standard Deviation (STD, skewness, minimum, and maximum criteria for each observation time. The mean value of the LST observations indicated that the MYD-D observation times are closer to those of diurnal maximum and minimum LSTs. At all times, the LST observations exhibited a negative skewness and the STD indicated higher variability during times of MOD-D. The observed maximum LSTs from MODIS collection 6 showed higher values in comparison with the last versions of LSTs for hot spot regions around the world. After the temporal, spatial, and geometrical matching of LST products, the mean of the MODIS—INSAT LST differences was calculated for the study area. The results demonstrated that discrepancies increased with temperature up to +15.5 K. The slopes of the mean differences were relatively similar for all deserts except for An Nafud, suggesting an effect of View Zenith Angle (VZA. For modeling the discrepancies between two sensors in continuous space, the Diurnal Temperature Cycles (DTC of both sensors were constructed and compared. The sample DTC models approved the results from discrete LST subtractions and proposed the uncertainties within MODIS DTCs. The authors proposed that the observed LST discrepancies in high

  8. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Directory of Open Access Journals (Sweden)

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  9. Modelling the angular effects on satellite retrieved LST at global scale using a land surface classification

    Science.gov (United States)

    Ermida, Sofia; DaCamara, Carlos C.; Trigo, Isabel F.; Pires, Ana C.; Ghent, Darren

    2017-04-01

    Land Surface Temperature (LST) is a key climatological variable and a diagnostic parameter of land surface conditions. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Although LST estimation from remote sensing instruments operating in the Infrared (IR) is widely used and has been performed for nearly 3 decades, there is still a list of open issues. One of these is the LST dependence on viewing and illumination geometry. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should represent to the ensemble of directional radiometric temperature of all surface elements within the FOV. Angular effects on LST are here conveniently estimated by means of a kernel model of the surface thermal emission, which describes the angular dependence of LST as a function of viewing and illumination geometry. The model is calibrated using LST data as provided by a wide range of sensors to optimize spatial coverage, namely: 1) a LEO sensor - the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board NASA's TERRA and AQUA; and 2) 3 GEO sensors - the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board EUMETSAT's Meteosat Second Generation (MSG), the Japanese Meteorological Imager (JAMI) on-board the Japanese Meteorological Association (JMA) Multifunction Transport SATellite (MTSAT-2), and NASA's Geostationary Operational Environmental Satellites (GOES). As shown in our previous feasibility studies the sampling of illumination and view angles has a high impact on the obtained model parameters. This impact may be mitigated when the sampling size is increased by aggregating pixels with similar surface conditions. Here we propose a methodology where land surface is

  10. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015.

    Science.gov (United States)

    Wan, Wei; Li, Huan; Xie, Hongjie; Hong, Yang; Long, Di; Zhao, Limin; Han, Zhongying; Cui, Yaokui; Liu, Baojian; Wang, Cunguang; Yang, Wenting

    2017-07-25

    Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km 2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km 2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.

  11. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  12. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  13. Modeling GPP in the Nordic forest landscape with MODIS time series data—Comparison with the MODIS GPP product

    DEFF Research Database (Denmark)

    Schubert, Per; Lagergren, Fredrik; Aurela, Mika

    2012-01-01

    . The main objective of this study was to investigate if MODIS 500m reflectance data can be used to drive empirical models for regional estimations of GPP in Nordic forests. The performance of the proposed models was compared with the MODIS 1km GPP product. Linear regression analyses were made on 8-day...... averages of eddy covariance GPP from three deciduous and ten coniferous sites in relation to MODIS 8-day composite data and 8-day averages of modeled incoming PPFD (photosynthetic photon flux density). Time series of EVI2 (two-band enhanced vegetation index) were calculated from MODIS 500m reflectance data...... and smoothed by a curve fitting procedure. For most sites, GPP was fairly strongly to strongly related to the product of EVI2 and PPFD (Deciduous: R2=0.45–0.86, Coniferous: R2=0.49–0.90). Similar strengths were found between GPP and the product of EVI2 and MODIS 1km daytime LST (land surface temperature) (R2...

  14. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  15. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  16. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  17. MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MOD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  18. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  19. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  20. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches

    Directory of Open Access Journals (Sweden)

    Yinghai Ke

    2016-03-01

    Full Text Available This study presented a MODIS 8-day 1 km evapotranspiration (ET downscaling method based on Landsat 8 data (30 m and machine learning approaches. Eleven indicators including albedo, land surface temperature (LST, and vegetation indices (VIs derived from Landsat 8 data were first upscaled to 1 km resolution. Machine learning algorithms including Support Vector Regression (SVR, Cubist, and Random Forest (RF were used to model the relationship between the Landsat indicators and MODIS 8-day 1 km ET. The models were then used to predict 30 m ET based on Landsat 8 indicators. A total of thirty-two pairs of Landsat 8 images/MODIS ET data were evaluated at four study sites including two in United States and two in South Korea. Among the three models, RF produced the lowest error, with relative Root Mean Square Error (rRMSE less than 20%. Vegetation greenness related indicators such as Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, Soil Adjusted Vegetation Index (SAVI, and vegetation moisture related indicators such as Normalized Difference Infrared Index—Landsat 8 OLI band 7 (NDIIb7 and Normalized Difference Water Index (NDWI were the five most important features used in RF model. Temperature-based indicators were less important than vegetation greenness and moisture-related indicators because LST could have considerable variation during each 8-day period. The predicted Landsat downscaled ET had good overall agreement with MODIS ET (average rRMSE = 22% and showed a similar temporal trend as MODIS ET. Compared to the MODIS ET product, the downscaled product demonstrated more spatial details, and had better agreement with in situ ET observations (R2 = 0.56. However, we found that the accuracy of MODIS ET was the main control factor of the accuracy of the downscaled product. Improved coarse-resolution ET estimation would result in better finer-resolution estimation. This study proved the potential of using machine learning

  1. Comparison of two split-window methods for retrieving land surface temperature from MODIS data

    Science.gov (United States)

    Zhao, Shaohua; Qin, Qiming; Yang, Yonghui; Xiong, Yujiu; Qiu, Guoyu

    2009-08-01

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in North China Plain. The results show that the max, min and mean errors of Mao method are 1.33K, 1.54K and 0.13K lower than the standard LST product respectively; while those of Sobrino method are 0.73K, 1.46K and 1.50K higher than the standard respectively. Validation of the two methods using LST product based on weather stations shows a good agreement between the standard and Sobrino method, with RMSE of 1.17K, whereas RMSE of Mao method is 1.85K. Finally, the study introduces the Sobmao method, which is based on Sobrino method but simplifies the estimation of atmospheric water vapour content using Mao method. The Sobmao method has almost the same accuracy with Sobrino method. With high accuracy and simplification of water vapour content estimation, the Sobmao method is recommendable in LST inversion for good application in Ningxia region, the northwest China, with mean error of 0.33K and the RMSE value of 0.91K.

  2. MODIS-based spatiotemporal patterns of soil moisture and evapotranspiration interactions in Tampa Bay urban watershed

    Science.gov (United States)

    Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent

    2011-09-01

    Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.

  3. Antarctic Temperature Extremes from MODIS Land Surface Temperatures: New Processing Methods Reveal Data Quality Puzzles

    Science.gov (United States)

    Grant, G.; Gallaher, D. W.

    2017-12-01

    New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.

  4. Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products

    Science.gov (United States)

    Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This

  5. Evaluation of Daytime Evaporative Fraction from MODIS TOA Radiances Using FLUXNET Observations

    Directory of Open Access Journals (Sweden)

    Jian Peng

    2014-06-01

    Full Text Available In recent decades, the land surface temperature/vegetation index (LST/NDVI feature space has been widely used to estimate actual evapotranspiration (ETa or evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy. Traditionally, it is essential to pre-process satellite top of atmosphere (TOA radiances to obtain LST before estimating EF. However, pre-processing TOA radiances is a cumbersome task including corrections for atmospheric, adjacency and directional effects. Based on the contextual relationship between LST and NDVI, some studies proposed the direct use of TOA radiances instead of satellite retrieved LST products to estimate EF, and found that use of TOA radiances is applicable in some regional studies. The purpose of the present study is to test the robustness of the TOA radiances based EF estimation scheme over different climatic and surface conditions. Flux measurements from 16 FLUXNET (a global network of eddy covariance towers sites were used to validate the Moderate Resolution Imaging Spectro radiometer (MODIS TOA radiances estimated daytime EF. It is found that the EF estimates perform well across a wide variety of climate and biome types—Grasslands, crops, cropland/natural vegetation mosaic, closed shrublands, mixed forest, deciduous broadleaf forest, and savannas. The overall mean bias error (BIAS, mean absolute difference (MAD, root mean square difference (RMSD and correlation coefficient (R values for all the sites are 0.018, 0.147, 0.178 and 0.590, respectively, which are comparable with published results in the literature. We conclude that the direct use of measured TOA radiances instead of LST to estimate daytime EF can avoid complex atmospheric corrections associated with the satellite derived products, and would facilitate the relevant applications where minimum pre-processing is important.

  6. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    Science.gov (United States)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  7. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Yulin Cai

    2017-03-01

    Full Text Available Daily maximum surface air temperature (Tamax is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST, a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland and two seasons (i.e., growing season and non-growing season. Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub, suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.

  8. A Framework for Mapping Global Evapotranspiration using 375-m VIIRS LST

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Schull, M. A.; Neale, C. M. U.

    2017-12-01

    As the world's water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use are becoming increasingly important, especially in areas of food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in morning land surface temperature to estimate the partitioning of sensible/latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring. Until recently, ALEXI has been limited to areas with high resolution temporal sampling of geostationary sensors. The use of geostationary sensors makes global mapping a complicated process, especially for real-time applications, as data from as many as five different sensors are required to be ingested and harmonized to create a global mosaic. However, our research team has developed a new and novel method of using twice-daily observations from polar-orbiting sensors such as MODIS and VIIRS to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within ALEXI. This allows the method to be applied globally using a single sensor rather than a global compositing of all available geostationary data. Other advantages of this new method include the higher spatial resolution provided by MODIS and VIIRS and the increased sampling at high latitudes where oblique view angles limit the utility of geostationary sensors. Improvements to the spatial resolution of the thermal infrared wavelengths on the VIIRS instrument, as compared to MODIS (375-m VIIRS vs. 1-km MODIS), allows for a much higher resolution ALEXI product than has been

  9. Land Surface Temperature Retrieval from MODIS Data by Integrating Regression Models and the Genetic Algorithm in an Arid Region

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2014-06-01

    Full Text Available The land surface temperature (LST is one of the most important parameters of surface-atmosphere interactions. Methods for retrieving LSTs from satellite remote sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on Earth’s surface. Many split-window (SW algorithms, which can be applied to satellite sensors with two adjacent thermal channels located in the atmospheric window between 10 μm and 12 μm, require auxiliary atmospheric parameters (e.g., water vapor content. In this research, the Heihe River basin, which is one of the most arid regions in China, is selected as the study area. The Moderate-resolution Imaging Spectroradiometer (MODIS is selected as a test case. The Global Data Assimilation System (GDAS atmospheric profiles of the study area are used to generate the training dataset through radiative transfer simulation. Significant correlations between the atmospheric upwelling radiance in MODIS channel 31 and the other three atmospheric parameters, including the transmittance in channel 31 and the transmittance and upwelling radiance in channel 32, are trained based on the simulation dataset and formulated with three regression models. Next, the genetic algorithm is used to estimate the LST. Validations of the RM-GA method are based on the simulation dataset generated from in situ measured radiosonde profiles and GDAS atmospheric profiles, the in situ measured LSTs, and a pair of daytime and nighttime MOD11A1 products in the study area. The results demonstrate that RM-GA has a good ability to estimate the LSTs directly from the MODIS data without any auxiliary atmospheric parameters. Although this research is for local application in the Heihe River basin, the findings and proposed method can easily be extended to other satellite sensors and regions with arid climates and high elevations.

  10. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  11. Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data

    Directory of Open Access Journals (Sweden)

    Xiaoying Ouyang

    2014-12-01

    Full Text Available The reliable estimation of spatially distributed Land Surface Temperature (LST is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS onboard the Chinese “Environmental and Disaster Monitoring and Forecasting with a Small Satellite Constellation” (HJ-1B for short for one of the satellites, with ancillary water vapor information from Moderate Resolution Imaging Spectroradiometer (MODIS products (MOD05 and in situ automatic sun tracking photometer CE318 data for the first time. In situ LST data for the period from mid-June to mid-September 2012 were acquired from automatic meteorological stations (AMS that are part of Heihe Watershed Allied Telemetry Experimental Research (HiWATER project. MOD05-based LST and CE318-based LST are compared with in situ measurements at 16 AMS sites with land cover types of vegetable, maize and orchards. The results show that the use of the MOD05 product could achieve a comparable accuracy in LST retrieval with that achieved using the CE318 data. The largest difference between the MOD05-based LST and CE318-based LST is 0.84 K throughout the study period over the Heihe River Basin. The standard deviation (STD, root mean square error (RMSE, and correlation coefficient (R of HJ-1B/IRS vs. the in situ measurements are 2.45 K, 2.78 K, and 0.67, respectively, whereas those for the MODIS 1 km LST product vs. the in situ measurements are 4.07 K, 2.98 K, and 0.79, respectively. The spatial pattern of the HJ-1B/LST over the study area in the Heihe River Basin generally agreed well with the MODIS 1 km LST product and contained more detailed spatial textures.

  12. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    Science.gov (United States)

    Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.

    2013-07-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish

  13. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day–night MODIS observations

    Directory of Open Access Journals (Sweden)

    R. Guzinski

    2013-07-01

    Full Text Available The Dual Temperature Difference (DTD model, introduced by Norman et al. (2000, uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the

  14. Maximising the benefits of satellite LST within the user community: ESA DUE GlobTemperature

    Science.gov (United States)

    Ghent, D.

    2014-12-01

    Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean balance of solar heating and land-atmosphere cooling fluxes. It is a basic determinant of the terrestrial thermal behaviour, as it controls the effective radiating temperature of the Earth's surface. The sensitivity of LST to soil moisture and vegetation cover means it is an important component in numerous applications. With the demand for LST data from Earth Observation currently experiencing considerable growth it is important that the users of this data are appropriately engaged by the LST data providers. The GlobTemperature project under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017) aims to promote the wider uptake of global-scale satellite LST by the research and operational user communities; the key to success depending on the coherence and openness of the interactions between the LST and user communities. By incorporating detailed user input into the specifications, their subsequent testing of the LST data sets, and sustained access to data in a user-friendly manner through common data formats GlobTemperature is enhancing the portfolio of LST products from Earth Observation, while concurrently breaking down the barriers to successful application of such data through its programme of dialogue between the data providers and data users. Here we present the outcomes from the first phase of the project, which is achieving some innovative developments: a globally representative and consistent matchup database enabling validation and intercomparison of multi-sensor LST data sets; a prototype combined geostationary earth orbit (GEO) and low earth orbit (LEO) global data set for LST to resolve the diurnal cycle which is a key request from users of LST data; the delivery of the first LST data sets via a dedicated Data Portal in harmonised data format; and the establishment, in collaboration with international colleagues

  15. Simulation of surface temperature and ice cover of large northern lakes with 1-D models: a comparison with MODIS satellite data and in situ measurements

    Directory of Open Access Journals (Sweden)

    H. Kheyrollah Pour

    2012-03-01

    Full Text Available Lake surface temperature (LST and ice phenology were simulated for various points differing in depth on Great Slave Lake and Great Bear Lake, two large lakes located in the Mackenzie River Basin in Canada's Northwest Territories, using the 1-D Freshwater Lake model (FLake and the Canadian Lake Ice Model (CLIMo over the 2002–2010 period, forced with data from three weather stations (Yellowknife, Hay River and Deline. LST model results were compared to those derived from the Moderate Resolution Imaging Spectroradiometer (MODIS aboard the Earth Observing System Terra and Aqua satellite platforms. Simulated ice thickness and freeze-up/break-up dates were also compared to in situ observations. Both models showed a good agreement with daily average MODIS LSTs on an annual basis (0.935  ≤  relative index of agreement  ≤  0.984 and 0.94  ≤  mean bias error  ≤  4.83. The absence of consideration of snow on lake ice in FLake was found to have a large impact on estimated ice thicknesses (25 cm thicker on average by the end of winter compared to in situ measurements; 9 cm thicker for CLIMo and break-up dates (6 d earlier in comparison with in situ measurements; 3 d later for CLIMo. The overall agreement between the two models and MODIS LST products during both the open water and ice seasons was good. Remotely sensed data are a promising data source for assimilation into numerical weather prediction models, as they provide the spatial coverage that is not captured by in situ data.

  16. Rat Monoclonal Antibodies Specific for LST1 Proteins

    OpenAIRE

    Schiller, Christian; Nitschké, Maximilian J. E.; Seidl, Alexander; Kremmer, Elisabeth; Weiss, Elisabeth H.

    2009-01-01

    The LST1 gene is located in the human MHC class III region and encodes transmembrane and soluble isoforms that have been suggested to play a role in the regulation of the immune response and are associated with inflammatory diseases such as rheumatoid arthritis. Here we describe the generation and characterization of the first monoclonal antibodies against LST1. Two hybridoma lines secreting monoclonal antibodies designated 7E2 and 8D12 were established. The 7E2 antibody detects recombinant a...

  17. Large-sized seaweed monitoring based on MODIS

    Science.gov (United States)

    Ma, Long; Li, Ying; Lan, Guo-xin; Li, Chuan-long

    2009-10-01

    In recent years, large-sized seaweed, such as ulva lactuca, blooms frequently in coastal water in China, which threatens marine eco-environment. In order to take effective measures, it is important to make operational surveillance. A case of large-sized seaweed blooming (i.e. enteromorpha), occurred in June, 2008, in the sea near Qingdao city, is studied. Seaweed blooming is dynamically monitored using Moderate Resolution Imaging Spectroradiometer (MODIS). After analyzing imaging spectral characteristics of enteromorpha, MODIS band 1 and 2 are used to create a band ratio algorithm for detecting and mapping large-sized seaweed blooming. In addition, chlorophyll-α concentration is inversed based on an empirical model developed using MODIS. Chlorophyll-α concentration maps are derived using multitemporal MODIS data, and chlorophyll-α concentration change is analyzed. Results show that the presented methods are useful to get the dynamic distribution and the growth of large-sized seaweed, and can support contingency planning.

  18. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data

    Directory of Open Access Journals (Sweden)

    Ran Huang

    2015-07-01

    Full Text Available Air temperature is one of the most important factors in crop growth monitoring and simulation. In the present study, we estimated and mapped daily mean air temperature using daytime and nighttime land surface temperatures (LSTs derived from TERRA and AQUA MODIS data. Linear regression models were calibrated using LSTs from 2003 to 2011 and validated using LST data from 2012 to 2013, combined with meteorological station data. The results show that these models can provide a robust estimation of measured daily mean air temperature and that models that only accounted for meteorological data from rural regions performed best. Daily mean air temperature maps were generated from each of four MODIS LST products and merged using different strategies that combined the four MODIS products in different orders when data from one product was unavailable for a pixel. The annual average spatial coverage increased from 20.28% to 55.46% in 2012 and 28.31% to 44.92% in 2013.The root-mean-square and mean absolute errors (RMSE and MAE for the optimal image merging strategy were 2.41 and 1.84, respectively. Compared with the least-effective strategy, the RMSE and MAE decreased by 17.2% and 17.8%, respectively. The interpolation algorithm uses the available pixels from images with consecutive dates in a sliding-window mode. The most appropriate window size was selected based on the absolute spatial bias in the study area. With an optimal window size of 33 × 33 pixels, this approach increased data coverage by up to 76.99% in 2012 and 89.67% in 2013.

  19. Quality Assessment of S-NPP VIIRS Land Surface Temperature Product

    Directory of Open Access Journals (Sweden)

    Yuling Liu

    2015-09-01

    Full Text Available The VIIRS Land Surface Temperature (LST Environmental Data Record (EDR has reached validated (V1 stage maturity in December 2014. This study compares VIIRS v1 LST with the ground in situ observations and with heritage LST product from MODIS Aqua and AATSR. Comparisons against U.S. SURFRAD ground observations indicate a similar accuracy among VIIRS, MODIS and AATSR LST, in which VIIRS LST presents an overall accuracy of −0.41 K and precision of 2.35 K. The result over arid regions in Africa suggests that VIIRS and MODIS underestimate the LST about 1.57 K and 2.97 K, respectively. The cross comparison indicates an overall close LST estimation between VIIRS and MODIS. In addition, a statistical method is used to quantify the VIIRS LST retrieval uncertainty taking into account the uncertainty from the surface type input. Some issues have been found as follows: (1 Cloud contamination, particularly the cloud detection error over a snow/ice surface, shows significant impacts on LST validation; (2 Performance of the VIIRS LST algorithm is strongly dependent on a correct classification of the surface type; (3 The VIIRS LST quality can be degraded when significant brightness temperature difference between the two split window channels is observed; (4 Surface type dependent algorithm exhibits deficiency in correcting the large emissivity variations within a surface type.

  20. Spatio-temporal reconstruction of air temperature maps and their application to estimate rice growing season heat accumulation using multi-temporal MODIS data.

    Science.gov (United States)

    Zhang, Li-wen; Huang, Jing-feng; Guo, Rui-fang; Li, Xin-xing; Sun, Wen-bo; Wang, Xiu-zhen

    2013-02-01

    The accumulation of thermal time usually represents the local heat resources to drive crop growth. Maps of temperature-based agro-meteorological indices are commonly generated by the spatial interpolation of data collected from meteorological stations with coarse geographic continuity. To solve the critical problems of estimating air temperature (T(a)) and filling in missing pixels due to cloudy and low-quality images in growing degree days (GDDs) calculation from remotely sensed data, a novel spatio-temporal algorithm for T(a) estimation from Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) data was proposed. This is a preliminary study to calculate heat accumulation, expressed in accumulative growing degree days (AGDDs) above 10 °C, from reconstructed T(a) based on MODIS land surface temperature (LST) data. The verification results of maximum T(a), minimum T(a), GDD, and AGDD from MODIS-derived data to meteorological calculation were all satisfied with high correlations over 0.01 significant levels. Overall, MODIS-derived AGDD was slightly underestimated with almost 10% relative error. However, the feasibility of employing AGDD anomaly maps to characterize the 2001-2010 spatio-temporal variability of heat accumulation and estimating the 2011 heat accumulation distribution using only MODIS data was finally demonstrated in the current paper. Our study may supply a novel way to calculate AGDD in heat-related study concerning crop growth monitoring, agricultural climatic regionalization, and agro-meteorological disaster detection at the regional scale.

  1. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    Science.gov (United States)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  2. Trends in LST over the peninsular Spain as derived from the AVHRR imagery data

    DEFF Research Database (Denmark)

    Khorchani, Makki; Vicente-Serrano, Sergio M.; Azorin-Molina, Cesar

    2018-01-01

    between LST and NDVI changes. The areas that experienced an increase in the LST were spatially consistent with those areas with no changes or even a dominant decrease in vegetation coverage. In addition, the strong increase of LST is coherent with observations of the recent radiative forcing affecting...

  3. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    Science.gov (United States)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST

  4. Development of a Global Evaporative Stress Index Based on Thermal and Microwave LST towards Improved Monitoring of Agricultural Drought

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Otkin, J.; Holmes, T. R.; Gao, F.

    2017-12-01

    This presentation will describe the development of a global agricultural monitoring tool, with a focus on providing early warning of developing vegetation stress for agricultural decision-makers and stakeholders at relatively high spatial resolution (5-km). The tool is based on remotely sensed estimates of evapotranspiration, retrieved via energy balance principals using observations of land surface temperature. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET generated with the ALEXI surface energy balance model. The LST inputs to ESI have been shown to provide early warning information about the development of vegetation stress with stress-elevated canopy temperatures observed well before a decrease in greenness is detected in remotely sensed vegetation indices. As a diagnostic indicator of actual ET, the ESI requires no information regarding antecedent precipitation or soil moisture storage capacity - the current available moisture to vegetation is deduced directly from the remotely sensed LST signal. This signal also inherently accounts for both precipitation and non-precipitation related inputs/sinks to the plant-available soil moisture pool (e.g., irrigation) which can modify crop response to rainfall anomalies. Independence from precipitation data is a benefit for global agricultural monitoring applications due to sparseness in existing ground-based precipitation networks, and time delays in public reporting. Several enhancements to the current ESI framework will be addressed as requested from project stakeholders: (a) integration of "all-sky" MW Ka-band LST retrievals to augment "clear-sky" thermal-only ESI in persistently cloudy regions; (b) operational production of ESI Rapid Change Indices which provide important early warning information related to onset of actual vegetation stress; and (c) assessment of ESI as a predictor of global yield anomalies; initial studies have shown the ability of intra

  5. The BaBar LST Detector High Voltage System: Design And Implementation

    International Nuclear Information System (INIS)

    Benelli, G.; Honscheid, K.; Lewis, E.A.; Regensburger, J.J.; Smith, D.S.; Ohio State U.

    2006-01-01

    In 2004, the first two sextants of the new Limited Streamer Tube (LST) detector were installed in the BABAR experiment to replace the ageing Resistive Plate Chambers (RPCs) as active detectors for the BABAR Instrumented Flux Return (IFR) muon system. Each streamer tube of the new detector consists of 8 cells. The cell walls are coated with graphite paint and a 100 (micro)m wire forms the anode. These wires are coupled in pairs inside the tubes resulting in 4 independent two-cell segments per LST. High voltage (HV) is applied to the 4 segments through a custom connector that also provides the decoupling capacitor to pick up the detector signals from the anode wires. The BABAR LST detector is operated at 5.5 kV. The high voltage system for the LST detector was designed and built at The Ohio State University (OSU HVPS). Each of the 25 supplies built for BaBar provides 80 output channels with individual current monitoring and overcurrent protection. For each group of 20 channels the HV can be adjusted between 0 and 6 kV. A 4-fold fan-out is integrated in the power supplies to provide a total of 320 outputs. The power supplies are controlled through built-in CANbus and Ethernet (TCP/IP) interfaces. In this presentation we will discuss the design and novel features of the OSU HVPS system and its integration into the BABAR EPICS detector control framework. Experience with the supplies operation during the LST extensive quality control program and their performance during the initial data taking period will be discussed

  6. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  7. MODIS-based global terrestrial estimates of gross primary productivity and evapotranspiration

    Science.gov (United States)

    Ryu, Y.; Baldocchi, D. D.; Kobayashi, H.; Li, J.; van Ingen, C.; Agarwal, D.; Jackson, K.; Humphrey, M.

    2010-12-01

    We propose a novel approach to quantify gross primary productivity (GPP) and evapotranspiration (ET) at global scale (5 km resolution with 8-day interval). The MODIS-based, process-oriented approach couples photosynthesis, evaporation, two-leaf energy balance and nitrogen, which are different from the previous satellite-based approaches. We couple information from MODIS with flux towers to assess the drivers and parameters of GPP and ET. Incoming shortwave radiation components (direct and diffuse PAR, NIR) under all sky condition are modeled using a Monte-Carlo based atmospheric radiative transfer model. The MODIS Level 2 Atmospheric products are gridded and overlaid with MODIS Land products to produce spatially compatible forcing variables. GPP is modeled using a two-leaf model (sunlit and shaded leaf) and the maximum carboxylation rate is estimated using albedo-Nitrogen-leaf trait relations. The GPP is used to calculate canopy conductance via Ball-Berry model. Then, we apply Penman-Monteith equation to calculate evapotranspiration. The process-oriented approach allows us to investigate the main drivers of GPP and ET at global scale. Finally we explore the spatial and temporal variability of GPP and ET at global scale.

  8. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina.

    Science.gov (United States)

    Dantur Juri, María Julia; Estallo, Elizabet; Almirón, Walter; Santana, Mirta; Sartor, Paolo; Lamfri, Mario; Zaidenberg, Mario

    2015-06-01

    Distribution and abundance of disease vectors are directly related to climatic conditions and environmental changes. Remote sensing data have been used for monitoring environmental conditions influencing spatial patterns of vector-borne diseases. The aim of this study was to analyze the effect of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), and climatic factors (temperature, humidity, wind velocity, and accumulated rainfall) on the distribution and abundance of Anopheles species in northwestern Argentina using Poisson regression analyses. Samples were collected from December, 2001 to December, 2005 at three localities, Aguas Blancas, El Oculto and San Ramón de la Nueva Orán. We collected 11,206 adult Anopheles species, with the major abundance observed at El Oculto (59.11%), followed by Aguas Blancas (22.10%) and San Ramón de la Nueva Orán (18.79%). Anopheles pseudopunctipennis was the most abundant species at El Oculto, Anopheles argyritarsis predominated in Aguas Blancas, and Anopheles strodei in San Ramón de la Nueva Orán. Samples were collected throughout the sampling period, with the highest peaks during the spring seasons. LST and mean temperature appear to be the most important variables determining the distribution patterns and major abundance of An. pseudopunctipennis and An. argyritarsis within malarious areas. © 2015 The Society for Vector Ecology.

  9. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  10. Distinguishing Land Change from Natural Variability and Uncertainty in Central Mexico with MODIS EVI, TRMM Precipitation, and MODIS LST Data

    Directory of Open Access Journals (Sweden)

    Zachary Christman

    2016-06-01

    Full Text Available Precipitation and temperature enact variable influences on vegetation, impacting the type and condition of land cover, as well as the assessment of change over broad landscapes. Separating the influence of vegetative variability independent and discrete land cover change remains a major challenge to landscape change assessments. The heterogeneous Lerma-Chapala-Santiago watershed of central Mexico exemplifies both natural and anthropogenic forces enacting variability and change on the landscape. This study employed a time series of Enhanced Vegetation Index (EVI composites from the Moderate Resolution Imaging Spectoradiometer (MODIS for 2001–2007 and per-pixel multiple linear regressions in order to model changes in EVI as a function of precipitation, temperature, and elevation. Over the seven-year period, 59.1% of the variability in EVI was explained by variability in the independent variables, with highest model performance among changing and heterogeneous land cover types, while intact forest cover demonstrated the greatest resistance to changes in temperature and precipitation. Model results were compared to an independent change uncertainty assessment, and selected regional samples of change confusion and natural variability give insight to common problems afflicting land change analyses.

  11. Impact of the assimilation of satellite soil moisture and LST on the hydrological cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Delogu, Fabio; Silvestro, Francesco; Rudari, Roberto; Campo, Lorenzo; Boni, Giorgio

    2014-05-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce ground based data. The aim of this work is to investigate the impacts on the performances of a distributed hydrological model (Continuum) of the assimilation of satellite-derived soil moisture products and Land Surface (LST). In this work three different soil moisture (SM) products, derived by ASCAT sensor, are used. These data are provided by the EUMETSAT's H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) program. The considered soil moisture products are: large scale surface soil moisture (SM OBS 1 - H07), small scale surface soil moisture (SM OBS 2 - H08) and profile index in the roots region (SM DAS 2 - H14). These data are compared with soil moisture estimated by Continuum model on the Orba catchment (800 km2), in the northern part of Italy, for the period July 2012-June 2013. Different assimilation experiments have been performed. The first experiment consists in the assimilation of the SM products by using a simple Nudging technique; the second one is the assimilation of only LST data, derived from MSG satellite, and the third is the assimilation of both SM products and LST. The benefits on the model predictions of discharge, LST and soil moisture dynamics were tested.

  12. Evaluation of eco-physiological indicators in Northeast Asia dryland regions based on MODIS products and ecological models

    Science.gov (United States)

    Kang, W.

    2017-12-01

    Ecosystem carbon-energy-water circles have significant effect on function and structure and vice verse. Based on these circles mechanism, some eco-physiological indicators, like Transpiration (T), gross primary productivity (GPP), light use efficiency (LUE) and water use efficiency (WUE), are commonly applied to assess terrestrial ecosystem function and structure dynamics. The ecosystem weakened function and simple structure in Northeast dryland regions resulted from land degradation or desertification, which could be demonstrated by above-mentioned indicators. In this study, based on MODIS atmosphere (MYD07, MYD04, MYD06 data) and land products (MYD13A2 NDVI, MYD11A1 LST, MYD15A2 LAI and land cover data), we first retrieved transpiration and LUE via Penman-Monteith Model and modified Vegetation Photosynthesis Model (VPM), respectively; and then evaluated dynamics of these eco-physiological indicators (Tair, VPD, T, LUE, GPP and WUE) and some hotspots were found for next land degradation assessment. The results showed: (1) LUE and WUE are lower in barren or sparsely vegetated area and grasslands than in forest and croplands. (2) Whereas, all indicators presented higher variability in grassland area, particularly in east Mongolia. (3) GPP and transpiration have larger variability than other indicators due to fraction of absorbed Photosynthetically active radiation (FPAR). These eco-physiological indicators are expected to continue to change under future climate change and to help to assess land degradation from ecosystem energy-water-carbon perspectives.

  13. Evaluation of Land Surface Temperature Operationally Retrieved from Korean Geostationary Satellite (COMS Data

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2013-08-01

    Full Text Available We evaluated the precision of land surface temperature (LST operationally retrieved from the Korean multipurpose geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS. The split-window (SW-type retrieval algorithm was developed through radiative transfer model simulations under various atmospheric profiles, satellite zenith angles, surface emissivity values and surface lapse rate conditions using Moderate Resolution Atmospheric Transmission version 4 (MODTRAN4. The estimation capabilities of the COMS SW (CSW LST algorithm were evaluated for various impacting factors, and the retrieval accuracy of COMS LST data was evaluated with collocated Moderate Resolution Imaging Spectroradiometer (MODIS LST data. The surface emissivity values for two SW channels were generated using a vegetation cover method. The CSW algorithm estimated the LST distribution reasonably well (averaged bias = 0.00 K, Root Mean Square Error (RMSE = 1.41 K, correlation coefficient = 0.99; however, the estimation capabilities of the CSW algorithm were significantly impacted by large brightness temperature differences and surface lapse rates. The CSW algorithm reproduced spatiotemporal variations of LST comparing well to MODIS LST data, irrespective of what month or time of day the data were collected from. The one-year evaluation results with MODIS LST data showed that the annual mean bias, RMSE and correlation coefficient for the CSW algorithm were −1.009 K, 2.613 K and 0.988, respectively.

  14. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    Directory of Open Access Journals (Sweden)

    Xiwei Fan

    2015-04-01

    Full Text Available Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST retrieval error of 11.0 K when using the generalized split-window (GSW algorithm with a cirrus optical depth (COD at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  15. All-weather Land Surface Temperature Estimation from Satellite Data

    Science.gov (United States)

    Zhou, J.; Zhang, X.

    2017-12-01

    Satellite remote sensing, including the thermal infrared (TIR) and passive microwave (MW), provides the possibility to observe LST at large scales. For better modeling the land surface processes with high temporal resolutions, all-weather LST from satellite data is desirable. However, estimation of all-weather LST faces great challenges. On the one hand, TIR remote sensing is limited to clear-sky situations; this drawback reduces its usefulness under cloudy conditions considerably, especially in regions with frequent and/or permanent clouds. On the other hand, MW remote sensing suffers from much greater thermal sampling depth (TSD) and coarser spatial resolution than TIR; thus, MW LST is generally lower than TIR LST, especially at daytime. Two case studies addressing the challenges mentioned previously are presented here. The first study is for the development of a novel thermal sampling depth correction method (TSDC) to estimate the MW LST over barren land; this second study is for the development of a feasible method to merge the TIR and MW LSTs by addressing the coarse resolution of the latter one. In the first study, the core of the TSDC method is a new formulation of the passive microwave radiation balance equation, which allows linking bulk MW radiation to the soil temperature at a specific depth, i.e. the representative temperature: this temperature is then converted to LST through an adapted soil heat conduction equation. The TSDC method is applied to the 6.9 GHz channel in vertical polarization of AMSR-E. Evaluation shows that LST estimated by the TSDC method agrees well with the MODIS LST. Validation is based on in-situ LSTs measured at the Gobabeb site in western Namibia. The results demonstrate the high accuracy of the TSDC method: it yields a root-mean squared error (RMSE) of 2 K and ignorable systematic error over barren land. In the second study, the method consists of two core processes: (1) estimation of MW LST from MW brightness temperature and (2

  16. Developing MODIS-based cloud climatologies to aid species distribution modeling and conservation activities

    Directory of Open Access Journals (Sweden)

    Michael William Douglas

    2016-10-01

    Full Text Available WorldClim (Hijmans et al. 2005 has been the de-facto source of basic climatological analyses for most species distribution modeling research and conservation science applications because of its global coverage and fine (<1 km spatial resolution.  However, it has been recognized since its development that there are limitations in data-poor regions, especially with regard to the precipitation analyses.  Here we describe procedures to develop a satellite-based daytime cloudiness climatology that better reflects the variations in vegetation cover in many regions of the globe than do the WorldClim precipitation products.  Moderate Resolution Imaging Spectroradiometer (MODIS imagery from the National Aeronautics and Space Administration (NASA Terra and Aqua sun-synchronous satellites have recently been used to develop multi-year climatologies of cloudiness.  Several procedures exist for developing such climatologies.  We first discuss a simple procedure that uses brightness thresholds to identify clouds.  We compare these results with those from a more complex procedure: the MODIS Cloud Mask product, recently averaged into climatological products by Wilson and Jetz (2016.  We discuss advantages and limitations of both approaches.  We also speculate on further work that will be needed to improve the usefulness of these MODIS-based climatologies of cloudiness. Despite limitations of current MODIS-based climatology products, they have the potential to greatly improve our understanding of the distribution of biota across the globe.  We show examples from oceanic islands and arid coastlines in the subtropics and tropics where the MODIS products should be of special value in predicting the observed vegetation cover.  Some important applications of reliable climatologies based on MODIS imagery products will include 1 helping to restore long-degraded cloud-impacted environments; 2 improving estimations of the spatial distribution of cloud

  17. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    Science.gov (United States)

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  18. Non-IgE-related diagnostic methods (LST, patch test).

    Science.gov (United States)

    Matsumoto, Kenji

    2015-01-01

    Although most food allergy patients have immediate-type reactions, some have delayed-type reactions. Unlike for the detection of food-specific IgE antibody in immediate-type (IgE-mediated) food allergies, only a few tests are currently available to aid in the diagnosis of delayed-type (non-IgE-mediated) food allergies. This chapter summarizes our current understanding of one in vitro test and one in vivo test for non-IgE-mediated food allergies: the lymphocyte stimulation test (LST) and the atopy patch test (APT). Although the LST is not yet standardized, a food protein-specific LST might be a useful tool for diagnosing delayed-type food allergies, and especially those manifesting with gastrointestinal symptoms but not skin symptoms. Various remaining issues - including basophil contamination of the peripheral blood mononuclear cell fraction and lipopolysaccharide contamination of food antigen preparations - are also discussed. The APT uses an epicutaneous patch technique to occlusively apply food antigens to the skin to induce inflammatory reactions at the patch application site. Because the APT shows modest sensitivity and specificity, the clinical benefit of the APT in the diagnosis of food allergies in patients with atopic dermatitis is limited. A position paper on the APT issued by the European Academy of Allergy and Clinical Immunology/Global Allergy and Asthma European Network in 2006 is briefly summarized, and several recent APT-related topics, including APT use for the diagnosis of food protein-induced enterocolitis syndrome, are discussed. © 2015 S. Karger AG, Basel.

  19. MODY diabetes - diagnostika a terapie

    OpenAIRE

    Verner, Miroslav

    2010-01-01

    This work summarized basic informations about different types of MODY diabetes. The keypoint is diagnostic, based on family history, followed by analysis of MODY diabetes types with suggestion of optimal therapy. In conclusion I suggest a possible solution of the underestimated diagnostic in MODY diabetes with an information poster in diabetological consulting rooms.

  20. Extreme thermal episodes analyzed with MODIS products during the boreal winter (2000-2016

    Directory of Open Access Journals (Sweden)

    J. Gomis-Cebolla

    2016-06-01

    Full Text Available The beginning of the XXI century is characterized by the intensification of the existing global warming situation and for a series of drastic global meteorological events. Particularly, during the winter season a series of extreme temperature episodes affecting large areas of the northern hemisphere have been produced. In this paper, these episodes are studied by analyzing the thermal anomalies spatial distribution and temporal evolution in the period 2001-2016 from Land Surface Temperature (LST products obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor. The study regions considered in this investigation are eight of the northern hemisphere. The results obtained for the heating and cooling episodes do not reveal an important discrepancy, however, an increase in the area affected by heating versus cooling is observed.

  1. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  2. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    Science.gov (United States)

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  3. Downscaling 250-m MODIS growing season NDVI based on multiple-date landsat images and data mining approaches

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2015-01-01

    The satellite-derived growing season time-integrated Normalized Difference Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High temporal resolution with a wide range of wavelengths make the MODIS land surface products robust and reliable. The long-term 30-m Landsat data provide spatial detailed information for characterizing human-scale processes and have been used for land cover and land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN database. A rule-based piecewise regression GSN model based on MODIS and Landsat data was developed. Results show a strong correlation between predicted GSN and actual GSN (r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale ecological features. This multiple sensor study retains the detailed seasonal dynamic information captured by MODIS and leverages the high-resolution information from Landsat, which will be useful for regional ecosystem studies.

  4. Optimal use of land surface temperature data to detect changes in tropical forest cover

    Science.gov (United States)

    Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.

    2011-12-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.

  5. Construction and Analysis of Long-Term Surface Temperature Dataset in Fujian Province

    Science.gov (United States)

    Li, W. E.; Wang, X. Q.; Su, H.

    2017-09-01

    Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.

  6. CONSTRUCTION AND ANALYSIS OF LONG-TERM SURFACE TEMPERATURE DATASET IN FUJIAN PROVINCE

    Directory of Open Access Journals (Sweden)

    W. E. Li

    2017-09-01

    Full Text Available Land surface temperature (LST is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2 from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.

  7. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq

    Directory of Open Access Journals (Sweden)

    Azad Rasul

    2016-09-01

    Full Text Available The influence of land surface temperature (LST makes the near-surface layer of the troposphere a key driver of urban climate. This paper assesses the temporal formation of the daytime Surface Urban Cool Island (SUCI and night-time Surface Urban Heat Island (SUHI effect in Erbil, Iraq, situated in a semi-arid climate region. LST retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS Aqua and Terra and MODIS Normalized Difference Vegetation Index (NDVI from January 2003 to December 2014 are analysed. The relationships of LST with NDVI and the Normalized Multi-band Drought Index (NMDI are investigated in order to assess the influence of vegetation and moisture on the observed patterns of LST and the SUCI/SUHI. The results indicate that during the daytime, in summer, autumn and winter, densely built-up areas had lower LST acting as a SUCI compared to the non-urbanised area around the city. In contrast, at night-time, Erbil experienced higher LST and demonstrated a significant SUHI effect. The relationship between LST and NDVI is affected by seasonality and is strongly inverted during spring (r2 = 0.73; p < 0.01. Contrary to previous studies of semi-arid cities, a SUCI was detected, not only in the morning, but also during the afternoon.

  8. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    Science.gov (United States)

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  9. eMODIS: A User-Friendly Data Source

    Science.gov (United States)

    Jenkerson, Calli B.; Maiersperger, Thomas; Schmidt, Gail

    2010-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center is generating a suite of products called 'eMODIS' based on Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired by the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). With a more frequent repeat cycle than Landsat and higher spatial resolutions than the Advanced Very High Resolution Spectroradiometer (AVHRR), MODIS is well suited for vegetation studies. For operational monitoring, however, the benefits of MODIS are counteracted by usability issues with the standard map projection, file format, composite interval, high-latitude 'bow-tie' effects, and production latency. eMODIS responds to a community-specific need for alternatively packaged MODIS data, addressing each of these factors for real-time monitoring and historical trend analysis. eMODIS processes calibrated radiance data (level-1B) acquired by the MODIS sensors on the EOS Terra and Aqua satellites by combining MODIS Land Science Collection 5 Atmospherically Corrected Surface Reflectance production code and USGS EROS MODIS Direct Broadcast System (DBS) software to create surface reflectance and Normalized Difference Vegetation Index (NDVI) products. eMODIS is produced over the continental United States and over Alaska extending into Canada to cover the Yukon River Basin. The 250-meter (m), 500-m, and 1,000-m products are delivered in Geostationary Earth Orbit Tagged Image File Format (Geo- TIFF) and composited in 7-day intervals. eMODIS composites are projected to non-Sinusoidal mapping grids that best suit the geography in their areas of application (see eMODIS Product Description below). For eMODIS products generated over the continental United States (eMODIS CONUS), the Terra (from 2000) and Aqua (from 2002) records are available and continue through present time. eMODIS CONUS also is generated in an expedited process that delivers a 7-day rolling composite

  10. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection

    DEFF Research Database (Denmark)

    Ekholm, E; Shaat, N; Holst, Jens Juul

    2012-01-01

    eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P ....01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.......8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P

  11. Machine learning-based Landsat-MODIS data fusion approach for 8-day 30m evapotranspiration monitoring

    Science.gov (United States)

    Im, J.; Ke, Y.; Park, S.

    2016-12-01

    Continuous monitoring of evapotranspiration (ET) is important for understanding of hydrological cycles and energy flux dynamics. At regional and local scales, routine ET estimation is a critical for efficient water management, drought impact assessment and ecosystem health monitoring, etc. Remote sensing has long been recognized to be able to provide ET monitoring over large areas. However, no single satellite could provide temporally continuous ET at relatively high spatial resolution due to the trade-off between the spatial and temporal resolution of current satellite sensors. Landsat-series satellites provide optical and thermal imagery at 30-100m resolution, whereas the 16-day revisit cycle hinders the observation of ET dynamics; MODIS provides sources of ET estimation at daily basis, but the 500-1000m ground sampling distance is too coarse for field level applications. In this study, we present a machine learning and STARFM based method for Landsat/MODIS ET fusion. The approach first downscales MODIS 8-day 1km ET (MOD16A2) to 30m based on eleven Landsat-derived indicators such as NDVI, EVI, NDWI etc on the cloud-free Landsat-available days using Random Forest approach. For the days when Landsat data are not available, downscaled ET is synthesized by MODIS and Landsat data fusion with STARFM and STI-FM approaches. The models are evaluated using in situ flux tower measurements at US-ARM and US-Twt AmeriFlux sites the United States. Results show that the downscaled 30m ET have good agreement with MODIS ET (RMSE=0.42-3.4mm/8days, rRMSE=3.2%-26%) and the downscaled ET have higher accuracy than MODIS ET when compared to in-situ measurements.

  12. NAMMA MODIS/AQUA AND MODIS/TERRA DEEP BLUE PRODUCTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA MODIS/AQUA and MODIS/TERRA Deep Blue Products dataset is a collection of images depicting the aerosol optical depth derived from the MODIS deep blue...

  13. Cystatin C is not a good candidate biomarker for HNF1A-MODY.

    Science.gov (United States)

    Nowak, Natalia; Szopa, Magdalena; Thanabalasingham, Gaya; McDonald, Tim J; Colclough, Kevin; Skupien, Jan; James, Timothy J; Kiec-Wilk, Beata; Kozek, Elzbieta; Mlynarski, Wojciech; Hattersley, Andrew T; Owen, Katharine R; Malecki, Maciej T

    2013-10-01

    Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.

  14. Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast.

    Science.gov (United States)

    Maegawa, Kentaro; Takii, Rumi; Ushimaru, Takashi; Kozaki, Akiko

    2015-10-01

    Target of rapamycin (TOR) is a conserved eukaryotic serine/threonine kinase that functions as a central controller of cell growth. TOR protein is structurally defined by the presence several conserved domains such as the HEAT repeat, focal adhesion target (FAT), FKBP12/rapamycin binding (FRB), kinase, and FATC domains starting from the N-terminus. In most eukaryotes, TOR forms two distinct physical and functional complexes, which are termed as TOR complex 1 (TORC1) and TORC2. However, plants contain only TORC1 components, i.e., TOR, Raptor, and LST8. In this study, we analyzed the gene structure and functions of TORC components in rice to understand the properties of the TOR complex in plants. Comparison of the locations of introns in these genes among rice and other eukaryotes showed that they were well conserved among plants except for Chlamydomonas. Moreover, the intron positions in the coding sequence of human Raptor and LST8 were closer to those of plants than of fly or nematode. Complementation tests of rice TOR (OsTOR) components in yeast showed that although OsTOR did not complement yeast tor mutants, chimeric TOR, which consisted of the HEAT repeat and FAT domain from yeast and other regions from rice, rescued the tor mutants, indicating that the HEAT repeat and FAT domains are important for species-specific signaling. OsRaptor perfectly complemented a kog1 (yeast Raptor homolog) mutant, and OsLST8 partially complemented an lst8 mutant. Together, these data suggest the importance of the N-terminal region of the TOR, HEAT, and FAT domains for functional diversification of the TOR complex.

  15. MODIS GPP/NPP for complex land use area: a case study of comparison between MODIS GPP/NPP and ground-based measurements over Korea

    Science.gov (United States)

    Shim, C.

    2013-12-01

    The Moderate Resolution Imaging Radiometer (MODIS) Gross Primary Productivity (GPP)/Net Primary Productivity (NPP) has been widely used for the study on global terrestrial ecosystem and carbon cycle. The current MODIS product with ~ 1 km spatial resolution, however, has limitation on the information on local scale environment (fairly comparable values of the MODIS here however, cannot assure the quality of the MOD17 over the complex vegetation area of Korea since the ground measurements except the eddy covariance tower flux measurements are highly inconsistent. Therefore, the comprehensive experiments to represents GPP/NPP over diverse vegetation types for a comparable scale of MODIS with a consistent measurement technique are necessary in order to evaluate the MODIS vegetation productivity data over Korea, which contains a large portion of highly heterogeneous vegetation area.

  16. Mapping air temperature using time series analysis of LST : The SINTESI approach

    NARCIS (Netherlands)

    Alfieri, S.M.; De Lorenzi, F.; Menenti, M.

    2013-01-01

    This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in ...

  18. Genetika MODY diabetu

    OpenAIRE

    Dušátková, Petra

    2012-01-01

    The most common form of monogenic diabetes is MODY (Maturity-Onset Diabetes of the Young). It ranks among genetic defects of the β cell. It is clinically heterogenous group of disorders characterised with non insulin-dependent diabetes mellitus with autosomal dominant inheritance and age at diagnosis up to 40 years. We specified the diagnosis of MODY in more than 240 Czech families using molecular-genetic approach. The most common subtype of MODY is GCK-MODY which was proved in 376 subjects f...

  19. Analysis of Extracting Prior BRDF from MODIS BRDF Data

    OpenAIRE

    Hu Zhang; Ziti Jiao; Yadong Dong; Peng Du; Yang Li; Yi Lian; Tiejun Cui

    2016-01-01

    Many previous studies have attempted to extract prior reflectance anisotropy knowledge from the historical MODIS Bidirectional Reflectance Distribution Function (BRDF) product based on land cover or Normalized Difference Vegetation Index (NDVI) data. In this study, the feasibility of the method is discussed based on MODIS data and archetypal BRDFs. The BRDF is simplified into six archetypal BRDFs that represent different reflectance anisotropies. Five-year time series of MODIS BRDF data over ...

  20. Urban Heat Islands of the World's Major Cities Revealed at Multiple Scales Using Both Station Observations and Complementary Remotely Sensed Data Products

    Science.gov (United States)

    Nguyen, L. H.; Krehbiel, C.; Henebry, G. M.

    2016-12-01

    Urban heat islands (UHIs) have long been studied using both ground-based observations of air temperature and remotely sensed data. In the rapidly urbanizing world, cross-comparison between various datasets will allow us to characterize and model UHI effects more generally. Here we analyze UHIs of the world's major cities using station observations from the Global Historical Climate Network (GHCN), surface air temperatures derived from Advanced Microwave Scanning Radiometers (AMSRs), and land surface temperatures (LST) estimated from Moderate-resolution Imaging Spectroradiometer (MODIS). We compute the two measurements of thermal time (accumulated diurnal degree-days or ADDD and nocturnal degree-days or ANDD) and the normalized difference accumulated thermal time index (NDATTI) to characterize urban and rural thermal differences and day-night dynamics over multiple growing seasons. Our preliminary results for 27 major cities and 83 urban-rural groupings in the USA and Canada indicate that daytime urban thermal accumulations from the passive microwave data (AMSRs) were generally lower than in adjacent rural areas, with only 18% of urban-rural groupings showing higher thermal accumulations in cities. In contrast, station observations and MODIS LST showed consistently higher ADDD in cities (82% and 93% for GHCN and MODIS data respectively). UHIs are more pronounced at night, with 55% (AMSR), 93% (GHCN) and 100% (MODIS) of urban-rural groupings showing higher ANDD in cities. Humidity appears to be a common factor driving the day-night thermal dynamics throughout all three datasets (Figure 1). Normalized day-night differences in thermal time metrics were consistently lower (>90% of urban-rural groupings) in urban than rural areas for both air temperature datasets (GHCN and AMSRs). With MODIS LST, only 70% of urban-rural groupings show lower NDATTI in cities. We will present results for the rest of the globe.

  1. Parametrization of Land Surface Temperature Fields with Optical and Microwave Remote Sensing in Brazil's Atlantic Forest

    Science.gov (United States)

    McDonald, K. C.; Khan, A.; Carnaval, A. C.

    2016-12-01

    Brazil is home to two of the largest and most biodiverse ecosystems in the world, primarily encompassed in forests and wetlands. A main region of interest in this project is Brazil's Atlantic Forest (AF). Although this forest is only a fraction of the size of the Amazon rainforest, it harbors significant biological richness, making it one of the world's major hotspots for biodiversity. The AF is located on the East to Southeast region of Brazil, bordering the Atlantic Ocean. As luscious and biologically rich as this region is, the area covered by the Atlantic Forest has been diminishing over past decades, mainly due to human influences and effects of climate change. We examine 1 km resolution Land Surface Temperature (LST) data from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) combined with 25 km resolution radiometric temperature derived from NASA's Advanced Microwave Scanning Radiometer on EOS (AMSR-E) to develop a capability employing both in combination to assess LST. Since AMSR-E is a microwave remote sensing instrument, products derived from its measurements are minimally effected by cloud cover. On the other hand, MODIS data are heavily influenced by cloud cover. We employ a statistical downscaling technique to the coarse-resolution AMSR-E datasets to enhance its spatial resolution to match that of MODIS. Our approach employs 16-day composite MODIS LST data in combination with synergistic ASMR-E radiometric brightness temperature data to develop a combined, downscaled dataset. Our goal is to use this integrated LST retrieval with complementary in situ station data to examine associated influences on regional biodiversity

  2. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover

    Science.gov (United States)

    Ranson, K. J.; Montesano, P. M.; Nelson, R.

    2011-01-01

    The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.

  3. ANALYSIS OF RELATIONSHIP BETWEEN URBAN HEAT ISLAND EFFECT AND LAND USE/COVER TYPE USING LANDSAT 7 ETM+ AND LANDSAT 8 OLI IMAGES

    Directory of Open Access Journals (Sweden)

    N. Aslan

    2016-06-01

    Full Text Available The main objectives of this study are (i to calculate Land Surface Temperature (LST from Landsat imageries, (ii to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001 and Landsat 8 OLI (June 17, 2014 imageries, (iii to examine the relationship between LST and different Land Use/Land Cover (LU/LC types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF classifier. Normalized Difference Vegetation Index (NDVI image, ASTER Global Digital Elevation Model (GDEM and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively.

  4. LAND SURFACE TEMPERATURES ESTIMATED ON GROUNDOBSERVED DATA AND SATELLITE IMAGES, DURING THE VEGETATION PERIOD IN THE OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ONŢEL IRINA

    2015-03-01

    Full Text Available The purpose of this study is to analyze the land surface temperatures by using climatological and remote sensing data during the vegetation period in the Oltenia Plain. The data used in this study refer both to climatological data (namely monthly and seasonal air and soil temperatures, and to remote sensing data delivered by MODIS Land Surface Temperature (LST, with a spatial resolution of 1 km. The analyzed period spans from 2000 to 2013 and the vegetation period considered is April-September. As main results, there were observed four years with high temperatures, namely 2000 (20.4oC-air T, 24.6oC soil T, and 26oC LST, 2003 (20.2oC air T, 23.9oC soil T and 24.5oC LST, 2007 (20.5oC air T, 24.3oC soil T and 25oC LST and 2012 (21.3oC air T, 25.7oC soil T and 26.5oC LST. The correlations between air temperature, soil temperature and LST were statisticaly significant. The diference between air temperature and soil temperature values ranked within 3-4oC, while the difference between soil temperature and land surface temperature obtained from MODIS images was about 0.8oC. Spatially, the highest temperatures were recorded on the Leu-Rotunda Field, the Caracal Plain and the Nedeia Field, and pretty high variations of observed temperatures seemed to depend on vegetation cover. The MODIS images represent one of the most important types of satellite data available for free, which can be successfully used in determining the climatic parameters and can help to predict the changes in plant activity, due to weather phenomena.

  5. Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data.

    Science.gov (United States)

    Hu, Yuanyuan; Zhong, Lei; Ma, Yaoming; Zou, Mijun; Xu, Kepiao; Huang, Ziyu; Feng, Lu

    2018-01-28

    During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) satellite and the measurements from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet), a regression approach was utilized in this research to optimize the split window algorithm (SWA). The thermal infrared data obtained by the Chinese geostationary satellite FY-2C over the Tibetan Plateau (TP) was used to estimate the hourly LST time series. To decrease the effects of cloud, the 10-day composite hourly LST data were obtained through the approach of maximal value composite (MVC). The derived LST was used to compare with the product of MODIS LST and was also validated by the field observation. The results show that the LST retrieved through the optimized SWA and in situ data has a better consistency (with correlation coefficient (R), mean absolute error (MAE), mean bias (MB), and root mean square error (RMSE) values of 0.987, 1.91 K, 0.83 K and 2.26 K, respectively) than that derived from Becker and Li's SWA and MODIS LST product, which means that the modified SWA can be applied to achieve plateau-scale LST. The diurnal variation of the LST and the hourly time series of the LST over the Tibetan Plateau were also obtained. The diurnal range of LST was found to be clearly affected by the influence of the thawing and freezing process of soil and the summer monsoon evolution. The comparison between the seasonal and diurnal variations of LST at four typical underlying surfaces over the TP indicate that the variation of LST is closely connected with the underlying surface types as well. The diurnal variation of LST is

  6. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    Science.gov (United States)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  7. Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2018-04-01

    Full Text Available Land Surface Temperature (LST is a critical component to understand the impact of urbanization on the urban thermal environment. Previous studies were inclined to apply only one snapshot to analyze the pattern and dynamics of LST without considering the non-stationarity in the temporal domain, or focus on the diurnal, seasonal, and annual pattern analysis of LST which has limited support for the understanding of how LST varies with the advancing of urbanization. This paper presents a workflow to extract the spatio-temporal pattern of LST through time series clustering by focusing on the LST of Wuhan, China, from 2002 to 2017 with a 3-year time interval with 8-day MODerate-resolution Imaging Spectroradiometer (MODIS satellite image products. The Latent pattern of LST (LLST generated by non-parametric Multi-Task Gaussian Process Modeling (MTGP and the Multi-Scale Shape Index (MSSI which characterizes the morphology of LLST are coupled for pattern recognition. Specifically, spatio-temporal patterns are discovered after the extraction of spatial patterns conducted by the incorporation of k -means and the Back-Propagation neural networks (BP-Net. The spatial patterns of the 6 years form a basic understanding about the corresponding temporal variances. For spatio-temporal pattern recognition, LLSTs and MSSIs of the 6 years are regarded as geo-referenced time series. Multiple algorithms including traditional k -means with Euclidean Distance (ED, shape-based k -means with the constrained Dynamic Time Warping ( c DTW distance measure, and the Dynamic Time Warping Barycenter Averaging (DBA centroid computation method ( k - c DBA and k -shape are applied. Ten external indexes are employed to evaluate the performance of the three algorithms and reveal k - c DBA as the optimal time series clustering algorithm for our study. The study area is divided into 17 geographical time series clusters which respectively illustrate heterogeneous temporal dynamics of LST

  8. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  9. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    Science.gov (United States)

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between Rice Landsat and Rice NLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  10. Spatiotemporal variability in wildfire patterns and analysis of the main drivers in Honduras using GIS and MODIS data

    Science.gov (United States)

    Valdez Vasquez, M. C.; Chen, C. F.

    2017-12-01

    Wildfires are unrestrained fires in an area of flammable vegetation and they are one of the most frequent disasters in Honduras during the dry season. During this period, anthropogenic activity combined with the harsh climatic conditions, dry vegetation and topographical variables, cause a large amount of wildfires. For this reason, there is a need to identify the drivers of wildfires and their susceptibility variations during the wildfire season. In this study, we combined the wildfire points during the 2010-2016 period every 8 days with a series of variables using the random forest (RF) algorithm. In addition to the wildfire points, we randomly generated a similar amount of background points that we use as pseudo-absence data. To represent the human imprint, we included proximity to different types of roads, trails, settlements and agriculture sites. Other variables included are the Moderate Resolution Imaging Spectra-radiometer (MODIS)-derived 8-day composites of land surface temperature (LST) and the normalized multi-band drought index (NMDI), derived from the MODIS surface reflectance data. We also included monthly average precipitation, solar radiation, and topographical variables. The exploratory analysis of the variables reveals that low precipitation combined with the low NMDI and accessibility to non-paved roads were the major drivers of wildfires during the early months of the dry season. During April, which is the peak of the dry season, the explanatory variables of relevance also included elevation and LST in addition to the proximity to paved and non-paved roads. During May, proximity to crops becomes relevant, in addition to the aforesaid variables. The average estimated area with high and very high wildfire susceptibility was 22% of the whole territory located mainly in the central and eastern regions, drifting towards the northeast areas during May. We validated the results using the area under the receiver operating characteristic (ROC) curve (AUC

  11. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.; Zhu, Zhengyuan

    2018-03-01

    High spatiotemporal land surface temperature (LST) datasets are increasingly needed in a variety of fields such as ecology, hydrology, meteorology, epidemiology, and energy systems. Moderate Resolution Imaging Spectroradiometer (MODIS) LST is one of such high spatiotemporal datasets that are widely used. But, it has large amount of missing values primarily because of clouds. Gapfilling the missing values is an important approach to create high spatiotemporal LST datasets. However current gapfilling methods have limitations in terms of accuracy and time required to assemble the data over large areas (e.g., national and continental levels). In this study, we developed a 3-step hybrid method by integrating a combination of daily merging, spatiotemporal gapfilling, and temporal interpolation methods, to create a high spatiotemporal LST dataset using the four daily LST observations from the two MODIS instruments on Terra and Aqua satellites. We applied this method in urban and surrounding areas for the conterminous U.S. in 2010. The evaluation of the gapfilled LST product indicates that its root mean squared error (RMSE) to be 3.3K for mid-daytime (1:30 pm) and 2.7K for mid-13 nighttime (1:30 am) observations. The method can be easily extended to other years and regions and is also applicable to other satellite products. This seamless daily (mid-daytime and mid-nighttime) LST product with 1 km spatial resolution is of great value for studying effects of urbanization (e.g., urban heat island) and the related impacts on people, ecosystems, energy systems and other infrastructure for cities.

  12. Derivation and evaluation of land surface temperature from the geostationary operational environmental satellite series

    Science.gov (United States)

    Fang, Li

    according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and

  13. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    Science.gov (United States)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  14. Prevalence of Retinopathy in Adult Patients with GCK-MODY and HNF1A-MODY.

    Science.gov (United States)

    Szopa, M; Wolkow, J; Matejko, B; Skupien, J; Klupa, T; Wybrańska, I; Trznadel-Morawska, I; Kiec-Wilk, B; Borowiec, M; Malecki, M T

    2015-10-01

    We aimed to assess the prevalence of diabetic retinopathy (DR) in adult patients with GCK-MODY and HNF1A-MODY in Poland and to identify biochemical and clinical risk factors associated with its occurrence.We examined 74 GCK mutation carriers, 51 with diabetes and 23 with prediabetes, respectively, and 63 patients with HNF1A-MODY. Retinal photographs, 12 for each patient, were done by a fundus camera. Signs of DR were graded according to the DR disease severity scale. Statistical tests were performed to assess differences between the groups and logistic regression was done for the association with DR.The mean age at examination was 34.5±14.8 and 39.9±15.2 in the GCK-MODY and HNF1A-MODY groups, respectively. Mild nonproliferative DR (NPDR) was found in one patient with the GCK mutation and likely concomitant type 1 diabetes, whereas DR was diagnosed in 15 HNF1A-MODY patients: 9 with proliferative, 3 with moderate NPDR and 2 with mild NPDR. In univariate logistic regression analysis in the HNF1A-MODY group, significant results were found for diabetes duration, fasting glycemia, HbA1c, arterial hypertension, age at the examination, and eGFR. The strongest independent predictors of DR in HNF1A-MODY were markers of glucose control: HbA1c (OR: 2.05, CL%95: 1.2-3.83, p=0.01) and glucose (p=0.006, OR: 1.40, CL%95: 1.12-1.83) analyzed in 2 separated models. Additionally, arterial hypertension independently predicted DR (OR: 9.06, CL%95: 1.19-98.99, p=0.04) in the model with HbA1c as glycaemic control marker.In conclusion, DR of any degree was not present in our GCK-MODY group, while in spite of young age almost every fourth subject with HNF1A-MODY showed signs of this complication. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Frost monitoring of fruit tree with satellite data

    Science.gov (United States)

    Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo

    2012-09-01

    The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.

  16. Undiagnosed MODY: Time for Action

    Science.gov (United States)

    Kleinberger, Jeffrey W.; Pollin, Toni I.

    2016-01-01

    Maturity-Onset Diabetes of the Young (MODY) is a monogenic form of diabetes that accounts for at least 1% of all cases of diabetes mellitus. MODY classically presents as non-insulin requiring diabetes in lean individuals younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95% of MODY cases in the U.S. are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals. PMID:26458381

  17. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  18. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    International Nuclear Information System (INIS)

    Safarpour, Sahabeh; Abdullah, Khiruddin; Lim, Hwee San; Dadras, Mohsen

    2014-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R 2 is 0.844 and a regression equation of τ M = 0.91·τ A + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R 2 is 0.764 and τ M = 0.95·τ A + 0.03) and the Deep Blue algorithm (correlation coefficient R 2 is 0.652 and τ M = 0.81·τ A + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  19. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  20. The Research on the Spectral Characteristics of Sea Fog Based on Caliop and Modis Data

    Science.gov (United States)

    Wan, J.; Su, J.; Liu, S.; Sheng, H.

    2018-04-01

    In view of that difficulty of distinguish between sea fog and low cloud by optical remote sensing mean, the research on spectral characteristics of sea fog is focused and carried out. The satellite laser radar CALIOP data and the high spectral MODIS data were obtained from May to December 2017, and the scattering coefficient and the vertical height information were extracted from the atmospheric attenuation of the lower star to extract the sea fog sample points, and the spectral response curve based on MODIS was formed to analyse the spectral response characteristics of the sea fog, thus providing a theoretical basis for the monitoring of sea fog with optical remote sensing image.

  1. THE RESEARCH ON THE SPECTRAL CHARACTERISTICS OF SEA FOG BASED ON CALIOP AND MODIS DATA

    Directory of Open Access Journals (Sweden)

    J. Wan

    2018-04-01

    Full Text Available In view of that difficulty of distinguish between sea fog and low cloud by optical remote sensing mean, the research on spectral characteristics of sea fog is focused and carried out。The satellite laser radar CALIOP data and the high spectral MODIS data were obtained from May to December 2017, and the scattering coefficient and the vertical height information were extracted from the atmospheric attenuation of the lower star to extract the sea fog sample points, and the spectral response curve based on MODIS was formed to analyse the spectral response characteristics of the sea fog, thus providing a theoretical basis for the monitoring of sea fog with optical remote sensing image.

  2. Undiagnosed MODY: Time for Action.

    Science.gov (United States)

    Kleinberger, Jeffrey W; Pollin, Toni I

    2015-12-01

    Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.

  3. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    Science.gov (United States)

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  4. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications.

    Science.gov (United States)

    Naylor, Rochelle N; John, Priya M; Winn, Aaron N; Carmody, David; Greeley, Siri Atma W; Philipson, Louis H; Bell, Graeme I; Huang, Elbert S

    2014-01-01

    OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.

  5. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Science.gov (United States)

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  6. Mossin, Mody

    DEFF Research Database (Denmark)

    2005-01-01

    Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning.......Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning....

  7. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Land Surface Temperature (LST) from the Visible Infrared Imaging Radiometer Suite...

  8. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    Science.gov (United States)

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  9. Impact of Sensor Degradation on the MODIS NDVI Time Series

    Science.gov (United States)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  10. MODIS on-orbit thermal emissive bands lifetime performance

    Science.gov (United States)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  11. USAID Expands eMODIS Coverage for Famine Early Warning

    Science.gov (United States)

    Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.

    2011-12-01

    Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.

  12. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY.

    Science.gov (United States)

    Bishay, Ramy H; Greenfield, Jerry R

    2016-11-21

    Maturity onset diabetes of the young (MODY), the most common monogenic form of diabetes, accounts for 1-2% of all diabetes diagnoses. Glucokinase (GCK)-MODY (also referred to as MODY2) constitutes 10-60% of all MODY cases and is inherited as an autosomal dominant heterozygous mutation, resulting in loss of function of the GCK gene. Patients with GCK-MODY generally have mild, fasting hyperglycaemia that is present from birth, are commonly leaner and diagnosed at a younger age than patients with type 2 diabetes, and rarely develop complications from diabetes. Hence, treatment is usually unnecessary and may be ceased. Therefore, genetic screening is recommended in all young patients (MODY, such as hepatocyte nuclear factor 1A mutations (MODY3) where hyperglycaemia is managed with low dose sulfonylurea rather than insulin. Patients with GCK-MODY, in line with trends in the general population, are becoming older and more overweight and obese, and are concomitantly developing features of insulin resistance and glucose intolerance. Therefore, controversy exists as to whether such "treatment-exempt" patients should be reassessed for treatment later in life. As testing becomes more accessible, clinicians and patients are likely to embrace genetic screening earlier in the course of diabetes, which may avert the consequences of delayed testing years after diagnosis and treatment initiation.

  13. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    Science.gov (United States)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  14. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  15. Remote Sensing of Ecosystem Light Use Efficiency Using MODIS

    Science.gov (United States)

    Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.

    2009-12-01

    Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing

  16. The WATERMED field experiment: validation of the AATSR LST product with in situ measurements

    Science.gov (United States)

    Noyes, E.; Soria, G.; Sobrino, J.; Remedios, J.; Llewellyn-Jones, D.; Corlett, G.

    The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat Satellite, is the third in a series of a precision radiometers designed to measure Sea Surface Temperature (SST) with accuracies of better than ± 0.3 K (within 1-sigma limit). Since its launch in March 2001, a prototype AATSR Land Surface Temperature (LST) product has been produced for validation purposes only, with the product becoming operational from mid-2004. The (A)ATSR instrument design is unique in that it has both a nadir- and a forward-view, allowing the Earth's surface to be viewed along two different atmospheric path lengths, thus enabling an improved atmospheric correction to be made when retrieving surface temperature. It also uses an innovative and exceptionally stable on-board calibration system for its infrared channels, which, together with actively cooled detectors, gives extremely high radiometric sensitivity and precision. In this presentation, results from a comparison of the prototype LST product with ground-based measurements obtained at the WATERMED (WATer use Efficiency in natural vegetation and agricultural areas by Remote sensing in the MEDiterranean basin) field site near Marrakech, Morocco, are presented. The comparison shows that the AATSR has a positive bias of + 1.5 K, with a standard deviation of 0.7 K, indicating that the product is operating within the target specification (± 2.5 K) over the WATERMED field site. However, several anomalous validation points were observed during the analysis and we will discuss possible reasons for the occurrence of these data, including their coincidence with the presence of an Envisat blanking pulse (indicating the presence of a radar pulse at the time of AATSR pixel integration). Further investigation into this matter is required as previous investigations have always indicated that the presence of a payload radar pulse does not have any effect on (A)ATSR data quality.

  17. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  18. Comparing MODIS Net Primary Production Estimates with Terrestrial National Forest Inventory Data in Austria

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2015-04-01

    Full Text Available The mission of this study is to compare Net Primary Productivity (NPP estimates using (i forest inventory data and (ii spatio-temporally continuous MODIS (MODerate resolution Imaging Spectroradiometer remote sensing data for Austria. While forest inventories assess the change in forest growth based on repeated individual tree measurements (DBH, height etc., the MODIS NPP estimates are based on ecophysiological processes such as photosynthesis, respiration and carbon allocation. We obtained repeated national forest inventory data from Austria, calculated a “ground-based” NPP estimate and compared the results with “space-based” MODIS NPP estimates using different daily climate data. The MODIS NPP estimates using local Austrian climate data exhibited better compliance with the forest inventory driven NPP estimates than the MODIS NPP predictions using global climate data sets. Stand density plays a key role in addressing the differences between MODIS driven NPP estimates versus terrestrial driven inventory NPP estimates. After addressing stand density, both results are comparable across different scales. As forest management changes stand density, these findings suggest that management issues are important in understanding the observed discrepancies between MODIS and terrestrial NPP.

  19. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  20. Lipoprotein composition in HNF1A-MODY: differentiating between HNF1A-MODY and type 2 diabetes.

    Science.gov (United States)

    McDonald, Tim J; McEneny, Jane; Pearson, Ewan R; Thanabalasingham, Gaya; Szopa, Magdalena; Shields, Beverley M; Ellard, Sian; Owen, Katharine R; Malecki, Maciej T; Hattersley, Andrew T; Young, Ian S

    2012-05-18

    The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type. 1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value. 1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes. The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. [Humoral response markers in GCK MODY].

    Science.gov (United States)

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Wyka, Krystyna; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    The prevalence of antibodies to pancreatic islets in monogenic diabetes remains unknown and the incidence estimation is difficult as the occurrence of autoantibodies in patient is one of the well-known exclusion criteria for further genetic diagnostics. They has been found not only among patients with type 1 diabetes, but also in other types of diabetes: Type 2 diabetes, Latent Autoimmune Diabetes in Adults (LADA) (16) and monogenic diabetes (MD). Immunological characteristic of GCK MODY patients. The study group included families of 27 adolescent patients with GCK MODY (39 parents and 19 siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. All patients and family members with GCK MODY underwent a blood sample drawing for immunological (classic humoral response markers: ICA, GAD, IA-2, IAA) and biochemical diagnostics. Pediatric, diabetes and family medical history was collected from the subjects and parents. Immunological diagnostics was performed in all patients except 1 (96.3%). Immunological diagnostics included 17 (89.5%) parents and 7 (87.5%) siblings with diagnosed GCK MODY. 8 (30.8%) adolescent patients with GCK MODY, 3 subjects (17.64%) among parents (with GCK MODY), as well as 2 subjects (28.57%) among siblings (with GCK MODY) showed a positive antibodies screen. The results of our study in children with GCK MODY and their family members suggest that the occurrence of classic antibodies directed against pancreatic islets antigens is fairly common in patients with GCK MODY. Despite various observations and many legitimate discussions, it is difficult to clarify the pathogenesis of the occurrence of autoantibodies in monogenic diabetes. © Polish Society for Pediatric Endocrinology and Diabetology.

  2. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    Science.gov (United States)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  3. Estimating Coastal Turbidity using MODIS 250 m Band Observations

    Science.gov (United States)

    Davies, James E.; Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Walker, Nan D.

    2004-01-01

    Terra MODIS 250 m observations are being applied to a Suspended Sediment Concentration (SSC) algorithm that is under development for coastal case 2 waters where reflectance is dominated by sediment entrained in major fluvial outflows. An atmospheric correction based on MODIS observations in the 500 m resolution 1.6 and 2.1 micron bands is used to isolate the remote sensing reflectance in the MODIS 25Om resolution 650 and 865 nanometer bands. SSC estimates from remote sensing reflectance are based on accepted inherent optical properties of sediment types known to be prevalent in the U.S. Gulf of Mexico coastal zone. We present our findings for the Atchafalaya Bay region of the Louisiana Coast, in the form of processed imagery over the annual cycle. We also apply our algorithm to selected sites worldwide with a goal of extending the utility of our approach to the global direct broadcast community.

  4. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  5. [MODY type diabetes: overview and recent findings].

    Science.gov (United States)

    Ben Khelifa, Souhaïra; Barboura, Ilhem; Dandana, Azza; Ferchichi, Selima; Miled, Abdelhedi

    2011-01-01

    We present an update of knowledge on diabetes MODY (maturity onset diabetes of the young), including the recent molecular discoveries, and new diagnostic strategies. Considerable progress has been made in understanding the different molecular abnormalities that cause MODY and the phenotypic consequences resulting therefrom. MODY diabetes is very heterogeneous and is the most common form of monogenic diabetes. Its distribution is worldwide. MODY is an autosomal dominant diabetes mellitus, nonketotic and occurs at an early age (usually before 25 years). To date, at least seven genes are associated with MODY, with frequencies that differ from one population to another. Both 2 and 3 subtypes predominate, while other subtypes (1, 4, 5, 6 and 7) concern only a few families. Since its discovery in the sixties, studies have succeeded to fully clarify the epidemiological, molecular and clinical diagnosis of each subtype, to provide better care for patients. However, the subject of MODY has not yet revealed all its secrets. Indeed, it remains to identify other genes that are associated with MODY X.

  6. [Diagnosis of MODY - brief overview for clinical practice].

    Science.gov (United States)

    Urbanová, Jana; Brunerová, Ludmila; Brož, Jan

    2018-01-01

    Maturity Onset Diabetes of the Young (MODY) comprises inherited forms of diabetes mellitus caused by the mutations in the genes involved in the development, differentiation and function of beta-cells. The majority of patients with MODY remains misdiagnosed and erroneously classified as type 1 or type 2 diabetic patients. Correct MODY diagnosis is, however, essential since it enables individualization of treatment, assessment of the prognosis and identification of diabetes among patient´s relatives. Clinical presentation of MODY is highly variable and it could resemble other types of diabetes, thus identification of MODY patients might be difficult. In this review, we describe typical clinical presentation of the most common MODY subtypes, we summarize current diagnostic guidelines in confirmation of MODY and we raise the question of possible need for extension of current clinical criteria indicating a patient for molecular-genetic testing.Key words: clinical course - diagnosis - differential diagnosis - glucokinase - hepatocyte nuclear factors - MODY.

  7. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen-Thanh Son

    2013-12-01

    Full Text Available Rice crop monitoring is an important activity for crop management. This study aimed to develop a phenology-based classification approach for the assessment of rice cropping systems in Mekong Delta, Vietnam, using Moderate Resolution Imaging Spectroradiometer (MODIS data. The data were processed from December 2000, to December 2012, using empirical mode decomposition (EMD in three main steps: (1 data pre-processing to construct the smooth MODIS enhanced vegetation index (EVI time-series data; (2 rice crop classification; and (3 accuracy assessment. The comparisons between the classification maps and the ground reference data indicated overall accuracies and Kappa coefficients, respectively, of 81.4% and 0.75 for 2002, 80.6% and 0.74 for 2006 and 85.5% and 0.81 for 2012. The results by comparisons between MODIS-derived rice area and rice area statistics were slightly overestimated, with a relative error in area (REA from 0.9–15.9%. There was, however, a close correlation between the two datasets (R2 ≥ 0.89. From 2001 to 2012, the areas of triple-cropped rice increased approximately 31.6%, while those of the single-cropped rain-fed rice, double-cropped irrigated rice and double-cropped rain-fed rice decreased roughly −5.0%, −19.2% and −7.4%, respectively. This study demonstrates the validity of such an approach for rice-crop monitoring with MODIS data and could be transferable to other regions.

  8. Inversion of Land Surface Temperature (LST Using Terra ASTER Data: A Comparison of Three Algorithms

    Directory of Open Access Journals (Sweden)

    Milton Isaya Ndossi

    2016-12-01

    Full Text Available Land Surface Temperature (LST is an important measurement in studies related to the Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER instrument onboard the Terra spacecraft is the currently available Thermal Infrared (TIR imaging sensor with the highest spatial resolution. This study involves the comparison of LSTs inverted from the sensor using the Split Window Algorithm (SWA, the Single Channel Algorithm (SCA and the Planck function. This study has used the National Oceanic and Atmospheric Administration’s (NOAA data to model and compare the results from the three algorithms. The data from the sensor have been processed by the Python programming language in a free and open source software package (QGIS to enable users to make use of the algorithms. The study revealed that the three algorithms are suitable for LST inversion, whereby the Planck function showed the highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy. The algorithms produced results with Root Mean Square Errors (RMSE of 2.29 K, 3.77 K and 2.88 K for the Planck function, the SCA and SWA respectively.

  9. Satellite-derived temperature data for monitoring water status in a floodplain forest of the Upper Sabine River, Texas

    Science.gov (United States)

    Lemon, Mary Grace T.; Allen, Scott T.; Edwards, Brandon L.; King, Sammy L.; Keim, Richard F.

    2016-01-01

    Decreased water availability due to hydrologic modifications, groundwater withdrawal, and climate change threaten bottomland hardwood (BLH) forest communities. We used satellite-derived (MODIS) land-surface temperature (LST) data to investigate spatial heterogeneity of canopy temperature (an indicator of plant-water status) in a floodplain forest of the upper Sabine River for 2008–2014. High LST pixels were generally further from the river and at higher topographic locations, indicating lower water-availability. Increasing rainfall-derived soil moisture corresponded with decreased heterogeneity of LST between pixels but there was weaker association between Sabine River stage and heterogeneity. Stronger dependence of LST convergence on rainfall rather than river flow suggests that some regions are less hydrologically connected to the river, and vegetation may rely on local precipitation and other contributions to the riparian aquifer to replenish soil moisture. Observed LST variations associated with hydrology encourage further investigation of the utility of this approach for monitoring forest stress, especially with considerations of climate change and continued river management.

  10. Comparing Stream Discharge, Dissolved Organic Carbon, and Selected MODIS Indices in Freshwater Basins

    Science.gov (United States)

    Shaver, W. T.; Wollheim, W. M.

    2009-12-01

    In a preliminary study of the Ipswich Basin in Massachusetts, a good correlation was found to exist between the MODIS (Moderate Resolution Imaging Spectroradiometer) Enhanced Vegetation Index and stream dissolved organic carbon (DOC). Further study was warranted to determine the utility of MODIS indices in predicting temporal stream DOC. Stream discharge rates and DOC data were obtained from the USGS National Water Quality Assessment Program (NAWQA) database. Twelve NAWQA monitoring sites were selected for evaluation based on the criteria of having drainage basin sizes less than 600 km2 with relatively continuous, long-term DOC and discharge data. MODIS indices were selected based on their connections with terrestrial DOC and were obtained for each site's catchment area. These included the Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Daily Photosynthesis (PSN) and the Leaf Area Index (LAI). Regression analysis was used to evaluate the relationships between DOC, discharge and MODIS products. Data analysis revealed several important trends. Sites with strong positive correlation coefficients (r values ranging from 0.462 to 0.831) between DOC and discharge displayed weak correlations with all of the MODIS indices (r values ranging from 0 to 0.322). For sites where the DOC/discharge correlation was weak or negative, MODIS indices were moderately correlated, with r values ranging from 0.35 to 0.647, all of which were significant at less than 1 percent. Some sites that had weak positive correlations with MODIS indices displayed a lag time, that is, the MODIS index rose and fell shortly before the DOC concentration rose and fell. Shifting the MODIS data forward in time by roughly one month significantly increased the DOC/MODIS r values by about 10%. NDVI and EVI displayed the strongest correlations with temporal DOC variability (r values ranging from 0.471 to 0.647), and therefore these indices are the most promising for being incorporated

  11. MODIS/Aqua Thermal Anomalies/Fire 5-Min L2 Swath 1km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  12. MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  13. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  14. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  15. MODIS/Aqua Atmosphere Aeronet Subsetting Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Atmosphere Aeronet Subsetting Product (MYDARNSS) consists of MODIS Atmosphere and Ancillary Products subsets that are generated over a number of...

  16. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Roozbeh Raoufi

    2017-11-01

    Full Text Available Daily evapotranspiration (ET is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST from the MODerate resolution Imaging Spectroradiometer (MODIS on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1. Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures.

  17. MODIS Hotspot Validation over Thailand

    Directory of Open Access Journals (Sweden)

    Veerachai Tanpipat

    2009-11-01

    Full Text Available To ensure remote sensing MODIS hotspot (also known as active fire products or hotspots quality and precision in forest fire control and management in Thailand, an increased level of confidence is needed. Accuracy assessment of MODIS hotspots utilizing field survey data validation is described. A quantitative evaluation of MODIS hotspot products has been carried out since the 2007 forest fire season. The carefully chosen hotspots were scattered throughout the country and within the protected areas of the National Parks and Wildlife Sanctuaries. Three areas were selected as test sites for validation guidelines. Both ground and aerial field surveys were also conducted in this study by the Forest Fire Control Division, National Park, Wildlife and Plant Conversation Department, Ministry of Natural Resources and Environment, Thailand. High accuracy of 91.84 %, 95.60% and 97.53% for the 2007, 2008 and 2009 fire seasons were observed, resulting in increased confidence in the use of MODIS hotspots for forest fire control and management in Thailand.

  18. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    Science.gov (United States)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  19. Application of New MODIS-Based Aerosol Index for Air Pollution Severity Assessment and Mapping in Upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Chat Phayungwiwatthanakoon

    2014-06-01

    Full Text Available This paper reports capability of a newly-proposed index called the aerosol prediction index (API in the determination and mapping of near-ground PM10 concentrations (at spatial resolution of 500 x 500 m during the 2009 and 2010 burning seasons in upper northern Thailand. API is a normalized index defined based on the difference in the observed reflectance data at two spectral bands of the MODIS instrument aboard NASA�s Terra satellite; Band 3 (blue and Band 7 (mid-infrared. Initial analysis suggested that API had strong correlation with the corresponding MODIS-AOD and AERONET-AOD with coefficient of determination (R2 about 0.62 in both cases, and also with the reference PM10 data with R2 of 0.66. In terms of predictive performance, it exhibited low bias at low PM10 condition and achieved impressive prediction accuracy with relative error of 10.78 %. The near-ground PM10 concentration map yielded from the proposed index was proved very useful in the comprehensive assessment of aerosol pollution situation over entire area at fine spatial detail. This task could not be fulfilled from sole use of the ground-based measured data or standard MODIS-AOD product. These findings indicate that API should be a promising tool for the regular monitoring of air pollution severity over the concerned area.

  20. Applications of Near Real-Time Image and Fire Products from MODIS

    Science.gov (United States)

    Schmaltz, J. E.; Ilavajhala, S.; Teague, M.; Ye, G.; Masuoka, E.; Davies, D.; Murphy, K. J.; Michael, K.

    2010-12-01

    NASA’s MODIS Rapid Response Project (http://rapidfire.sci.gsfc.nasa.gov/) has been providing MODIS fire detections and imagery in near real-time since 2001. The Rapid Response system is part of the Land and Atmospheres Near-real time Capability for EOS (LANCE-MODIS) system. Current capabilities include providing MODIS imagery in true color and false color band combinations, a vegetation index, and temperature - in both uncorrected swath format and geographically corrected subset regions. The geographically-corrected subsets images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. These data are available within a few hours of data acquisition. The images are accessed by large number of user communities to obtain a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (fires, oil spills, floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. In addition, the scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. The MODIS Rapid Response project has also been providing a near real-time data feed on fire locations and MODIS imagery subsets to the Fire Information for Resource Management System (FIRMS) project (http://maps.geog.umd.edu/firms). FIRMS provides timely availability of fire location information, which is essential in preventing and fighting large forest/wild fires. Products are available through a WebGIS for visualizing MODIS hotspots and MCD45 Burned Area images, an email alerting tool to deliver fire data on daily/weekly/near real-time basis, active data downloads in formats such as shape, KML, CSV, WMS, etc., along with MODIS imagery subsets. FIRMS’ user base covers more than 100 countries and territories. A recent user

  1. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes

    Science.gov (United States)

    Althari, Sara; Gloyn, Anna L.

    2015-01-01

    The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119

  2. Improving the Xin'anjiang hydrological model based on mass–energy balance

    Directory of Open Access Journals (Sweden)

    Y.-H. Fang

    2017-07-01

    Full Text Available Conceptual hydrological models are preferable for real-time flood forecasting, among which the Xin'anjiang (XAJ model has been widely applied in humid and semi-humid regions of China. Although the relatively simple mass balance scheme ensures a good performance of runoff simulation during flood events, the model still has some defects. Previous studies have confirmed the importance of evapotranspiration (ET and soil moisture content (SMC in runoff simulation. In order to add more constraints to the original XAJ model, an energy balance scheme suitable for the XAJ model was developed and coupled with the original mass balance scheme of the XAJ model. The detailed parameterizations of the improved model, XAJ-EB, are presented in the first part of this paper. XAJ-EB employs various meteorological forcing and remote sensing data as input, simulating ET and runoff yield using a more physically based mass–energy balance scheme. In particular, the energy balance is solved by determining the representative equilibrium temperature (RET, which is comparable to land surface temperature (LST. The XAJ-EB was evaluated in the Lushui catchment situated in the middle reach of the Yangtze River basin for the period between 2004 and 2007. Validation using ground-measured runoff data proves that the XAJ-EB is capable of reproducing runoff comparable to the original XAJ model. Additionally, RET simulated by XAJ-EB agreed well with moderate resolution imaging spectroradiometer (MODIS-retrieved LST, which further confirms that the model is able to simulate the mass–energy balance since LST reflects the interactions among various processes. The validation results prove that the XAJ-EB model has superior performance compared with the XAJ model and also extends its applicability.

  3. Validation of MODIS aerosol optical depth over the Mediterranean Coast

    Science.gov (United States)

    Díaz-Martínez, J. Vicente; Segura, Sara; Estellés, Víctor; Utrillas, M. Pilar; Martínez-Lozano, J. Antonio

    2013-04-01

    Atmospheric aerosols, due to their high spatial and temporal variability, are considered one of the largest sources of uncertainty in different processes affecting visibility, air quality, human health, and climate. Among their effects on climate, they play an important role in the energy balance of the Earth. On one hand they have a direct effect by scattering and absorbing solar radiation; on the other, they also have an impact in precipitation, modifying clouds, or affecting air quality. The application of remote sensing techniques to investigate aerosol effects on climate has advanced significatively over last years. In this work, the products employed have been obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS is a sensor located onboard both Earth Observing Systems (EOS) Terra and Aqua satellites, which provide almost complete global coverage every day. These satellites have been acquiring data since early 2000 (Terra) and mid 2002 (Aqua) and offer different products for land, ocean and atmosphere. Atmospheric aerosol products are presented as level 2 products with a pixel size of 10 x 10 km2 in nadir. MODIS aerosol optical depth (AOD) is retrieved by different algorithms depending on the pixel surface, distinguishing between land and ocean. For its validation, ground based sunphotometer data from AERONET (Aerosol Robotic Network) has been employed. AERONET is an international operative network of Cimel CE318 sky-sunphotometers that provides the most extensive aerosol data base globally available of ground-based measurements. The ground sunphotometric technique is considered the most accurate for the retrieval of radiative properties of aerosols in the atmospheric column. In this study we present a validation of MODIS C051 AOD employing AERONET measurements over different Mediterranean coastal sites centered over an area of 50 x 50 km2, which includes both pixels over land and ocean. The validation is done comparing spatial

  4. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    Science.gov (United States)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  5. On the downscaling of actual evapotranspiration maps based on combination of MODIS and landsat-based actual evapotranspiration estimates

    Science.gov (United States)

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Verdin, James P.

    2014-01-01

     Downscaling is one of the important ways of utilizing the combined benefits of the high temporal resolution of Moderate Resolution Imaging Spectroradiometer (MODIS) images and fine spatial resolution of Landsat images. We have evaluated the output regression with intercept method and developed the Linear with Zero Intercept (LinZI) method for downscaling MODIS-based monthly actual evapotranspiration (AET) maps to the Landsat-scale monthly AET maps for the Colorado River Basin for 2010. We used the 8-day MODIS land surface temperature product (MOD11A2) and 328 cloud-free Landsat images for computing AET maps and downscaling. The regression with intercept method does have limitations in downscaling if the slope and intercept are computed over a large area. A good agreement was obtained between downscaled monthly AET using the LinZI method and the eddy covariance measurements from seven flux sites within the Colorado River Basin. The mean bias ranged from −16 mm (underestimation) to 22 mm (overestimation) per month, and the coefficient of determination varied from 0.52 to 0.88. Some discrepancies between measured and downscaled monthly AET at two flux sites were found to be due to the prevailing flux footprint. A reasonable comparison was also obtained between downscaled monthly AET using LinZI method and the gridded FLUXNET dataset. The downscaled monthly AET nicely captured the temporal variation in sampled land cover classes. The proposed LinZI method can be used at finer temporal resolution (such as 8 days) with further evaluation. The proposed downscaling method will be very useful in advancing the application of remotely sensed images in water resources planning and management.

  6. Inferences of all-sky solar irradiance using Terra and Aqua MODIS satellite data

    DEFF Research Database (Denmark)

    Houborg, Rasmus Møller; Søgaard, Henrik; Emmerich, W.

    2007-01-01

    -sky solar irradiance components, which links a physically based clear-sky model with a neural network version of a rigorous radiative transfer model. The scheme exploits the improved cloud characterization and retrieval capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard...... contrasting climates and cloud environments. Information on the atmospheric state was provided by MODIS data products and verifications against AErosol RObotic NETwork (AERONET) data demonstrated usefulness of MODIS aerosol optical depth and total precipitable water vapour retrievals for the delineation...... and become unusable above approximately 60° latitude. However, in principle, the scheme can be applied anywhere on the globe, and a synergistic use of MODIS and geostationary satellite datasets may be envisaged for some applications....

  7. Two cases of diabetic ketoacidosis in HNF1A-MODY linked to severe dehydration: is it time to change the diagnostic criteria for MODY?

    Science.gov (United States)

    Pruhova, Stepanka; Dusatkova, Petra; Neumann, David; Hollay, Erik; Cinek, Ondrej; Lebl, Jan; Sumnik, Zdenek

    2013-09-01

    Hepatocyte nuclear factor-1A maturity-onset diabetes of the young (HNF1A-MODY) is a monogenic form of diabetes caused by heterozygous mutations in HNF1A. Currently, a history of diabetic ketoacidosis (DKA) is an exclusion criterion for genetic testing for MODY. In this article, we describe two unrelated patients aged 17 and 24 years with severe DKA developed several years after the diagnosis of HNF1A-MODY. Both patients were treated with insulin, but their metabolic control was poor (HbA1c 15%, 140 mmol/mol and 13%, 119 mmol/mol, respectively) due to noncompliance and missed insulin injections. In both patients, DKA followed a course of recurrent vomiting with dehydration and prerenal acute kidney injury. Their glycemia, blood pH, and base excess at admission were 97 mmol/L [1,748 mg/dL], 6.80, and -33 mmol/L (patient 1) and 34 mmol/L [613 mg/dL], 7.03, and -14 mmol/L (patient 2). This anecdotal observation supports the notion that a history of DKA does not exclude MODY.

  8. MODIS/Aqua Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  9. MODIS/Aqua Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  10. MODIS/Terra Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  11. MODIS/Terra Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  12. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  13. Circulating ghrelin level is higher in HNF1A-MODY and GCK-MODY than in polygenic forms of diabetes mellitus.

    Science.gov (United States)

    Nowak, Natalia; Hohendorff, Jerzy; Solecka, Iwona; Szopa, Magdalena; Skupien, Jan; Kiec-Wilk, Beata; Mlynarski, Wojciech; Malecki, Maciej T

    2015-12-01

    Ghrelin is a hormone that regulates appetite. It is likely to be involved in the pathophysiology of varying forms of diabetes. In animal studies, the ghrelin expression was regulated by the hepatocyte nuclear factor 1 alpha (HNF1A). Mutations of the HNF1A gene cause maturity onset diabetes of the young (MODY). We aimed to assess the circulating ghrelin levels in HNF1A-MODY and in other types of diabetes and to evaluate its association with HNF1A mutation status. Our cohort included 46 diabetic HNF1A gene mutation carriers, 55 type 2 diabetes (T2DM) subjects, 42 type 1 diabetes (T1DM) patients, and 31 glucokinase (GCK) gene mutation carriers with diabetes as well as 51 healthy controls. Plasma ghrelin concentration was measured using the immunoenzymatic assay with polyclonal antibody against the C-terminal fragment of its acylated and desacylated forms. Ghrelin concentrations were 0.75 ± 0.32, 0.70 ± 0.21, 0.50 ± 0.20, and 0.40 ± 0.16 ng/ml in patients with HNF1A-MODY, GCK-MODY, T1DM, and T2DM, respectively. The ghrelin levels were higher in HNF1A-MODY and GCK-MODY than in T1DM and T2DM (p MODY groups and common diabetes types remained significant. Analysis by a HNF1A mutation type indicated that ghrelin concentration is similar in patients with different types of sequence differences. Plasma ghrelin level is higher in HNF1A-MODY and GCK-MODY than in the common polygenic forms of diabetes.

  14. Statistical Analysis of SSMIS Sea Ice Concentration Threshold at the Arctic Sea Ice Edge during Summer Based on MODIS and Ship-Based Observational Data.

    Science.gov (United States)

    Ji, Qing; Li, Fei; Pang, Xiaoping; Luo, Cong

    2018-04-05

    The threshold of sea ice concentration (SIC) is the basis for accurately calculating sea ice extent based on passive microwave (PM) remote sensing data. However, the PM SIC threshold at the sea ice edge used in previous studies and released sea ice products has not always been consistent. To explore the representable value of the PM SIC threshold corresponding on average to the position of the Arctic sea ice edge during summer in recent years, we extracted sea ice edge boundaries from the Moderate-resolution Imaging Spectroradiometer (MODIS) sea ice product (MOD29 with a spatial resolution of 1 km), MODIS images (250 m), and sea ice ship-based observation points (1 km) during the fifth (CHINARE-2012) and sixth (CHINARE-2014) Chinese National Arctic Research Expeditions, and made an overlay and comparison analysis with PM SIC derived from Special Sensor Microwave Imager Sounder (SSMIS, with a spatial resolution of 25 km) in the summer of 2012 and 2014. Results showed that the average SSMIS SIC threshold at the Arctic sea ice edge based on ice-water boundary lines extracted from MOD29 was 33%, which was higher than that of the commonly used 15% discriminant threshold. The average SIC threshold at sea ice edge based on ice-water boundary lines extracted by visual interpretation from four scenes of the MODIS image was 35% when compared to the average value of 36% from the MOD29 extracted ice edge pixels for the same days. The average SIC of 31% at the sea ice edge points extracted from ship-based observations also confirmed that choosing around 30% as the SIC threshold during summer is recommended for sea ice extent calculations based on SSMIS PM data. These results can provide a reference for further studying the variation of sea ice under the rapidly changing Arctic.

  15. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  16. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    Science.gov (United States)

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    -m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.

  17. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors.

    Science.gov (United States)

    Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel

    2017-08-11

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.

  18. Validation of MODIS Data for localized spatio-temporal evapotranspiration mapping

    International Nuclear Information System (INIS)

    Nadzri, M I; Hashim, M

    2014-01-01

    Advancement in satellite remote sensing sensors allows evapo-transpiration (ET) from land surfaces to be derived from selected reflectance and emmitance in visible and thermal infrared wavelengths, such as using Moderate Solution Imaging Spectrometer (MODIS). In this paper, we report the validation of recent MODIS-generated higher-order global terrestrial ET product 16A2. The main focus of this paper is to devise the follow-up calibration for the localised region covering the entire Malaysia peninsular. The validation is carried out locally by dividing the study area into 3 distinct climatological regions based on the influence to monsoons, and using multi-temporal MODIS data acquired in 2000-2009. The results, evidently show the local effects still inherit in the MODIS 16A2 products; with varying R2 within the 3 local climatological regions established (Northwest = 0.49 South = 0.47, and Southwest = 0.52; all with P < 0.001). The accuracy of each region validated is within + RMSE 43mm for monthly ET. With P value in acceptable range, the correction is useable for further usage

  19. Using a thermal-based two source energy balance model with time-differencing to estimate surface energy fluxes with day-night MODIS observations

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Anderson, M.C.; Kustas, W.P.

    2013-01-01

    The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature...... agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish Hydrological ObsErvatory (HOBE) in western Denmark, indicating realistic patterns based on land use....

  20. Maturity-onset diabetes of the young (MODY): an update.

    Science.gov (United States)

    Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Böber, Ece

    2015-03-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders characterized by autosomal dominantly inherited non-insulin dependent form of diabetes classically presenting in adolescence or young adults before the age of 25 years. MODY is a rare cause of diabetes (1% of all cases) and is frequently misdiagnosed as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A precise molecular diagnosis is essential because it leads to optimal treatment of the patients and allows early diagnosis for their asymptomatic family members. Mutations in the glucokinase (GCK) (MODY 2) and hepatocyte nuclear factor (HNF)1A/4A (MODY 3 and MODY 1) genes are the most common causes of MODY. GCK mutations cause a mild, asymptomatic, and stable fasting hyperglycemia usually requiring no specific treatment. However, mutations in the HNF1A and HNF4A cause a progressive pancreatic β-cell dysfunction and hyperglycemia that can result in microvascular complications. Sulfonylureas are effective in these patients by acting on adenosine triphosphate (ATP)-sensitive potassium channels, although insulin therapy may be required later in life. Mutations in the HNF1B (MODY 5) is associated with pancreatic agenesis, renal abnormalities, genital tract malformations, and liver dysfunction. Compared to MODY 1, 2, 3, and 5, the remaining subtypes of MODY have a much lower prevalence. In this review, we summarize the main clinical and laboratory characteristics of the common and rarer causes of MODY.

  1. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications.

    Science.gov (United States)

    Kyithar, M P; Bacon, S; Pannu, K K; Rizvi, S R; Colclough, K; Ellard, S; Byrne, M M

    2011-12-01

    The prevalence of hepatocyte nuclear factor (HNF)-1A and HNF4A mutations, and the clinical implications following the genetic diagnosis of maturity-onset diabetes of the young (MODY) in the Irish population, remain unknown. The aim of this study was to establish the occurrence of HNF1A and HNF4A mutations in subjects classified clinically as MODY to identify novel mutations, and to determine the phenotypic features and response to therapy. A total of 36 unrelated index cases with a clinical diagnosis of MODY were analyzed for HNF1A/HNF4A mutations. OGTT was performed to determine the degree of glucose tolerance and insulin secretory response. Also, 38 relatives underwent OGTT and were tested for the relevant known mutations. HNF1A-/HNF4A-MODY subjects were compared with nine HNF1A mutation-negative relatives and 20 type 2 diabetic (T2DM) patients. Seven different HNF1A mutations were identified in 11/36 (30.5%) index cases, two of which were novel (S352fsdelG and F426X), as well as two novel HNF4A mutations (M1? and R290C; 6%). Family screening revealed 20 subjects with HNF1A and seven with HNF4A mutations. Only 51.6% of HNF1A mutation carriers were diagnosed with diabetes by age 25 years; 11 of the mutation carriers were overweight and four were obese. Insulin secretory response to glucose was significantly lower in HNF1A-MODY subjects than in T2DM patients and HNF1A mutation-negative relatives (P=0.01). Therapeutic changes occurred in 48% of mutation carriers following genetic diagnosis. There was an HNF1A-MODY pick-up rate of 30.5% and an HNF4A-MODY pick-up rate of 6% in Irish MODY families. Genetically confirmed MODY has significant therapeutic implications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Corrección de temperatura en el altiplano peruano utilizando análisis Wavelet Multiresolución sobre datos adquiridos por percepción remota

    OpenAIRE

    Barreda Polar, Carolina Elena

    2015-01-01

    Universidad Nacional Agraria La Molina. Escuela de Posgrado. Maestría en Meteorología Aplicada Datos de temperatura de día y de noche, estimados por MODIS, fueron corregidos para obtener la temperatura máxima y mínima del aire, en la región del Altiplano peruano, en el periodo 2001-2012. El modelo conceptual basado en el análisis wavelet multiresolución, propone el ensamble entre las señales de temperatura de MODIS y la temperatura medida en estación. Imágenes MODIS-LST (MOD11C2) de te...

  3. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

    DEFF Research Database (Denmark)

    Bergamino, N; Horion, Stéphanie; Stenuite, S

    2010-01-01

    dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions...

  4. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals

    International Nuclear Information System (INIS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If τ(1–ϖ) and τ(1–ϖg) are conserved where τ is optical thickness, ϖ the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1–ϖg) factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1–ϖ)/(1–ϖg)]"1"/"2, also tend to be similar. - Highlights: • Similarity relations are theoretically analyzed and validated. • Similarity relations are verified with the MODIS Level 2 Collection 5 and 6 ice cloud property products. • The product of ice cloud optical thickness and (1–ϖg) is approximately invariant. • The similarity parameter derived from the MODIS ice cloud effective radius retrieval tends to be invariant.

  5. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  6. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  7. MODY in Ukraine: genes, clinical phenotypes and treatment.

    Science.gov (United States)

    Globa, Evgenia; Zelinska, Nataliya; Elblova, Lenka; Dusatkova, Petra; Cinek, Ondrej; Lebl, Jan; Colclough, Kevin; Ellard, Sian; Pruhova, Stepanka

    2017-10-26

    Maturity-onset diabetes of the young (MODY) has not been previously studied in Ukraine. We investigated the genetic etiology in a selected cohort of patients with diabetes diagnosed before 18 years of age, and in their family members. Genetic testing of the most prevalent MODY genes (GCK, HNF1A, HNF4A, HNF1B and INS) was undertaken for 36 families (39 affected individuals) by Sanger or targeted next generation sequencing. A genetic diagnosis of MODY was made in 15/39 affected individuals from 12/36 families (33%). HNF1A and HNF4A MODY were the most common subtypes, accounting for 9/15 of MODY cases. Eight patients with HNF1A or HNF4A MODY and inadequate glycemic control were successfully transferred to sulfonylureas. Median HbA1c decreased from 67 mmol/mol (range 58-69) to 47 mmol/mol (range 43-50) (8.3% [7.5-8.5] to 6.4% [6.1-6.7]) 3 months after transfer (p=0.006). Genetic testing identified pathogenic HNF1A and HNF4A variants as the most common cause of MODY in Ukraine. Transfer to sulfonylureas substantially improved the glycemic control of these patients.

  8. MODIS/Aqua Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  9. MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1km SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  10. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  11. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data

    DEFF Research Database (Denmark)

    Fensholt, R.; Sandholt, I.; Proud, Simon Richard

    2010-01-01

    The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun-sensor geome......The quality of Earth observation (EO) based vegetation monitoring has improved during recent years, which can be attributed to the enhanced sensor design of new satellites such as MODIS (Moderate Resolution Imaging Spectroradiometer) on Terra and Aqua. It is however expected that sun......-sensor geometry variations will have a more visible impact on the Normalized Difference Vegetation Index (NDVI) from MODIS compared to earlier data sources, since noise related to atmosphere and sensor calibration is substantially reduced in the MODIS data stream. For this reason, the effect of varying MODIS......, including a red and NIR band, and the high temporal resolution (15 min) of data, enabling MSG data to be used as a reference for estimating MODIS surface reflectance and NDVI variations caused by varying sun-sensor geometry. The study was performed on data covering West Africa for periods of lowest possible...

  12. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  13. Validation of MODIS snow cover images over Austria

    Directory of Open Access Journals (Sweden)

    J. Parajka

    2006-01-01

    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  14. MODIS/Aqua Near Real Time (NRT) Thermal Anomalies/Fire 5-Min L2 Swath 1km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  15. MODIS/Terra Near Real Time (NRT) Thermal Anomalies/Fire 5-Min L2 Swath 1km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  16. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  17. Deriving Snow Cover Metrics for Alaska from MODIS

    Directory of Open Access Journals (Sweden)

    Chuck Lindsay

    2015-09-01

    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at http://static.gina.alaska.edu/NPS_products/MODIS_snow/.

  18. Analyzing land surface temperature variations during Fogo Island (Cape Verde) 2014-2015 eruption with Landsat 8 images

    Science.gov (United States)

    Vieira, D.; Teodoro, A.; Gomes, A.

    2016-10-01

    Land Surface Temperature (LST) is an important parameter related to land surface processes that changes continuously through time. Assessing its dynamics during a volcanic eruption has both environmental and socio-economical interest. Lava flows and other volcanic materials produced and deposited throughout an eruption transform the landscape, contributing to its heterogeneity and altering LST measurements. This paper aims to assess variations of satellite-derived LST and to detect patterns during the latest Fogo Island (Cape Verde) eruption, extending from November 2014 through February 2015. LST data was obtained through four processed Landsat 8 images, focused on the caldera where Pico do Fogo volcano sits. QGIS' plugin Semi-Automatic Classification was used in order to apply atmospheric corrections and radiometric calibrations. The algorithm used to retrieve LST values is a single-channel method, in which emissivity values are known. The absence of in situ measurements is compensated by the use of MODIS sensor-derived LST data, used to compare with Landsat retrieved measurements. LST data analysis shows as expected that the highest LST values are located inside the caldera. High temperature values were also founded on the south-facing flank of the caldera. Although spatial patterns observed on the retrieved data remained roughly the same during the time period considered, temperature values changed throughout the area and over time, as it was also expected. LST values followed the eruption dynamic experiencing a growth followed by a decline. Moreover, it seems possible to recognize areas affected by lava flows of previous eruptions, due to well-defined LST spatial patterns.

  19. Comparison of Different GPP Models in China Using MODIS Image and ChinaFLUX Data

    Directory of Open Access Journals (Sweden)

    Zhengjia Liu

    2014-10-01

    Full Text Available Accurate quantification of gross primary production (GPP at regional and global scales is essential for carbon budgets and climate change studies. Five models, the vegetation photosynthesis model (VPM, the temperature and greenness model (TG, the alpine vegetation model (AVM, the greenness and radiation model (GR, and the MOD17 algorithm, were tested and calibrated at eight sites in China during 2003–2005. Results indicate that the first four models provide more reliable GPP estimation than MOD17 products/algorithm, although MODIS GPP products show better performance in grasslands, croplands, and mixed forest (MF. VPM and AVM produce better estimates in forest sites (R2 = 0.68 and 0.67, respectively; AVM and TG models show satisfactory GPP estimates for grasslands (R2 = 0.91 and 0.9, respectively. In general, the VPM model is the most suitable model for GPP estimation for all kinds of land cover types in China, with R2 higher than 0.34 and root mean square error (RMSE lower than 48.79%. The relationships between eddy CO2 flux and model parameters (Enhanced Vegetation Index (EVI, photosynthetically active radiation (PAR, land surface temperature (LST, air temperature, and Land Surface Water Index (LSWI are further analyzed to investigate the model’s application to various land cover types, which will be of great importance for studying the effects of climatic factors on ecosystem performances.

  20. Estimation of urban surface temperatures using remote sensing in eThekwini municipality

    CSIR Research Space (South Africa)

    Ellero, M

    2016-12-01

    Full Text Available year. An additional aim included checking the accuracy of these sensors in determining LST’s. MODIS LST products were obtained directly from the EROS data centre (EDC) and converted into degrees Celsius. Landsat 8 images were also obtained from the EDC...

  1. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  2. Maturity-onset diabetes of the young--MODY. Molekylaergenetiske, patofysiologiske og kliniske karakteristika

    DEFF Research Database (Denmark)

    Hansen, Torben; Urhammer, Søren A; Pedersen, Oluf Borbye

    2002-01-01

    Maturity-onset diabetes of the young (MODY) is a genetically and clinically heterogeneous subtype of type 2 diabetes characterised by an early onset, an autosomal dominant inheritance, and a primary defect in insulin secretion. MODY comprises 2-5% of cases of type 2 diabetes. So far, six MODY genes...... have been identified (MODY1-6): hepatocyte nuclear factor (HNF-4 alpha), glucokinase, HNF-1 alpha, HNF-1 beta, insulin promoter factor 1(IPF-1), and neurogenic differentiation factor 1 (NEUROD1). MODY2 and MODY3 are the most common forms of MODY. Mutations in glucokinase/MODY2 result in a mild form...... of diabetes. In contrast, MODY3 and some of the other MODY forms are characterised by major insulin secretory defects and severe hyperglycaemia associated with microvascular complications. About 25% of known MODY is caused by mutations in yet unknown genes and present results suggest that other monogenic...

  3. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    Science.gov (United States)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  4. Evaluation of Above Ground Biomass Estimation Accuracy for Alpine Meadow Based on MODIS Vegetation Indices

    Directory of Open Access Journals (Sweden)

    Meng Bao-Ping

    2017-01-01

    Full Text Available Animal husbandry is the main agricultural type over the Tibetan Plateau, above ground biomass (AGB is very important to monitor the productivity for administration of grassland resources and grazing balance. The MODIS vegetation indices have been successfully used in numerous studies on grassland AGB estimation in the Tibetan Plateau area. However, there are considerable differences of AGB estimation models both in the form of the models and the accuracy of estimation. In this study, field measurements of AGB data at Sangke Town, Gansu Province, China in four years (2013-2016 and MODIS indices (NDVI and EVI are combined to construct AGB estimation models of alpine meadow grassland. The field measured AGB are also used to evaluate feasibility of models developed for large scale in applying to small area. The results show that (1 the differences in biomass were relatively large among the 5 sample areas of alpine meadow grassland in the study area during 2013-2016, with the maximum and minimum biomass values of 3,963 kg DW/ha and 745.5 kg DW/ha, respectively, and mean value of 1,907.7 kg DW/ha; the mean of EVI value range (0.42-0.60 are slightly smaller than the NDVI’s (0.59-0.75; (2 the optimum estimation model of grassland AGB in the study area is the exponential model based on MODIS EVI, with root mean square error of 656.6 kg DW/ha and relative estimation errors (REE of 36.3%; (3 the estimation errors of grassland AGB models previously constructed at different spatial scales (the Tibetan Plateau, the Gannan Prefecture, and Xiahe County are higher than those directly constructed based on the small area of this study by 9.5%–31.7%, with the increase of the modeling study area scales, the REE increasing as well. This study presents an improved monitoring algorithm of alpine natural grassland AGB estimation and provides a clear direction for future improvement of the grassland AGB estimation and grassland productivity from remote sensing

  5. Pipeline oil fire detection with MODIS active fire products

    Science.gov (United States)

    Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.

    2017-12-01

    We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.

  6. MODIS/Terra Land Water Mask Derived from MODIS and SRTM L3 Global 250m SIN Grid V005

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS 250 m land-water mask (Short Name: MOD44W) is an improvement over the existing MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted...

  7. Evaluating land cover changes in Eastern and Southern Africa from 2000 to 2010 using validated Landsat and MODIS data

    Science.gov (United States)

    Al-Hamdan, Mohammad Z.; Oduor, Phoebe; Flores, Africa I.; Kotikot, Susan M.; Mugo, Robinson; Ababu, Jaffer; Farah, Hussein

    2017-10-01

    In this study, we assessed land cover land use (LCLU) changes and their potential environmental drivers (i.e., precipitation, temperature) in five countries in Eastern & Southern (E&S) Africa (Rwanda, Botswana, Tanzania, Malawi and Namibia) between 2000 and 2010. Landsat-derived LCLU products developed by the Regional Centre for Mapping of Resources for Development (RCMRD) through the SERVIR (Spanish for ;to serve;) program, a joint initiative of NASA and USAID, and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to evaluate and quantify the LCLU changes in these five countries. Given that the original development of the MODIS land cover type standard products included limited training sites in Africa, we performed a two-level verification/validation of the MODIS land cover product in these five countries. Precipitation data from CHIRPS dataset were used to evaluate and quantify the precipitation changes in these countries and see if it was a significant driver behind some of these LCLU changes. MODIS Land Surface Temperature (LST) data were also used to see if temperature was a main driver too. Our validation analysis revealed that the overall accuracies of the regional MODIS LCLU product for this African region alone were lower than that of the global MODIS LCLU product overall accuracy (63-66% vs. 75%). However, for countries with uniform or homogenous land cover, the overall accuracy was much higher than the global accuracy and as high as 87% and 78% for Botswana and Namibia, respectively. In addition, the wetland and grassland classes had the highest user's accuracies in most of the countries (89%-99%), which are the ones with the highest number of MODIS land cover classification algorithm training sites. Our LCLU change analysis revealed that Botswana's most significant changes were the net reforestation, net grass loss and net wetland expansion. For Rwanda, although there have been significant forest, grass and crop expansions in

  8. HDL cholesterol as a diagnostic tool for clinical differentiation of GCK-MODY from HNF1A-MODY and type 1 diabetes in children and young adults.

    Science.gov (United States)

    Fendler, Wojciech; Borowiec, Maciej; Antosik, Karolina; Szadkowska, Agnieszka; Deja, Grazyna; Jarosz-Chobot, Przemyslawa; Mysliwiec, Malgorzata; Wyka, Krystyna; Pietrzak, Iwona; Skupien, Jan; Malecki, Maciej T; Mlynarski, Wojciech

    2011-09-01

    Confirmation of monogenic diabetes caused by glucokinase mutations (GCK-MODY) allows pharmacogenetic intervention in the form of insulin discontinuation. This is especially important among paediatric and young adult populations where GCK-MODY is most prevalent. The study evaluated the utility of lipid parameters in screening for patients with GCK-MODY. Eighty-nine children with type 1 diabetes and 68 with GCK-MODY were screened for triglyceride (TG), total and HDL cholesterol levels. Standardization against a control group of 171 healthy children was applied to eliminate the effect of development. Clinical applicability and cut-off value were evaluated in all available patients with GCK-MODY (n = 148), hepatocyte nuclear factor 1-alpha-MODY (HNF1A MODY) (n = 37) or type 1 diabetes (n = 221). Lower lipid parameter values were observed in GCK-MODY than in patients with type 1 diabetes. Standard deviation scores were -0·22 ± 2·24 vs 1·31 ± 2·17 for HDL cholesterol (P MODY selection [sensitivity 87%, specificity 54%, negative predictive value (NPV) 86%, positive PV 56%]. A threshold HDL concentration of 1·56 mm offered significantly better diagnostic efficiency than total cholesterol (cut-off value 4·51 mm; NPV 80%; PPV 38%; P MODY and differentiation from T1DM and HNF1A-MODY, regardless of treatment or metabolic control. © 2011 Blackwell Publishing Ltd.

  9. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    Science.gov (United States)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  10. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  11. MODY in Siberia – molecular genetics and clinical characteristics

    Directory of Open Access Journals (Sweden)

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  12. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season

    Directory of Open Access Journals (Sweden)

    Sadroddin Alavipanah

    2015-04-01

    Full Text Available The Urban Heat Island (UHI is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST and Land Use Land Cover (LULC, MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i the cooling effect accrued from urban vegetation tended to be non-linear; and (ii a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.

  13. Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

    Directory of Open Access Journals (Sweden)

    A.I. De Castro

    2014-06-01

    Full Text Available A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

  14. Effects of post-fire wood management strategies on vegetation recovery and land surface temperature (LST) estimated from Landsat images

    Science.gov (United States)

    Vlassova, Lidia; Pérez-Cabello, Fernando

    2016-02-01

    The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.

  15. Monthly statistics for WRF with and without MODIS vegetation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  16. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    Science.gov (United States)

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  17. MODIS/Aqua Near Real Time (NRT) Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  18. MODIS/Terra Near Real Time (NRT) Coarse Thermal Anomalies/Fire 5-Min L2 Swath 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS Near Real Time (NRT) Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on...

  19. Application of Modis Data to Assess the Latest Forest Cover Changes of Sri Lanka

    Science.gov (United States)

    Perera, K.; Herath, S.; Apan, A.; Tateishi, R.

    2012-07-01

    Assessing forest cover of Sri Lanka is becoming important to lower the pressure on forest lands as well as man-elephant conflicts. Furthermore, the land access to north-east Sri Lanka after the end of 30 years long civil war has increased the need of regularly updated land cover information for proper planning. This study produced an assessment of the forest cover of Sri Lanka using two satellite data based maps within 23 years of time span. For the old forest cover map, the study used one of the first island-wide digital land cover classification produced by the main author in 1988. The old land cover classification was produced at 80 m spatial resolution, using Landsat MSS data. A previously published another study by the author has investigated the application feasibility of MODIS and Landsat MSS imagery for a selected sub-section of Sri Lanka to identify the forest cover changes. Through the light of these two studies, the assessment was conducted to investigate the application possibility of MODIS 250 m over a small island like Sri Lanka. The relation between the definition of forest in the study and spatial resolution of the used satellite data sets were considered since the 2012 map was based on MODIS data. The forest cover map of 1988 was interpolated into 250 m spatial resolution to integrate with the GIS data base. The results demonstrated the advantages as well as disadvantages of MODIS data in a study at this scale. The successful monitoring of forest is largely depending on the possibility to update the field conditions at regular basis. Freely available MODIS data provides a very valuable set of information of relatively large green patches on the ground at relatively real-time basis. Based on the changes of forest cover from 1988 to 2012, the study recommends the use of MODIS data as a resalable method to forest assessment and to identify hotspots to be re-investigated. It's noteworthy to mention the possibility of uncounted small isolated pockets of

  20. Towards a systematic nationwide screening strategy for MODY.

    Science.gov (United States)

    Shields, Beverley; Colclough, Kevin

    2017-04-01

    MODY is an early-onset monogenic form of diabetes. Correctly identifying MODY is of considerable importance as diagnosing the specific genetic subtype can inform the optimal treatment, with many patients being able to discontinue unnecessary insulin treatment. Diagnostic molecular genetic testing to confirm MODY is expensive, so screening strategies are required to identify the most appropriate patients for testing. In this issue of Diabetologia, Johansson and colleagues (DOI 10.1007/s00125-016-4167-1 ) describe a nationwide systematic screening approach to identify individuals with MODY in the paediatric age range. They focused testing on patients negative for both GAD and islet antigen 2 (IA-2) islet autoantibodies, thereby ruling out those with markers of type 1 diabetes, the most common form of diabetes in this age group. This commentary discusses the advantages and limitations of the approach, and the caution required when interpreting variants of uncertain pathogenicity identified from testing whole populations rather than targeting only patients with a strong MODY phenotype.

  1. Assigning dates and identifying areas affected by fires in Portugal based on MODIS data

    Directory of Open Access Journals (Sweden)

    JESSICA PANISSET

    Full Text Available ABSTRACT An automated procedure is here presented that allows identifying and dating burned areas in Portugal using values of daily reflectance from near-infrared and middle-infrared bands, as obtained from the MODIS instrument. The algorithm detects persistent changes in monthly composites of the so-called (V,W Burn-Sensitive Index and the day of maximum change in daily time series of W is in turn identified as the day of the burning event. The procedure is tested for 2005, the second worst fire season ever recorded in Portugal. Comparison between the obtained burned area map and the reference derived from Landsat imagery resulted in a Proportion Correct of 95.6%. Despite being applied only to the months of August and September, the algorithm is able to identify almost two-thirds of all scars that have occurred during the entire year of 2005. An assessment of the temporal accuracy of the dating procedure was also conducted, showing that 75% of estimated dates presented deviations between -5 and 5 days from dates of hotspots derived from the MODIS instrument. Information about location and date of burning events as provided by the proposed procedure may be viewed as complementary to the currently available official maps based on end-of-season Landsat imagery.

  2. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a High Spatio-Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Nicholas Clinton

    2014-08-01

    Full Text Available Phenology response to climatic variables is a vital indicator for understanding changes in biosphere processes as related to possible climate change. We investigated global phenology relationships to precipitation and land surface temperature (LST at high spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation between MODIS Enhanced Vegetation Index (EVI, MODIS LST and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN gridded rainfall to map phenology relationships at 1-km spatial resolution and weekly temporal resolution. We show these data to be rich in spatiotemporal information, illustrating distinct phenology patterns as a result of complex overlapping gradients of climate, ecosystem and land use/land cover. The data are consistent with broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and irradiance. We suggest that high-resolution phenology data are useful as both an input and complement to land use/land cover classifiers and for understanding climate change vulnerability in natural and anthropogenic landscapes.

  3. [Maturity onset diabetes of the young (MODY) - screening, diagnostic and therapy].

    Science.gov (United States)

    Kaser, Susanne; Resl, Michael

    2016-04-01

    Maturity onset diabetes of the young (MODY) is a group of monogenetic diabetes types affecting up to 2% all known diabetics. Transcription factor MODY (HNF1α, HNF4α), the most frequent forms of MODY, allow treatment with sulfonylureas, mutations of glucokinase (GCK-MODY) usually do not require any therapy. Especially in younger patients correct diagnosis of MODY often results in discontinuation of insulin therapy and initiation of a sulfonylurea. Accordingly, in patients with diabetes onset below age of 25 years, with a positive family history for diabetes and negative autoantibodies screening for MODY is recommended.

  4. Quantifying the Trends in Land Surface Temperature and Surface Urban Heat Island Intensity in Mediterranean Cities in View of Smart Urbanization

    Directory of Open Access Journals (Sweden)

    Anastasios Polydoros

    2018-02-01

    Full Text Available Land Surface Temperature (LST is a key parameter for the estimation of urban fluxes as well as for the assessment of the presence and strength of the surface urban heat island (SUHI. In an urban environment, LST depends on the way the city has been planned and developed over time. To this end, the estimation of LST needs adequate spatial and temporal data at the urban scale, especially with respect to land cover/land use. The present study is divided in two parts: at first, satellite data from MODIS-Terra 8-day product (MOD11A2 were used for the analysis of an eighteen-year time series (2001–2017 of the LST spatial and temporal distribution in five major cities of the Mediterranean during the summer months. LST trends were retrieved and assessed for their statistical significance. Secondly, LST values and trends for each city were examined in relation to land cover characteristics and patterns in order to define the contribution of urban development and planning on LST; this information is important for the drafting of smart urbanization policies and measures. Results revealed (a positive LST trends in the urban areas especially during nighttime ranging from +0.412 °K in Marseille to +0.923 °K in Cairo and (b the SUHI has intensified during the last eighteen years especially during daytime in European Mediterranean cities, such as Rome (+0.332 °K and Barcelona (+0.307 °K.

  5. MODIS Collection 6 Land Product Subsets Web Service

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Web Service provides data access capabilities for Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 land products. The web service...

  6. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  7. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model

    Directory of Open Access Journals (Sweden)

    Tri D. Setiyono

    2018-02-01

    Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with

  8. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    Science.gov (United States)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  9. GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated.

    Science.gov (United States)

    Carmody, David; Naylor, Rochelle N; Bell, Charles D; Berry, Shivani; Montgomery, Jazzmyne T; Tadie, Elizabeth C; Hwang, Jessica L; Greeley, Siri Atma W; Philipson, Louis H

    2016-10-01

    GCK-MODY leads to mildly elevated blood glucose typically not requiring therapy. It has been described in all ethnicities, but mainly in Caucasian Europeans. Here we describe our US cohort of GCK-MODY. We examined the rates of detection of heterozygous mutations in the GCK gene in individuals referred to the US Monogenic Diabetes Registry with a phenotype consistent with GCK-MODY. We also assessed referral patterns, treatment and demography, including ethnicity, of the cohort. Deleterious heterozygous GCK mutations were found in 54.7 % of Registry probands selected for GCK sequencing for this study. Forty-nine percent were previously unnecessarily treated with glucose-lowering agents, causing hypoglycemia and other adverse effects in some of the subjects. The proportion of probands found to have a GCK mutation through research-based testing was similar across each ethnic group. However, together African-American, Latino and Asian subjects represented only 20.5 % of screened probands and 17.2 % of those with GCK-MODY, despite higher overall diabetes prevalence in these groups. Our data show that a high detection rate of GCK-MODY is possible based on clinical phenotype and that prior to genetic diagnosis, a large percentage are inappropriately treated with glucose-lowering therapies. We also find low minority representation in our Registry, which may be due to disparities in diagnostic diabetes genetic testing and is an area needing further investigation.

  10. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  11. Evaluating the use of sharpened land surface temperature for daily evapotranspiration estimation over irrigated crops in arid lands

    KAUST Repository

    Rosas, Jorge

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  12. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite

  13. Condition of red tide appearance in Wakasa Bay based on Terra, Aqua/MODIS images

    Science.gov (United States)

    Aoyama, Takashi; Oya, Hiroshi

    2006-12-01

    Since June, 2004, studies on triggering factors of the red tide have been carried out in Awara Space Radio Observatory (ASRO), Fukui University of Technology utilizing directly received data of MODIS on the Terra and Aqua satellites which have been acquired in ASRO. Preliminary results of the data analyses for the period from July, 2001 to April, 2005 indicate conditions, for the appearance of the red tide bloom in Wakasa bay as follows: (1) the threshold amount of chlorophyll-a is close to 1.5mg/m 3, (2) the range of sea surface temperature (SST) is limited in a range from 12 to 20 °C and (3) the period of sunlit time in spring is also a significantly sensitive factor. We propose here to utilize MODIS band1 images corresponding to a red band with spatial resolution of 250m together with NDVI (Normalized Difference Vegetation Index) images which has also spatial resolution of 250m, for the confirmation of the red tide. The problem of coincidence between colored region due to SS (Suspended Sediment) and red tide region using only band1 of MODIS, has been solved by using NDVI images in addition to band1 images together as two dimensional diagram.

  14. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Hiernaux, Pierre; Rasmussen, Kjeld

    2016-01-01

    Woody plants play a major role for the resilience of drylands and in peoples' livelihoods. However, due to their scattered distribution, quantifying and monitoring woody cover over space and time is challenging. We develop a phenology driven model and train/validate MODIS (MCD43A4, 500 m) derived...

  15. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  16. Noise Characterization and Performance of MODIS Thermal Emissive Bands

    Science.gov (United States)

    Madhavan, Sriharsha; Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian; Chiang, Kwofu; Chen, Na; Wang, Zhipeng; Li, Yonghong

    2016-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a premier Earth-observing sensor of the early 21st century, flying onboard the Terra (T) and Aqua (A) spacecraft. Both instruments far exceeded their six-year design life and continue to operate satisfactorily for more than 15 and 13 years, respectively. The MODIS instrument is designed to make observations at nearly a 100% duty cycle covering the entire Earth in less than two days. The MODIS sensor characteristics include a spectral coverage from 0.41micrometers to 14.4 micrometers, of which those wavelengths ranging from 3.7 micrometers to 14.4 micrometers cover the thermal infrared region which is interspaced in 16 thermal emissive bands (TEBs). Each of the TEB contains ten detectors which record samples at a spatial resolution of 1 km. In order to ensure a high level of accuracy for the TEB-measured top-of-atmosphere radiances, an onboard blackbody (BB) is used as the calibration source. This paper reports the noise characterization and performance of the TEB on various counts. First, the stability of the onboard BB is evaluated to understand the effectiveness of the calibration source. Next, key noise metrics such as the noise equivalent temperature difference and the noise equivalent dn difference (NEdN) for the various TEBs are determined from multiple temperature sources. These sources include the nominally controlled BB temperature of 290 K for T-MODIS and 285 K for A-MODIS, as well as a BB warm up-cool down cycle that is performed over a temperature range from roughly 270 to 315 K. The space-view port that measures the background signal serves as a viable cold temperature source for measuring noise. In addition, a well characterized Earth-view target, the Dome Concordia site located in the Antarctic plateau, is used for characterizing the stability of the sensor, indirectly providing a measure of the NEdN. Based on this rigorous characterization, a list of the noisy and inoperable detectors for

  17. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  18. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  19. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale

    Directory of Open Access Journals (Sweden)

    Louis Kouadio

    2014-10-01

    Full Text Available Crop yield forecasting plays a vital role in coping with the challenges of the impacts of climate change on agriculture. Improvements in the timeliness and accuracy of yield forecasting by incorporating near real-time remote sensing data and the use of sophisticated statistical methods can improve our capacity to respond effectively to these challenges. The objectives of this study were (i to investigate the use of derived vegetation indices for the yield forecasting of spring wheat (Triticum aestivum L. from the Moderate resolution Imaging Spectroradiometer (MODIS at the ecodistrict scale across Western Canada with the Integrated Canadian Crop Yield Forecaster (ICCYF; and (ii to compare the ICCYF-model based forecasts and their accuracy across two spatial scales-the ecodistrict and Census Agricultural Region (CAR, namely in CAR with previously reported ICCYF weak performance. Ecodistricts are areas with distinct climate, soil, landscape and ecological aspects, whereas CARs are census-based/statistically-delineated areas. Agroclimate variables combined respectively with MODIS-NDVI and MODIS-EVI indices were used as inputs for the in-season yield forecasting of spring wheat during the 2000–2010 period. Regression models were built based on a procedure of a leave-one-year-out. The results showed that both agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI performed equally well predicting spring wheat yield at the ECD scale. The mean absolute error percentages (MAPE of the models selected from both the two data sets ranged from 2% to 33% over the study period. The model efficiency index (MEI varied between −1.1 and 0.99 and −1.8 and 0.99, respectively for the agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI data sets. Moreover, significant improvement in forecasting skill (with decreasing MAPE of 40% and 5 times increasing MEI, on average was obtained at the finer, ecodistrict spatial scale, compared to the coarser CAR scale. Forecast

  20. Comparison of Glomerular Filtration Rate Estimation from Serum Creatinine and Cystatin C in HNF1A-MODY and Other Types of Diabetes.

    Science.gov (United States)

    Szopa, Magdalena; Kapusta, Maria; Matejko, Bartlomiej; Klupa, Tomasz; Koblik, Teresa; Kiec-Wilk, Beata; Borowiec, Maciej; Malecki, Maciej T

    2015-01-01

    We previously showed that in HNF1A-MODY the cystatin C-based glomerular filtration rate (GFR) estimate is higher than the creatinine-based estimate. Currently, we aimed to replicate this finding and verify its clinical significance. The study included 72 patients with HNF1A-MODY, 72 with GCK-MODY, 53 with type 1 diabetes (T1DM), 70 with type 2 diabetes (T2DM), and 65 controls. Serum creatinine and cystatin C levels were measured. GFR was calculated from creatinine and cystatin C using the CKD-EPI creatinine equation (eGRF-cr) and CKD-EPI cystatin C equation (eGFR-cys), respectively. Cystatin C levels were lower (p MODY, GCK-MODY, and the controls (p = 0.004; p = 0.003; p MODY patients are higher compared to eGFR-cr. Some other differences were also described in diabetic groups. However, none of them appears to be clinically relevant.

  1. Circulating CD36 is reduced in HNF1A-MODY carriers.

    Science.gov (United States)

    Bacon, Siobhan; Kyithar, Ma P; Schmid, Jasmin; Costa Pozza, Andre; Handberg, Aase; Byrne, Maria M

    2013-01-01

    Premature atherosclerosis is a significant cause of morbidity and mortality in type 2 diabetes mellitus. Maturity onset diabetes of the young (MODY) accounts for approximately 2% of all diabetes, with mutations in the transcription factor; hepatocyte nuclear factor 1 alpha (HNF1A) accounting for the majority of MODY cases. There is somewhat limited data available on the prevalence of macrovascular disease in HNF1A-MODY carriers with diabetes. Marked insulin resistance and the associated dyslipidaemia are not clinical features of HNF1A-MODY carriers. The scavenger protein CD36 has been shown to play a substantial role in the pathogenesis of atherosclerosis, largely through its interaction with oxidised LDL. Higher levels of monocyte CD36 and plasma CD36(sCD36) are seen to cluster with insulin resistance and diabetes. The aim of this study was to determine levels of sCD36 in participants with HNF1A-MODY diabetes and to compare them with unaffected normoglycaemic family members and participants with type 2 diabetes mellitus. We recruited 37 participants with HNF1A-MODY diabetes and compared levels of sCD36 with BMI-matched participants with type 2 diabetes mellitus and normoglycaemic HNF1A-MODY negative family controls. Levels of sCD36 were correlated with phenotypic and biochemical parameters. HNF1A-MODY participants were lean, normotensive, with higher HDL and lower triglyceride levels when compared to controls and participants with type 2 diabetes mellitus. sCD36 was also significantly lower in HNF1A-MODY participants when compared to both the normoglycaemic family controls and to lean participants with type 2 diabetes mellitus. In conclusion, sCD36 is significantly lower in lean participants with HNF1A-MODY diabetes when compared to weight-matched normoglycaemic familial HNF1A-MODY negative controls and to lean participants with type 2 diabetes mellitus. Lower levels of this pro-atherogenic marker may result from the higher HDL component in the lipid profile of

  2. Operationalizing a Research Sensor: MODIS to VIIRS

    Science.gov (United States)

    Grant, K. D.; Miller, S. W.; Puschell, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and NASA are jointly acquiring the next-generation civilian environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The primary sensor for the JPSS mission is the Visible/Infrared Imager Radiometer Suite (VIIRS) developed by Raytheon Space and Airborne Systems (SAS). The ground processing system for the JPSS mission is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS) which are both developed by Raytheon Intelligence and Information Systems (IIS). The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by Raytheon SAS for the NASA Earth Observing System (EOS) as a research instrument to capture data in 36 spectral bands, ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS data provides unprecedented insight into large-scale Earth system science questions related to cloud and aerosol characteristics, surface emissivity and processes occurring in the oceans, on land, and in the lower atmosphere. MODIS has flown on the EOS Terra satellite since 1999 and on the EOS Aqua satellite since 2002 and provided excellent data for scientific research and operational use for more than a decade. The value of MODIS-derived products for operational environmental monitoring motivated led to the development of an operational counterpart to MODIS for the next-generation polar-orbiting environmental satellites, the Visible/Infrared Imager

  3. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    Science.gov (United States)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  4. Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code

    International Nuclear Information System (INIS)

    Yi, Bingqi; Huang, Xin; Yang, Ping; Baum, Bryan A.; Kattawar, George W.

    2014-01-01

    In this study, a full-vector, adding–doubling radiative transfer model is used to investigate the influence of the polarization state on cloud property retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. Two sets of lookup tables (LUTs) are developed for the retrieval purposes, both of which provide water cloud and ice cloud reflectivity functions at two wavelengths in various sun-satellite viewing geometries. However, only one of the LUTs considers polarization. The MODIS reflectivity observations at 0.65 μm (band 1) and 2.13 μm (band 7) are used to infer the cloud optical thickness and particle effective diameter, respectively. Results indicate that the retrievals for both water cloud and ice cloud show considerable sensitivity to polarization. The retrieved water and ice cloud effective diameter and optical thickness differences can vary by as much as ±15% due to polarization state considerations. In particular, the polarization state has more influence on completely smooth ice particles than on severely roughened ice particles. - Highlights: • Impact of polarization on satellite-based retrieval of water/ice cloud properties is studied. • Inclusion of polarization can change water/ice optical thickness and effective diameter values by up to ±15%. • Influence of polarization on cloud property retrievals depends on sun-satellite viewing geometries

  5. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    Science.gov (United States)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for

  6. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks

    Science.gov (United States)

    Joseph P. Spruce; Steven Sader; Robert E. Ryan; James Smoot; Philip Kuper; al. et.

    2011-01-01

    This paper discusses an assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data products for detecting forest defoliation from European gypsy moth (Lymantria dispar). This paper describes an effort to aid the United States Department of Agriculture (USDA) Forest Service in developing and assessing MODIS-based gypsy moth defoliation...

  7. Heterozygous ABCC8 mutations are a cause of MODY.

    Science.gov (United States)

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  8. Enhancement of the Daytime MODIS Based Aircraft Icing Potential Algorithm Using Mesoscale Model Data

    National Research Council Canada - National Science Library

    Sherman, Zoe B

    2006-01-01

    .... The algorithm by Alexander (2005) was used to process MODIS imagery on four separate storms in January 2006, and his algorithm was validated using 133 positive and negative pilot reports (PIREPs...

  9. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Science.gov (United States)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  10. Identification of circulating microRNAs in HNF1A-MODY carriers.

    Science.gov (United States)

    Bonner, C; Nyhan, K C; Bacon, S; Kyithar, M P; Schmid, J; Concannon, C G; Bray, I M; Stallings, R L; Prehn, J H M; Byrne, M M

    2013-08-01

    HNF1A-MODY is a monogenic form of diabetes caused by mutations in the HNF1A gene. Here we identify, for the first time, HNF1A-MODY-associated microRNAs (miRNAs) that can be detected in the serum of HNF1A-MODY carriers. An miRNA array was carried out in rat INS-1 insulinoma cells inducibly expressing the common human Pro291fsinsC-HNF1A frame shift mutation. Differentially expressed miRNAs were validated by quantitative real-time PCR. Expression of miRNAs in the serum of HNF1A-MODY carriers (n = 31), MODY-negative family members (n = 10) and individuals with type 2 diabetes mellitus (n = 17) was quantified by absolute real-time PCR analysis. Inducible expression of Pro291fsinsC-HNF1A in INS-1 cells caused a significant upregulation of three miRNAs (miR-103, miR-224, miR-292-3p). The differential expression of two miRNAs (miR-103 and miR-224) was validated in vitro. Strongly elevated levels of miR-103 and miR-224 could be detected in the serum of HNF1A-MODY carriers compared with MODY-negative family controls. Serum levels of miR-103 distinguished HNF1A-MODY carriers from HbA1c-matched individuals with type 2 diabetes mellitus. Our study demonstrates that the pathophysiology of HNF1A-MODY is associated with the overexpression of miR-103 and miR-224. Furthermore, our study demonstrates that these miRNAs can be readily detected in the serum of HNF1A-MODY carriers.

  11. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  12. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013

    Directory of Open Access Journals (Sweden)

    Weijiao Huang

    2017-06-01

    Full Text Available The urban heat island is generally conducted based on ground observations of air temperature and remotely sensing of land surface temperature (LST. Satellite remotely sensed LST has the advantages of global coverage and consistent periodicity, which overcomes the weakness of ground observations related to sparse distributions and costs. For human related studies and urban climatology, canopy layer urban heat island (CUHI based on air temperatures is extremely important. This study has employed remote sensing methodology to produce monthly CUHI climatology maps during the period 2000–2013, revealing the spatiotemporal characteristics of daytime and nighttime CUHI during this period of rapid urbanization in Shanghai. Using stepwise linear regression, daytime and nighttime air temperatures at the four overpass times of Terra/Aqua were estimated based on time series of Terra/Aqua-MODIS LST and other auxiliary variables including enhanced vegetation index, normalized difference water index, solar zenith angle and distance to coast. The validation results indicate that the models produced an accuracy of 1.6–2.6 °C RMSE for the four overpass times of Terra/Aqua. The models based on Terra LST showed higher accuracy than those based on Aqua LST, and nighttime air temperature estimation had higher accuracy than daytime. The seasonal analysis shows daytime CUHI is strongest in summer and weakest in winter, while nighttime CUHI is weakest in summer and strongest in autumn. The annual mean daytime CUHI during 2000–2013 is 1.0 and 2.2 °C for Terra and Aqua overpass, respectively. The annual mean nighttime CUHI is about 1.0 °C for both Terra and Aqua overpass. The resultant CUHI climatology maps provide a spatiotemporal quantification of CUHI with emphasis on temperature gradients. This study has provided information of relevance to urban planners and environmental managers for assessing and monitoring urban thermal environments which are constantly

  13. Comparasion of Cloud Cover restituted by POLDER and MODIS

    Science.gov (United States)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    PARASOL and AQUA are two sun-synchronous orbit satellites in the queue of A-Train satellites that observe our earth within a few minutes apart from each other. Aboard these two platforms, POLDER and MODIS provide coincident observations of the cloud cover with very different characteristics. These give us a good opportunity to study the clouds system and evaluate strengths and weaknesses of each dataset in order to provide an accurate representation of global cloud cover properties. This description is indeed of outermost importance to quantify and understand the effect of clouds on global radiation budget of the earth-atmosphere system and their influence on the climate changes. We have developed a joint dataset containing both POLDER and MODIS level 2 cloud products collocated and reprojected on a common sinusoidal grid in order to make the data comparison feasible and veracious. Our foremost work focuses on the comparison of both spatial distribution and temporal variation of the global cloud cover. This simple yet critical cloud parameter need to be clearly understood to allow further comparison of the other cloud parameters. From our study, we demonstrate that on average these two sensors both detect the clouds fairly well. They provide similar spatial distributions and temporal variations:both sensors see high values of cloud amount associated with deep convection in ITCZ, over Indonesia, and in west-central Pacific Ocean warm pool region; they also provide similar high cloud cover associated to mid-latitude storm tracks, to Indian monsoon or to the stratocumulus along the west coast of continents; on the other hand small cloud amounts that typically present over subtropical oceans and deserts in subsidence aeras are well identified by both POLDER and MODIS. Each sensor has its advantages and inconveniences for the detection of a particular cloud types. With higher spatial resolution, MODIS can better detect the fractional clouds thus explaining as one part

  14. Mapping Flooded Rice Paddies Using Time Series of MODIS Imagery in the Krishna River Basin, India

    Directory of Open Access Journals (Sweden)

    Pardhasaradhi Teluguntla

    2015-07-01

    Full Text Available Rice is one of the major crops cultivated predominantly in flooded paddies, thus a large amount of water is consumed during its growing season. Accurate paddy rice maps are therefore important inputs for improved estimates of actual evapotranspiration in the agricultural landscape. The main objective of this study was to obtain flooded paddy rice maps using multi-temporal images of Moderate Resolution Imaging Spectroradiometer (MODIS in the Krishna River Basin, India. First, ground-based spectral samples collected by a field spectroradiometer, CROPSCAN, were used to demonstrate unique contrasts between the Normalized Difference Vegetation Index (NDVI and the Land Surface Water Index (LSWI observed during the transplanting season of rice. The contrast between Enhanced Vegetation Index (EVI and Land Surface Water Index (LSWI from MODIS time series data was then used to generate classification decision rules to map flooded rice paddies, for the transplanting seasons of Kharif and Rabi rice crops in the Krishna River Basin. Consistent with ground spectral observations, the relationship of the MODIS EVI vs. LSWI of paddy rice fields showed distinct features from other crops during the transplanting seasons. The MODIS-derived maps were validated against extensive reference data collected from multiple land use field surveys. The accuracy of the paddy rice maps, when determined using field plot data, was approximately 78%. The MODIS-derived rice crop areas were also compared with the areas reported by Department of Agriculture (DOA, Government of India (Government Statistics. The estimated root mean square difference (RMSD of rice area estimated using MODIS and those reported by the Department of Agriculture over 10 districts varied between 3.4% and 6.6% during 10 years of our study period. Some of the major factors responsible for this difference include high noise of the MODIS images during the prolonged monsoon seasons (typically June–October and

  15. Circulating CD36 is reduced in HNF1A-MODY carriers.

    Directory of Open Access Journals (Sweden)

    Siobhan Bacon

    Full Text Available INTRODUCTION: Premature atherosclerosis is a significant cause of morbidity and mortality in type 2 diabetes mellitus. Maturity onset diabetes of the young (MODY accounts for approximately 2% of all diabetes, with mutations in the transcription factor; hepatocyte nuclear factor 1 alpha (HNF1A accounting for the majority of MODY cases. There is somewhat limited data available on the prevalence of macrovascular disease in HNF1A-MODY carriers with diabetes. Marked insulin resistance and the associated dyslipidaemia are not clinical features of HNF1A-MODY carriers. The scavenger protein CD36 has been shown to play a substantial role in the pathogenesis of atherosclerosis, largely through its interaction with oxidised LDL. Higher levels of monocyte CD36 and plasma CD36(sCD36 are seen to cluster with insulin resistance and diabetes. The aim of this study was to determine levels of sCD36 in participants with HNF1A-MODY diabetes and to compare them with unaffected normoglycaemic family members and participants with type 2 diabetes mellitus. METHODS: We recruited 37 participants with HNF1A-MODY diabetes and compared levels of sCD36 with BMI-matched participants with type 2 diabetes mellitus and normoglycaemic HNF1A-MODY negative family controls. Levels of sCD36 were correlated with phenotypic and biochemical parameters. RESULTS: HNF1A-MODY participants were lean, normotensive, with higher HDL and lower triglyceride levels when compared to controls and participants with type 2 diabetes mellitus. sCD36 was also significantly lower in HNF1A-MODY participants when compared to both the normoglycaemic family controls and to lean participants with type 2 diabetes mellitus. CONCLUSION: In conclusion, sCD36 is significantly lower in lean participants with HNF1A-MODY diabetes when compared to weight-matched normoglycaemic familial HNF1A-MODY negative controls and to lean participants with type 2 diabetes mellitus. Lower levels of this pro-atherogenic marker may

  16. An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models

    Directory of Open Access Journals (Sweden)

    Lin Qi

    2014-11-01

    Full Text Available For near real-time water applications, the Moderate Resolution Imaging Spectroradiometers (MODIS on Terra and Aqua are currently the only satellite instruments that can provide well-calibrated top-of-atmosphere (TOA radiance data over the global aquatic environments. However, TOA radiance data in the MODIS ocean bands over turbid atmosphere in east China often saturate, leaving only four land bands to use. In this study, an approach based on Empirical Orthogonal Function (EOF analysis has been developed and validated to estimate chlorophyll a concentrations (Chla, μg/L in surface waters of Taihu Lake, the third largest freshwater lake in China. The EOF approach analyzed the spectral variance of normalized Rayleigh-corrected reflectance (Rrc data at 469, 555, 645, and 859 nm, and subsequently related that variance to Chla using 28 concurrent MODIS and field measurements. This empirical algorithm was then validated using another 30 independent concurrent MODIS and field measurements. Image analysis and radiative transfer simulations indicated that the algorithm appeared to be tolerant to aerosol perturbations, with unbiased RMS uncertainties of <80% for Chla ranging between 3 and 100 μg/L. Application of the algorithm to a total of 853 MODIS images between 2000 and 2013 under cloud-free conditions revealed spatial distribution patterns and seasonal changes that are consistent to previous findings based on floating algae mats. The current study can provide additional quantitative estimates of Chla that can be assimilated in an existing forecast model, which showed improved performance over the use of a previous Chla algorithm. However, the empirical nature, relatively large uncertainties, and limited number of spectral bands all point to the need of further improvement in data availability and accuracy with future satellite sensors.

  17. High resolution land surface modeling utilizing remote sensing parameters and the Noah-UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-07-01

    In the current work we investigate the utility of remote sensing based surface parameters in the Noah-UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter datasets are directly substituted for the land-use/lookup-table values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in-situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite derived parameter maps, particularly GVF, enhance the Noah-UCM capability to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model capability to predict the LST differences between fully vegetated pixels and highly developed areas. However, the model still underestimates remotely sensed LST values over highly developed areas. We hypothesize that the LST underestimation is due to structural formulation in the UCM and cannot be immediately solved with available parameter choices.

  18. Monogenic diabetes associated with PAX4 gene mutations (MODY9: first description in Russia

    Directory of Open Access Journals (Sweden)

    Natalya A. Zubkova

    2017-12-01

    Full Text Available Maturity-onset diabetes of the young (MODY is a heterogeneous group of disorders characterised by autosomal dominant type of inheritance and caused by genetic defects leading to dysfunction of pancreatic beta-cells. To date, at least 13 subtypes of MODY have been described in the literature, the most frequent of which are MODY types 1–3. MODY2 and MODY3 are the most prevalent subtypes, and were previously described in our country, Russia. Several cases of rare MODY subtypes were subsequently described in the Russian literature. The current report is the first in the Russian literature to present clinical and molecular genetic characteristics of two cases of another rare MODY subtype—MODY9. This type of MODY is associated with mutations in the PAX4 gene, which encodes transcription factor PAX4, one of the factors essential for pancreatic beta-cell differentiation. Molecular genetic analysis was performed using next-generation sequencing, a new method recently applied to verify monogenic diseases and, in particular, MODY. This study reports a novel mutation in the PAX4 gene in MODY patients.

  19. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    Science.gov (United States)

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  20. The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond

    Science.gov (United States)

    MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.

    2005-12-01

    The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.

  1. MODIS multi-temporal data retrieval and processing toolbox

    NARCIS (Netherlands)

    Mattiuzzi, M.; Verbesselt, J.; Klisch, A.

    2012-01-01

    The package functionalities are focused for the download and processing of multi-temporal datasets from MODIS sensors. All standard MODIS grid data can be accessed and processed by the package routines. The package is still in alpha development and not all the functionalities are available for now.

  2. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  3. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  4. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  5. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  6. To test, or not to test: time for a MODY calculator?

    Science.gov (United States)

    Njølstad, P R; Molven, A

    2012-05-01

    To test, or not to test, that is often the question in diabetes genetics. This is why the paper of Shields et al in the current issue of Diabetologia is so warmly welcomed. MODY is the most common form of monogenic diabetes. Nevertheless, the optimal way of identifying MODY families still poses a challenge both for researchers and clinicians. Hattersley's group in Exeter, UK, have developed an easy-to-use MODY prediction model that can help to identify cases appropriate for genetic testing. By answering eight simple questions on the internet ( www.diabetesgenes.org/content/mody-probability-calculator ), the doctor receives a positive predictive value in return: the probability that the patient has MODY. Thus, the classical binary (yes/no) assessment provided by clinical diagnostic criteria has been substituted by a more rational, quantitative estimate. The model appears to discriminate well between MODY and type 1 and type 2 diabetes when diabetes is diagnosed before the age of 35 years. However, the performance of the MODY probability calculator should now be validated in other settings than where it was developed-and, as always, there is room for some improvements and modifications.

  7. Toward Unified Satellite Climatology of Aerosol Properties. 3. MODIS Versus MISR Versus AERONET

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Geogdzhayev, Igor V.; Travis, Larry D.; Cairns, Brian; Lacis, Andrew A.

    2010-01-01

    We use the full duration of collocated pixel-level MODIS-Terra and MISR aerosol optical thickness (AOT) retrievals and level 2 cloud-screened quality-assured AERONET measurements to evaluate the likely individual MODIS and MISR retrieval accuracies globally over oceans and land. We show that the use of quality-assured MODIS AOTs as opposed to the use of all MODIS AOTs has little effect on the resulting accuracy. The MODIS and MISR relative standard deviations (RSTDs) with respect to AERONET are remarkably stable over the entire measurement record and reveal nearly identical overall AOT performances of MODIS and MISR over the entire suite of AERONET sites. This result is used to evaluate the likely pixel-level MODIS and MISR performances on the global basis with respect to the (unknown) actual AOTs. For this purpose, we use only fully compatible MISR and MODIS aerosol pixels. We conclude that the likely RSTDs for this subset of MODIS and MISR AOTs are 73% over land and 30% over oceans. The average RSTDs for the combined [AOT(MODIS)+AOT(MISR)]/2 pixel-level product are close to 66% and 27%, respectively, which allows us to recommend this simple blend as a better alternative to the original MODIS and MISR data. These accuracy estimates still do not represent the totality of MISR and quality-assured MODIS pixel-level AOTs since an unaccounted for and potentially significant source of errors is imperfect cloud screening. Furthermore, many collocated pixels for which one of the datasets reports a retrieval, whereas the other one does not may also be problematic.

  8. Glucokinase MODY and implications for treatment goals of common forms of diabetes.

    Science.gov (United States)

    Ajjan, Ramzi A; Owen, Katharine R

    2014-12-01

    Treatment goals in diabetes concentrate on reducing the risk of vascular complications, largely through setting targets for glycated haemoglobin (HbA1c). These targets are based on epidemiological studies of complication development, but so far have not adequately addressed the adverse effects associated with lowering HbA1c towards the normal range. Glucokinase (GCK) mutations cause a monogenic form of hyperglycaemia (GCK-MODY) characterised by fasting hyperglycaemia with low postprandial glucose excursions and a marginally elevated HbA1c. Minimal levels of vascular complications (comparable with nondiabetic individuals) are observed in GCK-MODY, leading to the hypothesis that GCK-MODY may represent a useful paradigm for assessing treatment goals in all forms of diabetes. In this review, we discuss the evidence behind this concept, suggest ways of translating this hypothesis into clinical practice and address some of the caveats of such an approach.

  9. A Multi-Scale Flood Monitoring System Based on Fully Automatic MODIS and TerraSAR-X Processing Chains

    Directory of Open Access Journals (Sweden)

    Enrico Stein

    2013-10-01

    Full Text Available A two-component fully automated flood monitoring system is described and evaluated. This is a result of combining two individual flood services that are currently under development at DLR’s (German Aerospace Center Center for Satellite based Crisis Information (ZKI to rapidly support disaster management activities. A first-phase monitoring component of the system systematically detects potential flood events on a continental scale using daily-acquired medium spatial resolution optical data from the Moderate Resolution Imaging Spectroradiometer (MODIS. A threshold set controls the activation of the second-phase crisis component of the system, which derives flood information at higher spatial detail using a Synthetic Aperture Radar (SAR based satellite mission (TerraSAR-X. The proposed activation procedure finds use in the identification of flood situations in different spatial resolutions and in the time-critical and on demand programming of SAR satellite acquisitions at an early stage of an evolving flood situation. The automated processing chains of the MODIS (MFS and the TerraSAR-X Flood Service (TFS include data pre-processing, the computation and adaptation of global auxiliary data, thematic classification, and the subsequent dissemination of flood maps using an interactive web-client. The system is operationally demonstrated and evaluated via the monitoring two recent flood events in Russia 2013 and Albania/Montenegro 2013.

  10. Experience gained with the application of the MODIS diffusion model compared with the ATMOS Gauss-function-based model

    International Nuclear Information System (INIS)

    Mueller, A.

    1985-01-01

    The advantage of the Gauss-function-based models doubtlessly consists in their proven propagation parameter sets and empirical stack plume rise formulas and in their easy matchability and handability. However, grid models based on trace matter transport equation are more convincing concerning their fundamental principle. Grid models of the MODIS type are to acquire a practical applicability comparable to Gauss models by developing techniques allowing to consider the vertical self-movement of the plumes in grid models and to secure improved diffusion co-efficient determination. (orig./PW) [de

  11. High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes.

    Science.gov (United States)

    McDonald, Tim J; Shields, Beverley M; Lawry, Jane; Owen, Katharine R; Gloyn, Anna L; Ellard, Sian; Hattersley, Andrew T

    2011-08-01

    Maturity-onset diabetes of the young (MODY) as a result of mutations in hepatocyte nuclear factor 1-α (HNF1A) is often misdiagnosed as type 1 diabetes or type 2 diabetes. Recent work has shown that high-sensitivity C-reactive protein (hs-CRP) levels are lower in HNF1A-MODY than type 1 diabetes, type 2 diabetes, or glucokinase (GCK)-MODY. We aim to replicate these findings in larger numbers and other MODY subtypes. hs-CRP levels were assessed in 750 patients (220 HNF1A, 245 GCK, 54 HNF4-α [HNF4A], 21 HNF1-β (HNF1B), 53 type 1 diabetes, and 157 type 2 diabetes). hs-CRP was lower in HNF1A-MODY (median [IQR] 0.3 [0.1-0.6] mg/L) than type 2 diabetes (1.40 [0.60-3.45] mg/L; P MODY (1.45 [0.46-2.88] mg/L; P MODY (0.60 [0.30-1.80] mg/L; P MODY (0.60 [0.10-2.8] mg/L; P = 0.07). hs-CRP discriminated HNF1A-MODY from type 2 diabetes with hs-CRP MODY than other forms of diabetes and may be used as a biomarker to select patients for diagnostic HNF1A genetic testing.

  12. The performance of DC restoration function for MODIS thermal emissive bands

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong Jack; Shrestha, Ashish

    2017-09-01

    The DC restore (DCR) process of MODIS instrument maintains the output of a detector at focal plane assembly (FPA) within the dynamic range of subsequent analog-to-digital converter, by adding a specific offset voltage to the output. The DCR offset value is adjusted per scan, based on the comparison of the detector response in digital number (DN) collected from the blackbody (BB) view with target DN saved as an on-board look-up table. In this work, the MODIS DCR mechanism is revisited, with the trends of DCR offset being provided for thermal emissive bands (TEB). Noticeable changes have been occasionally found which coincide with significant detector gain change due to various instrumental events such as safe-mode anomaly or FPA temperature fluctuation. In general, MODIS DCR functionality has been effective and the change of DCR offset has no impact to the quality of MODIS data. One exception is the Earth view (EV) data saturation of Aqua MODIS LWIR bands 33, 35 ad 36 during BB warm-up cool-down (WUCD) cycle which has been observed since 2008. The BB view of their detectors saturate when the BB temperature is above certain threshold so the DCR cannot work as designed. Therefore, the dark signal DN fluctuates with the cold FPA (CFPA) temperature and saturate for a few hours per WUCD cycle, which also saturate the EV data sector within the scan. The CFPA temperature fluctuation peaked in 2012 and has been reduced in recent years and the saturation phenomenon has been easing accordingly. This study demonstrates the importance of DCR to data generation.

  13. Analysis of Co-Located MODIS and CALIPSO Observations Near Clouds

    Science.gov (United States)

    Varnai, Tamas; Marshak, Alexander

    2011-01-01

    The purpose of this paper is to help researchers combine data from different satellites and thus gain new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects, For this, the paper explores whether cloud information from the Aqua satellite's MODIS instrument can help characterize systematic aerosol changes near clouds by refining earlier perceptions of these changes that were based on the CALIPSO satellite's CALIOP instrument. Similar to a radar but using visible and ncar-infrared light, CALIOP sends out laser pulses and provides aerosol and cloud information along a single line that tracks the satellite orbit by measuring the reflection of its pulses. In contrast, MODIS takes images of reflected sunlight and emitted infrared radiation at several wavelengths, and covers wide areas around the satellite track. This paper analyzes a year-long global dataset covering all ice-free oceans, and finds that MODIS can greatly help the interpretation of CALIOP observations, especially by detecting clouds that lie outside the line observed by CALlPSO. The paper also finds that complications such as differences in view direction or clouds drifting in the 72 seconds that elapse between MODIS and CALIOP observations have only a minor impact. The study also finds that MODIS data helps refine but does not qualitatively alter perceptions of the systematic aerosol changes that were detected in earlier studies using only CALIOP data. It then proposes a statistical approach to account for clouds lying outside the CALIOP track even when MODIS cannot as reliably detect low clouds, for example at night or over ice. Finally, the paper finds that, because of variations in cloud amount and type, the typical distance to clouds in maritime clear areas varies with season and location. The overall median distance to clouds in maritime clear areas around 4-5 km. The fact that half of all clear areas is

  14. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    Science.gov (United States)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  15. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites

    Directory of Open Access Journals (Sweden)

    Stephan Paul

    2015-04-01

    Full Text Available The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS. Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composites for a long period of time. These approaches are well suited for static-nature, slow changing surface features (e.g., fast-ice extent. However, this is not applicable to fast-changing features, like sea-ice polynyas. Therefore, we developed a spatial feature reconstruction to derive information for cloud-covered sea-ice areas based on the surrounding days weighted directly proportional with their temporal proximity to the initial day of interest. Its performance is tested based on manually-screened and artificially cloud-covered case studies of MODIS-derived polynya area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are able to completely restore the artificially cloud-covered test areas with a spatial correlation of 0.83 and a mean absolute spatial deviation of 21%.

  16. Validation and empirical correction of MODIS AOT and AE over ocean

    Directory of Open Access Journals (Sweden)

    N. A. J. Schutgens

    2013-09-01

    Full Text Available We present a validation study of Collection 5 MODIS level 2 Aqua and Terra AOT (aerosol optical thickness and AE (Ångström exponent over ocean by comparison to coastal and island AERONET (AErosol RObotic NETwork sites for the years 2003–2009. We show that MODIS (MODerate-resolution Imaging Spectroradiometer AOT exhibits significant biases due to wind speed and cloudiness of the observed scene, while MODIS AE, although overall unbiased, exhibits less spatial contrast on global scales than the AERONET observations. The same behaviour can be seen when MODIS AOT is compared against Maritime Aerosol Network (MAN data, suggesting that the spatial coverage of our datasets does not preclude global conclusions. Thus, we develop empirical correction formulae for MODIS AOT and AE that significantly improve agreement of MODIS and AERONET observations. We show these correction formulae to be robust. Finally, we study random errors in the corrected MODIS AOT and AE and show that they mainly depend on AOT itself, although small contributions are present due to wind speed and cloud fraction in AOT random errors and due to AE and cloud fraction in AE random errors. Our analysis yields significantly higher random AOT errors than the official MODIS error estimate (0.03 + 0.05 τ, while random AE errors are smaller than might be expected. This new dataset of bias-corrected MODIS AOT and AE over ocean is intended for aerosol model validation and assimilation studies, but also has consequences as a stand-alone observational product. For instance, the corrected dataset suggests that much less fine mode aerosol is transported across the Pacific and Atlantic oceans.

  17. Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.

    Science.gov (United States)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.

    2005-04-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol

  18. Assessment of biases in MODIS surface reflectance due to Lambertian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Robert B [ORNL; SanthanaVannan, Suresh K [ORNL

    2010-08-01

    Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.

  19. Improvement in the Characterization of MODIS Subframe Difference

    Science.gov (United States)

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  20. Land cover mapping of Greater Mesoamerica using MODIS data

    Science.gov (United States)

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  1. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    Science.gov (United States)

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  2. Assessment of AOD variability over Saudi Arabia using MODIS Deep Blue products

    International Nuclear Information System (INIS)

    Butt, Mohsin Jamil; Assiri, Mazen Ebraheem; Ali, Md. Arfan

    2017-01-01

    The aim of this study is to investigate the variability of aerosol over The Kingdom of Saudi Arabia. For this analysis, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue (DB) Aerosol Optical Depth (AOD) product from Terra and Aqua satellites for the years 2000–2013 is used. The product is validated using AERONET data from ground stations, which are situated at Solar Village Riyadh and King Abdullah University of Science and Technology (KAUST) Jeddah. The results show that both Terra and Aqua satellites exhibit a tendency to show the spatial variation of AOD with Aqua being better than Terra to represent the ground based AOD measurements over the study region. The results also show that the eastern, central, and southern regions of the country have a high concentration of AOD during the study period. The validation results show the highest correlation coefficient between Aqua and KAUST data with a value of 0.79, whilst the Aqua and Solar Village based AOD indicates the lowest Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values which are, 0.17 and 0.12 respectively. Furthermore, the Relative Mean Bias (RMB) based analysis show that the DB algorithm overestimates the AOD when using Terra and Solar Village data, while it underestimates the AOD when using Aqua with Solar Village and KAUST data. The RMB value for Aqua and Solar Village data indicates that the DB algorithm is close to normal in the study region. - Highlights: • The significance of aerosol in the Kingdom of Saudi Arabia is addressed. • MODIS (Terra and Aqua), AERONET and ground based sand event data is used. • MODIS DB product is used to prepare annual aerosol maps and monthly AOD variability. • A comparison is made between Terra and Aqua AOD product over bright surface. • MODIS DB AOD product is validated using AERONET data at Solar Village and KAUST. - This research highlighted the aerosol variability over The Kingdom of Saudi Arabia by using Satellite, AERONET

  3. THE ANALYSIS OF MOISTURE DEFICIT BASED ON MODIS AND LANDSAT SATELLITE IMAGES. CASE STUDY: THE OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ONȚEL IRINA

    2014-03-01

    Full Text Available Satellite images are an important source of information to identify and analyse some hazardous climatic phenomena such as the dryness and drought. These phenomena are characterized by scarce rainfall, increased evapotranspiration and high soil moisture deficit. The soil water reserve depletes to the wilting coefficient, soon followed by the pedological drought which has negative effects on vegetation and agricultural productivity. The MODIS satellite images (Moderate Resolution Imaging Spectroradiometer allow the monitoring of the vegetation throughout the entire vegetative period, with a frequency of 1-2 days and with a spatial resolution of 250 m, 500 m and 1 km away. Another useful source of information is the LANDSAT satellite images, with a spatial resolution of 30 m. Based on MODIS and Landsat satellite images, were calculated moisture monitoring index such as SIWSI (Shortwave Infrared Water Stress Index. Consequently, some years with low moisture such as 2000, 2002, 2007 and 2012 could be identified. Spatially, the areas with moisture deficit varied from one year to another all over the whole analised period (2000-2012. The remote sensing results was corelated with Standard Precipitation Anomaly, which gives a measure of the severity of a wet or dry event.

  4. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    Science.gov (United States)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  5. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Xuanyu Wang

    2017-12-01

    Full Text Available Terrestrial latent heat flux (LE is a key component of the global terrestrial water, energy, and carbon exchanges. Accurate estimation of LE from moderate resolution imaging spectroradiometer (MODIS data remains a major challenge. In this study, we estimated the daily LE for different plant functional types (PFTs across North America using three machine learning algorithms: artificial neural network (ANN; support vector machines (SVM; and, multivariate adaptive regression spline (MARS driven by MODIS and Modern Era Retrospective Analysis for Research and Applications (MERRA meteorology data. These three predictive algorithms, which were trained and validated using observed LE over the period 2000–2007, all proved to be accurate. However, ANN outperformed the other two algorithms for the majority of the tested configurations for most PFTs and was the only method that arrived at 80% precision for LE estimation. We also applied three machine learning algorithms for MODIS data and MERRA meteorology to map the average annual terrestrial LE of North America during 2002–2004 using a spatial resolution of 0.05°, which proved to be useful for estimating the long-term LE over North America.

  6. Reducing Striping and Near Field Response Influence in the MODIS 1.38um Cirrus Detection Band.

    Science.gov (United States)

    Ackerman, S. A.; Moeller, C. C.; Frey, R. A.; Gumley, L. E.; Menzel, W. P.

    2002-05-01

    Since first light in February 2000, the MODIS L1B data from Terra has exhibited detector striping in the cirrus detection band at 1.38 um (B26). This band's unique characteristic is that it is potentially able to discriminate very thin cirrus (optical depth of 0.1) because water vapor absorption effectively attenuates the upwelling signal from the earth's surface, leaving a flat dark background underneath the thin cirrus. The striping has diminished the power of this band for detecting thin cirrus in the MODIS Cloud Mask (MOD35) over the global environment by imparting a structure on the background. The striping amplitude (valley to peak) is 10 - 15% of the MODIS Ltyp radiance in B26 over land backgrounds, thus exceeding the 5% radiance prelaunch accuracy specification for the band. Also unexpected has been the presence of earth surface reflectance in B26. Forward model calculations indicate that the two-way transmittance of B26 in-band (1% to 1% response) should be water (TPW) exceeds about 12 mm. However, MODIS B26 imagery has routinely shown land surface reflectance, such as Florida, even in very moist (TPW > 30 mm) tropical air masses. MODIS prelaunch test data suggests that a near field response (NFR) at about 1.3 um in the B26 filter may be contributing to this behavior. A destriping and out-of-band correction algorithm has been under development at the University of Wisconsin to address the these issues. The simple linear algorithm is based on tuning detector dependent influence coefficients for B26 as a function of B5 (1.24 um) radiance so that the corrected B26 radiance is near zero for all B26 detectors in moist atmospheric conditions. B5 was chosen as a surrogate to characterize the NFR leak in the B26 filter because of its close spectral proximity to the NFR leak. Real MODIS L1B data is being used to estimate the influence coefficients. The paper will describe the B5 based destriping and NFR correction algorithm and influence coefficient development. It

  7. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  8. Susceptibility of glucokinase-MODY mutants to inactivation by oxidative stress in pancreatic β-cells.

    Science.gov (United States)

    Cullen, Kirsty S; Matschinsky, Franz M; Agius, Loranne; Arden, Catherine

    2011-12-01

    The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non-β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non-β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells.

  9. Can MODIS detect trends in aerosol optical depth over land?

    Science.gov (United States)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  10. An Assessment of Existing Methodologies to Retrieve Snow Cover Fraction from MODIS Data

    Directory of Open Access Journals (Sweden)

    Théo Masson

    2018-04-01

    Full Text Available The characterization of snow extent is critical for a wide range of applications. Since 1966, snow maps at different spatial resolutions have been produced using various satellite sensor images. Nowadays, the most widely used products are likely those derived from Moderate-Resolution Imaging Spectroradiometer (MODIS data, which cover the whole Earth at a near-daily frequency. There are a variety of snow mapping methods for MODIS data, based on different methodologies and applied at different spatial resolutions. Up to now, all these products have been tested and evaluated separately. This study aims to compare the methods currently available for retrieving snow from MODIS data. The focus is on fractional snow cover, which represents the snow cover area at the subpixel level. We examine the two main approaches available for generating such products from MODIS data; namely, linear regression of the Normalized Difference Snow Index (NDSI and spectral unmixing (SU. These two approaches have resulted in several methods, such as MOD10A1 (the NSIDC MODIS snow product for NDSI regression, and MODImLAB for SU. The assessment of these approaches was carried out using higher resolution binary snow maps (i.e., showing the presence or absence of snow at spatial resolutions of 10, 20, and 30 m, produced by SPOT 4, SPOT 5, and LANDSAT-8, respectively. Three areas were selected in order to provide landscape diversity: the French Alps (117 dates, the Pyrenees (30 dates, and the Moroccan Atlas (24 dates. This study investigates the impact of reference maps on accuracy assessments, and it is suggested that NDSI-based high spatial resolution reference maps advantage NDSI medium-resolution snow maps. For MODIS snow maps, the results show that applying an NDSI approach to accurate surface reflectance corrected for topographic and atmospheric effects generally outperforms other methods for the global retrieval of snow cover area. The improvements to the newer version

  11. Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene Screening in Pregnant Women with Diabetes in India.

    Science.gov (United States)

    Doddabelavangala Mruthyunjaya, Mahesh; Chapla, Aaron; Hesarghatta Shyamasunder, Asha; Varghese, Deny; Varshney, Manika; Paul, Johan; Inbakumari, Mercy; Christina, Flory; Varghese, Ron Thomas; Kuruvilla, Kurien Anil; V Paul, Thomas; Jose, Ruby; Regi, Annie; Lionel, Jessie; Jeyaseelan, L; Mathew, Jiji; Thomas, Nihal

    2017-01-01

    Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.

  12. Comprehensive Maturity Onset Diabetes of the Young (MODY Gene Screening in Pregnant Women with Diabetes in India.

    Directory of Open Access Journals (Sweden)

    Mahesh Doddabelavangala Mruthyunjaya

    Full Text Available Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY. MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50 were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.

  13. Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene Screening in Pregnant Women with Diabetes in India

    Science.gov (United States)

    Hesarghatta Shyamasunder, Asha; Varghese, Deny; Varshney, Manika; Paul, Johan; Inbakumari, Mercy; Christina, Flory; Varghese, Ron Thomas; Kuruvilla, Kurien Anil; V. Paul, Thomas; Jose, Ruby; Regi, Annie; Lionel, Jessie; Jeyaseelan, L.; Mathew, Jiji; Thomas, Nihal

    2017-01-01

    Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding PMID:28095440

  14. [Clinical parameters for molecular testing of Maturity Onset Diabetes of the Young (MODY)].

    Science.gov (United States)

    Datz, N; Nestoris, C; von Schütz, W; Danne, T; Driesel, A J; Maringa, M; Kordonouri, O

    2011-05-01

    Monogenic forms of diabetes are often diagnosed by chance, due to the variety of clinical presentation and limited experience of the diabetologists with this kind of diabetes. Aim of this study was to evaluate clinical parameters for an efficient screening. Clinical parameters were: negative diabetes-specific antibodies at onset of diabetes, positive family history of diabetes, and low to moderate insulin requirements after one year of diabetes treatment. Molecular testing was performed through sequencing of the programming regions of HNF-4alpha (MODY 1), glucokinase (MODY 2) and HNF-1alpha/TCF1 (MODY 3) and in one patient the HNF-1beta/TCF2 region (MODY 5). 39 of 292 patients treated with insulin were negative for GADA and IA2A, and 8 (20.5%) patients fulfilled both other criteria. Positive molecular results were found in five (63%) patients (two with MODY 2, two with MODY 3, one with MODY 5). At diabetes onset, the mean age of the 5 patients with MODY was 10.6 ± 5.3 yrs (range 2.6-15 yrs), HbA(1c) was 8.4 ± 3.1 % (6.5-13.9%), mean diabetes duration until diagnosis of MODY was 3.3 ± 3.6 yrs (0.8-9.6 yrs) with insulin requirements of 0.44 ± 0.17 U/kg/d (0.2-0.6 U/kg/d). Patients with MODY 3 were changed from insulin to repaglinide, those with MODY 2 were recommended discontinuing insulin treatment. In patients with negative diabetes-specific antibodies at onset of diabetes, with a positive family history, and low to moderate insulin needs a genetic screening for MODY is indicated. Watchful consideration of these clinical parameters may lead to an early genetic testing, and to an adequate treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  16. Crop yield estimation in 2014 for Vojvodina using methods of remote sensing

    Directory of Open Access Journals (Sweden)

    Jovanović Dušan

    2014-01-01

    Full Text Available Monitoring phenology of crops and yield estimate based on vegetation indices as well as other parameters such as temperature or amount of rainfall were largely reported in literature. In this research, MODIS Normalized Difference Vegetation Index (NDVI was used as an indicator of specific crop condition; the other parameter was Land Surface Temperature (LST which can indicate the amount of crop moisture. Trial years were 2011, 2012, and 2013. For those years sowing structure was acquired from agricultural organizations Nova Budućnost from Žarkovac and Sava Kovačević from Vrbas, both in Serbia. Also, satellite images with high and medium resolution for these areas and years were available. Multiple linear regression was used for crop yield estimate for Vojvodina Province, Serbia where the NDVI and LST were independent variables and the average yield for specific crop was the dependent variable. The results of crop yield estimate two months before harvest are presented (excluding wheat.

  17. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  18. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  19. Maturity-onset diabetes of the young (MODY): how many cases are we missing?

    Science.gov (United States)

    Shields, B M; Hicks, S; Shepherd, M H; Colclough, K; Hattersley, A T; Ellard, S

    2010-12-01

    Maturity-onset diabetes of the young is frequently misdiagnosed as type 1 or type 2 diabetes. A correct diagnosis of MODY is important for determining treatment, but can only be confirmed by molecular genetic testing. We aimed to compare the regional distribution of confirmed MODY cases in the UK and to estimate the minimum prevalence. UK referrals for genetic testing in 2,072 probands and 1,280 relatives between 1996 and 2009 were examined by region, country and test result. Referral rate and prevalence were calculated using UK Census 2001 figures. MODY was confirmed in 1,177 (35%) patients, with HNF1A (52%) and GCK mutations (32%) being most frequent in probands confirmed with MODY. There was considerable regional variation in proband referral rates (from 50 per million for South West England and Scotland) and patients diagnosed with MODY (5.3 per million in Northern Ireland, 48.9 per million in South West England). Referral rates and confirmed cases were highly correlated (r = 0.96, p MODY was estimated to be 108 cases per million. Assuming this minimal prevalence throughout the UK then >80% of MODY is not diagnosed by molecular testing. The marked regional variation in the prevalence of confirmed MODY directly results from differences in referral rates. This could reflect variation in awareness of MODY or unequal access to genetic testing. Increased referral for diagnostic testing is required if the majority of MODY patients are to have the genetic diagnosis necessary for optimal treatment.

  20. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    Science.gov (United States)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds

  1. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  2. Comparison of MODIS and VIIRS On-board Blackbody Performance

    Science.gov (United States)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  3. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    Science.gov (United States)

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  4. Downscaling Meteosat Land Surface Temperature over a Heterogeneous Landscape Using a Data Assimilation Approach

    Directory of Open Access Journals (Sweden)

    Rihab Mechri

    2016-07-01

    Full Text Available A wide range of environmental applications require the monitoring of land surface temperature (LST at frequent intervals and fine spatial resolutions, but these conditions are not offered nowadays by the available space sensors. To overcome these shortcomings, LST downscaling methods have been developed to derive higher resolution LST from the available satellite data. This research concerns the application of a data assimilation (DA downscaling approach, the genetic particle smoother (GPS, to disaggregate Meteosat 8 LST time series (3 km × 5 km at finer spatial resolutions. The methodology was applied over the Crau-Camargue region in Southeastern France for seven months in 2009. The evaluation of the downscaled LSTs has been performed at a moderate resolution using a set of coincident clear-sky MODIS LST images from Aqua and Terra platforms (1 km × 1 km and at a higher resolution using Landsat 7 data (60 m × 60 m. The performance of the downscaling has been assessed in terms of reduction of the biases and the root mean square errors (RMSE compared to prior model-simulated LSTs. The results showed that GPS allows downscaling the Meteosat LST product from 3 × 5 km2 to 1 × 1 km2 scales with a RMSE less than 2.7 K. Finer scale downscaling at Landsat 7 resolution showed larger errors (RMSE around 5 K explained by land cover errors and inter-calibration issues between sensors. Further methodology improvements are finally suggested.

  5. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe

    Science.gov (United States)

    Funk, Chris; Budde, Michael E.

    2009-01-01

    For thirty years, simple crop water balance models have been used by the early warning community to monitor agricultural drought. These models estimate and accumulate actual crop evapotranspiration, evaluating environmental conditions based on crop water requirements. Unlike seasonal rainfall totals, these models take into account the phenology of the crop, emphasizing conditions during the peak grain filling phase of crop growth. In this paper we describe an analogous metric of crop performance based on time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) imagery. A special temporal filter is used to screen for cloud contamination. Regional NDVI time series are then composited for cultivated areas, and adjusted temporally according to the timing of the rainy season. This adjustment standardizes the NDVI response vis-??-vis the expected phenological response of maize. A national time series index is then created by taking the cropped-area weighted average of the regional series. This national time series provides an effective summary of vegetation response in agricultural areas, and allows for the identification of NDVI green-up during grain filling. Onset-adjusted NDVI values following the grain filling period are well correlated with U.S. Department of Agriculture production figures, possess desirable linear characteristics, and perform better than more common indices such as maximum seasonal NDVI or seasonally averaged NDVI. Thus, just as appropriately calibrated crop water balance models can provide more information than seasonal rainfall totals, the appropriate agro-phenological filtering of NDVI can improve the utility and accuracy of space-based agricultural monitoring.

  6. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  7. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    Science.gov (United States)

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  8. MODIS-derived daily PAR simulation from cloud-free images and its validation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liangfu; Gu, Xingfa; Tian, Guoliang [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); The Center for National Spaceborne Demonstration, Beijing 100101 (China); Gao, Yanhua [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yang, Lei [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Jilin University, Changchun 130026 (China); Liu, Qinhuo [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China)

    2008-06-15

    In this paper, a MODIS-derived daily PAR (photosynthetically active radiation) simulation model from cloud-free image over land surface has been developed based on Bird and Riordan's model. In this model, the total downwelling spectral surface irradiance is divided into two parts: one is beam irradiance, and another is diffuse irradiance. The attenuation of solar beam irradiance comprises scattering by the gas mixture, absorption by ozone, the gas mixture and water vapor, and scattering and absorption by aerosols. The diffuse irradiance is scattered out of the direct beam and towards the surface. The multiple ground-air interactions have been taken into account in the diffuse irradiance model. The parameters needed in this model are atmospheric water vapor content, aerosol optical thickness and spectral albedo ranging from 400 nm to 700 nm. They are all retrieved from MODIS data. Then, the instantaneous photosynthetically available radiation (IPAR) is integrated by using a weighted sum at each of the visible MODIS wavebands. Finally, a daily PAR is derived by integration of IPAR. In order to validate the MODIS-derived PAR model, we compared the field PAR measurements in 2003 and 2004 against the simulated PAR. The measurements were made at the Qianyanzhou ecological experimental station, Chinese Ecosystem Research Network. A total of 54 days of cloud-free MODIS L1B level images were used for the PAR simulation. Our results show that the simulated PAR is consistent with field measurements, where the correlation coefficient of linear regression between calculated PAR and measured PAR is 0.93396. However, there were some uncertainties in the comparison of 1 km pixel PAR with the tower flux stand measurement. (author)

  9. Aspectos más recientes en relación con la diabetes mellitus tipo MODY Most recent aspects about type MODY diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ana Ibis Conesa González

    2012-08-01

    Full Text Available Antecedentes: la mejor comprensión fisiopatológica de la diabetes mellitus permite identificar diferentes tipos, entre ellos una variante monogénica denominada por sus siglas en inglés MODY (Maturity-Onset Diabetes of the Young. Objetivos: describir los aspectos fisiopatológicos, clínicos, diagnósticos y terapéuticos de los diferentes subtipos MODY. Desarrollo: los pacientes con diabetes tipo MODY presentan un comportamiento similar a la diabetes mellitus del adulto. Se caracteriza por una alteración genética autosómica dominante inherente y primaria a un defecto en la secreción de insulina. Hasta el momento actual se aceptan 9 subtipos de MODY. Los subtipos 1, 3, 4, 5 y 6 afectan a genes que codifican a factores nucleares de trascripción, y el subtipo 2 al gen que codifica a la enzima glucoquinasa. Se caracterizan clínicamente por cuadros que oscilan entre hiperglucemias permanentes, leves o moderadas, con buen pronóstico clínico, y pocas complicaciones, hasta cuadros de hiperglucemias mantenidas acompañadas de complicaciones crónicas precoces y graves. Conclusiones: las personas que padecen diabetes tipo MODY no son tan infrecuentes como se piensa. La correcta y temprana identificación de la enfermedad permitirá una acción terapéutica más racional y adecuada para brindar la posibilidad de mejor calidad de vida de estas personas.Background: a better physiopathological understanding of diabetes mellitus allows identifying its different types such as a monogenic variant called MODY (maturity-onset diabetes of the young. Objectives: to describe the physiopathological, clinical, diagnostic and therapeutic aspects of the different subtypes in MODY diabetes. Development: the patients with MODY diabetes behave similarly to those suffering diabetes mellitus in adults. It is characterized by inherited dominant autosomal genetic alteration which is primary to a defect in insulin secretion. Up to the present, 9 subtypes are accepted

  10. MODIS-based multi-parametric platform for mapping of flood affected areas. Case study: 2006 Danube extreme flood in Romania

    Directory of Open Access Journals (Sweden)

    Craciunescu Vasile

    2016-12-01

    Full Text Available Flooding remains the most widely distributed natural hazard in Europe, leading to significant economic and social impact. Earth observation data is presently capable of making fundamental contributions towards reducing the detrimental effects of extreme floods. Technological advance makes development of online services able to process high volumes of satellite data without the need of dedicated desktop software licenses possible. The main objective of the case study is to present and evaluate a methodology for mapping of flooded areas based on MODIS satellite images derived indices and using state-of-the-art geospatial web services. The methodology and the developed platform were tested with data for the historical flood event that affected the Danube floodplain in 2006 in Romania. The results proved that, despite the relative coarse resolution, MODIS data is very useful for mapping the development flooded area in large plain floods. Moreover it was shown, that the possibility to adapt and combine the existing global algorithms for flood detection to fit the local conditions is extremely important to obtain accurate results.

  11. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Directory of Open Access Journals (Sweden)

    Marc Zebisch

    2013-03-01

    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  12. Actual evapotranspiration estimation in a Mediterranean mountain region by means of Landsat-5 TM and TERRA/AQUA MODIS imagery and Sap Flow measurements in Pinus sylvestris forest stands.

    Science.gov (United States)

    Cristóbal, J.; Poyatos, R.; Ninyerola, M.; Pons, X.; Llorens, P.

    2009-04-01

    Evapotranspiration monitoring has important implications on global and regional climate modelling, as well as in the knowledge of the hydrological cycle and in the assessment of environmental stress that affects forest and agricultural ecosystems. An increase of evapotranspiration while precipitation remains constant, or is reduced, could decrease water availability for natural and agricultural systems and human needs. Consequently, water balance methods, as the evapotranspiration modelling, have been widely used to estimate crop and forest water needs, as well as the global change effects. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute evapotranspiration at regional scales in a feasible way. Currently, the 38% of Catalonia (NE of the Iberian Peninsula) is covered by forests, and one of the most important forest species is Scots Pine (Pinus sylvestris) which represents the 18.4% of the area occupied by forests. The aim of this work is to model actual evapotranspiration in Pinus sylvestris forest stands, in a Mediterranean mountain region, using remote sensing data, and compare it with stand-scale sap flow measurements measured in the Vallcebre research area (42° 12' N, 1° 49' E), in the Eastern Pyrenees. To perform this study a set of 30 cloud-free TERRA-MODIS images and 10 Landsat-5 TM images of path 198 and rows 31 and 32 from June 2003 to January 2005 have been selected to perform evapotranspiration modelling in Pinus sylvestris forest stands. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected two different types of products which contain the remote sensing data we have used to model daily evapotranspiration, daily LST product and daily calibrated reflectances product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital

  13. Hydrological modelling of the Mabengnong catchment in the southeast Tibet with support of short term intensive precipitation observation

    Science.gov (United States)

    Wang, L.; Zhang, F.; Zhang, H.; Scott, C. A.; Zeng, C.; SHI, X.

    2017-12-01

    Precipitation is one of the crucial inputs for models used to better understand hydrological processes. In high mountain areas, it is a difficult task to obtain a reliable precipitation data set describing the spatial and temporal characteristic due to the limited meteorological observations and high variability of precipitation. This study carries out intensive observation of precipitation in a high mountain catchment in the southeast of the Tibet during July to August 2013. According to the rain gauges set up at different altitudes, it is found that precipitation is greatly influenced by altitude. The observed precipitation is used to depict the precipitation gradient (PG) and hourly distribution (HD), showing that the average duration is around 0.1, 0.8 and 6.0 hours and the average PG is 0.10, 0.28 and 0.26 mm/d/100m for trace, light and moderate rain, respectively. Based on the gridded precipitation derived from the PG and HD and the nearby Linzhi meteorological station at lower altitude, a distributed biosphere hydrological model based on water and energy budgets (WEB-DHM) is applied to simulate the hydrological processes. Beside the observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are also used for model calibration and validation. The resulting runoff, SCA and LST simulations are all reasonable. Sensitivity analyses indicate that runoff is greatly underestimated without considering PG, illustrating that short-term intensive precipitation observation contributes to improving hydrological modelling of poorly gauged high mountain catchments.

  14. Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2010-03-01

    Full Text Available This paper presents the results of snow cover monitoring studies in Liaoning Province, northeastern China, using MODIS data. Snow cover plays an important role in both the regional water balance and soil moisture properties during the early spring in northeastern China. In addition, heavy snowfalls commonly trigger hazards such as flooding, caused by rapid snow melt, or crop failure, resulting from fluctuations in soil temperature associated with changes in the snow cover. The latter is a function of both regional, or global, climatic changes, as well as fluctuations in the albedo resulting from variations in the Snow Covered Area (SCA. These impacts are crucial to human activities, especially to those living in middle-latitude areas such as Liaoning Province. Thus, SCA monitoring is currently an important tool in studies of global climate change, particularly because satellite remote sensing data provide timely and efficient snow cover information for large areas. In this study, MODIS L1B data, MODIS Daily Snow Products (MOD10A1 and MODIS 8-day Snow Products (MOD10A2 were used to monitor the SCA of Liaoning Province over the winter months of November–April, 2006–2008. The effects of cloud masking and forest masking on the snow monitoring results were also assessed. The results show that the SCA percentage derived from MODIS L1B data is relatively consistent, but slightly higher than that obtained from MODIS Snow Products. In situ data from 25 snow stations were used to assess the accuracy of snow cover monitoring from the SCA compared to the results from MODIS Snow Products. The studies found that the SCA results were more reliable than MODIS Snow Products in the study area.

  15. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  16. Estimating Global Cropland Extent with Multi-year MODIS Data

    Directory of Open Access Journals (Sweden)

    Christopher O. Justice

    2010-07-01

    Full Text Available This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set of global classification tree models using a bagging methodology, resulting in a global per-pixel cropland probability layer. This product was subsequently thresholded to create a discrete cropland/non-cropland indicator map using data from the USDA-FAS (Foreign Agricultural Service Production, Supply and Distribution (PSD database describing per-country acreage of production field crops. Five global land cover products, four of which attempted to map croplands in the context of multiclass land cover classifications, were subsequently used to perform regional evaluations of the global MODIS cropland extent map. The global probability layer was further examined with reference to four principle global food crops: corn, soybeans, wheat and rice. Overall results indicate that the MODIS layer best depicts regions of intensive broadleaf crop production (corn and soybean, both in correspondence with existing maps and in associated high probability matching thresholds. Probability thresholds for wheat-growing regions were lower, while areas of rice production had the lowest associated confidence. Regions absent of agricultural intensification, such as Africa, are poorly characterized regardless of crop type. The results reflect the value of MODIS as a generic global cropland indicator for intensive agriculture production regions, but with little sensitivity in areas of low agricultural intensification. Variability in mapping accuracies between areas dominated by different crop types also points to the desirability of a crop-specific approach rather than attempting

  17. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  18. Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for?

    Science.gov (United States)

    Timsit, José; Saint-Martin, Cécile; Dubois-Laforgue, Danièle; Bellanné-Chantelot, Christine

    2016-10-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic diseases that results in primary defects in insulin secretion and dominantly inherited forms of nonautoimmune diabetes. Although many genes may be associated with monogenic diabetes, heterozygous mutations in 6 of them are responsible for the majority of cases of MODY. Glucokinase (GCK)-MODY is due to mutations in the glucokinase gene, 3 MODY subtypes are associated with mutations in the hepatocyte nuclear factor (HNF) transcription factors, and 2 others with mutations in ABCC8 and KCNJ11, which encode the subunits of the ATP-dependent potassium channel in pancreatic beta cells. GCK-MODY and HNF1A-MODY are the most common subtypes. The clinical presentation of MODY subtypes has been reported to differ according to the gene involved, and the diagnosis of MODY may be considered in various clinical circumstances. However, except in patients with GCK-MODY whose phenotype is very homogeneous, in most cases the penetrance and expressivity of a given molecular abnormality vary greatly among patients and, conversely, alterations in various genes may lead to similar phenotypes. Moreover, differential diagnosis among more common forms of diabetes may be difficult, particularly with type 2 diabetes. Thus, careful assessment of the personal and family histories of patients with diabetes is mandatory to select those in whom genetic screening is worthwhile. The diagnosis of monogenic diabetes has many consequences in terms of prognosis, therapeutics and family screening. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  19. Surface spectral emissivity derived from MODIS data

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  20. Marine Boundary Layer Cloud Property Retrievals from High-Resolution ASTER Observations: Case Studies and Comparison with Terra MODIS

    Science.gov (United States)

    Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry

    2016-01-01

    A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.

  1. Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters

    Science.gov (United States)

    Steele, Caitriana; Dialesandro, John; James, Darren; Elias, Emile; Rango, Albert; Bleiweiss, Max

    2017-12-01

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM +) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS' coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between -2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM

  2. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    Science.gov (United States)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  3. NLCD - MODIS land cover- albedo dataset for the continental United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  4. Apolipoprotein M can discriminate HNF1A-MODY from Type 1 diabetes.

    Science.gov (United States)

    Mughal, S A; Park, R; Nowak, N; Gloyn, A L; Karpe, F; Matile, H; Malecki, M T; McCarthy, M I; Stoffel, M; Owen, K R

    2013-02-01

    Missed diagnosis of maturity-onset diabetes of the young (MODY) has led to an interest in biomarkers that enable efficient prioritization of patients for definitive molecular testing. Apolipoprotein M (apoM) was suggested as a biomarker for hepatocyte nuclear factor 1 alpha (HNF1A)-MODY because of its reduced expression in Hnf1a(-/-) mice. However, subsequent human studies examining apoM as a biomarker have yielded conflicting results. We aimed to evaluate apoM as a biomarker for HNF1A-MODY using a highly specific and sensitive ELISA. ApoM concentration was measured in subjects with HNF1A-MODY (n = 69), Type 1 diabetes (n = 50), Type 2 diabetes (n = 120) and healthy control subjects (n = 100). The discriminative accuracy of apoM and of the apoM/HDL ratio for diabetes aetiology was evaluated. Mean (standard deviation) serum apoM concentration (μmol/l) was significantly lower for subjects with HNF1A-MODY [0.86 (0.29)], than for those with Type 1 diabetes [1.37 (0.26), P = 3.1 × 10(-18) ) and control subjects [1.34 (0.22), P = 7.2 × 10(-19) ). There was no significant difference in apoM concentration between subjects with HNF1A-MODY and Type 2 diabetes [0.89 (0.28), P = 0.13]. The C-statistic measure of discriminative accuracy for apoM was 0.91 for HNF1A-MODY vs. Type 1 diabetes, indicating high discriminative accuracy. The apoM/HDL ratio was significantly lower in HNF1A-MODY than other study groups. However, this ratio did not perform well in discriminating HNF1A-MODY from either Type 1 diabetes (C-statistic = 0.79) or Type 2 diabetes (C-statistic = 0.68). We confirm an earlier report that serum apoM levels are lower in HNF1A-MODY than in controls. Serum apoM provides good discrimination between HNF1A-MODY and Type 1 diabetes and warrants further investigation for clinical utility in diabetes diagnostics. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  5. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    Science.gov (United States)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  6. Exome sequencing and genetic testing for MODY.

    Directory of Open Access Journals (Sweden)

    Stefan Johansson

    Full Text Available Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive.The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results.We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism.On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes.Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  7. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    Science.gov (United States)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  8. Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu

    2014-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9

  9. Circulating CD36 Is Reduced in HNF1A-MODY Carriers.

    LENUS (Irish Health Repository)

    Bacon, Siobhan

    2013-01-01

    Premature atherosclerosis is a significant cause of morbidity and mortality in type 2 diabetes mellitus. Maturity onset diabetes of the young (MODY) accounts for approximately 2% of all diabetes, with mutations in the transcription factor; hepatocyte nuclear factor 1 alpha (HNF1A) accounting for the majority of MODY cases. There is somewhat limited data available on the prevalence of macrovascular disease in HNF1A-MODY carriers with diabetes. Marked insulin resistance and the associated dyslipidaemia are not clinical features of HNF1A-MODY carriers. The scavenger protein CD36 has been shown to play a substantial role in the pathogenesis of atherosclerosis, largely through its interaction with oxidised LDL. Higher levels of monocyte CD36 and plasma CD36(sCD36) are seen to cluster with insulin resistance and diabetes. The aim of this study was to determine levels of sCD36 in participants with HNF1A-MODY diabetes and to compare them with unaffected normoglycaemic family members and participants with type 2 diabetes mellitus.

  10. Black Sea impact on its west-coast land surface temperature

    Science.gov (United States)

    Cheval, Sorin; Constantin, Sorin

    2018-03-01

    This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.

  11. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  12. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.

    Science.gov (United States)

    Patel, Kashyap A; Kettunen, Jarno; Laakso, Markku; Stančáková, Alena; Laver, Thomas W; Colclough, Kevin; Johnson, Matthew B; Abramowicz, Marc; Groop, Leif; Miettinen, Päivi J; Shepherd, Maggie H; Flanagan, Sarah E; Ellard, Sian; Inagaki, Nobuya; Hattersley, Andrew T; Tuomi, Tiinamaija; Cnop, Miriam; Weedon, Michael N

    2017-10-12

    Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10 -4 ). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10 -5 ) and Finnish (n = 80, odds ratio = 22, P = 1 × 10 -6 ) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.

  13. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    Directory of Open Access Journals (Sweden)

    C. R. Sabajo

    2017-10-01

    Full Text Available Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST, a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m for the lowlands of the Jambi province in Sumatra (Indonesia, a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI and evapotranspiration (ET between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus

  14. Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest

    Science.gov (United States)

    Jennifer L. R. Jensen; Karen S. Humes; Andrew T. Hudak; Lee A. Vierling; Eric Delmelle

    2011-01-01

    This study presents an alternative assessment of the MODIS LAI product for a 58,000 ha evergreen needleleaf forest located in the western Rocky Mountain range in northern Idaho by using lidar data to model (R2=0.86, RMSE=0.76) and map LAI at higher resolution across a large number of MODIS pixels in their entirety. Moderate resolution (30 m) lidar-based LAI estimates...

  15. Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data

    Science.gov (United States)

    Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.

    2012-01-01

    Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat

  16. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    Science.gov (United States)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  17. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2015-06-01

    Full Text Available Bidirectional reflectance distribution function (BRDF archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref and aditional actual MODIS multi-angular observations (MCD-obs in four growing periods in 2008 over three tiles were taken as validation data. First, BRDF archetypes in the principal plane were qualitatively compared with the time-series MODIS BRDF product of randomly sampled pixels. Secondly, BRDF archetypes were used to fit MCD-ref, and the average root-mean-squared errors (RMSEs over each tile were examined for these five years. Finally, both BRDF archetypes and the MODIS BRDF were used to fit MCD-obs, and the histograms of the fit-RMSEs were compared. The consistency of the directional reflectance between the BRDF archetypes and MODIS BRDFs in nadir-view, hotspot and entire viewing hemisphere at 30° and 50° solar geometries were also examined. The results confirm that BRDF archetypes are representative of surface reflectance anisotropy for available snow-free MODIS data.

  18. Improved VIIRS and MODIS SST Imagery

    Directory of Open Access Journals (Sweden)

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  19. Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products

    Science.gov (United States)

    Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-01-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.

  20. Clear-sky narrowband albedos derived from VIRS and MODIS

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  1. Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; hide

    2014-01-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on

  2. Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Directory of Open Access Journals (Sweden)

    Le Li

    2014-03-01

    Full Text Available As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year, is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration MODerate Resolution Imaging Spectroradiometer (MODIS. The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data.

  3. Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2015-05-01

    Full Text Available In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM images based on a 30 m digital elevation model (DEM and Moderate Resolution Imaging Spectroradiometer (MODIS atmospheric products. Moreover, we define a normalized factor of a Bidirectional Reflectance Distribution Function (BRDF to convert the sloping pixel reflectance into a flat pixel reflectance by using the Ross Thick-Li Sparse BRDF model (Ambrals algorithm and MODIS BRDF/albedo kernel coefficient products. Sole atmospheric correction and topographic normalization were performed for TM images in the upper stream of the Heihe River Basin. The results show that using MODIS atmospheric products can effectively remove atmospheric effects compared with the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH model and the Landsat Climate Data Record (CDR. Moreover, superior topographic effect removal can be achieved by considering the surface BRDF when compared with the surface Lambertian assumption of topographic normalization.

  4. No novel, high penetrant gene might remain to be found in Japanese patients with unknown MODY.

    Science.gov (United States)

    Horikawa, Yukio; Hosomichi, Kazuyoshi; Enya, Mayumi; Ishiura, Hiroyuki; Suzuki, Yutaka; Tsuji, Shoji; Sugano, Sumio; Inoue, Ituro; Takeda, Jun

    2018-07-01

    MODY 5 and 6 have been shown to be low-penetrant MODYs. As the genetic background of unknown MODY is assumed to be similar, a new analytical strategy is applied here to elucidate genetic predispositions to unknown MODY. We examined to find whether there are major MODY gene loci remaining to be identified using SNP linkage analysis in Japanese. Whole-exome sequencing was performed with seven families with typical MODY. Candidates for novel MODY genes were examined combined with in silico network analysis. Some peaks were found only in either parametric or non-parametric analysis; however, none of these peaks showed a LOD score greater than 3.7, which is approved to be the significance threshold of evidence for linkage. Exome sequencing revealed that three mutated genes were common among 3 families and 42 mutated genes were common in two families. Only one of these genes, MYO5A, having rare amino acid mutations p.R849Q and p.V1601G, was involved in the biological network of known MODY genes through the intermediary of the INS. Although only one promising candidate gene, MYO5A, was identified, no novel, high penetrant MODY genes might remain to be found in Japanese MODY.

  5. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    Science.gov (United States)

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for

  6. Analysis of MODIS 250 m Time Series Product for LULC Classification and Retrieval of Crop Biophysical Parameter

    Science.gov (United States)

    Verma, A. K.; Garg, P. K.; Prasad, K. S. H.; Dadhwal, V. K.

    2016-12-01

    Agriculture is a backbone of Indian economy, providing livelihood to about 70% of the population. The primary objective of this research is to investigate the general applicability of time-series MODIS 250m Normalized difference vegetation index (NDVI) and Enhanced vegetation index (EVI) data for various Land use/Land cover (LULC) classification. The other objective is the retrieval of crop biophysical parameter using MODIS 250m resolution data. The Uttar Pradesh state of India is selected for this research work. A field study of 38 farms was conducted during entire crop season of the year 2015 to evaluate the applicability of MODIS 8-day, 250m resolution composite images for assessment of crop condition. The spectroradiometer is used for ground reflectance and the AccuPAR LP-80 Ceptometer is used to measure the agricultural crops Leaf Area Index (LAI). The AccuPAR measures Photosynthetically Active Radiation (PAR) and can invert these readings to give LAI for plant canopy. Ground-based canopy reflectance and LAI were used to calibrate a radiative transfer model to create look-up table (LUT) that was used to simulate LAI. The seasonal trend of MODIS-derived LAI was used to find crop parameter by adjusting the LAI simulated from climate-based crop yield model. Cloud free MODIS images of 250m resolution (16 day composite period) were downloaded using LP-DAAC website over a period of 12 months (Jan to Dec 2015). MODIS both the VI products were found to have sufficient spectral, spatial and temporal resolution to detect unique signatures for each class (water, fallow land, urban, dense vegetation, orchard, sugarcane and other crops). Ground truth data were collected using JUNO GPS. Multi-temporal VI signatures for vegetation classes were consistent with its general phenological characteristic and were spectrally separable at some point during the growing season. The MODIS NDVI and EVI multi-temporal images tracked similar seasonal responses for all croplands and were

  7. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  8. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    Science.gov (United States)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  9. Intima-media thickness and endothelial dysfunction in GCK and HNF1A-MODY patients.

    Science.gov (United States)

    Szopa, Magdalena; Osmenda, Grzegorz; Wilk, Grzegorz; Matejko, Bartłomiej; Skupien, Jan; Zapala, Barbara; Młynarski, Wojciech; Guzik, Tomasz; Malecki, Maciej T

    2015-03-01

    Mutations in the glucokinase (GCK) gene, along with hepatocyte nuclear factor 1A (HNF1A) gene mutations, are the most frequent cause of maturity-onset diabetes of the young (MODY). GCK-MODY patients are typically characterized by a moderate fasting hyperglycemia; however, little is known about atherosclerosis and intermediate-related phenotypes in these subjects. To examine carotid artery intima-media thickness (IMT) and endothelial function assessed by brachial artery flow-mediated dilatation (FMD) in GCK gene mutations carriers and HNF1A-MODY. A total of 64 subjects with GCK gene mutations, and 52 HNF1A gene mutation carriers as well as 53 nondiabetic controls were examined. IMT and FMD were assessed by ultrasonography. Appropriate statistical tests were performed to assess differences between the groups, and multivariate linear regression was done for the association with IMT and FMD. The clinical characteristics of all groups were similar with the mean age at examination of 35.1, 41.1, and 39.5 years for GCK, HNF1A and the control group respectively. The highest mean IMT value was in the HNF1A-MODY group: 7.0±1.4 mm, whereas it reached 6.3±1.4 mm in GCK mutation carriers and 6.3±1.3 mm in controls (P=0.008). After adjustment for possible clinical and biochemical cofounders, IMT remained higher in HNF1A-MODY patients as compared with GCK-MODY patients (P=0.02) and controls (P=0.0003). FMD was significantly lower in HNF1A (9.9±4.6%) and GCK-MODY (11.1±4.6%) patients in comparison with controls (13.9±4.7%; P=0.0001). After adjustment, FMD remained lower in HNF1A-MODY (P=0.0005) and GCK-MODY patients (P=0.01) as compared with controls. Both examined MODY groups demonstrated evidence of endothelial dysfunction. In addition, HNF1-MODY patients seem to be more prone to an early atherosclerotic phenotype. © 2015 European Society of Endocrinology.

  10. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  11. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology.

    Science.gov (United States)

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy

    2015-04-01

    Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

  12. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2016-02-01

    Full Text Available The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS instrument, a polar orbiting Earth remote sensing instrument built using a strong MODIS background, employs a similarly designed on-board calibrating source—a V-grooved blackbody for the Thermal Emissive Bands (TEB. The central wavelengths of most VIIRS TEBs are very close to those of MODIS with the exception of the 10.7 µm channel. To ensure the long term continuity of climate data records derived using VIIRS and MODIS TEB, it is necessary to assess any systematic differences between the two instruments, including scenes with temperatures significantly lower than blackbody operating temperatures at approximately 290 K. Previous work performed by the MODIS Characterization Support Team (MCST at NASA/GSFC used the frequent observations of the Dome Concordia site located in Antarctica to evaluate the calibration stability and consistency of Terra and Aqua MODIS over the mission lifetime. The near-surface temperature measurements from an automatic weather station (AWS provide a direct reference useful for tracking the stability and determining the relative bias between the two MODIS instruments. In this study, the same technique is applied to the VIIRS TEB and the results are compared with those from the matched MODIS TEB. The results of this study show a small negative bias when comparing the matching VIIRS and Aqua MODIS TEB, implying a higher brightness temperature for S-VIIRS at the cold end. Statistically no significant drift is observed for VIIRS TEB performance over the first 3.5 years of the mission.

  13. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    Science.gov (United States)

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  14. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    Science.gov (United States)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  15. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    Science.gov (United States)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-02-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-h interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30 km × 30 km box centered on the ARM SGP site. Two data sets were analyzed: all of the data (ALL), which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 ± 0.542 km and 0.108 ± 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 ± 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km-1. On the basis of a total of 43 samples, the means and standard deviations of the differences between the daytime

  16. 21-Year-Old Pregnant Woman with MODY-5 Diabetes

    Directory of Open Access Journals (Sweden)

    Anastasia Mikuscheva

    2017-01-01

    Full Text Available The term “Maturity-Onset Diabetes of the Young” (MODY was first described in 1976 and is currently referred to as monogenic diabetes. There are 14 known entities accounting for 1-2% of diabetes and they are frequently misdiagnosed as either type 1 or type 2 diabetes. MODY-5 is an entity of monogenic diabetes that is associated with genitourinary malformations and should be considered by obstetricians in pregnant women with a screen positive for diabetes, genitourinary malformations, and fetal renal anomalies. Correct diagnosis of monogenic diabetes has implications on managing patients and their families. We are reporting a case of a 21-year-old pregnant woman with a bicornuate uterus, fetal renal anomalies, and a family history of diabetes that were suggestive of a MODY-5 diabetes.

  17. Maturity-Onset Diabetes of the Young (MODY): Making the Right Diagnosis to Optimize Treatment.

    Science.gov (United States)

    Amed, Shazhan; Oram, Richard

    2016-10-01

    Maturity onset diabetes of the young (MODY) is a rare but increasingly recognized cause of diabetes in young people. It is a monogenic disorder that typically presents at MODY are caused by mutations in glucokinase and hepatic nuclear factor 1 alpha or 4 alpha genes and account for almost 80% of cases of MODY. MODY is commonly misdiagnosed as type 1 or type 2 diabetes and, as a result, patients are often inappropriately managed with insulin when they can be more effectively managed with oral sulfonylureas. Therefore, making the right diagnosis is critical for effective treatment as well as for genetic counselling and, more important, for patients' quality of life. In this review, we aim to raise awareness about MODY among diabetes clinicians by describing key clinical and laboratory features of the most common forms of MODY, outlining features that might help to differentiate MODY from type 1 and type 2 diabetes and providing information about clinical tests and tools that might assist in identifying patients who are most likely to benefit from molecular genetic testing. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  18. History and Future for the Happy Marriage between the MODIS Land team and Fluxnet

    Science.gov (United States)

    Running, S. W.

    2015-12-01

    When I wrote the proposal to NASA in 1988 for daily global evapotranspiration and gross primary production algorithms for the MODIS sensor, I had no validation plan. Fluxnet probably saved my MODIS career by developing a global network of rigorously calibrated towers measuring water and carbon fluxes over a wide variety of ecosystems that I could not even envision at the time that first proposal was written. However my enthusiasm for Fluxnet was not reciprocated by the Fluxnet community until we began providing 7 x 7 pixel MODIS Land datasets exactly over each of their towers every 8 days, without them having to crawl thru the global datasets and make individual orders. This system, known informally as the MODIS ASCII cutouts, began in 2002 and operates at the Oak Ridge DAAC to this day, cementing a mutually beneficial data interchange between the Fluxnet and remote sensing communities. This talk will briefly discuss the history of MODIS validation with flux towers, and flux spatial scaling with MODIS data. More importantly I will detail the future continuity of global biophysical datasets in the post-MODIS era, and what next generation sensors will provide.

  19. High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-12-01

    In the current work we investigate the utility of remote-sensing-based surface parameters in the Noah UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high-resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter data sets are directly substituted for the land-use/lookup-table-based values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite-derived parameter maps, particularly GVF, enhance the capability of the Noah UCM to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model's capability to predict the LST differences between fully vegetated pixels and highly developed areas.

  20. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  1. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    Science.gov (United States)

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  2. Comparison of sampling designs for estimating deforestation from landsat TM and MODIS imagery: a case study in Mato Grosso, Brazil.

    Science.gov (United States)

    Zhu, Shanyou; Zhang, Hailong; Liu, Ronggao; Cao, Yun; Zhang, Guixin

    2014-01-01

    Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.

  3. A Hybrid Color Mapping Approach to Fusing MODIS and Landsat Images for Forward Prediction

    OpenAIRE

    Chiman Kwan; Bence Budavari; Feng Gao; Xiaolin Zhu

    2018-01-01

    We present a new, simple, and efficient approach to fusing MODIS and Landsat images. It is well known that MODIS images have high temporal resolution and low spatial resolution, whereas Landsat images are just the opposite. Similar to earlier approaches, our goal is to fuse MODIS and Landsat images to yield high spatial and high temporal resolution images. Our approach consists of two steps. First, a mapping is established between two MODIS images, where one is at an earlier time, t1, and the...

  4. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    Science.gov (United States)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping

  5. Genetic basis of early-onset, MODY-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance.

    Science.gov (United States)

    Yorifuji, Tohru; Higuchi, Shinji; Kawakita, Rie; Hosokawa, Yuki; Aoyama, Takane; Murakami, Akiko; Kawae, Yoshiko; Hatake, Kazue; Nagasaka, Hironori; Tamagawa, Nobuyoshi

    2018-06-21

    Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. 263 Japanese patients with early-onset, nonobese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (BMI >85 th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (p = 0.003), and had higher BMI percentile at diagnosis (p = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (p = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (p = 0.0106). Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm across the Central African Republic Using the MODIS Active Fire Product

    Directory of Open Access Journals (Sweden)

    Patrick H. Freeborn

    2014-02-01

    Full Text Available Satellite-based remote sensing of active fires is the only practical way to consistently and continuously monitor diurnal fluctuations in biomass burning from regional, to continental, to global scales. Failure to understand, quantify, and communicate the performance of an active fire detection algorithm, however, can lead to improper interpretations of the spatiotemporal distribution of biomass burning, and flawed estimates of fuel consumption and trace gas and aerosol emissions. This work evaluates the performance of the Spinning Enhanced Visible and Infrared Imager (SEVIRI Fire Thermal Anomaly (FTA detection algorithm using seven months of active fire pixels detected by the Moderate Resolution Imaging Spectroradiometer (MODIS across the Central African Republic (CAR. Results indicate that the omission rate of the SEVIRI FTA detection algorithm relative to MODIS varies spatially across the CAR, ranging from 25% in the south to 74% in the east. In the absence of confounding artifacts such as sunglint, uncertainties in the background thermal characterization, and cloud cover, the regional variation in SEVIRI’s omission rate can be attributed to a coupling between SEVIRI’s low spatial resolution detection bias (i.e., the inability to detect fires below a certain size and intensity and a strong geographic gradient in active fire characteristics across the CAR. SEVIRI’s commission rate relative to MODIS increases from 9% when evaluated near MODIS nadir to 53% near the MODIS scene edges, indicating that SEVIRI errors of commission at the MODIS scene edges may not be false alarms but rather true fires that MODIS failed to detect as a result of larger pixel sizes at extreme MODIS scan angles. Results from this work are expected to facilitate (i future improvements to the SEVIRI FTA detection algorithm; (ii the assimilation of the SEVIRI and MODIS active fire products; and (iii the potential inclusion of SEVIRI into a network of geostationary

  7. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    Science.gov (United States)

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Drought Risk Assessment based on Natural and Social Factors

    Science.gov (United States)

    Huang, Jing; Wang, Huimin; Han, Dawei

    2015-04-01

    In many parts of the world, drought hazard is becoming more frequent and severe due to climate change and human activities. It is crucial to monitor and assess drought conditions, especially for decision making support in agriculture sector. The vegetation index (VI) decreases, and the land surface temperature (LST) increases when the vegetation is under drought stress. Therefore both of these remotely sensed indices are widely used in drought monitoring and assessment. Temperature-Vegetation Dryness Index (TVDI) is obtained by establishing the feature space of the normalized difference vegetation index (NDVI) and LST, which reflects agriculture dry situation by inverting soil moisture. However, these indices only concern the natural hazard-causing factors. Our society is a complex large-scale system with various natural and social elements. The drought risk is the joint consequence of hazard-causing factors and hazard-affected bodies. For example, as the population increases, the exposure of the hazard-affected bodies also tends to increase. The high GDP enhances the response ability of government, and the irrigation and water conservancy reduces the vulnerability. Such characteristics of hazard-affected bodies should be coupled with natural factors. In this study, the 16-day moderate-resolution imaging spectroradiometer (MODIS) NDVI and LST data are combined to establish NDVI-Ts space according to different land use types in Yunnan Province, China. And then, TVDIs are calculated through dry and wet edges modeled as a linear fit to data for each land cover type. Next, the efforts are turned to establish an integrated drought assessment index of social factors and TVDI through ascertaining attribute weight based on rough sets theory. Thus, the new CDI (comprehensive drought index) recorded during spring of 2010 and the spatial variations in drought are analyzed and compared with TVDI dataset. Moreover, actual drought risk situation in the study area is given to

  9. Evaluation of BRDF Archetypes for Representing Surface Reflectance Anisotropy Using MODIS BRDF Data

    OpenAIRE

    Zhang, Hu; Jiao, Ziti; Dong, Yadong; Li, Xiaowen

    2015-01-01

    Bidirectional reflectance distribution function (BRDF) archetypes extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/Albedo product over the global Earth Observing System Land Validation Core Sites can be used to simplify BRDF models. The present study attempts to evaluate the representativeness of BRDF archetypes for surface reflectance anisotropy. Five-year forward-modeled MODIS multi-angular reflectance (MCD-ref) and aditional actual MODIS multi-angular observat...

  10. Seasonal Variations of the Surface Urban Heat Island in a Semi-Arid City

    Directory of Open Access Journals (Sweden)

    Sirous Haashemi

    2016-04-01

    Full Text Available The process of the surface urban heat island (SUHI varies with latitude, climate, topography and meteorological conditions. This study investigated the seasonal variability of SUHI in the Tehran metropolitan area, Iran, with respect to selected surface biophysical variables. Terra Moderate Resolution Imaging Spectroradiometer (MODIS Land Surface Temperature (LST was retrieved as nighttime LST data, while daytime LST was retrieved from Landsat 8 Thermal Infrared Sensor (TIRS using the split-window algorithm. Both data covered the time period from September 2013 to September 2015. To assess SUHI intensity, we employed three SUHI indicators, i.e., the LST difference of urban-rural, that of urban-agriculture and that of urban-water. Physical and biophysical surface variables, including land use and land cover (LULC, elevation, impervious surface (IS, fractional vegetation cover (FVC and albedo, were selected to estimate the relationship between LST seasonal variability and the surface properties. Results show that an inversion of the SUHI phenomenon (i.e., surface urban cool island existed at daytime with the maximal value of urban-rural LST difference of −4 K in March; whereas the maximal value of SUHI at nighttime yielded 3.9 K in May. When using the indicators of urban-agriculture and urban-water LST differences, the maximal value of SUHI was found to be 8.2 K and 15.5 K, respectively. Both results were observed at daytime, suggesting the role of bare soils in the inversion of the SUHI phenomenon with the urban-rural indicator. Maximal correlation was observed in the relationship between night LST and elevation in spring (coefficient: −0.76, night LST and IS in spring (0.60, night LST and albedo in winter (−0.53 and day LST with fractional vegetation cover in summer (−0.41. The relationship between all surface properties with LST possessed large seasonal variations, and thus, using these relationships for SUHI modeling may not be

  11. Substantial proportion of MODY among multiplex families participating in a Type 1 diabetes prediction programme.

    Science.gov (United States)

    Petruzelkova, L; Dusatkova, P; Cinek, O; Sumnik, Z; Pruhova, S; Hradsky, O; Vcelakova, J; Lebl, J; Kolouskova, S

    2016-12-01

    Patients with maturity-onset diabetes of the young (MODY) might be over-represented in families with histories of Type 1 diabetes. Our aim was to re-evaluate families participating in the Czech T1D Prediction Programme (PREDIA.CZ) with at least two members affected with diabetes to assess the proportion of MODY among these families and determine its most significant clinical predictors. Of the 557 families followed up by the PREDIA.CZ, 53 (9.5%) had two or more family members with diabetes. One proband with diabetes from these families was chosen for direct sequencing of the GCK, HNF1A, HNF4A and INS genes. Non-parametric tests and a linear logistic regression model were used to evaluate differences between MODY and non-MODY families. MODY was genetically diagnosed in 24 of the 53 families with multiple occurrences of diabetes (45%). Mutations were detected most frequently in GCK (58%), followed by HNF1A (38%) and INS (4%). MODY families were more likely to have a parent with diabetes and had a higher proportion of females with diabetes than non-MODY families. Higher age (P MODY families already presenting with diabetes. A prediction programme for Type 1 diabetes would provide a useful new source of patients with MODY most likely to benefit from an accurate diagnosis. This identification has implications for patient treatment and disease prognosis. © 2015 Diabetes UK.

  12. Evaluating Potential of MODIS-based Indices in Determining “Snow Gone” Stage over Forest-dominant Regions

    Directory of Open Access Journals (Sweden)

    Navdeep S. Sekhon

    2010-05-01

    Full Text Available “Snow gone” (SGN stage is one of the critical variables that describe the start of the official forest fire season in the Canadian Province of Alberta. In this paper, our objective is to evaluate the potential of MODIS-based indices for determining the SGN stage. Those included: (i enhanced vegetation index (EVI, (ii normalized difference water index (NDWI using the shortwave infrared (SWIR spectral bands centered at 1.64 µm (NDWI1.64µm and at 2.13 µm (NDWI2.13µm, and (iii normalized difference snow index (NDSI. These were calculated using the 500 m 8-day gridded MODIS-based composites of surface reflectance data (i.e., MOD09A1 v.005 for the period 2006–08. We performed a qualitative evaluation of these indices over two forest fire prone natural subregions in Alberta (i.e., central mixedwood and lower boreal highlands. In the process, we generated and compared the natural subregion-specific lookout tower sites average: (i temporal trends for each of the indices, and (ii SGN stage using the ground-based observations available from Alberta Sustainable Resource Development. The EVI-values were found to have large uncertainty at the onset of the spring and unable to predict the SGN stages precisely. In terms of NDSI, it showed earlier prediction capabilities. On the contrary, both of the NDWI’s showed distinct pattern (i.e., reached a minimum value before started to increase again during the spring in relation to observed SGN stages. Thus further analysis was carried out to determine the best predictor by comparing the NDWI’s predicted SGN stages with the ground-based observations at all of the individual lookout tower sites (approximately 120 in total across the study area. It revealed that NDWI2.13µm demonstrated better prediction capabilities (i.e., on an average approximately 90% of the observations fell within ±2 periods or ±16 days of deviation in comparison to NDWI1.64µm (i.e., on an average approximately 73% of the

  13. Evaluation of Three Parametric Models for Estimating Directional Thermal Radiation from Simulation, Airborne, and Satellite Data

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2018-03-01

    Full Text Available An appropriate model to correct thermal radiation anisotropy is important for the wide applications of land surface temperature (LST. This paper evaluated the performance of three published directional thermal radiation models—the Roujean–Lagouarde (RL model, the Bidirectional Reflectance Distribution Function (BRDF model, and the Vinnikov model—at canopy and pixel scale using simulation, airborne, and satellite data. The results at canopy scale showed that (1 the three models could describe directional anisotropy well and the Vinnikov model performed the best, especially for erectophile canopy or low leaf area index (LAI; (2 the three models reached the highest fitting accuracy when the LAI varied from 1 to 2; and (3 the capabilities of the three models were all restricted by the hotspot effect, plant height, plant spacing, and three-dimensional structure. The analysis at pixel scale indicated a consistent result that the three models presented a stable effect both on verification and validation, but the Vinnikov model had the best ability in the erectophile canopy (savannas and grassland and low LAI (barren or sparsely vegetated areas. Therefore, the Vinnikov model was calibrated for different land cover types to instruct the angular correction of LST. Validation with the Surface Radiation Budget Network (SURFRAD-measured LST demonstrated that the root mean square (RMSE of the Moderate Resolution Imaging Spectroradiometer (MODIS LST product could be decreased by 0.89 K after angular correction. In addition, the corrected LST showed better spatial uniformity and higher angular correlation.

  14. Photosynthetic Efficiency of Northern Forest Ecosystems Using a MODIS-Derived Photochemical Reflectance Index (PRI)

    Science.gov (United States)

    Middleton, E. M.; Huemmrich, K. F.; Landis, D. R.; Black, T. A.; Barr, A. G.; McCaughey, J. H.

    2016-01-01

    This study evaluates a direct remote sensing approach from space for the determination of ecosystem photosynthetic light use efficiency (LUE), through measurement of vegetation reflectance changes expressed with the Photochemical Reflectance Index (PRI). The PRI is a normalized difference index based on spectral changes at a physiologically active wavelength (approximately 531 nanometers) as compared to a reference waveband, and is only available from a very few satellites. These include the two Moderate-Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites each of which have a narrow (10-nanometer) ocean band centered at 531 nanometers. We examined several PRI variations computed with candidate reference bands, since MODIS lacks the traditional 570-nanometer reference band. The PRI computed using MODIS land band 1 (620-670 nanometers) gave the best performance for daily LUE estimation. Through rigorous statistical analyses over a large image collection (n equals 420), the success of relating in situ daily tower-derived LUE to MODIS observations for northern forests was strongly influenced by satellite viewing geometry. LUE was calculated from CO2 fluxes (moles per moles of carbon absorbed quanta) measured at instrumented Canadian Carbon Program flux towers in four Canadian forests: a mature fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed deciduous/coniferous forest site in Ontario. All aspects of the viewing geometry had significant effects on the MODIS-PRI, including the view zenith angle (VZA), the view azimuth angle, and the displacement of the view azimuth relative to the solar principal plane, in addition to illumination related variables.Nevertheless, we show that forward scatter sector views (VZA, 16 degrees-45 degrees) provided the strongest relationships to daily LUE, especially those collected in the early afternoon by Aqua (r squared = 0.83, RMSE (root mean square error) equals 0

  15. Clinical features and treatment of maturity onset diabetes of the young (MODY

    Directory of Open Access Journals (Sweden)

    Gardner DS,Tai ES

    2012-05-01

    Full Text Available Daphne SL Gardner1, E Shyong Tai21Department of Endocrinology, Singapore General Hospital, 2Department of Endocrinology, National University Hospital, SingaporeAbstract: Maturity onset diabetes of the young (MODY is a heterogeneous group of disorders that result in ß-cell dysfunction. It is rare, accounting for just 1%–2% of all diabetes. It is often misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these two forms. However, diagnosis allows appropriate individualized care, depending on the genetic etiology, and allows prognostication in family members. In this review, we discuss features of the common causes of MODY, as well as the treatment and diagnosis of MODY.Keywords: type 1 diabetes, type 2 diabetes, HNF1A, HNF4A, HNF1B, GCK

  16. A closer look at temperature changes with remote sensing

    Science.gov (United States)

    Metz, Markus; Rocchini, Duccio; Neteler, Markus

    2014-05-01

    Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In

  17. The comparison of MODIS-Aqua (C5 and CALIOP (V2 & V3 aerosol optical depth

    Directory of Open Access Journals (Sweden)

    J. Redemann

    2012-03-01

    Full Text Available We assess the consistency between instantaneously collocated level-2 aerosol optical depth (AOD retrievals from MODIS-Aqua (C5 and CALIOP (Version 2 & 3, comparing the standard MODIS AOD (MYD04_L2 data to the AOD calculated from CALIOP aerosol extinction profiles for both the previous release (V2 and the latest release (V3 of CALIOP data. Based on data collected in January 2007, we investigate the most useful criteria for screening the MODIS and CALIOP retrievals to achieve the best agreement between the two data sets. Applying these criteria to eight months of data (Jan, Apr, Jul, Oct 2007 and 2009, we find an order of magnitude increase for the CALIOP V3 data density (by comparison to V2, that is generally accompanied by equal or better agreement with MODIS AOD. Differences in global, monthly mean, over-ocean AOD (532 nm between CALIOP and MODIS range between 0.03 and 0.04 for CALIOP V3, with CALIOP generally biased low, when all available data from both sensors are considered. Root-mean-squares (RMS differences in instantaneously collocated AOD retrievals by the two instruments are reduced from values ranging between 0.14 and 0.19 using the unscreened V3 data to values ranging from 0.09 to 0.1 for the screened data. A restriction to scenes with cloud fractions less than 1% (as defined in the MODIS aerosol retrievals generally results in improved correlation (R2>0.5, except for the month of July when correlations remain relatively lower. Regional assessments show hot spots in disagreement between the two sensors in Asian outflow during April and off the coast of South Africa in July.

  18. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    Science.gov (United States)

    Bonnefond, Amélie; Philippe, Julien; Durand, Emmanuelle; Dechaume, Aurélie; Huyvaert, Marlène; Montagne, Louise; Marre, Michel; Balkau, Beverley; Fajardy, Isabelle; Vambergue, Anne; Vatin, Vincent; Delplanque, Jérôme; Le Guilcher, David; De Graeve, Franck; Lecoeur, Cécile; Sand, Olivier; Vaxillaire, Martine; Froguel, Philippe

    2012-01-01

    Maturity-onset of the young (MODY) is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X). Here, we aimed to use whole-exome sequencing (WES) in a four-generation MODY-X family to identify a new susceptibility gene for MODY. WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing) was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay) of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130) present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11) co-segregated with diabetes in the family (with a LOD-score of 3.68). No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. Beyond neonatal diabetes mellitus (NDM), KCNJ11 is also a MODY gene ('MODY13'), confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS). Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  19. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene.

    Directory of Open Access Journals (Sweden)

    Amélie Bonnefond

    Full Text Available BACKGROUND: Maturity-onset of the young (MODY is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X. Here, we aimed to use whole-exome sequencing (WES in a four-generation MODY-X family to identify a new susceptibility gene for MODY. METHODOLOGY: WES (Agilent-SureSelect capture/Illumina-GAIIx sequencing was performed in three affected and one non-affected relatives in the MODY-X family. We then performed a high-throughput multiplex genotyping (Illumina-GoldenGate assay of the putative causal mutations in the whole family and in 406 controls. A linkage analysis was also carried out. PRINCIPAL FINDINGS: By focusing on variants of interest (i.e. gains of stop codon, frameshift, non-synonymous and splice-site variants not reported in dbSNP130 present in the three affected relatives and not present in the control, we found 69 mutations. However, as WES was not uniform between samples, a total of 324 mutations had to be assessed in the whole family and in controls. Only one mutation (p.Glu227Lys in KCNJ11 co-segregated with diabetes in the family (with a LOD-score of 3.68. No KCNJ11 mutation was found in 25 other MODY-X unrelated subjects. CONCLUSIONS/SIGNIFICANCE: Beyond neonatal diabetes mellitus (NDM, KCNJ11 is also a MODY gene ('MODY13', confirming the wide spectrum of diabetes related phenotypes due to mutations in NDM genes (i.e. KCNJ11, ABCC8 and INS. Therefore, the molecular diagnosis of MODY should include KCNJ11 as affected carriers can be ideally treated with oral sulfonylureas.

  20. Quality Assessment of Collection 6 MODIS Atmospheric Science Products

    Science.gov (United States)

    Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.

    2015-12-01

    Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the

  1. Comparison of Sampling Designs for Estimating Deforestation from Landsat TM and MODIS Imagery: A Case Study in Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Shanyou Zhu

    2014-01-01

    Full Text Available Sampling designs are commonly used to estimate deforestation over large areas, but comparisons between different sampling strategies are required. Using PRODES deforestation data as a reference, deforestation in the state of Mato Grosso in Brazil from 2005 to 2006 is evaluated using Landsat imagery and a nearly synchronous MODIS dataset. The MODIS-derived deforestation is used to assist in sampling and extrapolation. Three sampling designs are compared according to the estimated deforestation of the entire study area based on simple extrapolation and linear regression models. The results show that stratified sampling for strata construction and sample allocation using the MODIS-derived deforestation hotspots provided more precise estimations than simple random and systematic sampling. Moreover, the relationship between the MODIS-derived and TM-derived deforestation provides a precise estimate of the total deforestation area as well as the distribution of deforestation in each block.

  2. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database.

    Science.gov (United States)

    Schober, E; Rami, B; Grabert, M; Thon, A; Kapellen, Th; Reinehr, Th; Holl, R W

    2009-05-01

    To analyse and compare clinical characteristics in young patients with maturity-onset diabetes of the young (MODY) and Type 2 diabetes mellitus (T2DM). We conducted an observational investigation using the DPV-Wiss database containing clinical data on 40 757 diabetic patients MODY (0.83%); 562 patients were diagnosed as T2DM (1.4%). In 20% of cases, the diagnosis of MODY was based on clinical findings only. Of the 272 subjects where genetic testing was available, 3% did not carry mutations in the three examined MODY genes. Glucokinase-MODY was commoner than HNF1A-MODY and HNF4A-MODY. Age at diagnosis was younger in MODY patients. The body mass index of T2DM was significantly higher compared with all MODY subgroups. Macrovascular risk factors such as dyslipidaemia and hypertension were commoner in T2DM, but 23% of MODY patients had dyslipidaemia and 10% hypertension. Glycaemic control was within the therapeutic target (HbA(1c) MODY and 70% of T2DM patients. The prevalence of MODY in children and adolescents in Germany and Austria is lower than that of T2DM in this age group. Dyslipidaemia and hypertension are less frequent in MODY compared with T2DM patients, but do occur.

  3. Evaluation of the MODIS C6 Aerosol Optical Depth Products over Chongqing, China

    Directory of Open Access Journals (Sweden)

    Guangming Shi

    2017-11-01

    Full Text Available The Moderate Resolution Imaging Spectroradiometer (MODIS Collection 6 (C6 aerosol optical depth (AOD products from the 10/3 km Dark Target (DT and Deep Blue (DB algorithms are firstly evaluated using ground observed AODs by the sun photometer in Chongqing, a mountainous mega-city in southwest China. The validation results show that MODIS AODs from 10/3 km DT algorithm are comparable with those of the sun photometer, although there are slight overestimations. However, the DB algorithm substantially underestimates MODIS AODs when comparing with those of the sun photometer. Error analyses imply that the bias of surface reflectance estimation is the main error source for both algorithms. The cloud screening scheme of the DT algorithm is more effective than the DB algorithm. The cloud vicinity effect should be considered in the quality control processes for both of the algorithms. A sensitivity test suggests that in complex terrain area, like Chongqing, the collocation method in the validation of satellite products should be carefully selected according to local circumstances. When comparing the monthly mean AODs of MODIS products with sun photometer observations, it shows that the Terra MODIS AOD products are valid to represent the mean statuses in summer and autumn, but the monthly mean of Aqua MODIS AODs are limited in Chongqing.

  4. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    Science.gov (United States)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  5. Properties of Linear Contrails Detected in 2012 Northern Hemisphere MODIS Imagery

    Science.gov (United States)

    Duda, David P.; Chee, Thad; Khlopenkov, Konstantin; Bedka, Sarah; Spangenberg, Doug; Minnis, Patrick

    2015-01-01

    Observation of linear contrail cirrus coverage and retrieval of their optical properties are valuable data for validating atmospheric climate models that represent contrail formation explicitly. These data can reduce our uncertainty of the regional effects of contrail-generated cirrus on global radiative forcing, and thus improve our estimation of the impact of commercial aviation on climate change. We use an automated contrail detection algorithm (CDA) to determine the coverage of linear persistent contrails over the Northern Hemisphere during 2012. The contrail detection algorithm is a modified form of the Mannstein et al. (1999) method, and uses several channels from thermal infrared MODIS data to reduce the occurrence of false positive detections. A set of contrail masks of varying sensitivity is produced to define the potential range of uncertainty in contrail coverage estimated by the CDA. Global aircraft emissions waypoint data provided by FAA allow comparison of detected contrails with commercial aircraft flight tracks. A pixel-level product based on the advected flight tracks defined by the waypoint data and U-V wind component profiles from the NASA GMAO GEOS-4 reanalysis has been developed to assign a confidence of contrail detection for the contrail mask. To account for possible contrail cirrus missed by the CDA, a post-processing method based on the assumption that pixels adjacent to detected linear contrails will have radiative signatures similar to those of the detected contrails is applied to the Northern Hemisphere data. Results from several months of MODIS observations during 2012 will be presented, representing a near-global climatology of contrail coverage. Linear contrail coverage will be compared with coverage estimates determined previously from 2006 MODIS data.

  6. Evaluating the accuracy of a MODIS direct broadcast algorithm for mapping burned areas over Russia

    Science.gov (United States)

    Petkov, A.; Hao, W. M.; Nordgren, B.; Corley, R.; Urbanski, S. P.; Ponomarev, E. I.

    2012-12-01

    Emission inventories for open area biomass burning rely on burned area estimates as a key component. We have developed an automated algorithm based on MODerate resolution Imaging Spectroradiometer (MODIS) satellite instrument data for estimating burned area from biomass fires. The algorithm is based on active fire detections, burn scars from MODIS calibrated radiances (MOD02HKM), and MODIS land cover classification (MOD12Q1). Our burned area product combines active fires and burn scar detections using spatio-temporal criteria, and has a resolution of 500 x 500 meters. The algorithm has been used for smoke emission estimates over the western United States. We will present the assessed accuracy of our algorithm in different regions of Russia with intense wildfire activity by comparing our results with the burned area product from the Sukachev Institute of Forest (SIF) of the Russian Academy of Sciences in Krasnoyarsk, Russia, as well as burn scars extracted from Landsat imagery. Landsat burned area extraction was based on threshold classification using the Jenks Natural Breaks algorithm to the histogram for each singe scene Normalized Burn Ratio (NBR) image. The final evaluation consisted of a grid-based approach, where the burned area in each 3 km x 3 km grid cell was calculated and compared with the other two sources. A comparison between our burned area estimates and those from SIF showed strong correlation (R2=0.978), although our estimate is approximately 40% lower than the SIF burned areas. The linear fit between the burned area from Landsat scenes and our MODIS algorithm over 18,754 grid cells resulted with a slope of 0.998 and R2=0.7, indicating that our algorithm is suitable for mapping burned areas for fires in boreal forests and other ecosystems. The results of our burned area algorithm will be used for estimating emissions of trace gasses and aerosol particles (including black carbon) from biomass burning in Northern Eurasia for the period of 2002-2011.

  7. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    Science.gov (United States)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is MODIS 859 nm and VIIRS 862 nm) indicate relatively large differences (UPD = 21.84%). (2) The satellite-derived SPM products obtained using MODIS/Aqua and VIIRS/NPP have a satisfactory

  8. Thermal anomalies detection before strong earthquakes (M > 6.0 using interquartile, wavelet and Kalman filter methods

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2011-04-01

    Full Text Available Thermal anomaly is known as a significant precursor of strong earthquakes, therefore Land Surface Temperature (LST time series have been analyzed in this study to locate relevant anomalous variations prior to the Bam (26 December 2003, Zarand (22 February 2005 and Borujerd (31 March 2006 earthquakes. The duration of the three datasets which are comprised of MODIS LST images is 44, 28 and 46 days for the Bam, Zarand and Borujerd earthquakes, respectively. In order to exclude variations of LST from temperature seasonal effects, Air Temperature (AT data derived from the meteorological stations close to the earthquakes epicenters have been taken into account. The detection of thermal anomalies has been assessed using interquartile, wavelet transform and Kalman filter methods, each presenting its own independent property in anomaly detection. The interquartile method has been used to construct the higher and lower bounds in LST data to detect disturbed states outside the bounds which might be associated with impending earthquakes. The wavelet transform method has been used to locate local maxima within each time series of LST data for identifying earthquake anomalies by a predefined threshold. Also, the prediction property of the Kalman filter has been used in the detection process of prominent LST anomalies. The results concerning the methodology indicate that the interquartile method is capable of detecting the highest intensity anomaly values, the wavelet transform is sensitive to sudden changes, and the Kalman filter method significantly detects the highest unpredictable variations of LST. The three methods detected anomalous occurrences during 1 to 20 days prior to the earthquakes showing close agreement in results found between the different applied methods on LST data in the detection of pre-seismic anomalies. The proposed method for anomaly detection was also applied on regions irrelevant to earthquakes for which no anomaly was detected

  9. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    Science.gov (United States)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree

  10. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  11. Global cloud database from VIRS and MODIS for CERES

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan

    2003-04-01

    The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  12. Evaluating MODIS Collection 6 Dark Target Over Water Aerosol Products for Multi-sensor Data Fusion

    Science.gov (United States)

    Shi, Y.; Zhang, J.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.; Lee, L.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used in aerosol related climate, visibility, and air quality studies for more than a decade. Recently, the MODIS collection 6 (c6) aerosol products from MODIS-Aqua have been released. The reported changes between Collection 5 and Collection 6 include updates in the retrieving algorithms and a new cloud filtering process for the over-ocean products. Thus it is necessary to fully evaluate the collection 6 products for applications that require high quality MODIS aerosol optical depth data, such as operational aerosol data assimilation. The uncertainties in the MODIS c6 DT over ocean products are studied through both inter-comparing with the Multi-angle Imaging Spectroradiometer (MISR) aerosol products and by evaluation against ground truth. Special attention is given to the low bias in MODIS DT products due to the misclassifications of heavy aerosol plumes as clouds. Finally, a quality assured data assimilation grade aerosol optical product is constructed for aerosol data assimilation related applications.

  13. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence

    Science.gov (United States)

    Gentine, P.; Alemohammad, S. H.

    2018-04-01

    Solar-induced fluorescence (SIF) observations from space have resulted in major advancements in estimating gross primary productivity (GPP). However, current SIF observations remain spatially coarse, infrequent, and noisy. Here we develop a machine learning approach using surface reflectances from Moderate Resolution Imaging Spectroradiometer (MODIS) channels to reproduce SIF normalized by clear sky surface irradiance from the Global Ozone Monitoring Experiment-2 (GOME-2). The resulting product is a proxy for ecosystem photosynthetically active radiation absorbed by chlorophyll (fAPARCh). Multiplying this new product with a MODIS estimate of photosynthetically active radiation provides a new MODIS-only reconstruction of SIF called Reconstructed SIF (RSIF). RSIF exhibits much higher seasonal and interannual correlation than the original SIF when compared with eddy covariance estimates of GPP and two reference global GPP products, especially in dry and cold regions. RSIF also reproduces intense productivity regions such as the U.S. Corn Belt contrary to typical vegetation indices and similarly to SIF.

  14. Remote Sensing of Radiative and Microphysical Properties of Clouds During TC (sup 4): Results from MAS, MASTER, MODIS, and MISR

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Wind, Galina; Arnold, G. Thomas; Dominguez, Roseanne T.

    2010-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) and MODIS/Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Airborne Simulator (MASTER) were used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds at 50 discrete wavelengths between 0.47 and 14.2 microns (12.9 microns for MASTER). These observations were obtained from the NASA ER-2 aircraft as part of the Tropical Composition, Cloud and Climate Coupling (TC4) experiment conducted over Central America and surrounding Pacific and Atlantic Oceans between 17 July and 8 August 2007. Multispectral images in eleven distinct bands were used to derive a confidence in clear sky (or alternatively the probability Of cloud) over land and ocean ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). The cloud optical thickness and effective radius were derived for both liquid water and ice clouds that were detected during each flight, using a nearly identical algorithm to that implemented operationally to process MODIS Cloud data from the Aqua and Terra satellites (Collection 5). This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS and MASTER data in TC(sup 4), is quite capable of distinguishing both liquid water and ice clouds during daytime conditions over both land and ocean. The cloud optical thickness and effective radius retrievals use five distinct bands of the MAS (or MASTER), and these results were compared with nearly simultaneous retrievals of marine liquid water clouds from MODIS on the Terra spacecraft. Finally, this MODIS-based algorithm was adapted to Multiangle Imaging SpectroRadiometer (MISR) data to infer the cloud optical thickness Of liquid water clouds from MISR. Results of this analysis are compared and contrasted.

  15. Quantitative Evaluation of Serum Proteins Uncovers a Protein Signature Related to Maturity-Onset Diabetes of the Young (MODY).

    Science.gov (United States)

    Tuerxunyiming, Muhadasi; Xian, Feng; Zi, Jin; Yimamu, Yilihamujiang; Abuduwayite, Reshalaiti; Ren, Yan; Li, Qidan; Abudula, Abulizi; Liu, SiQi; Mohemaiti, Patamu

    2018-01-05

    Maturity-onset diabetes of the young (MODY) is an inherited monogenic type of diabetes. Genetic mutations in MODY often cause nonsynonymous changes that directly lead to the functional distortion of proteins and the pathological consequences. Herein, we proposed that the inherited mutations found in a MODY family could cause a disturbance of protein abundance, specifically in serum. The serum samples were collected from a Uyghur MODY family through three generations, and the serum proteins after depletion treatment were examined by quantitative proteomics to characterize the MODY-related serum proteins followed by verification using target quantification of proteomics. A total of 32 serum proteins were preliminarily identified as the MODY-related. Further verification test toward the individual samples demonstrated the 12 candidates with the significantly different abundance in the MODY patients. A comparison of the 12 proteins among the sera of type 1 diabetes, type 2 diabetes, MODY, and healthy subjects was conducted and revealed a protein signature related with MODY composed of the serum proteins such as SERPINA7, APOC4, LPA, C6, and F5.

  16. Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.

    Science.gov (United States)

    Lourenço, Pedro M; Sousa, Carla A; Seixas, Júlia; Lopes, Pedro; Novo, Maria T; Almeida, A Paulo G

    2011-12-01

    Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (pNDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities. © 2011 The Society for Vector Ecology.

  17. Normalization of NDVI from Different Sensor System using MODIS Products as Reference

    International Nuclear Information System (INIS)

    Wenxia, Gan; Liangpei, Zhang; Wei, Gong; Huanfeng, Shen

    2014-01-01

    Medium Resolution NDVI(Normalized Difference Vegetation Index) from different sensor systems such as Landsat, SPOT, ASTER, CBERS and HJ-1A/1B satellites provide detailed spatial information for studies of ecosystems, vegetation biophysics, and land cover. Limitation of sensor designs, cloud contamination, and sensor failure highlighted the need to normalize and integrate NDVI from multiple sensor system in order to create a consistent, long-term NDVI data set. In this paper, we used a reference-based method for NDVI normalization. And present an application of this approach which covert Landsat ETM+ NDVI calculated by digital number (NDVI DN ) to NDVI calculated by surface reflectance (NDVI SR ) using MODIS products as reference, and different cluster was treated differently. Result shows that this approach can produce NDVI with highly agreement to NDVI calculated by surface reflectance from physical approaches based on 6S (Second Simulation of the satellite Signal in the Solar Spectrum). Although some variability exists, the cluster specified reference based approach shows considerable potential for NDVI normalization. Therefore, NDVI products in MODIS era from different sources can be combined for time-series analysis, biophysical parameter retrievals, and other downstream analysis

  18. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — This is MODIS Level-1A Near Real Time (NRT) product containing reformatted and packaged raw instrument data. MODIS instrument data, in packetized form, is reversibly...

  19. MODIS/Terra Aerosol 5-Min L2 Swath 10km V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS...

  20. Two decades of satellite observations of AOD over mainland China using ATSR-2, AATSR and MODIS/Terra: data set evaluation and large-scale patterns

    Science.gov (United States)

    de Leeuw, Gerrit; Sogacheva, Larisa; Rodriguez, Edith; Kourtidis, Konstantinos; Georgoulias, Aristeidis K.; Alexandri, Georgia; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Xue, Yong; van der A, Ronald

    2018-02-01

    The retrieval of aerosol properties from satellite observations provides their spatial distribution over a wide area in cloud-free conditions. As such, they complement ground-based measurements by providing information over sparsely instrumented areas, albeit that significant differences may exist in both the type of information obtained and the temporal information from satellite and ground-based observations. In this paper, information from different types of satellite-based instruments is used to provide a 3-D climatology of aerosol properties over mainland China, i.e., vertical profiles of extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a lidar flying aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the column-integrated extinction (aerosol optical depth - AOD) available from three radiometers: the European Space Agency (ESA)'s Along-Track Scanning Radiometer version 2 (ATSR-2), Advanced Along-Track Scanning Radiometer (AATSR) (together referred to as ATSR) and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, together spanning the period 1995-2015. AOD data are retrieved from ATSR using the ATSR dual view (ADV) v2.31 algorithm, while for MODIS Collection 6 (C6) the AOD data set is used that was obtained from merging the AODs obtained from the dark target (DT) and deep blue (DB) algorithms, further referred to as the DTDB merged AOD product. These data sets are validated and differences are compared using Aerosol Robotic Network (AERONET) version 2 L2.0 AOD data as reference. The results show that, over China, ATSR slightly underestimates the AOD and MODIS slightly overestimates the AOD. Consequently, ATSR AOD is overall lower than that from MODIS, and the difference increases with increasing AOD. The comparison also shows that neither of the ATSR and MODIS AOD data sets is better than the other one everywhere. However, ATSR ADV

  1. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD Retrievals Against Ground Sunphotometer Observations Over East Asia

    Science.gov (United States)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-01-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51% of VIIRS Environmental Data Record (EDR) AOD, 37% of GOCI AOD, 33% of VIIRS Intermediate Product (IP) AOD, 26% of Terra MODIS C6 3km AOD, and 16% of Aqua MODIS C6 3km AOD fell within the reference expected error (EE) envelope (+/-0.05/+/- 0.15 AOD). Comparing against AERONET AOD over the JapanSouth Korea region, 64% of EDR, 37% of IP, 61% of GOCI, 39% of Terra MODIS, and 56% of Aqua MODIS C6 3km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3km products had positive biases.

  2. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia

    Science.gov (United States)

    Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R. C.; Liu, Y.

    2016-02-01

    Persistent high aerosol loadings together with extremely high population densities have raised serious air quality and public health concerns in many urban centers in East Asia. However, ground-based air quality monitoring is relatively limited in this area. Recently, satellite-retrieved Aerosol Optical Depth (AOD) at high resolution has become a powerful tool to characterize aerosol patterns in space and time. Using ground AOD observations from the Aerosol Robotic Network (AERONET) and the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia Campaign, as well as from handheld sunphotometers, we evaluated emerging aerosol products from the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP), the Geostationary Ocean Color Imager (GOCI) aboard the Communication, Ocean, and Meteorology Satellite (COMS), and Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (Collection 6) in East Asia in 2012 and 2013. In the case study in Beijing, when compared with AOD observations from handheld sunphotometers, 51 % of VIIRS Environmental Data Record (EDR) AOD, 37 % of GOCI AOD, 33 % of VIIRS Intermediate Product (IP) AOD, 26 % of Terra MODIS C6 3 km AOD, and 16 % of Aqua MODIS C6 3 km AOD fell within the reference expected error (EE) envelope (±0.05 ± 0.15 AOD). Comparing against AERONET AOD over the Japan-South Korea region, 64 % of EDR, 37 % of IP, 61 % of GOCI, 39 % of Terra MODIS, and 56 % of Aqua MODIS C6 3 km AOD fell within the EE. In general, satellite aerosol products performed better in tracking the day-to-day variability than tracking the spatial variability at high resolutions. The VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.

  3. Detection of Asian Dust Storm Using MODIS Measurements

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2017-08-01

    Full Text Available Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS reflective solar bands and thermal emissive bands. Data from dust events that occurred during the past several years were collected as training data for spectral and statistical analyses. According to the spectral curves of various scene types, a series of spectral bands was selected individually or jointly, and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral algorithm was applied mainly to detect dust storms in Asia. The detection results were validated not only visually with MODIS true color images, but also quantitatively with products of Ozone Monitoring Instrument (OMI and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP. The validations showed that this multi-spectral detection algorithm was suitable to monitor dust aerosols in the selected study areas.

  4. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  5. A dizygotic twin pregnancy in a MODY 3-affected woman.

    Science.gov (United States)

    Bitterman, O; Iafusco, D; Torcia, F; Tinto, N; Napoli, A

    2016-10-01

    MODY diabetes includes rare familiar forms due to genetic mutations resulting in β-cell dysfunction. MODY 3 is due to mutations in the gene transcription factor HNF-1α, with diabetes diagnosis in adolescence or early adult life. Few data are available about MODY 3 in pregnancy. A 36-year-old Italian woman came to our unit at the 5th week of pregnancy. She was diagnosed with diabetes at 18 years, with negative autoimmunity and a strong familiarity for diabetes. She was treated with gliclazide and metformin. She had a previous pregnancy in which she was treated with insulin, giving birth at 38 weeks to a 3.210 kg baby girl, who showed neonatal hypoglycemia. We switched her to insulin treatment according to guidelines. We asked for genetic molecular testing, resulting in a HNF-1α gene mutation. A US examination at 7 weeks revealed a twin, bicorial, biamniotic pregnancy. At 37 weeks of gestation, she gave birth to two normal-weight baby girls; only one showed neonatal hypoglycemia and a genetic test revealed that she was affected by HNF-1α gene mutation. Subsequently, entire family of the woman was tested, showing that the father, the sister and the first daughter had the same HNF-1α mutation. A MODY 3 foetus needs a near-normal maternal glycemic control, because the exposure to intrauterine hyperglycemia can lead to an earlier age of diabetes onset. Neonatal hypoglycemia is generally observed in MODY 1 infants, but it is possible to hypothesize that some HNF-1α mutations could lead to a functionally impaired protein that might dysregulate HNF-4α expression determining hypoglycemia.

  6. MODIS/Aqua Aerosol 5-Min L2 Swath 10km V5.1

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  7. Multitemporal cross-calibration of the Terra MODIS and Landsat 7 ETM+ reflective solar bands

    Science.gov (United States)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Chander, Gyanesh; Choi, Taeyoung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  8. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    Science.gov (United States)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  9. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    Science.gov (United States)

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  10. Influence of composite period and date of observation on phenological metrics extracted from MODIS data

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2009-05-01

    Full Text Available ) The 8-day, 500m MODIS data (MOD09) for the Skukuza EOS site were downloaded from the MODIS ASCII Subsets website (http://daac.ornl.gov/cgi-bin/MODIS/GR_1/button.slim.pl). The data comprised 14 x 14 pixels of data covering a 7x7 km area for the period...

  11. Crosstalk effect and its mitigation in Aqua MODIS middle wave infrared bands

    Science.gov (United States)

    Sun, Junqiang; Madhavan, Sriharsha; Wang, Menghua

    2017-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on-board the Terra spacecraft. A follow on MODIS was launched on an afternoon orbit in 2002 and is aboard the Aqua spacecraft. Both MODIS instruments are very akin, has 36 bands, among which bands 20 to 25 are Middle Wave Infrared (MWIR) bands covering a wavelength range from approximately 3.750 μm to 4.515 μm. It was found that there was severe contamination in these bands early in mission but the effect has not been characterized and mitigated at the time. The crosstalk effect induces strong striping in the Earth View (EV) images and causes significant retrieval errors in the EV Brightness Temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect and successfully applied to mitigate the effect in both Terra and Aqua MODIS Long Wave Infrared (LWIR) Photovoltaic (PV) bands. In this paper, the crosstalk effect in the Aqua MWIR bands is investigated and characterized by deriving the crosstalk coefficients using the scheduled Aqua MODIS lunar observations for the MWIR bands. It is shown that there are strong crosstalk contaminations among the five MWIR bands and they also have significant crosstalk contaminations from Short Wave Infrared (SWIR) bands. The crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in these bands. It is demonstrated that the crosstalk correction successfully reduces the striping in the EV images and improves the accuracy of the EV BT in the five bands as was done similarly for LWIR PV bands. The crosstalk correction algorithm should thus be applied to improve both the image quality and radiometric accuracy of the Aqua MODIS MWIR bands Level 1B (L1B) products.

  12. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 1km SIN Grid V055

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra/MODIS Gross Primary Productivity (GPP) product (MOD17A2) is a cumulative composite of GPP values based on the radiation-use efficiency concept that is...

  13. THE EFFECT OF LAND USE CHANGE ON LAND SURFACE TEMPERATURE IN THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    S. Youneszadeh

    2015-12-01

    Full Text Available The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST by using the MODIS Terra (MOD11A2 Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST. Furthermore, the Zued (South-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.

  14. Genetic counseling in monogenic diabetes GCK MODY.

    Science.gov (United States)

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    Genetic testing in families with monogenic GCK MODY has predictive, diagnostic, and preventive utility. Predictive tests relate to people who have no features of the disorder themselves at the time of testing. Diagnostic tests relate to family members who have been previously diagnosed with diabetes mellitus or glucose metabolism disturbances. The preventive value of genetic testing for families is to raise awareness of the circumstances leading to glucose metabolism disorders. The detection of mutation carriers among family members of patients with GCK MODY and the determination of the clinical significance of the genetic test result. The study group included 27 families of adolescent patients with GCK MODY (39 (75%) of parents and 19 (73.08%) of siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. Subjects underwent a blood sample drawing for genetic and biochemical testing. Through the genetic diagnostics we diagnosed GCK MODY in 14 (63.64%) mothers, 6 (35.29%) fathers and in 7 (36,84%) siblings. Genetic testing has contributed to the detection of 7 (26.92%) asymptomatic carriers of GCK gene mutation among parents and 3 (15,79%) asymptomatic carriers among siblings declaring no carbohydrate metabolism disturbances (before genetic testing there were no indications suggesting carbohydrate metabolism disturbances; OGTT were performed after positive genetic testing). Each case of mutation detection, which is the cause of monogenic diabetes in a patient, justifies the genetic testing in other members of his/her family. Awareness of the genetic status may allow sick family member to confirm the diagnosis, while asymptomatic mutation carriers could benefit from an early clinical observation. Consequently, in each case it gives an opportunity to take diagnostic and therapeutic measures in accordance with the current state of

  15. Can MODIS AOD be employed to derive PM2.5 in Beijing-Tianjin-Hebei over China?

    Science.gov (United States)

    Ma, Xiaoyan

    2017-04-01

    The fine particular matter (PM) concentrations in China have increased considerably due to the rapid economic growth and urbanization in the last few decades, especially in the most populated and industrialized regions. The Beijing-Tianjin-Hebei is one of the most polluted regions in China, so to monitor the PM2.5 concentrations over this region is quite critical for human health. By making use the new released hourly PM2.5 mass concentration from ground-based observations in Beijing-Tianjin-Hebei over China, and the collocated MODIS level 2 AOD data from April 2014 to March 2015, we explored the relation between surface PM2.5 mass concentration and MODIS AOD and possibility to derive the surface PM2.5 from satellite retrieval in the region. Our study show that the relation strongly depend on the seasons due to distinct seasonal characteristics of PM2.5 and AOD, with a relatively better correlation in spring and summertime than autumn and wintertime. Our analysis give an evidence that worse relationship and/or smaller number of sample in wintertime is associated with the significantly high PM2.5 concentration and a lot of missing data occurring in MODIS AOD, implying that current MODIS AOD retrieval scheme does not work very well in highly polluted cases. The derived PM2.5 mass concentration from MODIS AOD in summertime can basically capture the major observed features of the time series and about 20% large bias of the derived values compared to the observation is expected to be reduced once longer time period data is available and used for analysis.

  16. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  17. pHis 317 Pro Mutasyonu Saptanmış Bir Mody Tip 2 Olgusu

    OpenAIRE

    BİNİCİ, Doğan Nasır; TİMUR, Özge; TURHAN, Aykut; ŞENYİĞİT2, Abdülhalim; FİLİZ, Murat; KİPER, Tuğba

    2017-01-01

    Genç yaşta ortaya çıkan erişkin tip diyabet [Maturity- onset Diabetes of the Young (MODY)], otozomal dominant kalıtılan nadir bir diyabet türüdür. Tüm diyabet olgularının %1-2’sini oluşturur. MODY tip diyabet olgularının çoğunluğu yanlışlıkla tip 1 veya tip 2 diyabet tanısı almaktadır. Birçok tipi tanımlanmasına rağmen glukokinaz mutasyonu ile meydana gelen MODY tip 2 daha sık görülmektedir. Bu vaka sunumunda daha önce rastlanmamış bir mutasyon, pHis 317 Pro mutasyonu saptanmış MODY tip 2 olg...

  18. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    Science.gov (United States)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  19. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content

    Science.gov (United States)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2018-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470

  20. Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000-2006) MODIS data

    Science.gov (United States)

    Papadimas, C. D.; Hatzianastassiou, N.; Mihalopoulos, N.; Querol, X.; Vardavas, I.

    2008-06-01

    The temporal variability of aerosol optical properties is investigated over the broader Mediterranean basin, with emphasis on aerosol optical depth (AOD) that is an effective measure of aerosol load. The study is performed using Collection 005 Level-3 mean daily spectral aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra and Aqua satellites, which cover the 6-year period from 2000 to 2006. The results of our analysis reveal a significant interannual variability of AOD in the study region. Specifically, the regional mean visible AOD over land and ocean has decreased over the period 2000-2006 by 20% in relative percentage terms (or by 0.04 in absolute terms). This tendency is statistically significant according to the Man-Kendall test. However, the decreasing tendency of AOD is not uniform over the whole basin. It appears mainly in the western parts of Iberian, Italian, and Balkan peninsulas (and coastal areas), as well as in the southern Anatolian peninsula. The analysis for summer (June to September) and winter (November to March) seasons revealed different tendencies in both AOD and precipitation. The summer-period AOD has decreased by 0.04 (or by 14%) probably due to decreased emission rates of anthropogenic pollution. In contrast, the winter AOD has increased by 0.03 (or 19%) mainly related to decreased precipitation (associated with an increasing tendency in the NAO index). The decreasing tendency in MODIS AOD is in good agreement with corresponding AOD tendencies based on data from Aerobot Robotic Network (AERONET) stations in the study region and ground based PM10 measurements at selected stations.

  1. Land cover in Upper Egypt assessed using regional and global land cover products derived from MODIS imagery.

    Science.gov (United States)

    Fuller, Douglas O; Parenti, Michael S; Gad, Adel M; Beier, John C

    2012-01-01

    Irrigation along the Nile River has resulted in dramatic changes in the biophysical environment of Upper Egypt. In this study we used a combination of MODIS 250 m NDVI data and Landsat imagery to identify areas that changed from 2001-2008 as a result of irrigation and water-level fluctuations in the Nile River and nearby water bodies. We used two different methods of time series analysis -- principal components (PCA) and harmonic decomposition (HD), applied to the MODIS 250 m NDVI images to derive simple three-class land cover maps and then assessed their accuracy using a set of reference polygons derived from 30 m Landsat 5 and 7 imagery. We analyzed our MODIS 250 m maps against a new MODIS global land cover product (MOD12Q1 collection 5) to assess whether regionally specific mapping approaches are superior to a standard global product. Results showed that the accuracy of the PCA-based product was greater than the accuracy of either the HD or MOD12Q1 products for the years 2001, 2003, and 2008. However, the accuracy of the PCA product was only slightly better than the MOD12Q1 for 2001 and 2003. Overall, the results suggest that our PCA-based approach produces a high level of user and producer accuracies, although the MOD12Q1 product also showed consistently high accuracy. Overlay of 2001-2008 PCA-based maps showed a net increase of 12 129 ha of irrigated vegetation, with the largest increase found from 2006-2008 around the Districts of Edfu and Kom Ombo. This result was unexpected in light of ambitious government plans to develop 336 000 ha of irrigated agriculture around the Toshka Lakes.

  2. The Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to Input Data (FPAR/LAI

    Directory of Open Access Journals (Sweden)

    Zhengjia Liu

    2014-12-01

    Full Text Available The aims are to validate and assess the performances of MODIS gross primary production (MODIS-GPP and evapotranspiration (MODIS-ET products in China’s different land cover types and their sensitivity to remote sensing input data. In this study, MODIS-GPP and -ET are evaluated using flux derived/measured data from eight sites of ChinaFLUX. Results show that MODIS-GPP generally underestimates GPP (R2 is 0.58, bias is −6.7 gC/m2/8-day and RMSE is 19.4 gC/m2/8-day at all sites and MODIS-ET overestimates ET (R2 is 0.36, bias is 6 mm/8-day and RMSE is 11 mm/8-day when comparing with derived GPP and measured ET, respectively. For evergreen forests, MODIS-GPP gives a poor performance with R2 varying from 0.03 to 0.44; in contrast, MODIS-ET provides more reliable results. In croplands, MODIS-GPP can explain 80% of GPP variance, but it overestimates flux derived GPP in non-growing season and underestimates flux derived GPP in growing season; similar overestimations also presented in MODIS-ET. For grasslands and mixed forests, MODIS-GPP and -ET perform good estimating accuracy. By designing four experimental groups and taking GPP simulation as an example, we suggest that the maximum light use efficiency of croplands should be optimized, and the differences of meteorological data have little impact on GPP estimation, whereas remote sensing leaf area index/fraction of photo-synthetically active radiation (LAI/FPAR can greatly affect GPP/ET estimations for all land cover types. Thus, accurate remote sensing parameters are important for achieving reliable estimations.

  3. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes.

    Science.gov (United States)

    Bonnefond, A; Yengo, L; Philippe, J; Dechaume, A; Ezzidi, I; Vaillant, E; Gjesing, A P; Andersson, E A; Czernichow, S; Hercberg, S; Hadjadj, S; Charpentier, G; Lantieri, O; Balkau, B; Marre, M; Pedersen, O; Hansen, T; Froguel, P; Vaxillaire, M

    2013-03-01

    MODY is believed to be caused by at least 13 different genes. Five rare mutations at the BLK locus, including only one non-synonymous p.A71T variant, were reported to segregate with diabetes in three MODY families. The p.A71T mutation was shown to abolish the enhancing effect of BLK on insulin content and secretion from pancreatic beta cell lines. Here, we reassessed the contribution of BLK to MODY and tested the effect of BLK-p.A71T on type 2 diabetes risk and variations in related traits. BLK was sequenced in 64 unelucidated MODY samples. The BLK-p.A71T variant was genotyped in a French type 2 diabetes case-control study including 4,901 cases and 4,280 controls, and in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) and SUVIMAX (Supplementation en Vitamines et Mineraux Antioxydants) population-based cohorts (n = 6,905). The variant effects were assessed by logistic and linear regression models. No rare non-synonymous BLK mutations were found in the MODY patients. The BLK p.A71T mutation was present in 52 normoglycaemic individuals, making it very unlikely that this loss-of-function mutation causes highly penetrant MODY. We found a nominal association between this variant and increased type 2 diabetes risk, with an enrichment of the mutation in the obese diabetic patients, although no significant association with BMI was identified. No mutation in BLK was found in our MODY cohort. From our findings, the BLK-p.A71T mutation may weakly influence type 2 diabetes risk in the context of obesity; however, this will require further validation.

  4. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore.

    Science.gov (United States)

    Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn

    2017-11-01

    Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Mapping soil degradation by topsoil grain size using MODIS data

    OpenAIRE

    XIAO, Jieying; SHEN, Yanjun; TATEISHI, Ryutaro

    2005-01-01

    [ABSTRACT] MODIS BRDF reflectance data at the end of April 2004 was selected to make a desertification map base on topsoil grain size by using Gain Size Index at arid and semiarid Asia. After data processing, GSI was applied into desertification mapping, and we find that high GSI area distributed at the desert and its’ marginal area, degraded grassland, desert steppe. The desertification map was output according to the correlation between GSI and grain size distribution, the classification of...

  6. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    Science.gov (United States)

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  7. Assessment of MODIS On-Orbit Calibration Using a Deep Convective Cloud Technique

    Science.gov (United States)

    Mu, Qiaozhen; Wu, Aisheng; Chang, Tiejun; Angal, Amit; Link, Daniel; Xiong, Xiaoxiong; Doelling, David R.; Bhatt, Rajendra

    2016-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 micrometers. Therefore, any degradation of the SD beyond 0.94 micrometers cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3- 7, and 26, with spectral coverage from 0.47 to 2.13 micrometers. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.

  8. Remote sensing of aerosols by synergy of caliop and modis

    OpenAIRE

    Kudo Rei; Nishizawa Tomoaki; Higurashi Akiko; Oikawa Eiji

    2018-01-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obt...

  9. Investigating the early snowmelt of 2015 in the Cascade Mountains using new MODIS-based snowmelt timing maps

    Science.gov (United States)

    O'Leary, D., III; Hall, D. K.; Medler, M. J.; Flower, A.; Matthews, R.

    2017-12-01

    The spring of 2015 brought an alarmingly early snowmelt to the Cascade Mountains, impacting flora, fauna, watersheds, and wildfire activity. It is important that we understand these events because model-based projections suggest that snowmelt may arrive an average of 10-40 days earlier across the continental US by the year 2100. Available snow measurement methods including SNOTEL stations and stream gauges offer insights into point locations and individual watersheds, but lack the detail needed to assess snowmelt anomalies across the landscape. In this study we describe our new MODIS-based snowmelt timing maps (STMs), validate them with SNOTEL measurements, then use them to explore the spatial patterns of the 2015 snowmelt in the Cascades. We found that the Cascade Mountains experienced snowmelt 41 days earlier than the 2001-2015 average, with many areas melting >70 days early. Of concern to land managers, these events may be the `new normal' in the decades to come.

  10. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath V006

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath (MYD01) product contains reformatted and packaged raw instrument data. MODIS instrument data, in packetized...

  11. A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas

    Directory of Open Access Journals (Sweden)

    Yadvinder S. Malhi

    2012-03-01

    Full Text Available Evapotranspiration (ET plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE yielded r 2= 0.64 and r2 = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r 2 = 0.76 and r2 = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km2 (r2 = 0.88. Inputs to which the algorithm is most sensitive are vegetation index (NDVI, gradient of temperature (dT to compute sensible heat flux (H and net radiation (Rn. It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.

  12. Inferring Anthropogenic Trends from Satellite Data for Water-sustainability of US Cities Near Artificial Reservoirs

    Science.gov (United States)

    Yigzaw, W. Y.; Hossain, F.

    2015-12-01

    Impact of anthropogenic activities on water cycle and water supply has different effects at global and regional spatial scales, ensuing the need for a design and water management approach that considers anthropogenic inputs. One of the major inputs in local-to-regional availability of water and the water cycle are land use land cover change as a result of urbanization, artificial reservoirs and irrigation activity. This study employed a multi-factorial approach involving population trends, water use (and demand), streamflow; and various satellite derived water-relevant variables. These variables are: daily precipitation (from TRMM, 3B42.V7), Normalized Difference Vegetation Index-NDVI (from MODIS-MOD13A1), land surface temperature-LST (from MODIS-MOD11A2), and land cover (MODIS-MCD12Q1). Long terms exhibited by such data were used to understand temporal and spatial trends in impounded watersheds hosting a large and growing city in its proximity. The selected cities are: City of Atlanta-Georgia and Buford dam; Columbia-South Carolina and Saluda dam; Columbus-Ohio and Alum Creek dam; Montgomery-Alabama and Jordan dam; Tulsa-Oklahoma and Keystone dam; Tuscaloosa-Alabama and Tuscaloosa dam were selected. our study reveals that daily mean stream flow has been decreasing in all but one (Tulsa) of the areas selected. Satellite data trends between 2000 and 2012 showed a steady decrease in precipitation and NDVI; while LST has gradually increased. We attribute the NDVI (i.e., gradual decrease in vegetation cover) to LST rather than precipitation trends. The results of this research suggested that future temperature projection from climate models can be used in understanding vegetation activity and water availability over the study areas. Cities with larger upstream watershed area are potentially more sustainable and resilient (than those with small watersheds) as a result of spatial variability of water resources' response to climate change. Inter-basin water resources

  13. MODY3 in the child with type 2 diabetes mellitus phenotype: case report

    Directory of Open Access Journals (Sweden)

    Tamara Leonidovna Kuraeva

    2013-06-01

    Full Text Available MODY is a heterogeneous group of diseases that stem from certain genetic mutations and are characterized by beta-cell dysfunction, early clinical onset (before the age of 25 and autosomal dominant inheritance. Nowadays many studies address atypical variants of diabetes mellitus (DM and consequential problems in differential diagnosis. Though generally patients with MODY have normal body weight, the ongoing spread of obesity will probably produce comorbid forms and thus alter clinical picture. We present a case of DM in a 13-year-old patient that characterizes development of MODY3 in type 2 DM-like phenotype.

  14. Sensitivity Study for Sensor Optical and Electric Crosstalk Based on Spectral Measurements: An Application to Developmental Sensors Using Heritage Sensors Such As MODIS

    Science.gov (United States)

    Butler, James J.; Oudrari, Hassan; Xiong, Sanxiong; Che, Nianzeng; Xiong, Xiaoxiong

    2007-01-01

    The process of developing new sensors for space flight frequently builds upon the designs and experience of existing heritage space flight sensors. Frequently in the development and testing of new sensors, problems are encountered that pose the risk of serious impact on successful retrieval of geophysical products. This paper describes an approach to assess the importance of optical and electronic cross-talk on retrieval of geophysical products using new MODIS-like sensors through the use of MODIS data sets. These approaches may be extended to any sensor characteristic and any sensor where that characteristic may impact the Level 1 products so long as validated geophysical products are being developed from the heritage sensor. In this study, a set of electronic and/or optical cross-talk coefficients are postulated. These coefficients are sender-receiver influence coefficients and represent a sensor signal contamination on any detector on a focal plane when another band's detectors on that focal plane are stimulated with a monochromatic light. The approach involves using the postulated cross-talk coefficients on an actual set of MODIS data granules. The original MODIS data granules and the cross-talk impacted granules are used with validated geophysical algorithms to create the derived products. Comparison of the products produced with the original and cross-talk impacted granules indicates potential problems, if any, with the characteristics of the developmental sensor that are being studied.

  15. Inventory of Agricultural Land Area of Egypt Using Modis Data

    International Nuclear Information System (INIS)

    Hereher, M.E.

    2009-01-01

    A new generation of satellite data has been emerged since the launch of the Moderate Resolution Imaging Spectro radiometer (MODIS), in 1999, for monitoring land resources and terrestrial environments. Agricultural land area of Egypt in 2005 was estimated using MODIS data. Four scenes were utilized to extract the total country area. MODIS vegetation Indices product (MOD 13 QI) was the most suitable to extract the total gross cultivated land area of Egypt. An unsupervised classification algorithm was applied to estimate the cultivated land area, which approached 8.2 million feddans in 2005. The Nile Delta contains the majority of agricultural lands (63.2%). The Nile Valley and EI-Fayoum Depression possess 33.9% and the remaining little percent (∼3%) represents the scattered agricultural land along the Suez Canal, Sinai and the Western Desert. The classification accuracy of agricultural land reached 84%, revealing higher confidence of assessment. The present study asserts on the importance of using remote sensing in monitoring agricultural land resources

  16. Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Science.gov (United States)

    Angal, Amit; Brinkmann, Jake; Kumar, A. Senthil; Xiong, Xiaoxiong

    2016-01-01

    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands.

  17. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  18. MODIS 250m burned area mapping based on an algorithm using change point detection and Markov random fields.

    Science.gov (United States)

    Mota, Bernardo; Pereira, Jose; Campagnolo, Manuel; Killick, Rebeca

    2013-04-01

    Area burned in tropical savannas of Brazil was mapped using MODIS-AQUA daily 250m resolution imagery by adapting one of the European Space Agency fire_CCI project burned area algorithms, based on change point detection and Markov random fields. The study area covers 1,44 Mkm2 and was performed with data from 2005. The daily 1000 m image quality layer was used for cloud and cloud shadow screening. The algorithm addresses each pixel as a time series and detects changes in the statistical properties of NIR reflectance values, to identify potential burning dates. The first step of the algorithm is robust filtering, to exclude outlier observations, followed by application of the Pruned Exact Linear Time (PELT) change point detection technique. Near-infrared (NIR) spectral reflectance changes between time segments, and post change NIR reflectance values are combined into a fire likelihood score. Change points corresponding to an increase in reflectance are dismissed as potential burn events, as are those occurring outside of a pre-defined fire season. In the last step of the algorithm, monthly burned area probability maps and detection date maps are converted to dichotomous (burned-unburned maps) using Markov random fields, which take into account both spatial and temporal relations in the potential burned area maps. A preliminary assessment of our results is performed by comparison with data from the MODIS 1km active fires and the 500m burned area products, taking into account differences in spatial resolution between the two sensors.

  19. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Science.gov (United States)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  20. Land Surface Phenologies of the Northern Great Plains: Possible Futures Arising From Land and Climate Change

    Science.gov (United States)

    Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.

    2008-12-01

    Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated

  1. Phenotype Heterogeneity in Glucokinase-Maturity-Onset Diabetes of the Young (GCK-MODY) Patients.

    Science.gov (United States)

    Wędrychowicz, Anna; Tobór, Ewa; Wilk, Magdalena; Ziółkowska-Ledwith, Ewa; Rams, Anna; Wzorek, Katarzyna; Sabal, Barbara; Stelmach, Małgorzata; Starzyk, Jerzy B

    2017-09-01

    The aim of the study was to evaluate the clinical phenotypes of glucokinase-maturity-onset diabetes of the young (GCK-MODY) pediatric patients from Southwest Poland and to search for phenotype-genotype correlations. We conducted a retrospective analysis of data on 37 CGK-MODY patients consisting of 21 girls and 16 boys of ages 1.9-20.1 (mean 12.5±5.2) years, treated in our centre in the time period between 2002 and 2013. GCK-MODY carriers were found in a frequency of 3% among 1043 diabetes mellitus (DM) patients and constituted the second most numerous group of DM patients, following type 1 DM, in our centre. The mean age of GCK-MODY diagnosis was 10.4±4.5 years. The findings leading to the diagnosis were impaired fasting glucose (IFG) (15/37), symptoms of hyperglycemia (4/37), and a GCK-MODY family history (18/37). Mean fasting blood glucose level was 6.67±1.64 mmol/L. In the sample, there were patients with normal values (4/37), those with DM (10/37), and IFG (23/37). In OGTT, 120 min glucose level was normal in 8, diabetic in 2, and characteristic for glucose intolerance in 27 of the 37 cases. Twelve of the 37 cases (32%) were identified as GCK-MODY carriers. In the total group, mean C-peptide level was 2.13±0.65 ng/mL and HbA1c was 6.26±0.45% (44.9±-18 mmol/mol). Thirty-two patients had a family history of DM. DM autoantibodies were detected in two patients. The most common mutations were p.Gly318Arg (11/37) and p.Val302Leu (8/37). There was no correlation between type of mutations and plasma glucose levels. The phenotype of GCK-MODY patients may vary from those characteristic for other DM types to an asymptomatic state with normal FG with no correlation with genotype.

  2. Mitigation Atmospheric Effects in Interferogram with Using Integrated Meris/modis Data and a Case Study Over Southern California

    Science.gov (United States)

    Wang, X.; Zhang, P.; Sun, Z.

    2018-04-01

    Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.

  3. The Use of MODIS NDVI Data for Characterizing Cropland Across the Great Lakes Basin

    Science.gov (United States)

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides new opportunities for characterizing land-cover (LC) to support monitoring and assessment studies at watershed, regional and global scales. This research evaluated the potential for using the MODIS Normalized Diff...

  4. Evaluating thermal image sharpening over irrigated crops in a desert environment

    KAUST Repository

    Rosas, Jorge

    2014-09-01

    Satellite remote sensing provides spatially and temporally distributed data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Multi-spectral platforms, including Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), acquire imagery in the visible to shortwave infrared and thermal infrared (TIR) domain at resolutions ranging from 30 to 1000 m. Land-surface temperature (LST) derived from TIR satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. As a result, several techniques for thermal sharpening have been developed. In this study, the data mining sharpener (DMS; Gao et al., 2012) technique is applied over irrigated farming areas located in harsh desert environments in Saudi Arabia. The DMS approach sharpens TIR imagery using finer resolution shortwave spectral reflectances and functional LST and reflectance relationships established using a flexible regression tree approach. In this study, the DMS is applied to Landsat 8 data (100m TIR resolution), which is scaled up to 240m, 480m, and 960m in order to assess the accuracy of the DMS technique in arid irrigated farming environments for different sharpening ratios. Furthermore, the scaling done on Landsat 8 data is consistent with the resolution of MODIS products. Potential enhancements to DMS are investigated including the use of ancillary terrain data. Finally, the impact of using sharpened LST, as input to a two-source energy balance model, on simulated ET will be evaluated. The ability to accurately monitor field-scale changes in vegetation cover, crop conditions and surface fluxes, are of main importance towards an efficient water use in areas where fresh water resources are scarce and poorly

  5. HNF1 alpha gene coding regions mutations screening, in a Caucasian population clinically characterized as MODY from Argentina.

    Science.gov (United States)

    Lopez, Ariel Pablo; Foscaldi, Sabrina Andrea; Perez, Maria Silvia; Rodriguez, Martín; Traversa, Mercedes; Puchulu, Félix Miguel; Bergada, Ignacio; Frechtel, Gustavo Daniel

    2011-02-01

    There are at least six subtypes of Maturity Onset Diabetes of the Young (MODY) with distinctive genetic causes. MODY 3 is caused by mutations in HNF1A gene, an insulin transcription factor, so mutations in this gene are associated with impaired insulin secretion. MODY 3 prevalence differs according to the population analyzed, but it is one of the most frequent subtypes. Therefore, our aims in this work were to find mutations present in the HNF1A gene and provide information on their prevalence. Mutations screening was done in a group of 80 unrelated patients (average age 17.1 years) selected by clinical characterization of MODY, by SSCP electrophoresis followed by sequenciation. We found eight mutations, of which six were novel and four sequence variants, which were all novel. Therefore the prevalence of MODY 3 in this group was 10%. Compared clinical data between the non-MODY 3 patients and the MODY 3 diagnosed patients did not show any significant difference. Eight patients were diagnosed as MODY 3 and new data about the prevalence of that subtype is provided. Our results contribute to reveal novel mutations, providing new data about the prevalence of that subtype. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    Directory of Open Access Journals (Sweden)

    Laura Ulsig

    2017-01-01

    Full Text Available Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI. This study investigates the potential of a Photochemical Reflectance Index (PRI, which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R2 = 0.36–0.8, which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R2 > 0.6 in all cases. The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  7. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    Directory of Open Access Journals (Sweden)

    V. Pappas

    2013-08-01

    Full Text Available The new global aerosol climatology named HAC (Hamburg Aerosol Climatology is compared against MODIS (Collection 5, 2000–2007 and CALIOP (Level 2-version 3, 2006–2011 retrievals. The comparison of aerosol optical depth (AOD from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998–2007 sites, representative of main aerosol types (pollutants, sea salt, biomass and dust. Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm, 6–12% at visible and 18% at near-infrared (1000 nm. For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.

  8. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  9. AfSIS MODIS Collection: Vegetation Indices, April 2014

    Data.gov (United States)

    Center for International Earth Science Information Network, Columbia University — The Africa Soil Information Service (AfSIS) Moderate Resolution Imaging Spectroradiometer (MODIS) Collection's Vegetation Indices data set contains rasters with the...

  10. Ground and satellite-based remote sensing of mineral dust using AERI spectra and MODIS thermal infrared window brightness temperatures

    Science.gov (United States)

    Hansell, Richard Allen, Jr.

    The radiative effects of dust aerosol on our climate system have yet to be fully understood and remain a topic of contemporary research. To investigate these effects, detection/retrieval methods for dust events over major dust outbreak and transport areas have been developed using satellite and ground-based approaches. To this end, both the shortwave and longwave surface radiative forcing of dust aerosol were investigated. The ground-based remote sensing approach uses the Atmospheric Emitted Radiance Interferometer brightness temperature spectra to detect mineral dust events and to retrieve their properties. Taking advantage of the high spectral resolution of the AERI instrument, absorptive differences in prescribed thermal IR window sub-band channels were exploited to differentiate dust from cirrus clouds. AERI data collected during the UAE2 at Al-Ain UAE was employed for dust retrieval. Assuming a specified dust composition model a priori and using the light scattering programs of T-matrix and the finite difference time domain methods for oblate spheroids and hexagonal plates, respectively, dust optical depths have been retrieved and compared to those inferred from a collocated and coincident AERONET sun-photometer dataset. The retrieved optical depths were then used to determine the dust longwave surface forcing during the UAE2. Likewise, dust shortwave surface forcing is investigated employing a differential technique from previous field studies. The satellite-based approach uses MODIS thermal infrared brightness temperature window data for the simultaneous detection/separation of mineral dust and cirrus clouds. Based on the spectral variability of dust emissivity at the 3.75, 8.6, 11 and 12 mum wavelengths, the D*-parameter, BTD-slope and BTD3-11 tests are combined to identify dust and cirrus. MODIS data for the three dust-laden scenes have been analyzed to demonstrate the effectiveness of this detection/separation method. Detected daytime dust and cloud

  11. A decade of molecular genetic testing for MODY: a retrospective study of utilization in The Netherlands.

    Science.gov (United States)

    Weinreich, Stephanie S; Bosma, Astrid; Henneman, Lidewij; Rigter, Tessel; Spruijt, Carla M J; Grimbergen, Anneliese J E M A; Breuning, Martijn H; de Koning, Eelco J P; Losekoot, Monique; Cornel, Martina C

    2015-01-01

    Genetic testing for maturity-onset diabetes of the young (MODY) may be relevant for treatment and prognosis in patients with usually early-onset, non-ketotic, insulin-sensitive diabetes and for monitoring strategies in non-diabetic mutation carriers. This study describes the first 10 years of genetic testing for MODY in The Netherlands in terms of volume and test positive rate, medical setting, purpose of the test and age of patients tested. Some analyses focus on the most prevalent subtype, HNF1A MODY. Data were retrospectively extracted from a laboratory database. In total, 502 individuals were identified with a pathogenic mutation in HNF4A, GCK or HNF1A between 2001 and 2010. Although mutation scanning for MODY was used at an increasing rate, cascade testing was only used for one relative, on average, per positive index patient. Testing for HNF1A MODY was mostly requested by internists and paediatricians, often from regional hospitals. Primary care physicians and clinical geneticists rarely requested genetic testing for HNF1A MODY. Clinical geneticists requested cascade testing relatively more often than other health professionals. A substantial proportion (currently 29%) of HNF1A MODY probands was at least 40 years old at the time of testing. In conclusion, the number of individuals genetically tested for MODY so far in The Netherlands is low compared with previously predicted numbers of patients. Doctors' valuation of the test and patients' and family members' response to (an offer of) genetic testing on the other hand need to be investigated. Efforts may be needed to develop and implement translational guidelines.

  12. The MODIS Vegetation Canopy Water Content product

    Science.gov (United States)

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  13. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection

    International Nuclear Information System (INIS)

    Wu, Dong; Lu, Bo; Zhang, Tianche; Yan, Fengqi

    2015-01-01

    A method to detect sea fogs from the measurement data acquired by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is proposed in this paper. Because of the unique capability of vertical-resolved measurements, sea fogs and low clouds can be more easily distinguished in the CALIOP data compared with passive satellite measurements. Yellow Sea where sea fogs occur frequently is selected to test the method. Nine cases of daytime sea fog events from 2008 to 2011 in the Yellow Sea are studied intensively to characterize the remotely sensed radiation properties of various targets, such as clear-sky sea surface, sea fog, low cloud and high cloud. These fog cases are then used in an attempt to evaluate sea fogs identified from the MODIS measurements. The method proposed in this paper can also be used for nighttime cases. Multi-year sea fog dataset can be made from the CALIOP measurement and used to validate the MODIS sea fog detection. - Highlights: • A method of sea fog detection from the CALIOP measurements is proposed. • CALIOP VFM and 532-nm attenuated backscatter products are integrated used. • Sea fogs and low clouds can be more easily distinguished in the CALIOP data. • 9 Cases of daytime sea fog events in the Yellow Sea are selected to test the method. • The MODIS sea fog detections are evaluated using the collocated CALIOP data

  14. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort.

    Science.gov (United States)

    Bacon, S; Kyithar, M P; Rizvi, S R; Donnelly, E; McCarthy, A; Burke, M; Colclough, K; Ellard, S; Byrne, M M

    2016-07-01

    HNF1A gene mutations are the most common cause of maturity-onset diabetes of the young (MODY) in the UK. Persons with HNF1A-MODY display sensitivity to sulphonylurea therapy; however, the long-term efficacy is not established. There is limited literature as to the prevalence of micro- and macrovascular complications in this unique cohort. The aim of this study was to determine the natural progression and clinical management of HNF1A-MODY diabetes in a dedicated MODY clinic. Sixty patients with HNF1A-MODY and a cohort of 60 BMI-, age-, ethnicity- and diabetes duration-matched patients with Type 1 diabetes mellitus participated in the study. All patients were phenotyped in detail. Clinical follow-up of the HNF1A-MODY cohort occurred on a bi-annual basis. Following a genetic diagnosis of MODY, the majority of the cohort treated with sulphonylurea therapy remained insulin independent at 84-month follow-up (80%). The HbA1c in the HNF1A-MODY group treated with sulphonylurea therapy alone improved significantly over the study period [from 49 (44-63) mmol/mol, 6.6 (6.2-7.9)% to 41 (31-50) mmol/mol, 5.9 (5-6.7)%; P = 0.003]. The rate of retinopathy was significantly lower than that noted in the Type 1 diabetes mellitus group (13.6 vs. 50%; P = 0.0001).There was also a lower rate of microalbuminuria and cardiovascular disease in the HNF1A-MODY group compared with the Type 1 diabetes mellitus group. This study demonstrates that the majority of patients with HNF1A-MODY can be maintained successfully on sulphonylurea therapy with good glycaemic control. We note a significantly lower rate of micro- and macrovascular complications than reported previously. The use of appropriate therapy at early stages of the disorder may decrease the incidence of complications. © 2015 Diabetes UK.

  15. MODIS NDVI Response Following Fires in Siberia

    Science.gov (United States)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  16. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method

    Directory of Open Access Journals (Sweden)

    Yuting Yang

    2015-06-01

    Full Text Available Surface soil moisture (SM plays a fundamental role in energy and water partitioning in the soil–plant–atmosphere continuum. A reliable and operational algorithm is much needed to retrieve regional surface SM at high spatial and temporal resolutions. Here, we provide an operational framework of estimating surface SM at fine spatial resolutions (using visible/thermal infrared images and concurrent meteorological data based on a trapezoidal space defined by remotely sensed vegetation cover (Fc and land surface temperature (LST. Theoretical solutions of the wet and dry edges were derived to achieve a more accurate and effective determination of the Fc/LST space. Subjectivity and uncertainty arising from visual examination of extreme boundaries can consequently be largely reduced. In addition, theoretical derivation of the extreme boundaries allows a per-pixel determination of the VI/LST space such that the assumption of uniform atmospheric forcing over the entire domain is no longer required. The developed approach was tested at the Tibetan Plateau Soil Moisture/Temperature Monitoring Network (SMTMN site in central Tibet, China, from August 2010 to August 2011 using Moderate Resolution Imaging Spectroradiometer (MODIS Terra images. Results indicate that the developed trapezoid model reproduced the spatial and temporal patterns of observed surface SM reasonably well, with showing a root-mean-square error of 0.06 m3·m−3 at the site level and 0.03 m3·m−3 at the regional scale. In addition, a case study on 2 September 2010 highlighted the importance of the theoretically calculated wet and dry edges, as they can effectively obviate subjectivity and uncertainties in determining the Fc/LST space arising from visual interpretation of satellite images. Compared with Land Surface Models (LSMs in Global Land Data Assimilation System-1, the remote sensing-based trapezoid approach gave generally better surface SM estimates, whereas the LSMs showed

  17. Examination of Regional Trends in Cloud Properties over Surface Sites Derived from MODIS and AVHRR using the CERES Cloud Algorithm

    Science.gov (United States)

    Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.

    2017-12-01

    Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.

  18. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  19. Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations

    Science.gov (United States)

    Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Feng, Lian; Boler, Richard; Kovach, Charles

    2013-02-01

    and June. These spatial and temporal distributions appear to be regulated primarily by wind and river discharge, which also explain the significant declining trend in Chla since 2005. The established 10-year MODIS-based Chla data record provides complementary information to existing field-based monitoring programs, helping to make nutrient reduction management decisions. Furthermore, preliminary tests of the algorithm for the Chesapeake Bay and for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements suggest possible applicability of the proposed approach to other estuaries and satellite ocean color sensors.

  20. GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation.

    Science.gov (United States)

    Negahdar, Maria; Aukrust, Ingvild; Johansson, Bente B; Molnes, Janne; Molven, Anders; Matschinsky, Franz M; Søvik, Oddmund; Kulkarni, Rohit N; Flatmark, Torgeir; Njølstad, Pål Rasmus; Bjørkhaug, Lise

    2012-11-01

    GCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically 'normal' GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    Science.gov (United States)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  2. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  3. CHARACTERISING VEGETATED SURFACES USING MODIS MULTIANGULAR SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    G. McCamley

    2012-07-01

    Full Text Available Bidirectional Reflectance Distribution Functions (BRDF seek to represent variations in surface reflectance resulting from changes in a satellite's view and solar illumination angles. BRDF representations have been widely used to assist in the characterisation of vegetation. However BRDF effects are often noisy, difficult to interpret and are the spatial integral of all the individual surface features present in a pixel. This paper describes the results of an approach to understanding how BRDF effects can be used to characterise vegetation. The implementation of the Ross Thick Li Sparse BRDF model using MODIS is a stable, mature data product with a 10 year history and is a ready data source. Using this dataset, a geometric optical model is proposed that seeks to interpret the BRDF effects in terms of Normalised Difference Vegetation Index (NDVI and a height-to-width ratio of the vegetation components. The height-to-width ratio derived from this model seeks to represent the dependence of NDVI to changes in view zenith angle as a single numeric value. The model proposed within this paper has been applied to MODIS pixels in central Australia for areas in excess of 18,000 km2. The study area is predominantly arid and sparsely vegetated which provides a level of temporal and spatial homogeneity. The selected study area also minimises the effects associated with mutual obscuration of vegetation which is not considered by the model. The results are represented as a map and compared to NDVI derived from MODIS and NDVI derived from Landsat mosaics developed for Australia's National Carbon Accounting System (NCAS. The model reveals additional information not obvious in reflectance data. For example, the height-to-width ratio is able to reveal vegetation features in arid areas that do not have an accompanying significant increase in NDVI derived from MODIS, i.e. the height-to-width ratio reveals vegetation which is otherwise only apparent in NDVI derived

  4. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    Science.gov (United States)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  5. Evaluation of the MODIS Albedo Product over a Heterogeneous Agricultural Area

    Science.gov (United States)

    Sobrino, Jose Antonio; Franch, B.; Oltra-Carrio, R.; Vermote, E. F.; Fedele, E.

    2013-01-01

    In this article, the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF)/Albedo product (MCD43) is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction (EODIX) project campaign, which was developed in Barrax (Spain) in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal (RTLSR) (which corresponds to the MODIS BRDF algorithm) and the RossThick-Maignan-LiSparse-Reciprocal (RTLSR-HS), were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner (AHS) sensor. During the campaign, airborne images were retrieved with different view zenith angles along the principal and orthogonal planes. Comparing the results of applying the models to the airborne data with ground measurements, we obtained a root mean square error (RMSE) of 0.018 with both RTLSR and RTLSR-HS models. The evaluation of the MODIS BRDF/Albedo product (MCD43) was performed by comparing satellite images with AHS estimations. The results reported an RMSE of 0.04 with both models. Additionally, taking advantage of a homogeneous barley pixel, we compared in situ albedo data to satellite albedo data. In this case, the MODIS albedo estimation was (0.210 +/- 0.003), while the in situ measurement was (0.204 +/- 0.003). This result shows good agreement in regard to a homogeneous pixel.

  6. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  7. Simulation of tsunami effects on sea surface salinity using MODIS satellite data

    International Nuclear Information System (INIS)

    Ramlan, N E F; Genderen, J van; Hashim, M; Marghany, M

    2014-01-01

    Remote sensing technology has been recognized as powerful tool for environmental disaster studies. Ocean surface salinity is considered as a major element in the marine environment. In this study, we simulate the 2004 tsunami's impact on a physical ocean parameter using the least square algorithm to retrieve sea surface salinity (SSS) from MODIS satellite data. The accuracy of this work has been examined using the root mean of sea surface salinity retrieved from MODIS satellite data. The study shows a comprehensive relationship between the in situ measurements and least square algorithm with high r 2 of 0.95, and RMS of bias value of ±0.9 psu. In conclusion, the least square algorithm can be used to retrieve SSS from MODIS satellite data during a tsunami event

  8. Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery

    Directory of Open Access Journals (Sweden)

    Egídio Arai

    2007-06-01

    Full Text Available The objective of this paper is to provide near real time information about deforestation detection (DETER in the entire Brazilian Amazon using MODIS high temporal resolution images. It is part of the operational deforestation monitoring project to estimate the annual deforestation rate in the Brazilian Amazon (PRODES. A rapid deforestation detection method was designed to support land use policies in this region. In order to evaluate the proposed method a test site was selected covering a Landsat ETM+ scene (227/68 located in Mato Grosso State. For this purpose a multitemporal series of MODIS surface reflectance images (MOD09 and the corresponding ETM+ images from June to October 2002 were analyzed. It was found that small deforested areas (lower than 15 ha were detected by MODIS images with lower accuracy when compared with ETM+ images. As the deforested areas increase MODIS and ETM+ results tend to converge. This procedure showed to be adequate to operationally detect and monitor deforested areas and has been used since 2004 as part of a government plan to control the Amazon deforestation.

  9. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    Science.gov (United States)

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  10. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  11. Comparisons of Brightness Temperatures of Landsat-7/ETM+ and Terra/MODIS around Hotien Oasis in the Taklimakan Desert

    International Nuclear Information System (INIS)

    Oguro, Y; Ito, S; Tsuchiya, K

    2011-01-01

    The brightness temperature (BT) of Taklimakan Desert retrieved from the data of Landsat-7/ETM+ band 6 and Terra/MODIS band 31 and 32 indicates the following features: (1) good linear relationship between the BT of ETM+ and that of MODIS, (2) the observation time adjusted BT of ETM+ is almost equal to that of MODIS, (3) the BT of Terra/MODIS band 31 is slightly higher than that of band 32 over a reservoir while opposite feature is recognized over desert area, (4) the statistical analysis of 225 sample data of ETM+ in one pixel of MODIS for different land covers indicates that the standard deviation and range of BT of ETM+ corresponding to one pixel of MODIS are 0.45 degree C, 2.25 degree C for a flat area of desert, while respective values of the oasis farmland and shading side of rocky hill amount to 2.88 degree C, 14.04 degree C, and 2.80 degree C, 16.04 degree C.

  12. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    Science.gov (United States)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  13. Maturity onset diabetes of the young (MODY)--history, first case reports and recent advances.

    Science.gov (United States)

    Siddiqui, Khalid; Musambil, Mohthash; Nazir, Nyla

    2015-01-15

    The world is seemingly facing a global increase in people suffering from diabetes especially in developing countries. The worldwide occurrence of diabetes for all age groups in year 2000 was estimated to be 2.8% and this number is most certainly expected to rise to 4.4% by 2030. Maturity-onset of diabetes of the young, or MODY, is a form of monogenic diabetes that is caused by mutations occurring in a number of different genes. Mutations in different genes tend to cause a slightly different variant of diabetes. MODY is typically diagnosed during late childhood, adolescence, or early adulthood and is usually observed to develop in adults during their late 50's. One of the main drawbacks in its diagnosis is that many people with MODY are misdiagnosed as having type 1 or type 2 diabetes. However, a molecular and genetic diagnosis can result in a better treatment and could also help in identifying other family members with MODY. This article explores the historical prospect and the genetic background of MODY, a brief summary of the first case reported and the significant factors that differentiate it from type 1 and type 2 diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  15. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  16. Assessment of MODIS RSB Detector Uniformity Using Deep Convective Clouds

    Science.gov (United States)

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Mu, Qiaozhen

    2016-01-01

    For satellite sensor, the striping observed in images is typically associated with the relative multiple detector gain difference derived from the calibration. A method using deep convective cloud (DCC) measurements to assess the difference among detectors after calibration is proposed and demonstrated for select reflective solar bands (RSBs) of the Moderate Resolution Imaging Spectroradiometer (MODIS). Each detector of MODIS RSB is calibrated independently using a solar diffuser (SD). Although the SD is expected to accurately characterize detector response, the uncertainties associated with the SD degradation and characterization result in inadequacies in the estimation of each detector's gain. This work takes advantage of the DCC technique to assess detector uniformity and scan mirror side difference for RSB. The detector differences for Terra MODIS Collection 6 are less than 1% for bands 1, 3-5, and 18 and up to 2% for bands 6, 19, and 26. The largest difference is up to 4% for band 7. Most Aqua bands have detector differences less than 0.5% except bands 19 and 26 with up to 1.5%. Normally, large differences occur for edge detectors. The long-term trending shows seasonal oscillations in detector differences for some bands, which are correlated with the instrument temperature. The detector uniformities were evaluated for both unaggregated and aggregated detectors for MODIS band 1 and bands 3-7, and their consistencies are verified. The assessment results were validated by applying a direct correction to reflectance images. These assessments can lead to improvements to the calibration algorithm and therefore a reduction in striping observed in the calibrated imagery.

  17. Remote sensing of tropospheric total column water vapor: Intercomparison of POLDER, AMSR-E and MODIS retrievals

    Science.gov (United States)

    Riedi, J.; Mcharek, L.; Dubuisson, P.; Parol, F.; Thieuleux, F.

    2013-05-01

    Since December 2004, the CNES Parasol (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) mission has been flying in the A-train with Aqua (NASA) providing more than 5 years of temporally and spatially coincident observations from POLDER, MODIS and AMSRE which enable total column water vapor amount retrievals. We are providing here a temporal and statistical analysis of water vapor near-infrared retrievals from POLDER against MODIS and AMSR-E products derived from nearinfrared, thermal infrared and microwave observations over ocean. A temporal analysis of POLDER official product is conducted in view of AMSR-E and MODIS coincident retrievals over ocean. In a second step, an alternative approach based on the use of simple multilayer perceptron (MLP) neural network (NN) is developed to improve the mathematical parameterization used to retrieve water vapor amount from near-infrared observation. The retrievals are further improved when an estimate of the 910 nm surface reflectance is obtained through interpolation between PARASOL 865 nm and 1020 nm channels. This last improvement now allows for a unified land/ocean retrieval algorithm for PARASOL/POLDER.

  18. Investigation of Cloud Properties and Atmospheric Profiles with MODIS

    Science.gov (United States)

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; LaPorte, Dan; Wolf, Walter

    1997-01-01

    The WINter Cloud Experiment (WINCE) was directed and supported by personnel from the University of Wisconsin in January and February. Data sets of good quality were collected by the MODIS Airborne Simulator (MAS) and other instruments on the NASA ER2; they will be used to develop and validate cloud detection and cloud property retrievals over winter scenes (especially over snow). Software development focused on utilities needed for all of the UW product executables; preparations for Version 2 software deliveries were almost completed. A significant effort was made, in cooperation with SBRS and MCST, in characterizing and understanding MODIS PFM thermal infrared performance; crosstalk in the longwave infrared channels continues to get considerable attention.

  19. Investigation of Cloud Properties and Atmospheric Profiles with Modis

    Science.gov (United States)

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter

    1997-01-01

    A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.

  20. An improved MODIS standard chlorophyll-a algorithm for Malacca Straits Water

    International Nuclear Information System (INIS)

    Lah, N Z Ab; Reba, M N M; Siswanto, Eko

    2014-01-01

    The Malacca Straits has high productivity of nutrients as a result to potential primary production. Yet, the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua has shown an overestimation of Chl-a retrieval in the case-2 water of Malacca Straits. In an update to the previous study, this paper presents the second validation exercise of MODIS OC3M algorithm using the reprocessed MODIS data (R2013) and locally tuned the algorithm with respect to two in-sit stations located at northern and southern part of Malacca Straits. The result shows the OC3M retrieved in the case-2 (south station) water remarkably overestimated in-situ Chl-a, but it is underestimated in the case-1 (north station). Local tuning was employed by iterative regression at the fourth-order polynomial to improve the accuracy of Chl-a retrieval. As a result, locally tuned OC3M algorithm give robust statistical performance and can be applied best for both case-1 and case-2 water in Malacca Straits

  1. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Science.gov (United States)

    Urrutia, Inés; Martínez, Rosa; López-Euba, Tamara; Velayos, Teresa; Martínez de LaPiscina, Idoia; Bilbao, José Ramón; Rica, Itxaso; Castaño, Luis

    2017-01-01

    The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96) and OR 0.06 (95% CI: 0.02-0.18), respectively. The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  2. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Directory of Open Access Journals (Sweden)

    Inés Urrutia

    Full Text Available The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY.160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4; 1 risk allele (DR3 or DR4; 2 risk alleles (DR3 and/or DR4.Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6 and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96 and OR 0.06 (95% CI: 0.02-0.18, respectively.The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4 reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  3. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  4. Physically-based Canopy Reflectance Model Inversion of Vegetation Biophysical-Structural Information from Terra-MODIS Imagery in Boreal and Mountainous Terrain for Ecosystem, Climate and Carbon Models using the BIOPHYS-MFM Algorithm

    Science.gov (United States)

    Peddle, D. R.; Hall, F.

    2009-12-01

    The BIOPHYS algorithm provides innovative and flexible methods for the inversion of canopy reflectance models (CRM) to derive essential biophysical structural information (BSI) for quantifying vegetation state and disturbance, and for input to ecosystem, climate and carbon models. Based on spectral, angular, temporal and scene geometry inputs that can be provided or automatically derived, the BIOPHYS Multiple-Forward Mode (MFM) approach generates look-up tables (LUTs) that comprise reflectance data, structural inputs over specified or computed ranges, and the associated CRM output from forward mode runs. Image pixel and model LUT spectral values are then matched. The corresponding BSI retrieved from the LUT matches is output as the BSI results. BIOPHYS-MFM has been extensively used with agencies in Canada and the USA over the past decade (Peddle et al 2000-09; Soenen et al 2005-09; Gamon et al 2004; Cihlar et al 2003), such as CCRS, CFS, AICWR, NASA LEDAPS, BOREAS and MODIS Science Teams, and for the North American Carbon Program. The algorithm generates BSI products such as land cover, biomass, stand volume, stem density, height, crown closure, leaf area index (LAI) and branch area, crown dimension, productivity, topographic correction, structural change from harvest, forest fires and mountain pine beetle damage, and water / hydrology applications. BIOPHYS-MFM has been applied in different locations in Canada (six provinces from Newfoundland to British Columbia) and USA (NASA COVER, MODIS and LEDAPS sites) using 7 different CRM models and a variety of imagery (e.g. MODIS, Landsat, SPOT, IKONOS, airborne MSV, MMR, casi, Probe-1, AISA). In this paper we summarise the BIOPHYS-MFM algorithm and results from Terra-MODIS imagery from MODIS validation sites at Kananaskis Alberta in the Canadian Rocky Mountains, and from the Boreal Ecosystem Atmosphere Study (BOREAS) in Saskatchewan Canada. At the montane Rocky Mountain site, BIOPHYS-MFM density estimates were within

  5. Comparison of Glomerular Filtration Rate Estimation from Serum Creatinine and Cystatin C in HNF1A-MODY and Other Types of Diabetes

    Directory of Open Access Journals (Sweden)

    Magdalena Szopa

    2015-01-01

    Full Text Available Introduction. We previously showed that in HNF1A-MODY the cystatin C-based glomerular filtration rate (GFR estimate is higher than the creatinine-based estimate. Currently, we aimed to replicate this finding and verify its clinical significance. Methods. The study included 72 patients with HNF1A-MODY, 72 with GCK-MODY, 53 with type 1 diabetes (T1DM, 70 with type 2 diabetes (T2DM, and 65 controls. Serum creatinine and cystatin C levels were measured. GFR was calculated from creatinine and cystatin C using the CKD-EPI creatinine equation (eGRF-cr and CKD-EPI cystatin C equation (eGFR-cys, respectively. Results. Cystatin C levels were lower (p<0.001 in the control (0.70±0.13 mg/L, HNF1A (0.75±0.21, and GCK (0.72±0.16 mg/L groups in comparison to those with either T1DM (0.87±0.15 mg/L or T2DM (0.9±0.23 mg/L. Moreover, eGFR-cys was higher than eGRF-cr in HNF1A-MODY, GCK-MODY, and the controls (p=0.004; p=0.003; p<0.0001. This corresponded to 8.9 mL/min/1.73 m2, 9.7 mL/min/1.73 m2, and 16.9 mL/min/1.73 m2 of difference. Additionally, T1DM patients had higher eGFR-cr than eGFR-cys (11.6 mL/min/1.73 m2; p=0.0004; no difference occurred in T2DM (p=0.91. Conclusions. We confirmed that eGFR-cys values in HNF1A-MODY patients are higher compared to eGFR-cr. Some other differences were also described in diabetic groups. However, none of them appears to be clinically relevant.

  6. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  7. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

    Science.gov (United States)

    Platnick, Steven E.

    2011-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

  8. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  9. Deriving Aerosol Characteristics Over the Ocean from MODIS: Are We There Yet?

    Science.gov (United States)

    Remer, L. A.; Tanre, D.

    2006-12-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) has been successfully retrieving aerosol characteristics over the ocean since shortly after the launch of the Terra satellite at the end of 1999. With its wide spectral range (0.47 to 2.13 μm) MODIS is able to derive spectral aerosol optical depth and information on the size of the aerosol particles. The products were quickly validated, the validation confirmed, and the products are now in wide use across the scientific community. The MODIS aerosol products over ocean are an outstanding success story, but are we done? As the years progress and we gain experience in using the products, evaluating them and nudging even greater information from them, we discover new challenges. Firstly, we continue to find issues affecting the integrity of the products we now produce. We need to find methods to reduce the uncertainty introduced by clouds that go beyond the classical concept of cloud masking and cloud contamination. Some of these novel cloud effects on aerosol retrieval include 3D scattering of light from cloud sides. Another issue that needs resolution is the uncertainty introduced by nonspherical particle shapes. Secondly, when MODIS was new we were excited to have spectral optical depth and particle size information. Now we find that aerosol characterization is still incomplete. We need more information. Are we there yet? Well, no, but we can see the future. To meet these new challenges we will need information beyond the spectral radiances that MODIS measures. We can see the future of satellite derivation of aerosol characteristics, and it looks more and more like a multi-sensor future.

  10. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  11. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Science.gov (United States)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  12. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    Science.gov (United States)

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  13. Contribution of National near Real Time MODIS Forest Maximum Percentage NDVI Change Products to the U.S. ForWarn System

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.

    2012-01-01

    This presentation reviews the development, integration, and testing of Near Real Time (NRT) MODIS forest % maximum NDVI change products resident to the USDA Forest Service (USFS) ForWarn System. ForWarn is an Early Warning System (EWS) tool for detection and tracking of regionally evident forest change, which includes the U.S. Forest Change Assessment Viewer (FCAV) (a publically available on-line geospatial data viewer for visualizing and assessing the context of this apparent forest change). NASA Stennis Space Center (SSC) is working collaboratively with the USFS, ORNL, and USGS to contribute MODIS forest change products to ForWarn. These change products compare current NDVI derived from expedited eMODIS data, to historical NDVI products derived from MODIS MOD13 data. A new suite of forest change products are computed every 8 days and posted to the ForWarn system; this includes three different forest change products computed using three different historical baselines: 1) previous year; 2) previous three years; and 3) all previous years in the MODIS record going back to 2000. The change product inputs are maximum value NDVI that are composited across a 24 day interval and refreshed every 8 days so that resulting images for the conterminous U.S. are predominantly cloud-free yet still retain temporally relevant fresh information on changes in forest canopy greenness. These forest change products are computed at the native nominal resolution of the input reflectance bands at 231.66 meters, which equates to approx 5.4 hectares or 13.3 acres per pixel. The Time Series Product Tool, a MATLAB-based software package developed at NASA SSC, is used to temporally process, fuse, reduce noise, interpolate data voids, and re-aggregate the historical NDVI into 24 day composites, and then custom MATLAB scripts are used to temporally process the eMODIS NDVIs so that they are in synch with the historical NDVI products. Prior to posting, an in-house snow mask classification product

  14. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition1B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  15. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  16. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM1-MODIS_Edition2A)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  17. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2B)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  18. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus.

    Science.gov (United States)

    Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapaporn; Sriussadaporn, Sutin; Vannaseang, Sathit; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-06-01

    Six known genes responsible for maturity-onset diabetes of the young (MODY) were analysed to evaluate the prevalence of their mutations in Thai patients with MODY and early-onset type 2 diabetes. Fifty-one unrelated probands with early-onset type 2 diabetes, 21 of them fitted into classic MODY criteria, were analysed for nucleotide variations in promoters, exons, and exon-intron boundaries of six known MODY genes, including HNF-4alpha, GCK, HNF-1alpha, IPF-1, HNF-1beta, and NeuroD1/beta2, by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method followed by direct DNA sequencing. Missense mutations or mutations located in regulatory region, which were absent in 130 chromosomes of non-diabetic controls, were classified as potentially pathogenic mutations. We found that mutations of the six known MODY genes account for a small proportion of classic MODY (19%) and early-onset type 2 diabetes (10%) in Thais. Five of these mutations are novel including GCK R327H, HNF-1alpha P475L, HNF-1alphaG554fsX556, NeuroD1-1972 G > A and NeuroD1 A322N. Mutations of IPF-1 and HNF-1beta were not identified in the studied probands. Mutations of the six known MODY genes may not be a major cause of MODY and early-onset type 2 diabetes in Thais. Therefore, unidentified genes await discovery in a majority of Thai patients with MODY and early-onset type 2 diabetes.

  19. Time Series of Tropical-Forest Structure from TanDEM-X, Transformed to Time Series of Biomass by MODIS

    Science.gov (United States)

    Treuhaft, R. N.; Baccini, A.; Goncalves, F. G.; Lei, Y.; Keller, M.; Walker, W. S.

    2017-12-01

    Tropical forests account for about 50% of the world's forested biomass, and play a critical role in the control of atmospheric carbon dioxide. Large-scale (1000's of km) changes in forest structure and biomass bear on global carbon source-sink dynamics, while small-scale (phase-height observation, we show forest phase-height time series from the TanDEM-X radar interferometer at X-band (3 cm), taken with monthly and sub-hectare temporal and spatial resolution, respectively. The measurements were taken with more than 30 TanDEM-X passes over Tapajós National Forest in the Brazilian Amazon between 2011 and 2014. The transformation of phase-height rates into aboveground biomass (AGB) rates is based on the idea that the change in AGB due to a change in phase-height depends on the plot's AGB. Plots with higher AGB will produce more AGB for a given increase in height or phase-height. Postulating a power-law dependence of plot-level mass density on physical height, we previously found that the best conversion factors for transforming phase-height rate to AGB rate were indeed dependent on AGB. For 78 plots, we demonstrated AGB rates from InSAR phase-height rates using AGB from field measurements. For regional modeling of the Amazon Basin, field measurements of AGB, to specify the conversion factors, is impractical. Conversion factors from InSAR phase-height rate to AGB rate in this talk will be based on AGB derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). AGB measurement from MODIS is based on the spectral reflectance of 7 bands from the visible to short wave infrared, and auxiliary metrics describing the variance in reflectance. The mapping of MODIS reflectance to AGB is enabled by training a machine learning algorithm with lidar-derived AGB data, which are in turn trained by field measurements for small areas. The performance of TanDEM-X AGB rate from MODIS-derived conversion factors will be compared to that derived from field-based conversion

  20. MENENTUKAN VARIABILITAS SPASIAL ALBEDOPADA WILAYAH BALI MENGGUNAKAN DATA SATELIT MODIS BRDF MCD43A1 TAHUN 2005 - 2012

    Directory of Open Access Journals (Sweden)

    Ni Wayan Meri Monika Sari

    2015-02-01

    Full Text Available A research has been conducted to determine the variability of the albedo in Bali using MODIS BRDF MCD43A1 satellite data started from 2005 until 2012. The data used in this study is MODIS BRDF MCD43A1 data and MODIS Aerosol Optical Depth data. From MODIS BRDF MCD43A1 data, black sky and white sky albedo were calculated. The results of black sky and white sky albedo combined together and with MODISAerosol Optical Depth data to find the blue sky albedo (actual albedo, then monthly average of blue sky albedoused todetermine the spatial albedo variability in Bali. Spatial annual variability of actual albedo in Bali during 2005 – 2012 reached the highest peak in 2008 and lowest in 2010. Monthly average of actual albedo started from September-October while the lowest is in January - February.  Keywords: Albedo, MODIS BRDF MCD43A1, MODIS Aerosol Optical Depth, Black Sky albedo, White Sky Albedo, Blue Sky Albedo (Actual Albedo