WorldWideScience

Sample records for modis daily snow-cover

  1. Validation of MODIS snow cover images over Austria

    J. Parajka

    2006-01-01

    Full Text Available This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS snow cover product over the territory of Austria. The aims are (a to analyse the spatial and temporal variability of the MODIS snow product classes, (b to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4 and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m. and the MODIS acquisition time (early afternoon. The comparison of daily air temperature maps with MODIS snow cover images indicates that almost all MODIS overestimation errors are caused by the misclassification of cirrus clouds as snow.

  2. Deriving Snow Cover Metrics for Alaska from MODIS

    Chuck Lindsay

    2015-09-01

    Full Text Available Moderate Resolution Imaging Spectroradiometer (MODIS daily snow cover products provide an opportunity for determining snow onset and melt dates across broad geographic regions; however, cloud cover and polar darkness are limiting factors at higher latitudes. This study presents snow onset and melt dates for Alaska, portions of western Canada and the Russian Far East derived from Terra MODIS snow cover daily 500 m grid data (MOD10A1 and evaluates our method for filling data gaps caused by clouds or polar darkness. Pixels classified as cloud or no data were reclassified by: spatial filtering using neighboring pixel values; temporal filtering using pixel values for days before/after cloud cover; and snow-cycle filtering based on a time series assessment of a pixel’s position within snow accumulation, cover or melt periods. During the 2012 snow year, these gap-filling methods reduced cloud pixels from 27.7% to 3.1%. A total of 12 metrics (e.g., date of first and last snow, date of persistent snow cover and periods of intermittence for each pixel were calculated by snow year. A comparison of MODIS-derived snow onset and melt dates with in situ observations from 244 weather stations generally showed an early bias in MODIS-derived dates and an effect of increasing cloudiness exacerbating bias. Our results show that mean regional duration of seasonal snow cover is 179–311 days/year and that snow cover is often intermittent, with 41% of the area experiencing ≥2 snow-covered periods during a snow season. Other regional-scale patterns in the timing of snow onset and melt are evident in the yearly 500 m gridded products publically available at http://static.gina.alaska.edu/NPS_products/MODIS_snow/.

  3. MODIS Snow Cover Recovery Using Variational Interpolation

    Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  4. Snow Cover Monitoring Using MODIS Data in Liaoning Province, Northeastern China

    Yu Lu

    2010-03-01

    Full Text Available This paper presents the results of snow cover monitoring studies in Liaoning Province, northeastern China, using MODIS data. Snow cover plays an important role in both the regional water balance and soil moisture properties during the early spring in northeastern China. In addition, heavy snowfalls commonly trigger hazards such as flooding, caused by rapid snow melt, or crop failure, resulting from fluctuations in soil temperature associated with changes in the snow cover. The latter is a function of both regional, or global, climatic changes, as well as fluctuations in the albedo resulting from variations in the Snow Covered Area (SCA. These impacts are crucial to human activities, especially to those living in middle-latitude areas such as Liaoning Province. Thus, SCA monitoring is currently an important tool in studies of global climate change, particularly because satellite remote sensing data provide timely and efficient snow cover information for large areas. In this study, MODIS L1B data, MODIS Daily Snow Products (MOD10A1 and MODIS 8-day Snow Products (MOD10A2 were used to monitor the SCA of Liaoning Province over the winter months of November–April, 2006–2008. The effects of cloud masking and forest masking on the snow monitoring results were also assessed. The results show that the SCA percentage derived from MODIS L1B data is relatively consistent, but slightly higher than that obtained from MODIS Snow Products. In situ data from 25 snow stations were used to assess the accuracy of snow cover monitoring from the SCA compared to the results from MODIS Snow Products. The studies found that the SCA results were more reliable than MODIS Snow Products in the study area.

  5. A snow cover climatology for the Pyrenees from MODIS snow products

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the

  6. An Assessment of Existing Methodologies to Retrieve Snow Cover Fraction from MODIS Data

    Théo Masson

    2018-04-01

    Full Text Available The characterization of snow extent is critical for a wide range of applications. Since 1966, snow maps at different spatial resolutions have been produced using various satellite sensor images. Nowadays, the most widely used products are likely those derived from Moderate-Resolution Imaging Spectroradiometer (MODIS data, which cover the whole Earth at a near-daily frequency. There are a variety of snow mapping methods for MODIS data, based on different methodologies and applied at different spatial resolutions. Up to now, all these products have been tested and evaluated separately. This study aims to compare the methods currently available for retrieving snow from MODIS data. The focus is on fractional snow cover, which represents the snow cover area at the subpixel level. We examine the two main approaches available for generating such products from MODIS data; namely, linear regression of the Normalized Difference Snow Index (NDSI and spectral unmixing (SU. These two approaches have resulted in several methods, such as MOD10A1 (the NSIDC MODIS snow product for NDSI regression, and MODImLAB for SU. The assessment of these approaches was carried out using higher resolution binary snow maps (i.e., showing the presence or absence of snow at spatial resolutions of 10, 20, and 30 m, produced by SPOT 4, SPOT 5, and LANDSAT-8, respectively. Three areas were selected in order to provide landscape diversity: the French Alps (117 dates, the Pyrenees (30 dates, and the Moroccan Atlas (24 dates. This study investigates the impact of reference maps on accuracy assessments, and it is suggested that NDSI-based high spatial resolution reference maps advantage NDSI medium-resolution snow maps. For MODIS snow maps, the results show that applying an NDSI approach to accurate surface reflectance corrected for topographic and atmospheric effects generally outperforms other methods for the global retrieval of snow cover area. The improvements to the newer version

  7. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  8. New Approach for Snow Cover Detection through Spectral Pattern Recognition with MODIS Data

    Kyeong-Sang Lee

    2017-01-01

    Full Text Available Snow cover plays an important role in climate and hydrology, at both global and regional scales. Most previous studies have used static threshold techniques to detect snow cover, which can lead to errors such as misclassification of snow and clouds, because the reflectance of snow cover exhibits variability and is affected by several factors. Therefore, we present a simple new algorithm for mapping snow cover from Moderate Resolution Imaging Spectroradiometer (MODIS data using dynamic wavelength warping (DWW, which is based on dynamic time warping (DTW. DTW is a pattern recognition technique that is widely used in various fields such as human action recognition, anomaly detection, and clustering. Before performing DWW, we constructed 49 snow reflectance spectral libraries as reference data for various solar zenith angle and digital elevation model conditions using approximately 1.6 million sampled data. To verify the algorithm, we compared our results with the MODIS swath snow cover product (MOD10_L2. Producer’s accuracy, user’s accuracy, and overall accuracy values were 92.92%, 78.41%, and 92.24%, respectively, indicating good overall classification accuracy. The proposed algorithm is more useful for discriminating between snow cover and clouds than threshold techniques in some areas, such as those with a high viewing zenith angle.

  9. Snow Cover Maps from MODIS Images at 250 m Resolution, Part 2: Validation

    Marc Zebisch

    2013-03-01

    Full Text Available The performance of a new algorithm for binary snow cover monitoring based on Moderate Resolution Imaging Spectroradiometer (MODIS satellite images at 250 m resolution is validated using snow cover maps (SCA based on Landsat 7 ETM+ images and in situ snow depth measurements from ground stations in selected test sites in Central Europe. The advantages of the proposed algorithm are the improved ground resolution of 250 m and the near real-time availability with respect to the 500 m standard National Aeronautics and Space Administration (NASA MODIS snow products (MOD10 and MYD10. It allows a more accurate snow cover monitoring at a local scale, especially in mountainous areas characterized by large landscape heterogeneity. The near real-time delivery makes the product valuable as input for hydrological models, e.g., for flood forecast. A comparison to sixteen snow cover maps derived from Landsat ETM/ETM+ showed an overall accuracy of 88.1%, which increases to 93.6% in areas outside of forests. A comparison of the SCA derived from the proposed algorithm with standard MODIS products, MYD10 and MOD10, indicates an agreement of around 85.4% with major discrepancies in forested areas. The validation of MODIS snow cover maps with 148 in situ snow depth measurements shows an accuracy ranging from 94% to around 82%, where the lowest accuracies is found in very rugged terrain restricted to in situ stations along north facing slopes, which lie in shadow in winter during the early morning acquisition.

  10. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods

    Zhuosen Wang; Crystal B. Schaaf; Alan H. Strahler; Mark J. Chopping; Miguel O. Román; Yanmin Shuai; Curtis E. Woodcock; David Y. Hollinger; David R. Fitzjarrald

    2014-01-01

    This study assesses the Moderate-resolution Imaging Spectroradiometer (MODIS) BRDF/albedo 8 day standard product and products from the daily Direct Broadcast BRDF/albedo algorithm, and shows that these products agree well with ground-based albedo measurements during the more difficult periods of vegetation dormancy and snow cover. Cropland, grassland, deciduous and...

  11. Changes in Andes snow cover from MODIS data, 2000-2016

    Saavedra, Freddy A.; Kampf, Stephanie K.; Fassnacht, Steven R.; Sibold, Jason S.

    2018-03-01

    The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP) as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors (500 m, 8-day maximum snow cover extent). This analysis is conducted between 8 and 36° S due to high frequency of cloud (> 30 % of the time) south and north of this range. We ran Mann-Kendall and Theil-Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP = 20 %). We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) and University of Delaware datasets and climate indices as El Niño-Southern Oscillation (ENSO), Southern Annular Mode (SAM), and Pacific Decadal Oscillation (PDO). Areas north of 29° S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2) with persistent snow cover between 29 and 36° S experienced a significant loss of snow cover (2-5 fewer days of snow year-1). Snow loss was more pronounced (62 % of the area with significant trends) on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10-30 m year-1 south of 29-30° S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31° S, whereas the SAM better predicted SP south of 31° S.

  12. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  13. Subpixel Snow Cover Mapping from MODIS Data by Nonparametric Regression Splines

    Akyurek, Z.; Kuter, S.; Weber, G. W.

    2016-12-01

    Spatial extent of snow cover is often considered as one of the key parameters in climatological, hydrological and ecological modeling due to its energy storage, high reflectance in the visible and NIR regions of the electromagnetic spectrum, significant heat capacity and insulating properties. A significant challenge in snow mapping by remote sensing (RS) is the trade-off between the temporal and spatial resolution of satellite imageries. In order to tackle this issue, machine learning-based subpixel snow mapping methods, like Artificial Neural Networks (ANNs), from low or moderate resolution images have been proposed. Multivariate Adaptive Regression Splines (MARS) is a nonparametric regression tool that can build flexible models for high dimensional and complex nonlinear data. Although MARS is not often employed in RS, it has various successful implementations such as estimation of vertical total electron content in ionosphere, atmospheric correction and classification of satellite images. This study is the first attempt in RS to evaluate the applicability of MARS for subpixel snow cover mapping from MODIS data. Total 16 MODIS-Landsat ETM+ image pairs taken over European Alps between March 2000 and April 2003 were used in the study. MODIS top-of-atmospheric reflectance, NDSI, NDVI and land cover classes were used as predictor variables. Cloud-covered, cloud shadow, water and bad-quality pixels were excluded from further analysis by a spatial mask. MARS models were trained and validated by using reference fractional snow cover (FSC) maps generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden layer trained with backpropagation was also developed. The mutual comparison of obtained MARS and ANN models was accomplished on independent test areas. The MARS model performed better than the ANN model with an average RMSE of 0.1288 over the independent test areas; whereas the average RMSE of the ANN model

  14. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375

  15. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data

  16. MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites

    G. Blöschl

    2012-07-01

    Full Text Available Numerous global and regional validation studies have examined MODIS snow mapping accuracy by using measurements at climate stations, which are mainly at open sites. MODIS accuracy in alpine and forested regions is, however, still not well understood. The main objective of this study is to evaluate MODIS (MOD10A1 and MYD10A1 snow cover products in a small experimental catchment by using extensive snow course measurements at open and forest sites. The MODIS accuracy is tested in the Jalovecky creek catchment (northern Slovakia in the period 2000–2011. The results show that the combined Terra and Aqua images enable snow mapping at an overall accuracy of 91.5%. The accuracies at forested, open and mixed land uses at the Červenec sites are 92.7%, 98.3% and 81.8%, respectively. The use of a 2-day temporal filter enables a significant reduction in the number of days with cloud coverage and an increase in overall snow mapping accuracy. In total, the 2-day temporal filter decreases the number of cloudy days from 61% to 26% and increases the snow mapping accuracy to 94%. The results indicate three possible factors leading to misclassification of snow as land: patchy snow cover, limited MODIS geolocation accuracy and mapping algorithm errors. Out of a total of 27 misclassification cases, patchy snow cover, geolocation issues and mapping errors occur in 12, 12 and 3 cases, respectively.

  17. Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products

    Tihomir Sabinov Kostadinov; Todd R. Lookingbill

    2015-01-01

    Snowcover pattern and persistence have important implications for planetary energy balance, climate sensitivity to forcings, and vegetation structure, function, and composition. Variability in snow cover within mountainous regions of the Pacific Northwest, USA is attributable to a combination of anthropogenic climate change and climate oscillations. However,...

  18. Improving snow cover mapping in forests through the use of a canopy reflectance model

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  19. Application of the MODIS “snow cover” product for identification of the snow cover pattern in Gis-Baikal region

    E. A. Istomina

    2014-01-01

    Full Text Available Validation of remote sensing data MODIS «snow cover» in the period from September to May 2000/01, 2007/08, 2008/09 is realized on the base of weather stations data. Good repeatability of weather stations data and snow cover data is shown (more than 80% when snow depth is exceeds 2 cm. The minimum accuracy is in May and October for the variety of snowfall winters. Remote sensing data give possibility to extend the dot information of hydrometeorological stations network on the spatial snow distribution to the mountainous area of Predbajkalje where ground-based observations are absent. According to remote sensing earlier appearance and later melting of snow in mountain areas were identified. The plains and basins areas are characterized by later appearance and earlier melting of snow.

  20. Variability of snow line elevation, snow cover area and depletion in the main Slovak basins in winters 2001–2014

    Krajčí Pavel

    2016-03-01

    Full Text Available Spatial and temporal variability of snow line (SL elevation, snow cover area (SCA and depletion (SCD in winters 2001–2014 is investigated in ten main Slovak river basins (the Western Carpathians. Daily satellite snow cover maps from MODIS Terra (MOD10A1, V005 and Aqua (MYD10A1, V005 with resolution 500 m are used.

  1. A GIS Software Toolkit for Monitoring Areal Snow Cover and Producing Daily Hydrologic Forecasts using NASA Satellite Imagery, Phase I

    National Aeronautics and Space Administration — Aniuk Consulting, LLC, proposes to create a GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts. This toolkit will be...

  2. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental US (CONUS)

    Dong, Jiarui; Ek, Mike; Hall, Dorothy K.; Peters-Lidard, Christa; Cosgrove, Brian; Miller, Jeff; Riggs, George A.; Xia, Youlong

    2013-01-01

    In the middle to high latitude and alpine regions, the seasonal snow pack can dominate the surface energy and water budgets due to its high albedo, low thermal conductivity, high emissivity, considerable spatial and temporal variability, and ability to store and then later release a winters cumulative snowfall (Cohen, 1994; Hall, 1998). With this in mind, the snow drought across the U.S. has raised questions about impacts on water supply, ski resorts and agriculture. Knowledge of various snow pack properties is crucial for short-term weather forecasts, climate change prediction, and hydrologic forecasting for producing reliable daily to seasonal forecasts. One potential source of this information is the multi-institution North American Land Data Assimilation System (NLDAS) project (Mitchell et al., 2004). Real-time NLDAS products are used for drought monitoring to support the National Integrated Drought Information System (NIDIS) and as initial conditions for a future NCEP drought forecast system. Additionally, efforts are currently underway to assimilate remotely-sensed estimates of land-surface states such as snowpack information into NLDAS. It is believed that this assimilation will not only produce improved snowpack states that better represent snow evolving conditions, but will directly improve the monitoring of drought.

  3. Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal

    Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen

    2017-04-01

    General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All

  4. Using multi-source satellite data to assess snow-cover change in Qinghai-Tibetan Plateau in last decade

    Jiang, Y.; Chen, F.; Gao, Y.; Barlage, M. J.

    2017-12-01

    Snow cover in Qinghai-Tibetan Plateau (QTP) is a critical component of water cycle and affects regional climate of East Asia. Satellite data from three different sources (i.e., FY3A/B/C, MODIS and IMS) were used to analyze the QTP fractional-snow-cover (FSC) change and associated uncertainties in the last decade. To reduce the high percentage of cloud in FY3A/B/C and MODIS, a four-step cloud removal procedure was applied and effectively reduced the cloud percentage from 40.8-56.1% to 2.2­-­3.3%. The averaged error introduced by the cloud removal procedure was about 2% estimated by a random sampling method. Results show that the snow cover in QTP significantly decreased in recent 5 years. Three data sets (FY3B, MODIS and IMS) showed significant decreased annual FSC at all elevation bands from 2012-2016, and a significant shorter snow season with delayed snow onset and earlier melting. Both IMS and MODIS had a slightly decline annual FSC from 2000 to 3000 m, while MODIS FSC slightly decreased in 2002-2016 and IMS FSC slightly increased from 2006-2016 in the region with elevation higher than 3000 m. Results also show significant uncertainties among the five data sets (FY3A/B/C, MODIS, IMS), although they showed similar fluctuations of daily FSC. IMS had largest snow-cover extent and highest daily FSC due to its multi data sources. FY3A/C and MODIS (observed in the morning) had around 5% higher mean FSC than FY3B (observed in the afternoon) due to the 3 hours detection time gap. The relative error of daily FSC (taking MODIS as `truth') between FY3A/B/C, IMS and MODIS is 23%, -35%, 8% and 63%, respectively, averaged in five elevation bands in 2015-2017.

  5. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  6. Design, Development and Testing of Web Services for Multi-Sensor Snow Cover Mapping

    Kadlec, Jiri

    This dissertation presents the design, development and validation of new data integration methods for mapping the extent of snow cover based on open access ground station measurements, remote sensing images, volunteer observer snow reports, and cross country ski track recordings from location-enabled mobile devices. The first step of the data integration procedure includes data discovery, data retrieval, and data quality control of snow observations at ground stations. The WaterML R package developed in this work enables hydrologists to retrieve and analyze data from multiple organizations that are listed in the Consortium of Universities for the Advancement of Hydrologic Sciences Inc (CUAHSI) Water Data Center catalog directly within the R statistical software environment. Using the WaterML R package is demonstrated by running an energy balance snowpack model in R with data inputs from CUAHSI, and by automating uploads of real time sensor observations to CUAHSI HydroServer. The second step of the procedure requires efficient access to multi-temporal remote sensing snow images. The Snow Inspector web application developed in this research enables the users to retrieve a time series of fractional snow cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) for any point on Earth. The time series retrieval method is based on automated data extraction from tile images provided by a Web Map Tile Service (WMTS). The average required time for retrieving 100 days of data using this technique is 5.4 seconds, which is significantly faster than other methods that require the download of large satellite image files. The presented data extraction technique and space-time visualization user interface can be used as a model for working with other multi-temporal hydrologic or climate data WMTS services. The third, final step of the data integration procedure is generating continuous daily snow cover maps. A custom inverse distance weighting method has been developed

  7. Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas

    Azmat, Muhammad

    2016-11-17

    This study examines the change in climate variables and snow cover dynamics and their impact on the hydrological regime of the Jhelum River basin in Western Himalayas. This study utilized daily streamflow records from Mangla dam, spanning a time period of 19 years (1995–2013), along with precipitation and temperature data over 52 years (1961–2013) from 12 different climate stations in the catchment. Additionally, moderate-resolution imaging spectroradiometer (MODIS) remote sensing product MOD10A2 was utilized to analyze the change in snow cover dynamics during 2000–2013. The Pearson and Kendall rank correlation tests were used to scrutinize snow cover trends and correlation between temperature, precipitation, snow cover area (SCA) and streamflows records. Basin-wide trend analysis showed a slightly increasing tendency in temperature (τ = 0.098) and precipitation (τ = 0.094), during the years 1961–2013. The changes in streamflow indicated a positive (r > 0.12) relationship with respect to temperature but variable trends (r = −0.45–0.41) with respect to precipitation during both the winter and monsoon seasons. This indicates that temperature has a significant impact on the hydrological regime of the basin. MODIS data-based investigations suggested an expansion in SCA during 2000–2013. The changes in SCA of high-altitude zones (>2000 m a.s.l.) depicted a stronger positive correlation with climate variables and streamflow compared with those obtained for low-altitude regions (<2000 m a.s.l.). Overall, these results signify that high-altitude areas contribute to the streamflow largely in the form of snow- and glacier-melt during the early summer season. The streamflow is then further augmented by monsoon rainfall in the low-elevation regions during late summer.

  8. Combining MOD10A1 and MYD10A1 Images For Snow Cover Area Monitoring

    Tekeli, A. E.

    2008-12-01

    MOD10A1 and MYD10A1 daily snow cover maps at 500 m resolution are available from MODIS sensors on Terra and Aqua satellites. Aqua obtains the image of same region approximately three hours after Terra over Turkey region. MODIS is an optic sensor and cloud cover degrades the usability of derived snow cover maps. Moreover, spectral similarity between clouds and snow complicates their separability in visible imagery. Fortunately, dynamic behavior of clouds enables their discrimination from snow stationary on the surface. Combined use of MOD10A1 and MYD10A1 images mostly reduces the cloud cover present in one image alone and provides better representation of surface snow cover. Comparison of merged images with in situ data indicated higher hit ratios. The individual comparison of MOD10A1 and MYD10A1 images with ground data each yielded 31% hit ratio whereas, the merged images provided 38%. One-day shifts in comparisons increased hit ratios to 52 % and 46% whereas and two-day shifts gave 77 % and 79 % for MOD10A1 and MYD10A1 respectively. Merged maps yielded 54% and 83% for one and two day shifts. The improvement provided by the merging technique is found to be 7% for the present day, 7 % for one- day and 5% for two-day shifts for the whole season. Monthly decomposition resulted 25% improvement as the maximum. The snow cover product obtained by merging Terra and Aqua satellites provided higher hit ratios, as expected.

  9. [Snow cover pollution monitoring in Ufa].

    Daukaev, R A; Suleĭmanov, R A

    2008-01-01

    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  10. Characteristics of snow cover duration across the northeast United States of America

    Leathers, Daniel J.; Luff, Barbara L.

    1997-11-01

    The presence or absence of a snow cover affects a myriad of environmental and societal systems through its modification of the surface radiation balance and its ultimate impact on near-surface air temperatures. Daily snow cover data were collected for a network of 91 stations covering the northeast USA from Maine, south through to West Virginia. The snow cover data along with ancillary temperature, snowfall and precipitation data were used to investigate the characteristics of snow cover duration in this region and the effects of the snow cover on boundary layer climate variables for the snow cover seasons 1948-1949 through to 1987-1988.Results indicate that snow cover duration is variable in both space and time. The duration of a snow cover of 2.5 cm or greater varies from greater than 100 days in northern New England to less than 20 days across areas of Delaware, Maryland and West Virginia. Temporally, snow cover duration for the region as a whole was very short from the late 1940s through to the mid-1950s. From the late 1950s to the end of the period snow cover duration has varied around a consistent mean value. No long-term trends in snow cover duration are apparent in the record for the northeast USA.Principal components analysis and clustering techniques were utilized to isolate spatially coherent regions in which snow cover duration has varied similarly over the period of record. This analysis resulted in the identification of four snow-cover-duration regions across the northeast USA: including (i) the West Virginia area, (ii) the mid-Atlantic from southern New England through to western Pennsylvania, (iii) western and central New York and (iv) northern New England. Snow cover duration is shown to be highly associated with snowfall and temperature but not strongly related to total liquid precipitation. The intra-annual variability of snow cover duration is also investigated for each region.

  11. The stepwise discriminant algorithm for snow cover mapping based on FY-3/MERSI data

    Han, Tao; Wang, Dawei; Jiang, Youyan; Wang, Xiaowei

    2013-10-01

    Medium Resolution Spectral Imager (MERSI) on board China's new generation polar orbit meteorological satellite FY- 3A provides a new data source for snow monitoring in large area. As a case study, the typical snow cover of Qilian Mountains in northwest China was selected in this paper to develop the algorithm to map snow cover using FY- 3A/MERSI. By analyzing the spectral response characteristics of snow and other surface elements, as well as each channel image quality on FY-3A/MERSI, the widely used Normalized Difference Snow Index (NDSI) was defined to be computed from channel 2 and channel 7 for this satellite data. Basing on NDSI, a tree-structure prototype version of snow identification model was proposed, including five newly-built multi-spectral indexes to remove those pixels such as forest, cloud shadow, water, lake ice, sand (salty land), or cloud that are usually confused with snow step by step, especially, a snow/cloud discrimination index was proposed to eliminate cloud, apart from use of cloud mask product in advance. Furthermore, land cover land use (LULC) image has been adopted as auxiliary dataset to adjust the corresponding LULC NDSI threshold constraints for snow final determination and optimization. This model is composed as the core of FY-3A/MERSI snow cover mapping flowchart, to produce daily snow map at 250m spatial resolution, and statistics can be generated on the extent and persistence of snow cover in each pixel for time series maps. Preliminary validation activities of our snow identification model have been undertaken. Comparisons of the 104 FY- 3A/MERSI snow cover maps in 2010-2011 snow season with snow depth records from 16 meteorological stations in Qilian Mountains region, the sunny snow cover had an absolute accuracy of 92.8%. Results of the comparison with the snow cover identified from 6 Terra/MODIS scenes showed that they had consistent pixels about 85%. When the two satellite resultant snow cover maps compared with the 6

  12. Variability in snow cover phenology in China from 1952 to 2010

    C. Q. Ke; X. C. Li; H. Xie; X. Liu; C. Kou

    2015-01-01

    Daily snow observation data from 672 stations, particularly the 352 stations with over ten annual mean snow cover days (SCD), during 1952–2010 in China, are used in this study. We first examine spatiotemporal variations and trends of SCD, snow cover onset date (SCOD), and snow cover end date (SCED). We then investigate SCD relationships with number of days with temperature below 0 °C (TBZD), mean air temperature (MAT), and Arctic Oscillation (AO) index, the ...

  13. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    S. Naha

    2016-06-01

    Full Text Available The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006. Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I and Ensemble Kalman Filter (EnKF that uses observations of snow covered area (SCA to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU, rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated

  14. The value of snow cover

    Sokratov, S. A.

    2009-04-01

    only and not even the main outcome from snow cover use. The value of snow cover for agriculture, water resources, industry and transportation is so naturally inside the activities that is not often quantified. However, any considerations of adaptation strategies for climate change with changing snow conditions need such quantification.

  15. Inducing Water Productivity from Snow Cover for Sustainable Water Management in Ibrahim River Basin, Lebanon

    Darwish , Talal; SHABAN , Amin; Portoghese , Ivan; Vurro , Michele; Khadra , Roula; Saqallah , Sagedah; Drapeau , Laurent; Gascoin , Simon; Amacha , Nabil

    2015-01-01

    International audience; The aim of this paper is to explore the effects and linkages between snow cover areas, distribution, probability and measured water discharge along east Mediterranean coastal watershed using moderate-resolution satellite images (MODIS-Terra). The Nahr Ibrahim River is a typical Lebanese watershed with an area of 326 km2 stretching between the sea and mountainous terrain to the east. The largest snow cover often exists in January-February with snow-free conditions betwe...

  16. Central Asian Snow Cover from Hydrometeorological Surveys

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Asian Snow Cover from Hydrometeorological Surveys data are based on observations made by personnel for three river basins: Amu Darya, Sir Darya, and...

  17. Prevalence of Pure Versus Mixed Snow Cover Pixels across Spatial Resolutions in Alpine Environments

    David J. Selkowitz

    2014-12-01

    Full Text Available Remote sensing of snow-covered area (SCA can be binary (indicating the presence/absence of snow cover at each pixel or fractional (indicating the fraction of each pixel covered by snow. Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days

  18. Next Generation Snow Cover Mapping: Can Future Hyperspectral Satellite Spectrometer Systems Improve Subpixel Snow-covered Area and Grain Size in the Sierra Nevada?

    Hill, R.; Calvin, W. M.; Harpold, A.

    2017-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).

  19. Impacts of changing climate and snow cover on the flow regime of Jhelum River, Western Himalayas

    Azmat, Muhammad; Liaqat, Umar Waqas; Qamar, Muhammad Uzair; Awan, Usman Khalid

    2016-01-01

    This study examines the change in climate variables and snow cover dynamics and their impact on the hydrological regime of the Jhelum River basin in Western Himalayas. This study utilized daily streamflow records from Mangla dam, spanning a time

  20. Is Eurasian October snow cover extent increasing?

    Brown, R D; Derksen, C

    2013-01-01

    A number of recent studies present evidence of an increasing trend in Eurasian snow cover extent (SCE) in the October snow onset period based on analysis of the National Oceanic and Atmospheric Administration (NOAA) historical satellite record. These increases are inconsistent with fall season surface temperature warming trends across the region. Using four independent snow cover data sources (surface observations, two reanalyses, satellite passive microwave retrievals) we show that the increasing SCE is attributable to an internal trend in the NOAA CDR dataset to chart relatively more October snow cover extent over the dataset overlap period (1982–2005). Adjusting the series for this shift results in closer agreement with other independent datasets, stronger correlation with continentally-averaged air temperature anomalies, and a decrease in SCE over 1982–2011 consistent with surface air temperature warming trends over the same period. (letter)

  1. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    Huang, Xiaodong; Deng, Jie; Ma, Xiaofang; Wang, Yunlong; Feng, Qisheng; Hao, Xiaohua; Liang, Tiangang

    2016-10-01

    By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD) data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer) cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1) the mean snow-covered area (SCA) in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2) the snow-covered days (SCDs) showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3) the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4) the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5) the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  2. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China

    X. Huang

    2016-10-01

    Full Text Available By combining optical remote sensing snow cover products with passive microwave remote sensing snow depth (SD data, we produced a MODIS (Moderate Resolution Imaging Spectroradiometer cloudless binary snow cover product and a 500 m snow depth product. The temporal and spatial variations of snow cover from December 2000 to November 2014 in China were analyzed. The results indicate that, over the past 14 years, (1 the mean snow-covered area (SCA in China was 11.3 % annually and 27 % in the winter season, with the mean SCA decreasing in summer and winter seasons, increasing in spring and fall seasons, and not much change annually; (2 the snow-covered days (SCDs showed an increase in winter, spring, and fall, and annually, whereas they showed a decrease in summer; (3 the average SD decreased in winter, summer, and fall, while it increased in spring and annually; (4 the spatial distributions of SD and SCD were highly correlated seasonally and annually; and (5 the regional differences in the variation of snow cover in China were significant. Overall, the SCD and SD increased significantly in south and northeast China, and decreased significantly in the north of Xinjiang province. The SCD and SD increased on the southwest edge and in the southeast part of the Tibetan Plateau, whereas it decreased in the north and northwest regions.

  3. Variability in snow cover phenology in China from 1952 to 2010

    Ke, Chang-Qing; Li, Xiu-Cang; Xie, Hongjie; Ma, Dong-Hui; Liu, Xun; Kou, Cheng

    2016-01-01

    Daily snow observation data from 672 stations in China, particularly the 296 stations with over 10 mean snow cover days (SCDs) in a year during the period of 1952–2010, are used in this study. We first examine spatiotemporal variations and trends of SCDs, snow cover onset date (SCOD), and snow cover end date (SCED). We then investigate the relationships of SCDs with number of days with temperature below 0 °C (TBZD), mean air temperature (MAT), and Arctic Oscillation (AO) index....

  4. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  5. Estimating Snow Cover from Publicly Available Images

    Fedorov, Roman; Camerada, Alessandro; Fraternali, Piero; Tagliasacchi, Marco

    2016-01-01

    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to...

  6. Global warming: Sea ice and snow cover

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  7. Estimation of snow cover distribution in Beas basin, Indian Himalaya ...

    In the present paper, a methodology has been developed for the mapping of snow cover in Beas ... Different snow cover mapping methods using snow indices are compared to find the suitable ... cover are important factors for human activities,.

  8. Water availability forecasting for Naryn River using ground-based and satellite snow cover data

    O. Y. Kalashnikova

    2017-01-01

    Full Text Available The main source of river nourishment in arid regions of Central Asia is the melting of seasonal snow accu‑ mulated in mountains during the cold period. In this study, we analyzed data on seasonal snow cover by ground‑based observations from Kyrgyzhydromet network, as well as from MODIS satellite imagery for the period of 2000–2015. This information was used to compile the forecast methods of water availability of snow‑ice and ice‑snow fed rivers for the vegetation period. The Naryn river basin was chosen as a study area which is the main tributary of Syrdarya River and belongs to the Aral Sea basin. The representative mete‑ orological stations with ground‑based observations of snow cover were identified and regression analysis between mean discharge for the vegetation period and number of snow covered days, maximum snow depth based on in‑situ data as well as snow cover area based on MODIS images was conducted. Based on this infor‑ mation, equations are derived for seasonal water availability forecasting using multiple linear regression anal‑ ysis. Proposed equations have high correlation coefficients (R = 0.89÷0.92 and  and fore‑ casting accuracy. The methodology was implemented in Kyrgyzhydromet and is used for forecasting of water availability in Naryn basin and water inflow into Toktogul Reservoir.

  9. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  10. Improving snow fraction spatio-temporal continuity using a combination of MODIS and Fengyun-2 satellites over China

    Jiang, L.; Wang, G.

    2017-12-01

    Snow cover is one of key elements in the investigations of weather, climatic change, water resource, and snow hazard. Satellites observations from on-board optical sensors provides the ability to snow cover mapping through the discrimination of snow from other surface features and cloud. MODIS provides maximum of snow cover data using 8-day composition data in order to reduce the cloud obscuration impacts. However, snow cover mapping is often required to obtain at the temporal scale of less than one day, especially in the case of disasters. Geostationary satellites provide much higher temporal resolution measurements (typically at 15 min or half or one hour), which has a great potential to reduce cloud cover problem and observe ground surface for identifying snow. The proposed method in this work is that how to take the advantages of polar-orbiting and geostationary optical sensors to accurately map snow cover without data gaps due to cloud. FY-2 geostationary satellites have high temporal resolution observations, however, they are lacking enough spectral bands essential for snow cover monitoring, such as the 1.6 μm band. Based on our recent work (Wang et al., 2017), we improved FY-2/VISSR fractional snow cover estimation with a linear spectral unmixing analysis method. The linear approach is applied then using the reflectance observed at the certain hourly image of FY-2 to calculate pixel-wise snow cover fraction. The composition of daily factional snow cover employs the sun zenith angle, where the snow fraction under lowest sun zenith angle is considered as the most confident result. FY-2/VISSR fractional snow cover map has less cloud due to the composition of multi-temporal snow maps in a single day. In order to get an accurate and cloud-reduced fractional snow cover map, both of MODIS and FY-2/VISSR daily snow fraction maps are blended together. With the combination of FY-2E/VISSR and MODIS, there are still some cloud existing in the daily snow fraction map

  11. Radiation balances of melting snow covers at an open site in the Central Sierra Nevada, California

    Aguado, E.

    1985-01-01

    The radiation balances of melting snow packs for three seasons at an open site at the Central Sierra Snow Laboratory near Soda Springs, California were examined. The snow covers were examples of below-normal, near-normal and much-above-normal water equivalents. Two of the snow covers melted under generally clear skies in late spring while the other melted under cloudier conditions and at a time when less extraterrestrial radiation was available. Moreover, the snow covers were of very different densities, thereby allowing examination of a possible relationship between that characteristic and albedo. No such relationship was observed. Despite the dissimilarities in the conditions under which melt occurred, the disposition of solar radiation was similar for the three melt seasons. Albedos and their rates of decline through the melt season were similar for the three seasons. Absorbed solar radiation and a cloudiness index were useful predictors for daily net radiation, accounting for 71% of the total variance. (author)

  12. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  13. Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing

    L. Dai

    2017-08-01

    Full Text Available Snow cover on the Qinghai–Tibetan Plateau (QTP plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow

  14. Consistent seasonal snow cover depth and duration variability over ...

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  15. Snow cover and temperature relationships in North America and Eurasia

    Foster, J.; Owe, M.; Rango, A.

    1983-01-01

    In this study the snow cover extent during the autumn months in both North America and Eurasia has been related to the ensuing winter temperature as measured at several locations near the center of each continent. The relationship between autumn snow cover and the ensuing winter temperatures was found to be much better for Eurasia than for North America. For Eurasia the average snow cover extent during the autumn explained as much as 52 percent of the variance in the winter (December-February) temperatures compared to only 12 percent for North America. However, when the average winter snow cover was correlated with the average winter temperature it was found that the relationship was better for North America than for Eurasia. As much as 46 percent of the variance in the winter temperature was explained by the winter snow cover in North America compared to only 12 percent in Eurasia.

  16. Changes in snow cover over Northern Eurasia in the last few decades

    Bulygina, O N; Razuvaev, V N; Korshunova, N N

    2009-01-01

    Daily snow depth (SD) and snow cover extent around 820 stations are used to analyse variations in snow cover characteristics in Northern Eurasia, a region that encompasses the Russian Federation. These analyses employ nearly five times more stations than in the previous studies and temporally span forty years. A representative judgement on the changes of snow depth over most of Russia is presented here for the first time. The number of days with greater than 50% of the near-station territory covered with snow, and the number of days with the snow depth greater than 1.0 cm, are used to characterize the duration of snow cover (SCD) season. Linear trends of the number of days and snow depth are calculated for each station from 1966 to 2007. This investigation reveals regional features in the change of snow cover characteristics. A decrease in the duration of snow cover is demonstrated in the northern regions of European Russia and in the mountainous regions of southern Siberia. An increase in SCD is found in Yakutia and in the Far East. In the western half of the Russian Federation, the winter-averaged SD is shown to increase, with the maximum trends being observed in Northern West Siberia. In contrast, in the mountainous regions of southern Siberia, the maximum SD decreases as the SCD decreases. While both snow cover characteristics (SCD and SD) play an important role in the hydrological cycle, ecosystems dynamics and societal wellbeing are quite different roles and the differences in their systematic changes (up to differences in the signs of changes) deserve further attention.

  17. Twenty-four year record of Northern Hemisphere snow cover derived from passive microwave remote sensing

    Armstrong, Richard L.; Brodzik, Mary Jo

    2003-04-01

    is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.

  18. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing in the Wind River Range, Wyoming

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    MODIS-derived snow cover measured on 30 April in any given year explains approximately 89 % of the variance in stream discharge for maximum monthly streamflow in that year. Observed changes in streamflow appear to be related to increasing maximum air temperatures over the last four decades causing lower spring snow-cover extent. The majority (>70%) of the water supply in the western United States comes from snowmelt, thus analysis of the declining spring snowpack (and resulting declining stream discharge) has important implications for streamflow management in the drought-prone western U.S.

  19. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability

  20. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  1. On the impact of snow cover on daytime pollution dispersion

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  2. [Characteristics of chemical pollution of snow cover in Aktobe areas].

    Iskakov, A Zh

    2010-01-01

    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  3. Past and future of the Austrian snow cover - results from the CC-Snow project

    Strasser, Ulrich; Marke, Thomas; Hanzer, Florian; Ragg, Hansjörg; Kleindienst, Hannes; Wilcke, Renate; Gobiet, Andreas

    2013-04-01

    This study has the goal to simulate the evolution of the Austrian snow cover from 1971 to 2050 by means of a coupled modelling scheme, and to estimate the effect of climate change on the evolution of the natural snow cover. The model outcomes are interepreted with focus on both the future natural snow conditions, and the effects on winter skiing tourism. Therefore the regional temperature-index snow model SNOWREG is applied, providing snow maps with a spatial resolution of 250 m. The model is trained by means of assimilating local measurements and observed natural snow cover patterns. Meteorological forcing consists of the output of four realizations of the ENSEMBLES project for the A1B emission scenario. The meteorological variables are downscaled and error corrected with a quantile based empirical-statistical method on a daily time basis. The control simulation is 1971-2000, and the scenario simulation 2021-2050. Spatial interpolation is performed on the basis of parameter-elevation relations. We compare the four different global/regional climate model combinations and their effect on the snow modelling, and we explain the patterns of the resulting snow cover by means of regional climatological characteristics. The provinces Tirol and Styria serve as test regions, being typical examples for the two climatic subregions of Austria. To support the interpretation of the simulation results we apply indicators which enable to define meaningful measures for the comparison of the different periods and regions. Results show that the mean duration of the snow cover will decrease by 15 to 30 days per winter season, mostly in elevations between 2000 and 2500 m. Above 3000 m the higher winter precipitation can compensate this effect, and mean snow cover duration may even slightly increase. We also investigate the local scale by application of the physically based mountain snow model AMUNDSEN. This model is capable of producing 50 m resolution output maps for indicators

  4. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  5. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good

  6. Snow cover distribution over elevation zones in a mountainous catchment

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  7. Changes in Andes snow cover from MODIS data, 2000–2016

    F. A. Saavedra

    2018-03-01

    Full Text Available The Andes span a length of 7000 km and are important for sustaining regional water supplies. Snow variability across this region has not been studied in detail due to sparse and unevenly distributed instrumental climate data. We calculated snow persistence (SP as the fraction of time with snow cover for each year between 2000 and 2016 from Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensors (500 m, 8-day maximum snow cover extent. This analysis is conducted between 8 and 36° S due to high frequency of cloud (>  30 % of the time south and north of this range. We ran Mann–Kendall and Theil–Sens analyses to identify areas with significant changes in SP and snowline (the line at lower elevation where SP  =  20 %. We evaluated how these trends relate to temperature and precipitation from Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2 and University of Delaware datasets and climate indices as El Niño–Southern Oscillation (ENSO, Southern Annular Mode (SAM, and Pacific Decadal Oscillation (PDO. Areas north of 29° S have limited snow cover, and few trends in snow persistence were detected. A large area (34 370 km2 with persistent snow cover between 29 and 36° S experienced a significant loss of snow cover (2–5 fewer days of snow year−1. Snow loss was more pronounced (62 % of the area with significant trends on the east side of the Andes. We also found a significant increase in the elevation of the snowline at 10–30 m year−1 south of 29–30° S. Decreasing SP correlates with decreasing precipitation and increasing temperature, and the magnitudes of these correlations vary with latitude and elevation. ENSO climate indices better predicted SP conditions north of 31° S, whereas the SAM better predicted SP south of 31° S.

  8. Dynamics of actual aggregation of petroleum products in snow cover

    Begunova, L. A.; Kuznetsova, O. V.; Begunov, D. A.; Kuznetsova, A. N.

    2017-11-01

    The paper presents issues of snow cover pollution by petroleum products. Petroleum products content was determined using the fluorimetric method of analysis. The samples of snow were selected on the territory of Angarsk and Irkutsk cities. According to the obtained data, the content of petroleum products in the analyzed samples exceeds the background value up to 6 times. Analysis of the reference data for similar research confirms need for creation of an environmental monitoring centralized system to monitor atmospheric precipitation and, particularly, snow cover.

  9. Monitoring and evaluation of seasonal snow cover in Kashmir valley ...

    89 to 2007–08) climatic conditions prevailed in both ranges of Kashmir valley. Region-wise ... effective use of snowmelt runoff models (Rango and Martinec ... J. Earth Syst. Sci. 118, No. ... of cloud cover can affect delineation of snow cover,.

  10. Effect of snow cover on soil frost penetration

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  11. Variability in snow cover phenology in China from 1952 to 2010

    Ke, Chang-Qing; Li, Xiu-Cang; Xie, Hongjie; Ma, Dong-Hui; Liu, Xun; Kou, Cheng

    2016-02-01

    Daily snow observation data from 672 stations in China, particularly the 296 stations with over 10 mean snow cover days (SCDs) in a year during the period of 1952-2010, are used in this study. We first examine spatiotemporal variations and trends of SCDs, snow cover onset date (SCOD), and snow cover end date (SCED). We then investigate the relationships of SCDs with number of days with temperature below 0 °C (TBZD), mean air temperature (MAT), and Arctic Oscillation (AO) index. The results indicate that years with a positive anomaly of SCDs for the entire country include 1955, 1957, 1964, and 2010, and years with a negative anomaly of SCDs include 1953, 1965, 1999, 2002, and 2009. The reduced TBZD and increased MAT are the main reasons for the overall late SCOD and early SCED since 1952. This explains why only 12 % of the stations show significant shortening of SCDs, while 75 % of the stations show no significant change in the SCDs trends. Our analyses indicate that the distribution pattern and trends of SCDs in China are very complex and are not controlled by any single climate variable examined (i.e. TBZD, MAT, or AO), but a combination of multiple variables. It is found that the AO has the maximum impact on the shortening trends of SCDs in the Shandong peninsula, Changbai Mountains, Xiaoxingganling, and north Xinjiang, while the combined TBZD and MAT have the maximum impact on the shortening trends of SCDs in the Loess Plateau, Tibetan Plateau, and Northeast Plain.

  12. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  13. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas.

    Rohrer, Mario; Salzmann, Nadine; Stoffel, Markus; Kulkarni, Anil V

    2013-12-01

    The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance - such as the pollution of the snow cover through black carbon - or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. © 2013 Elsevier B.V. All rights reserved.

  14. Impacts of Early Summer Eurasian Snow Cover Change on Atmospheric Circulation in Northern Mid-Latitudes

    Nozawa, T.

    2016-12-01

    Recently, Japan Aerospace Exploration Agency (JAXA) has developed a new long-term snow cover extent (SCE) product using Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data spanning from 1980's to date. This new product (JAXA/SCE) has higher spatial resolution and smaller commission error compared with traditional SCE dataset of National Oceanic and Atmospheric Administration (NOAA/SCE). Continuity of the algorithm is another strong point in JAXA/SCE. According to the new JAXA/SCE dataset, the Eurasian SCE has been significantly retreating since 1980's, especially in late spring and early summer. Here, we investigate impacts of early summer Eurasian snow cover change on atmospheric circulation in Northern mid-latitudes, especially over the East Asia, using the new JAXA/SCE dataset and a few reanalysis data. We will present analyzed results on relationships between early summer SCE anomaly over the Eurasia and changes in atmospheric circulations such as upper level zonal jets (changes in strength, positions, etc.) over the East Asia.

  15. Alpine snow cover in a changing climate: a regional climate model perspective

    Steger, Christian; Kotlarski, Sven; Jonas, Tobias; Schär, Christoph

    2013-08-01

    An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951-2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971-2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40-80 % by mid century relative to 1971-2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000-2,500 m, SWE reductions amount to 10-60 % by mid century and to 30-80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.

  16. Reconstructed North American, Eurasian, and Northern Hemisphere Snow Cover Extent, 1915-1997

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series of monthly snow cover extent (SCE) for North America, Eurasia, and the Northern Hemisphere from 1915 to 1997, based on snow cover...

  17. Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft

    Armstrong, R. L.; Brodzik, M. J.

    2003-12-01

    Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km

  18. Springtime warming and reduced snow cover from carbonaceous particles

    M. G. Flanner

    2009-04-01

    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models, likely because BC deposition trends are negative or near-neutral over much of Eurasia. Improved Eurasian

  19. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  20. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  1. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  2. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  3. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas

    Rohrer, Mario; Salzmann, Nadine; Stoffel, Markus; Kulkarni, Anil V.

    2013-01-01

    The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H 2 O, CO 2 , CH 4 , and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance – such as the pollution of the snow cover through black carbon – or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. - Highlights: • Remotely sensed snow-cover data need to be validated by in-situ measurements. • More in-situ snow measurement programs are needed along

  4. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas

    Rohrer, Mario [Meteodat GmbH, Technoparkstrasse 1, CH-8005 Zurich (Switzerland); Salzmann, Nadine [Department of Geosciences, Geography, University of Fribourg, Chemin du Musée 4, CH-1700 Fribourg (Switzerland); Stoffel, Markus, E-mail: markus.stoffel@unige.ch [Institute for Environmental Sciences, University of Geneva, Chemin de Drize 7, CH-1227 Carouge, Geneva (Switzerland); Dendrolab.ch, Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, CH-3012 Bern (Switzerland); Kulkarni, Anil V. [Divecha Center for Climate Change, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2013-12-01

    The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H{sub 2}O, CO{sub 2}, CH{sub 4}, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance – such as the pollution of the snow cover through black carbon – or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. - Highlights: • Remotely sensed snow-cover data need to be validated by in-situ measurements. • More in-situ snow measurement programs are

  5. Investigating Snow Cover and Hydrometeorological Trends in Contrasting Hydrological Regimes of the Upper Indus Basin

    Iqra Atif

    2018-04-01

    Full Text Available The Upper Indus basin (UIB is characterized by contrasting hydrometeorological behaviors; therefore, it has become pertinent to understand hydrometeorological trends at the sub-watershed level. Many studies have investigated the snow cover and hydrometeorological modeling at basin level but none have reported the spatial variability of trends and their magnitude at a sub-basin level. This study was conducted to analyze the trends in the contrasting hydrological regimes of the snow and glacier-fed river catchments of the Hunza and Astore sub-basins of the UIB. Mann-Kendall and Sen’s slope methods were used to study the main trends and their magnitude using MODIS snow cover information (2001–2015 and hydrometeorological data. The results showed that in the Hunza basin, the river discharge and temperature were significantly (p ≤ 0.05 decreased with a Sen’s slope value of −2.541 m3·s−1·year−1 and −0.034 °C·year−1, respectively, while precipitation data showed a non-significant (p ≥ 0.05 increasing trend with a Sen’s slope value of 0.023 mm·year−1. In the Astore basin, the river discharge and precipitation are increasing significantly (p ≤ 0.05 with a Sen’s slope value of 1.039 m3·s−1·year−1 and 0.192 mm·year−1, respectively. The snow cover analysis results suggest that the Western Himalayas (the Astore basin had a stable trend with a Sen’s slope of 0.07% year−1 and the Central Karakoram region (the Hunza River basin shows a slightly increasing trend with a Sen’s slope of 0.394% year−1. Based on the results of this study it can be concluded that since both sub-basins are influenced by different climatological systems (monsoon and westerly, the results of those studies that treat the Upper Indus basin as one unit in hydrometeorological modeling should be used with caution. Furthermore, it is suggested that similar studies at the sub-basin level of the UIB will help in a better understanding of the

  6. Modeling the influence of snow cover on low Arctic net ecosystem exchange

    Luus, K A; Kelly, R E J; Lin, J C; Humphreys, E R; Lafleur, P M; Oechel, W C

    2013-01-01

    The Arctic net ecosystem exchange (NEE) of CO 2 between the land surface and the atmosphere is influenced by the timing of snow onset and melt. The objective of this study was to examine whether uncertainty in model estimates of NEE could be reduced by representing the influence of snow on NEE using remote sensing observations of snow cover area (SCA). Observations of NEE and time-lapse images of SCA were collected over four locations at a low Arctic site (Daring Lake, NWT) in May–June 2010. Analysis of these observations indicated that SCA influences NEE, and that good agreement exists between SCA derived from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over Daring Lake and Ivotuk, Alaska (2004–2007) using VPRM formulations with and without explicit representations of the influence of SCA on respiration and/or photosynthesis. Model performance was assessed by comparing VPRM output against unfilled eddy covariance observations from Daring Lake and Ivotuk (2004–2007). The uncertainty in VPRM estimates of NEE was reduced when respiration was estimated as a function of air temperature when SCA ≤ 50% and as a function of soil temperature when SCA > 50%. (letter)

  7. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  8. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data

    Sun, Z

    2012-08-01

    Full Text Available , daily ET is more meaningful and useful in applications. In this study, daily ET estimates are obtained by combining data from the MODIS sensor aboard the polar-orbiting Terra satellite and the SEVIRI sensor aboard the geostationary-orbiting MSG satellite...

  9. UAS applications in high alpine, snow-covered terrain

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  10. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia

    A. N. Gelfan

    2014-01-01

    Full Text Available A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good performance in simulating time series of the snow water equivalent and snow depth. The developed weather generator (NEsted Weather Generator, NewGen includes nested generators of annual, monthly and daily time series of weather variables (namely, precipitation, air temperature, and air humidity. The parameters of the NewGen have been adjusted through calibration against the long-term meteorological data in the European Russia. A disaggregation procedure has been proposed for transforming parameters of the annual weather generator into the parameters of the monthly one and, subsequently, into the parameters of the daily generator. Multi-year time series of the simulated daily weather variables have been used as an input to the snow model. Probability properties of the snow cover, such as snow water equivalent and snow depth for return periods of 25 and 100 years, have been estimated against the observed data, showing good correlation coefficients. The described model has been applied to different landscapes of European Russia, from steppe to taiga regions, to show the robustness of the proposed technique.

  11. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall

    Wang, Zhibiao; Wu, Renguang; Chen, Shangfeng; Huang, Gang; Liu, Ge; Zhu, Lihua

    2018-03-01

    The influence of boreal winter-spring eastern Tibetan Plateau snow anomalies on the East Asian summer rainfall variability has been the focus of previous studies. The present study documents the impacts of boreal summer western and southern Tibetan Plateau snow cover anomalies on summer rainfall over East Asia. Analysis shows that more snow cover in the western and southern Tibetan Plateau induces anomalous cooling in the overlying atmospheric column. The induced atmospheric circulation changes are different corresponding to more snow cover in the western and southern Tibetan Plateau. The atmospheric circulation changes accompanying the western Plateau snow cover anomalies are more obvious over the midlatitude Asia, whereas those corresponding to the southern Plateau snow cover anomalies are more prominent over the tropics. As such, the western and southern Tibetan Plateau snow cover anomalies influence the East Asian summer circulation and precipitation through different pathways. Nevertheless, the East Asian summer circulation and precipitation anomalies induced by the western and southern Plateau snow cover anomalies tend to display similar distribution so that they are more pronounced when the western and southern Plateau snow cover anomalies work in coherence. Analysis indicates that the summer snow cover anomalies over the Tibetan Plateau may be related to late spring snow anomalies due to the persistence. The late spring snow anomalies are related to an obvious wave train originating from the western North Atlantic that may be partly associated with sea surface temperature anomalies in the North Atlantic Ocean.

  12. Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery

    Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri

    2011-01-01

    We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.

  13. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  14. Predicting average wintertime wind and wave conditions in the North Atlantic sector from Eurasian snow cover in October

    Brands, Swen

    2014-01-01

    The present study assesses the lead–lag teleconnection between Eurasian snow cover in October and the December-to-February mean boreal winter climate with respect to the predictability of 10 m wind speed and significant wave heights in the North Atlantic and adjacent seas. Lead–lag correlations exceeding a magnitude of 0.8 are found for the short time period of 1997/98–2012/13 (n = 16) for which daily satellite-sensed snow cover data is available to date. The respective cross-validated hindcast skill obtained from using linear regression as a statistical forecasting technique is similarly large in magnitude. When using a longer but degraded time series of weekly snow cover data for calculating the predictor variable (1979/80–2011/12, n = 34), hindcast skill decreases but yet remains significant over a large fraction of the study area. In addition, Monte-Carlo field significance tests reveal that the patterns of skill are globally significant. The proposed method might be used to make forecast decisions for wind and wave energy generation, seafaring, fishery and offshore drilling. To exemplify its potential suitability for the latter sector, it is additionally applied to DJF frequencies of significant wave heights exceeding 2 m, a threshold value above which mooring conditions at oil platforms are no longer optimal. (paper)

  15. Polycyclic Aromatic Hydrocarbons In Aerosol and Snow Cover of Siberian Towns (east Siberia)

    Gorshkov, A.; Marinayte, I.

    Contamination of the atmosphere above Siberian towns has a few peculiarities: (i) level of pollution is presumably determined by discharges of large enterprises sur- rounded by company towns; (ii) long (up to 150 days) winter is characterized by the highest concentrations of pollutants within the near-ground atmospheric layer due to pronounced anti-cyclonic circulation of the atmosphere; (iii) polycyclic aromatic hydrocarbons (PAH) are specific minor components of the aerosols. Relatively high PAH concentrations in aerosol of Siberian towns are caused by the presence of ad- ditional intensive sources of PAH (besides those traditional: gas discharges of met- allurgy, heat-and-power engineering enterprises, and motor transport). These are the discharges of low power (produc- ing plant (50000 residents) - are presented in the report. Daily and seasonal dynamics of aerosol pollution and level of PAH accumulation in snow covers during 1996 U 2001 are estimated. The highest PAH concentrations (total concentrations of identi- fied compounds) are up to 300 ng/m3 in aerosol and up to 16 mg/m2 in snow cover. At day and night temperatures lowering up to -30 oe -40 01057;, the maximum of PAH concentration is observed in the daytime due to displacement of the tempera-ture in- version. When temperature increases, two SclassicalT maximums are observed during & cedil;the morning and the evening hours. It was shown that the effect of Scity air circula- & cedil;tionT caused by air masses transportation above a city from its center to out-skirts (within the near-ground air layer U to its center) does not contribute to efficient level- ing of PAH concentrations. The level of PAH accumulation in snow cover in different citySs sites and within one citySs region is ranging up to 10 times during a season. Calculated benz[a]pyren fluxes allow us to conclude that contamination of the atmo- sphere above Irkutsk (2.5 mkg/m2 per week) is comparable with that above large cities of Western

  16. Assessment of dynamic probabilistic methods for mapping snow cover in Québec Canada

    De Seve, D.; Perreault, L.; Vachon, F.; Guay, F.; choquette, Y.

    2012-04-01

    Hydro-Quebec is the leader in electricity production in North America and uses hydraulic resources to generate 97% of its overall production where snow represents 30% of its annual energy reserve. Information on snow cover extent (SC) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in Nordic regions where a majority of total precipitations falls as snow. Accurate estimation of the spatial distribution of snow cover variables is required to measure the extent of this resource but snow surveys are expensive due to inaccessibility factors and to the large extent nature of the Quebec geography. Consequently, the follow-up of snowmelt is particularly challenging for operational forecasting resulting in the need to develop a new approach to assist forecasters. For improved understanding of the dynamics of snow melting over watersheds and to generate optimized power production, Hydro-Québec's Research Institute (IREQ) has developed expertise in in-situ, remote sensing monitoring and statistical treatment of such data. The main goal of this Hydro-Quebec project is to develop an automatic and dynamic snow mapping system providing a daily snow map by merging remote sensing (AVHRR and SSMI) and in situ data. This paper focuses on the work accomplished on passive microwave SSM/I data to follow up snow cover. In our problematic, it is highly useful to classify snow, more specifically during the snowmelt period. The challenge is to be able to discriminate ground from wet snow as it will react as a black body, therefore, adding noise to global brightness temperature. Two dynamic snow classifiers were developed and tested. For this purpose, channels at 19 and 37 GHz in vertical polarization have been used to feed each model. SWE values from gamma ray in situ stations (GMON) and data snow depth from ultrasonic sensor (SR50) were used to validate the output models. The first algorithm is based on a standard K-mean clustering approach, combined

  17. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  18. Improving automated disturbance maps using snow-covered landsat time series stacks

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2012-01-01

    Snow-covered winter Landsat time series stacks are used to develop a nonforest mask to enhance automated disturbance maps produced by the Vegetation Change Tracker (VCT). This method exploits the enhanced spectral separability between forested and nonforested areas that occurs with sufficient snow cover. This method resulted in significant improvements in Vegetation...

  19. Chemical elements contamination of snow cover in region of coal production 'Karazhyra'

    Evlampieva, E.P.; Panin, M.S.

    2008-01-01

    Peculiarities of space distribution of chemical elements in hardphase and water-soluble falls of snow cover in region of coal deposit 'Karazhyra' are investigated. The maximal, minimal and background areas of elements accumulation in the snow of this region and distribution of their cumulative rates are determined. The main pollutants of snow cover unto background level are revealed.

  20. [Evaluation of pollution of an urban area by level of heavy metals in snow cover].

    Stepanova, N V; Khamitova, R Ia; Petrova, R S

    2003-01-01

    The goal of this study was to systematize various methodological approaches to evaluating the contamination of the snow cover with heavy metals (HM) by using Kazan, an industrial city with diversified industry, as an example. The findings suggest that it is necessary to characterize the contamination of the snow cover by the actual entrance of an element per area unit of the snow cover for a definite period of time rather than by the concentration of TM in the volume unit of snow water (mg/l), which minimizes the uncertainties with spatial and temporary snow cover variations. The index of the maximum allowable entrance, which is of practical value, may be used to objectively calibrate the pollution of the snow cover, by estimating the amount of a coming element and its toxicity.

  1. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Xie, Yu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance) broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the

  2. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia

    Zhang, Yinsheng; Ma, Ning

    2018-04-01

    Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE

  4. The seasonal cycle of snow cover, sea ice and surface albedo

    Robock, A.

    1980-01-01

    The paper examines satellite data used to construct mean snow cover caps for the Northern Hemisphere. The zonally averaged snow cover from these maps is used to calculate the seasonal cycle of zonally averaged surface albedo. The effects of meltwater on the surface, solar zenith angle, and cloudiness are parameterized and included in the calculations of snow and ice albedo. The data allows a calculation of surface albedo for any land or ocean 10 deg latitude band as a function of surface temperature ice and snow cover; the correct determination of the ice boundary is more important than the snow boundary for accurately simulating the ice and snow albedo feedback.

  5. Validation of Satellite Snow Cover Maps in North America and Norway

    Hall, Dorothy K.; Solberg, Rune; Riggs, George A.

    2002-01-01

    Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.

  6. MODIS/Terra Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V006

    National Aeronautics and Space Administration — MODIS/Terra Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG (MOD08_D3). MODIS was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator...

  7. MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V006

    National Aeronautics and Space Administration — MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG (MYD08_D3). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator...

  8. MODIS-derived daily PAR simulation from cloud-free images and its validation

    Chen, Liangfu; Gu, Xingfa; Tian, Guoliang [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); The Center for National Spaceborne Demonstration, Beijing 100101 (China); Gao, Yanhua [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yang, Lei [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Jilin University, Changchun 130026 (China); Liu, Qinhuo [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China)

    2008-06-15

    In this paper, a MODIS-derived daily PAR (photosynthetically active radiation) simulation model from cloud-free image over land surface has been developed based on Bird and Riordan's model. In this model, the total downwelling spectral surface irradiance is divided into two parts: one is beam irradiance, and another is diffuse irradiance. The attenuation of solar beam irradiance comprises scattering by the gas mixture, absorption by ozone, the gas mixture and water vapor, and scattering and absorption by aerosols. The diffuse irradiance is scattered out of the direct beam and towards the surface. The multiple ground-air interactions have been taken into account in the diffuse irradiance model. The parameters needed in this model are atmospheric water vapor content, aerosol optical thickness and spectral albedo ranging from 400 nm to 700 nm. They are all retrieved from MODIS data. Then, the instantaneous photosynthetically available radiation (IPAR) is integrated by using a weighted sum at each of the visible MODIS wavebands. Finally, a daily PAR is derived by integration of IPAR. In order to validate the MODIS-derived PAR model, we compared the field PAR measurements in 2003 and 2004 against the simulated PAR. The measurements were made at the Qianyanzhou ecological experimental station, Chinese Ecosystem Research Network. A total of 54 days of cloud-free MODIS L1B level images were used for the PAR simulation. Our results show that the simulated PAR is consistent with field measurements, where the correlation coefficient of linear regression between calculated PAR and measured PAR is 0.93396. However, there were some uncertainties in the comparison of 1 km pixel PAR with the tower flux stand measurement. (author)

  9. Snow cover setting-up dates in the north of Eurasia: relations and feedback to the macro-scale atmospheric circulation

    V. V. Popova

    2014-01-01

    Full Text Available Variations of snow cover onset data in 1950–2008 based on daily snow depth data collected at first-order meteorological stations of the former USSR compiled at the Russia Institute of Hydrometeorological Information are analyzed in order to reveal climatic norms, relations with macro-scale atmospheric circulation and influence of snow cover anomalies on strengthening/weakening of westerly basing on observational data and results of simulation using model Planet Simulator, as well. Patterns of mean snow cover setting-up data and their correlation with temperature of the Northern Hemisphere extra-tropical land presented in Fig. 1 show that the most sensible changes observed in last decade are caused by temperature trend since 1990th. For the most portion of the studied territory variations of snow cover setting-up data may be explained by the circulation indices in the terms of Northern Hemisphere Teleconnection Patterns: Scand, EA–WR, WP and NAO (Fig. 2. Role of the Scand and EA–WR (see Fig. 2, а, в, г is recognized as the most significant.Changes of snow cover extent calculated on the base of snow cover onset data over the Russia territory, and its western and eastern parts as well, for the second decade of October (Fig. 3 demonstrate significant difference in variability between eastern and western regions. Eastern part of territory essentially differs by lower both year-to-year and long-term variations in the contrast to the western part, characterized by high variance including long-term tendencies: increase in 1950–70th and decrease in 1970–80 and during last six years. Nevertheless relations between snow cover anomalies and Arctic Oscillation (AO index appear to be significant exceptionally for the eastern part of the territory. In the same time negative linear correlation revealed between snow extent and AO index changes during 1950–2008 from statistically insignificant values (in 1950–70 and 1996–2008 to coefficient

  10. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover Environmental Data Record (EDR) from NDE

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of snow cover from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument...

  11. NOAA Climate Data Record (CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) is a record for the Northern Hemisphere (NH) Snow Cover Extent (SCE) spanning from October 4, 1966 to present, updated monthly...

  12. Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development

    Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.

    2013-01-01

    A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.

  13. Snow cover and snowfall impact corticosterone and immunoglobulin a levels in a threatened steppe bird.

    Liu, Gang; Hu, Xiaolong; Kessler, Aimee Elizabeth; Gong, Minghao; Wang, Yihua; Li, Huixin; Dong, Yuqiu; Yang, Yuhui; Li, Linhai

    2018-05-15

    Birds use both the corticosterone stress response and immune system to meet physiological challenges during exposure to adverse climatic conditions. To assess the stress level and immune response of the Asian Great Bustard during conditions of severe winter weather, we measured fecal corticosterone (CORT) and Immunoglobulin A (IgA) before and after snowfall in a low snow cover year (2014) and a high snow cover year (2015). A total of 239 fecal samples were gathered from individuals in Tumuji Nature Reserve, located in eastern Inner Mongolia, China. We observed high CORT levels that rose further after snowfall both in high and low snow cover years. IgA levels increased significantly after snowfall in the low snow cover year, but decreased after snowfall in the high snow cover year. These results suggest that overwintering Asian Great Bustards are subjected to climatic stress during severe winter weather, and the hypothalamic-pituitary-adrenal axis and immune system react to this challenge. Extreme levels of stress, such as snowfall in already prolonged and high snow cover conditions may decrease immune function. Supplemental feeding should be considered under severe winter weather conditions for this endangered subspecies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study

    Simona Fratianni

    2010-10-01

    Full Text Available Snow cover greatly influences the climate in the Alpine region and is one of the most relevant parameters for the climate change analysis. Nevertheless, snow precipitation variability is a relatively underexplored field of research because of the lack of long-term, continuous and homogeneous time series. After a historical research aiming to recover continuous records, three high quality time series of snow precipitation and snow depth recorded in the southwestern Italian Alps were analyzed. The comparison between the climatological indices over the 30 years reference period 1971–2000 and the decade 2000–2009 outlined a general decrease in the amount of snow precipitation, and a shift in the seasonal distribution of the snow precipitation in the most recent period. In the analysis of the last decade snow seasons characteristics, the attention was focused on the heavy snowfalls that occurred in Piedmont during the 2008–2009 snow season: MODerate resolution Imager Spectroradiometer (MODIS snow cover products were used to evaluate snow cover extension at different times during the snow season, and the results were set in relation to the temperatures.

  15. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  16. Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2017-04-01

    In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.

  17. Analysis of the Lake Superior Watershed Seasonal Snow Cover

    Daly, Steven F; Baldwin, Timothy B; Weyrick, Patricia

    2007-01-01

    Daily estimates of the snow water equivalent (SWE) distribution for the period from 1 December through 30 April for each winter season from 1979 80 through 2002 03 were calculated for the entire Lake Superior watershed...

  18. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  19. A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations

    T. A. Jones

    2011-06-01

    Full Text Available Using daily Goddard Chemistry Aerosol Radiation and Transport (GOCART model simulations and columnar retrievals of 0.55 μm aerosol optical thickness (AOT and fine mode fraction (FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS, we estimate the satellite-derived aerosol properties over the global oceans between June 2006 and May 2007 due to black carbon (BC, organic carbon (OC, dust (DU, sea-salt (SS, and sulfate (SU components. Using Aqua-MODIS aerosol properties embedded in the CERES-SSF product, we find that the mean MODIS FMF values for each aerosol type are SS: 0.31 ± 0.09, DU: 0.49 ± 0.13, SU: 0.77 ± 0.16, and (BC + OC: 0.80 ± 0.16. We further combine information from the ultraviolet spectrum using the Ozone Monitoring Instrument (OMI onboard the Aura satellite to improve the classification process, since dust and carbonate aerosols have positive Aerosol Index (AI values >0.5 while other aerosol types have near zero values. By combining MODIS and OMI datasets, we were able to identify and remove data in the SU, OC, and BC regions that were not associated with those aerosol types.

    The same methods used to estimate aerosol size characteristics from MODIS data within the CERES-SSF product were applied to Level 2 (L2 MODIS aerosol data from both Terra and Aqua satellites for the same time period. As expected, FMF estimates from L2 Aqua data agreed well with the CERES-SSF dataset from Aqua. However, the FMF estimate for DU from Terra data was significantly lower (0.37 vs. 0.49 indicating that sensor calibration, sampling differences, and/or diurnal changes in DU aerosol size characteristics were occurring. Differences for other aerosol types were generally smaller. Sensitivity studies show that a difference of 0.1 in the estimate of the anthropogenic component of FMF produces a corresponding change of 0.2 in the anthropogenic component of AOT (assuming a unit value of AOT. This uncertainty would then be passed

  20. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  1. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review

    Dong, Chunyu

    2018-06-01

    Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.

  2. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  3. Sensitivity of the French Alps snow cover to the variation of climatic variables

    E. Martin

    Full Text Available In order to study the sensitivity of snow cover to changes in meteorological variables at a regional scale, a numerical snow model and an analysis system of the meteorological conditions adapted to relief were used. This approach has been successfully tested by comparing simulated and measured snow depth at 37 sites in the French Alps during a ten year data period. Then, the sensitivity of the snow cover to a variation in climatic conditions was tested by two different methods, which led to very similar results. To assess the impact of a particular "doubled CO2" scenario, coherent perturbations were introduced in the input data of the snow model. It was found that although the impact would be very pronounced, it would also be extremely differentiated, dependent on the internal state of the snow cover. The most sensitive areas are the elevations below 2400 m, especially in the southern part of the French Alps.

  4. Global warming in the context of 2000 years of Australian alpine temperature and snow cover.

    McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin

    2018-03-13

    Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.

  5. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  6. Investigation of snow cover dust pollution by contact and satellite observations

    Raputa, Vladimir F.; Yaroslavtseva, Tatyana V.

    2015-11-01

    The problems of reconstructing the snow cover pollution fields from dusting, point, linear and area sources according to ground and satellite observations are considered. Using reconstruction models, the methods of the combined analysis of the characteristic images of snow cover pollution haloes in the vicinity of sources of dust and contact data observations have been developed. On the basis of the numerical data analysis of ground monitoring and satellite imagery, the stable quantitative regularities between the fields of dust fallouts and the intensity of a change of tones of gray in the radial directions relative to the main sources are identified.

  7. Brief communication "Application of mobile laser scanning in snow cover profiling"

    S. Kaasalainen

    2011-03-01

    Full Text Available We present a snowmobile-based mobile mapping system and its first application to snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application. We demonstrate the applicability of the instrument to snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.

  8. Snow Extent Variability in Lesotho Derived from MODIS Data (2000–2014

    Stefan Wunderle

    2016-05-01

    Full Text Available In Lesotho, snow cover is not only highly relevant to the climate system, but also affects socio-economic factors such as water storage for irrigation or hydro-electricity. However, while sound knowledge of annual and inter-annual snow dynamics is strongly required by local stakeholders, in-situ snow information remains limited. In this study, satellite data are used to generate a time series of snow cover and to provide the missing information on a national scale. A snow retrieval method, which is based on MODIS data and considers the concept of a normalized difference snow index (NDSI, has been implemented. Monitoring gaps due to cloud cover are filled by temporal and spatial post-processing. The comparison is based on the use of clear sky reference images from Landsat-TM and ENVISAT-MERIS. While the snow product is considered to be of good quality (mean accuracy: 68%, a slight bias towards snow underestimation is observed. Based on the daily product, a consistent time series of snow cover for Lesotho from 2000–2014 was generated for the first time. Analysis of the time series showed that the high annual variability of snow coverage and the short duration of single snow events require daily monitoring with a gap-filling procedure.

  9. The role of surface energy fluxes in pan-Arctic snow cover changes

    Shi Xiaogang; Lettenmaier, Dennis P; Groisman, Pavel Ya; Dery, Stephen J

    2011-01-01

    We analyze snow cover extent (SCE) trends in the National Oceanic and Atmospheric Administration's (NOAA) northern hemisphere weekly satellite SCE data using the Mann-Kendall trend test and find that North American and Eurasian snow cover in the pan-Arctic have declined significantly in spring and summer over the period of satellite record beginning in the early 1970s. These trends are reproduced, both in trend direction and statistical significance, in reconstructions using the variable infiltration capacity (VIC) hydrological model. We find that spring and summer surface radiative and turbulent fluxes generated in VIC have strong correlations with satellite observations of SCE. We identify the role of surface energy fluxes and determine which is most responsible for the observed spring and summer SCE recession. We find that positive trends in surface net radiation (SNR) accompany most of the SCE trends, whereas modeled latent heat (LH) and sensible heat (SH) trends associated with warming on SCE mostly cancel each other, except for North America in spring, and to a lesser extent for Eurasia in summer. In spring over North America and summer in Eurasia, the SH contribution to the observed snow cover trends is substantial. The results indicate that ΔSNR is the primary energy source and ΔSH plays a secondary role in changes of SCE. Compared with ΔSNR and ΔSH, ΔLH has a minor influence on pan-Arctic snow cover changes.

  10. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    C. Vera Valero

    2018-03-01

    Full Text Available Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  11. Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects

    Lund-Hansen, L.C.; Hawes, Ian; Sorrell, Brian Keith

    2014-01-01

    The snow cover of Arctic sea ice has recently decreased, and climate models forecast that this will continue and even increase in future. We therefore tested the effect of snow cover on the optical properties of sea ice and the biomass, photobiology, and species composition of sea ice algae at Ka...... of the spring bloom is predominantly due to temperature effects on brine channel volume, and that the algal decline after snow removal was primarily due to emigration rather than photodamage.......The snow cover of Arctic sea ice has recently decreased, and climate models forecast that this will continue and even increase in future. We therefore tested the effect of snow cover on the optical properties of sea ice and the biomass, photobiology, and species composition of sea ice algae...... at Kangerlussuaq, West Greenland, during March 2011, using a snow-clearance experiment. Sea ice algae in areas cleared of snow was compared with control areas, using imaging variable fluorescence of photosystem II in intact, unthawed ice sections. The study coincided with the onset of spring growth of ice algae...

  12. River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate

    Chevallier, P.; Pouyaud, B.; Mojaisky, M.; Bolgov, M.; Olsson, O.; Bauer, M.; Froebrich, J.

    2014-01-01

    The Vakhsh and Pyandj rivers, main tributaries of the Amu Darya River in the mountainous region of the Pamir Alay, play an important role in the water resources of the Aral Sea basin (Central Asia). In this region, the glaciers and snow cover significantly influence the water cycle and flow regime,

  13. Surface energy balance of seasonal snow cover for snow-melt ...

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  14. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  15. MODIS Snow and Sea Ice Products

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  16. Snow mechanics and avalanche formation: field experiments on the dynamic response of the snow cover

    Schweizer, Jürg; Schneebeli, Martin; Fierz, Charles; Föhn, Paul M. B.

    1995-11-01

    Knowledge about snow mechanics and snow avalanche formation forms the basis of any hazard mitigation measures. The crucial point is the snow stability. The most relevant mechanical properties - the compressive, tensile and shear strength of the individual snow layers within the snow cover - vary substantially in space and time. Among other things the strength of the snow layers depends strongly on the state of stress and the strain rate. The evaluation of the stability of the snow cover is hence a difficult task involving many extrapolations. To gain insight in the release mechanism of slab avalanches triggered by skiers, the skier's impact is measured with a load cell at different depths within the snow cover and for different snow conditions. The study focused on the effects of the dynamic loading and of the damping by snow compaction. In accordance with earlier finite-element (FE) calculations the results show the importance of the depth of the weak layer or interface and the snow conditions, especially the sublayering. In order to directly measure the impact force and to study the snow properties in more detail, a new instrument, called rammrutsch was developed. It combines the properties of the rutschblock with the defined impact properties of the rammsonde. The mechanical properties are determined using (i) the impact energy of the rammrutsch and (ii) the deformations of the snow cover measured with accelerometers and digital image processing of video sequences. The new method is well suited to detect and to measure the mechanical processes and properties of the fracturing layers. The duration of one test is around 10 minutes and the method seems appropriate for determining the spatial variability of the snow cover. A series of experiments in a forest opening showed a clear difference in the snow stability between sites below trees and ones in the free field of the opening.

  17. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We implemented an automated approach for mapping persistent ice and snow cover (PISC) across the conterminous western U.S. using all available Landsat TM and ETM+ scenes acquired during the late summer/early fall period between 2010 and 2014. Two separate validation approaches indicate this dataset provides a more accurate representation of glacial ice and perennial snow cover for the region than either the U.S. glacier database derived from US Geological Survey (USGS) Digital Raster Graphics (DRG) maps (based on aerial photography primarily from the 1960s–1980s) or the National Land Cover Database 2011 perennial ice and snow cover class. Our 2010–2014 Landsat-derived dataset indicates 28% less glacier and perennial snow cover than the USGS DRG dataset. There are larger differences between the datasets in some regions, such as the Rocky Mountains of Northwest Wyoming and Southwest Montana, where the Landsat dataset indicates 54% less PISC area. Analysis of Landsat scenes from 1987–1988 and 2008–2010 for three regions using a more conventional, semi-automated approach indicates substantial decreases in glaciers and perennial snow cover that correlate with differences between PISC mapped by the USGS DRG dataset and the automated Landsat-derived dataset. This suggests that most of the differences in PISC between the USGS DRG and the Landsat-derived dataset can be attributed to decreases in PISC, as opposed to differences between mapping techniques. While the dataset produced by the automated Landsat mapping approach is not designed to serve as a conventional glacier inventory that provides glacier outlines and attribute information, it allows for an updated estimate of PISC for the conterminous U.S. as well as for smaller regions. Additionally, the new dataset highlights areas where decreases in PISC have been most significant over the past 25–50 years.

  18. Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan

    Anjum, Muhammad Naveed; Ding, Yongjian; Shangguan, Donghui; Liu, Junguo; Ahmad, Ijaz; Ijaz, Muhammad Wajid; Khan, Muhammad Imran

    2018-02-01

    The northern part of Hindukush Mountains has a perplexing environment due to the influence of adjacent mountains of Himalaya, Karakoram, and Tibetan Plateau. Although reliable evidences of climate change are available; however, a clear knowledge of snow cover dynamics in the context of climate change is missing for this region. In this study, we used various remotely sensed (TRMM precipitation product, while MODIS temperature and snow cover products) and gauge-based datasets to quantify the spatiotemporal variability of climatic variables and their turn effects over the snow cover area (SCA) and river discharge in the Swat watershed, northern Hindukush Mountains, Pakistan. The Mann-Kendall method and Sen's slope estimator were used to estimate the trends in SCA and hydro-climatic variables, at 5% significant level (P = 0.05). Results show that the winter and springs temperatures have increased (at the rate of 0.079 and 0.059 °C year-1, respectively), while decreasing in the summer and autumn (at the rate of 0.049 and 0.070 °C year-1, respectively). Basin-wide increasing tendency of precipitation was identified with a highest increasing rate of 3.563 mm year-1 in the spring season. A decreasing trend in the winter SCA (at the rate of -0.275% year-1) and increasing trends in other seasons were identified. An increasing tendency of river discharge on annual and seasonal scales was also witnessed. The seasonal variations in discharge showed significant positive and negative relationships with temperature and SCA, respectively. We conclude that the future variations in the temperature and SCA in the higher altitudes of the Swat watershed could substantially affect the seasonality of the river discharge. Moreover, it implies that the effect of ongoing global warming on the SCA in the snowmelt-dominated river basins needs to be considered for sustainable regional planning and management of water resources, hydropower production, and downstream irrigation scheduling.

  19. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather|info:eu-repo/dai/nl/41327697X; Mclennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silvia; Vikhamar-schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for

  20. Snow cover dynamics and water balance in complex high alpine terrain

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  1. The Critical Depth of Freeze-Thaw Soil under Different Types of Snow Cover

    Qiang Fu

    2017-05-01

    Full Text Available Snow cover is the most common upper boundary condition influencing the soil freeze-thaw process in the black soil farming area of northern China. Snow is a porous dielectric cover, and its unique physical properties affect the soil moisture diffusion, heat conduction, freezing rate and other variables. To understand the spatial distribution of the soil water-heat and the variable characteristics of the critical depth of the soil water and heat, we used field data to analyze the freezing rate of soil and the extent of variation in soil water-heat in a unit soil layer under bare land (BL, natural snow (NS, compacted snow (CS and thick snow (TS treatments. The critical depth of the soil water and heat activity under different snow covers were determined based on the results of the analysis, and the variation fitting curve of the difference sequences on the soil temperature and water content between different soil layers and the surface 5-cm soil layer were used to verify the critical depth. The results were as follows: snow cover slowed the rate of soil freezing, and the soil freezing rate under the NS, CS and TS treatments decreased by 0.099 cm/day, 0.147 cm/day and 0.307 cm/day, respectively, compared with that under BL. In addition, the soil thawing time was delayed, and the effect was more significant with increased snow cover. During freeze-thaw cycles, the extent of variation in the water and heat time series in the shallow soil was relatively large, while there was less variation in the deep layer. There was a critical stratum in the vertical surface during hydrothermal migration, wherein the critical depth of soil water and heat change gradually increased with increasing snow cover. The variance in differences between the surface layer and both the soil water and heat in the different layers exhibited “steady-rising-steady” behavior, and the inflection point of the curve is the critical depth of soil freezing and thawing. This critical

  2. Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008

    Zhou, Hang; Aizen, Elena; Aizen, Vladimir

    2017-01-01

    A series of statistics describing seasonal Snow Cover Extent and timing in Central Asia (CA) have been derived from AVHRR satellite images for the time period from 1986 to 2008. Analysis of long term mean snow cover statistics shows that the area weighted mean of long term Snow Covering Days (SCD) for the whole CA is 95.2 ± 65.7 days. High elevation mountainous areas above 3000 m in Altai, Tien Shan and Pamir, which account for about 2.8% of total area in CA, have SCD > 240 days. Deserts (Karakorum Desert, Taklamakan Desert, Kumtag Desert) and rain shadow areas of major mountains, accounting for 27.0% of total area in CA, have SCD in the range of 0-30 days. Factors affecting snow cover distribution have been analyzed using simple linear regression and segmented regression. For plain regions and windward regions, the SCD rate is + 5.9 days/100 m, while for leeward regions, the rate jumps from + 0.7 days/100 m to + 10.0 days/100 m at about 2335 m. Latitude affects the SCD, especially in plain regions with insignificant change of elevation, with rates of 9-10 days/degree from south to north. The Mann-Kendal test and the Theil-Sen regression methods have been applied to analyze the spatial heterogeneous trends of change of SCD, Snow Cover Onset Date (SCOD), and Snow Cover Melt Date (SCMD). Area weighed mean SCD in the whole CA does not exhibit significant trend of change from 1986 to 2008. Increase of SCD was observed in the northeastern Kazakh Steppe. Low elevation areas below 2000 m in Central Tien Shan and Eastern Tien Shan, as well as mid-elevation areas from 1000 m to 3000 m in Western Tien Shan, Pamiro-Alai and Western Pamir, also experienced increase of SCD, associated with both earlier SCOD and later SCMD. Decrease of SCD was observed in mountainous areas of Altai, Tien Shan and Pamir, and vast areas in plains surrounding the Aral Sea.

  3. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least

  4. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    K. Aalstad

    2018-01-01

    Full Text Available With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD at the 1 km scale by assimilating fractional snow-covered area (fSCA satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation ensemble smoother with multiple data assimilation (ES-MDA scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e. and 0.13, respectively. The ES-MDA either

  5. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  6. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-09-18

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

  7. Cadmium content in snow cover on the Pavlodar territory of the Republic of Kazakhstan

    Azhaev, G.S.; Panin, M.S.

    2008-01-01

    In the present report results of Cadmium concentration determination in aqueous and solid phases of snow cover on the Pavlodar territory of the Republic of Kazakhstan are presented. Cadmium content was tested with atomic absorption method on spectrophotometer of Perkin Elmer Company, model 403 with thermal-electric analyser HGA-74 and deuterium background corrector. Average concentration of cadmium in solid phase of snow goes up to 3.2 mg/kg, in aqueous phase - 2.1 mkg/dm 3 . That is respectively 22.9 and 13.1 times higher than background level. The cadmium concentration level in aqueous and solid phases of snow cover on the different areas of Pavlodar city is unequal. That indicates the specific character of different manufacturing enterprises, their anthropogenic impact on the environment and purification efficiency of emissions

  8. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  9. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia

    A. N. Gelfan; V. M. Moreido

    2014-01-01

    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good ...

  10. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  11. Environmental Controls on Snow Cover Thickness and Water Equivalent in Two Sub-Arctic Mountain Catchments

    Cosgrove, Christopher

    2015-01-01

    The spatial variability of snow cover characteristics (depth, density, and snow water equivalent [SWE]) has paramount importance for the management of water resources in mountain environments. Passive microwave (PM) inference of SWE from space-borne instrumentation is increasingly used but the reliability of this technique remains limited in mountainous areas. Complex topography and the transition between forest and alpine tundra vegetation zones create large spatial heterogeneities in the sn...

  12. Snow cover as a source of technogenic pollution of surface water during the snow melting period

    Labuzova Olga; Noskova Tatyana; Lysenko Maria; Ovcharenko Elena; Papina Tatyana

    2016-01-01

    The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period...

  13. Shielding effect of snow cover on indoor exposure due to terrestrial gamma radiation

    Fujimoto, Kenzo; Kobayashi, Sadayoshi

    1988-01-01

    Many people in the world live in high latitude region where it snows frequently in winter. When snow covers the ground, it considerably reduces the external exposure from the radiation sources in the ground. Therefore, the evaluation of snow effect on exposure due to terrestrial gamma radiation is necessary to obtain the population dose as well as the absorbed dose in air in snowy regions. Especially the shielding effect on indoor exposure is essentially important in the assessment of population dose since most individuals spend a large portion of their time indoors. The snow effect, however, has been rather neglected or assumed to be the same both indoors and outdoors in the population dose calculation. Snow has been recognized only as a cause of temporal variation of outdoor exposure rate due firstly to radon daughters deposition with snow fall and secondly to the shielding effect of snow cover. This paper describes an approach to the evaluation of shielding effect of snow cover on exposure and introduces population dose calculation as numerical example for the people who live in wooden houses in Japan

  14. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars

    Marshall, Katie E.; Sinclair, Brent J.

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  15. Dust pollution of snow cover in the industrial areas of Tomsk city (Western Siberia, Russia)

    Talovskaya, A. V.; Filimonenko, E. A.; Osipova, N. A.; Yazikov, E. G.; Nadeina, L. V.

    2016-03-01

    This article describes the results of long-term monitoring (2007-2014) of snow cover pollution in the territory of Tomsk city. Snow samples were collected in the territory of Tomsk. Determination of dust load level was carried out by comparing with the background and reference values. It has been determined that the north-east and central parts of Tomsk are the most contaminated areas, where brickworks, coal and gas-fired thermal power plant are located. The analysis of long-term dynamics showed a dust load decrease in the vicinity of coal and gas-fired thermal power plant due to upgrading of the existing dust collecting systems. During the monitoring period the high dust load in the vicinity of brickworks did not change. The lowest value of the dust load on snow cover was detected in the vicinity of the petrochemical plant and concrete product plants. The near and far zones of dust load on snow cover were determined with the reference to the location of the studied plants.

  16. Geochemistry of snow cover in taiga and alpine permafrost landscapes in Yakutia

    V. N. Makarov

    2014-01-01

    Full Text Available The work is devoted to results of study the chemical composition of snow in mountain taiga and permafrost landscapes of Yakutia. We studied snow cover in different mountain-belt types of landscapes. The composition and calculated volumes of chemical elements and compounds are studied in snow. The chemical composition of snow in mountain taiga and permafrost landscape has remained relatively constant (hydrocarbonate chloride-bicarbonate or sodium-calcium, low sulfate content. The dominant influence on the chemical composition of snow at plains and mountain permafrost landscapes has a continental origin, mainly carbon compounds. In mountain desert, where there is predominantly regional transfer, along with the carbon significant role in atmospheric precipitation in cold season belongs to the nitrogen compounds, mainly ammonium. The total density of the entry of soluble and insoluble components in the form of snow decreases regularly with change of altitude. The distribution of trace elements in the snow cover is not a subject to altitudinal zonation. The maximum content of heavy metals (Mn, Cu, Pb, Cd, F, and Sr in the snow cover is observed in the landscapes of mountain woodlands and mountain tundra, where the route crossed research Sette-Daban metallogenic zone of stratiform Cu and Pb-Zn mineralization.

  17. Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China.

    Xinyue Zhang

    Full Text Available More than half of the earth's terrestrial surface currently experiences seasonal snow cover and soil frost. Winter compositional and functional investigations in soil microbial community are frequently conducted in alpine tundra and boreal forest ecosystems. However, little information on winter microbial biogeochemistry is known from seasonally snow-covered temperate ecosystems. As decomposer microbes may differ in their ability/strategy to efficiently use soil organic carbon (SOC within different phases of the year, understanding seasonal microbial process will increase our knowledge of biogeochemical cycling from the aspect of decomposition rates and corresponding nutrient dynamics. In this study, we measured soil microbial biomass, community composition and potential SOC mineralization rates in winter and summer, from six temperate ecosystems in northern China. Our results showed a clear pattern of increased microbial biomass C to nitrogen (N ratio in most winter soils. Concurrently, a shift in soil microbial community composition occurred with higher fungal to bacterial biomass ratio and gram negative (G- to gram positive (G+ bacterial biomass ratio in winter than in summer. Furthermore, potential SOC mineralization rate was higher in winter than in summer. Our study demonstrated a distinct transition of microbial community structure and function from winter to summer in temperate snow-covered ecosystems. Microbial N immobilization in winter may not be the major contributor for plant growth in the following spring.

  18. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  19. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  20. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model

    Shi Ying; Gao Xuejie; Wu Jia; Giorgi, Filippo

    2011-01-01

    On the basis of the climate change simulations conducted using a high resolution regional climate model, the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, RegCM3, at 25 km grid spacing, future changes in snow cover over China are analyzed. The simulations are carried out for the period of 1951–2100 following the IPCC SRES A1B emission scenario. The results suggest good performances of the model in simulating the number of snow cover days and the snow cover depth, as well as the starting and ending dates of snow cover to the present day (1981–2000). Their spatial distributions and amounts show fair consistency between the simulation and observation, although with some discrepancies. In general, decreases in the number of snow cover days and the snow cover depth, together with postponed snow starting dates and advanced snow ending dates, are simulated for the future, except in some places where the opposite appears. The most dramatic changes are found over the Tibetan Plateau among the three major snow cover areas of Northeast, Northwest and the Tibetan Plateau in China.

  1. Snow cover volumes dynamic monitoring during melting season using high topographic accuracy approach for a Lebanese high plateau witness sinkhole

    Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent

    2017-04-01

    Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low

  2. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W

  3. Timing and Statistics of Autumn and Spring Annual Snow Cover for the Northern Hemisphere, 1972 to 2000

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Snow and Ice Data Center hosts a time-series data set comprising annual snow cover data for the Northern Hemisphere (covering land primarily over 45...

  4. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  5. Southern Hemisphere origins for interannual variations of Tibetan Plateau snow cover in boreal summer

    Wu, Z.

    2017-12-01

    The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have devoted to revealing the potential factors that can contribute to the TPSC variability on the interannual time scale. Especially during the boreal summer, snow cover can persist over the TP at high elevations, which exerts profound influences on the local and remote climate change. The present study finds that May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the boreal summer TPSC interannual variability. Observational analysis and numerical experiments manifest that the signal of May SAM can be "prolonged" by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere-ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal vertical circulation. Subsequently, a positive (or negative) tropical dipole rainfall (TDR) mode is induced with deficient (or sufficient) precipitation in tropical western Indian Ocean and sufficient (or deficient) precipitation in eastern Indian Ocean-Maritime continent. Rossby wave source diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, propagate northward into western TP. As a response, abnormal cyclonic circulation and upward movement are triggered and prevail over western TP, providing favorable dynamical conditions for more TPSC, and vice versa. Hence, the IOT SSTA plays an "ocean bridge" role and the TDR mode acts as an "atmosphere bridge" role in the process of May SAM impacting the following summer TPSC variability. The results of our work may provide new insight about the cross-equatorial propagation of the SAM influence. Keywords Southern Hemisphere annular mode; Tibetan Plateau snow cover; Rossby wave source

  6. Aerotechnogenic Monitoring of Urban Environment on Snow Cover Pollution (on the Example of Voronezh City

    Prozhorina Tatyana Ivanovna

    2014-09-01

    Full Text Available Snow cover is characterized by high sorption ability and represents an informative object in the process of identifying the technogenic pollution of urban environment. The article contains the results of the research on the chemical composition of the snow which fell in Voronezh in the winter period of 2013–2014. The coefficients of chemical elements concentration were calculated to provide objective characteristics of snow cover pollution. The authors analyze the connection between the presence of pollutants in snow and the level of technogenic impact. The obtained ranges of anomaly coefficients among anions reflect the composition of technogenic emissions. The mineralization of snow water reliably characterizes the intensity of anthropogenic impact on the urban environment, and the value of mineralization snow samples ranges from 62,6 (background to 183,9 mg/l. Maximum values of mineralization (more than 150 mg/l are typical for samples taken in transport area. High values of salinity (more than 120 mg/l are observed in snow samples taken in the industrial area, which confirms the high “technogenic pressure” on the urban environment in zones of industrial and transport potential of the city. The investigated functional areas can be arranged in the following series by descending level of contamination: transport area > industrial zone > residential and recreational areas > background territory. The study of the chemical composition of snow cover in the various functional areas of Voronezh allows to conclude that the pH level, mineralization and the content of suspended solids in snow waters characterize the intensity of anthropogenic pressure on the urban environment, and the composition of melt waters indicates the nature of its pollution.

  7. Understanding snow-transport processes shaping the mountain snow-cover

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  8. Monitoring snow cover and its effect on runoff regime in the Jizera Mountains

    Kulasova, Alena

    2015-04-01

    The Jizera Mountains in the northern Bohemia are known by its rich snow cover. Winter precipitation represents usually a half of the precipitation in the hydrological year. Gradual snow accumulation and melt depends on the course of the particular winter period, the topography of the catchments and the type of vegetation. During winter the snow depth, and especially the snow water equivalent, are affected by the changing character of the falling precipitation, air and soil temperatures and the wind. More rapid snowmelt occurs more on the slopes without forest oriented to the South, while a gradual snowmelt occurs on the locations turned to the North and in forest. Melting snow recharges groundwater and affects water quality in an important way. In case of extreme situation the snowmelt monitoring is important from the point of view of flood protection of communities and property. Therefore the immediate information on the amount of water in snow is necessary. The way to get this information is the continuous monitoring of the snow depth and snow water equivalent. In the Jizera Mountains a regular monitoring of snow cover has been going on since the end of the 19th century. In the 80s of the last century the Jizera Mountains were affected by the increased fallout of pollutants in the air. There followed a gradual dieback of the forest cover and cutting down the upper part of the ridges. In order to get data for the quantification of runoff regime changes in the changing natural environment, the Czech Hydrometeorological Institute (CHMI) founded in the upper part of the Mountains several experimental catchments. One of the activities of the employees of the experimental basis is the regular measurement of snow cover at selected sites from 1982 up to now. At the same time snow cover is being observed using snow pillows, where its mass is monitored with the help of pressure sensors. In order to improve the reliability of the continuous measurement of the snow water

  9. Dust pollution of snow cover in the industrial areas of Tomsk city (Western Siberia, Russia)

    Talovskaya, Anna Valerievna; Filimonenko, Ekaterina Anatolievna; Osipova, Nina Aleksandrovna; Yazikov, Yegor (Egor) Grigoryevich; Nadeina, Louise Vasilievna

    2016-01-01

    This article describes the results of long-term monitoring (2007-2014) of snow cover pollution in the territory of Tomsk city. Snow samples were collected in the territory of Tomsk. Determination of dust load level was carried out by comparing with the background and reference values. It has been determined that the north-east and central parts of Tomsk are the most contaminated areas, where brickworks, coal and gas-fired thermal power plant are located. The analysis of long-term dynamics sho...

  10. An automated approach for mapping persistent ice and snow cover over high latitude regions

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  11. Assessment of the economic risk for the ski resorts of changes in snow cover duration

    S. A. Sokratov

    2014-01-01

    Full Text Available Winter tourism that is intensively developed in the Russian Federation in recent years strongly depends on the snow availability and properties in the region. Climate changes exert significant influence on the functioning of mountain ski resorts, especially if they are located in areas with relatively high air temperatures in winter season. At the present time, a snowy cluster of mountain ski resorts is intensively progressing in vicinity of Krasnaya Polyana. This region in the West Caucasus (Russia is characterized by relatively warm climate conditions. The snow cover thickness (of 1% insurance in area of the Aibga mountain range may reach 8.1 m. But the snow cover thickness is not the only characteristic of the mountain skiing attractiveness. According to the Swiss standards a mountain ski resort can be considered reliable if during seven seasons of ten ones the snow cover with minimal thickness of 30–50 cm exists for a time not shorter than 100 days during a period from 1st December till 15th April.According to the forecast, during future decades the calculated amount of solid precipitation should reduce by 25–30% in mountain regions on the south macro-slope of the Great Caucasus. As the calculations show, by 2041–2050 the maximal decade thickness of snow cover will decrease by 29–35% while a number of days with snow – by 35–40%. If this is the case, artificial snow will be needed in addition to the natural one. But, under warm climate conditions using of plants for artificial snow production will require a certain perfecting of the nowadays technologies, and very likely, with use of chemicals. That is why a shadowing of existing mountain ski routes by means of the tree planting along them could be ecologically more promising. As for the mountain ski resorts of the West Caucasus, we should mention a possible weakening of the avalanche activity as a potential positive effect of the climate warming predicted by models.

  12. Snow cover as a source of technogenic pollution of surface water during the snow melting period

    Labuzova Olga

    2016-10-01

    Full Text Available The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period can be more than 300000 thousand rubles.

  13. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  14. Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs

    Smagin, A. V.; Shnyrev, N. A.

    2015-08-01

    Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.

  15. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  16. Cartographic modelling of aerotechnogenic pollution in snow cover in the landscapes of the Kola Peninsula.

    Ratkin, N E; Asming, V E; Koshkin, V V

    2001-01-01

    The goal of this work was to develop computational techniques for sulphates, nickel and copper accumulation in the snow in the local pollution zone. The main task was to reveal the peculiarities of formation and pollution of snow cover on the region with complex cross-relief. A digital cartographic model of aerotechnogenic pollution of snow cover in the landscapes of the local zone has been developed, based on five-year experimental data. Data regarding annual emissions from the industrial complex, information about distribution of wind and the sum of precipitation from meteostation "Nikel" for the winter period, allowed the model to ensure: * material presentation in the form of maps of water capacity and accumulation of sulphates, nickel and copper in the snow over any winter period in retrospective; * calculation of water capacity and accumulation of pollutants for watersheds and other natural-territorial complexes; * solution of the opposite problem about the determination of the emissions of sulphates, nickel and copper from the enterprise by measuring snow pollution in datum points. The model can be used in other northern regions of the Russian Federation with similar physical-geographical and climatic conditions. The relationships between the sum of precipitation and water capacity in the landscapes of the same type and also the relationships between pollution content in snow and relief, pollution content in snow and distance from the source of emissions, were used as the basis for the model.

  17. Enhancement of snow cover change detection with sparse representation and dictionary learning

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  18. A Prognostic Methodology for Precipitation Phase Detection using GPM Microwave Observations —With Focus on Snow Cover

    Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.

    2017-12-01

    Improving satellite retrieval of precipitation requires increased understanding of its passive microwave signature over different land surfaces. Passive microwave signals over snow-covered surfaces are notoriously difficult to interpret because they record both emission from the land below and absorption/scattering from the liquid/ice crystals. Using data from the Global Precipitation Measurement (GPM) core satellite, we demonstrate that the microwave brightness temperatures of rain and snowfall shifts from a scattering to an emission regime from summer to winter, due to expansion of the less emissive snow cover underneath. We present evidence that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The study also examines a prognostic nearest neighbor matching method for the detection of precipitation and its phase from passive microwave observations using GPM data. The nearest neighbor uses the weighted Euclidean distance metric to search through an a priori database that is populated with coincident GPM radiometer and radar data as well as ancillary snow cover fraction. The results demonstrate prognostic capabilities of the proposed method in detection of terrestrial snowfall. At the global scale, the average probability of hit and false alarm reaches to 0.80 and remains below 0.10, respectively. Surprisingly, the results show that the snow cover may help to better detect precipitation as the detection rate of terrestrial precipitation is increased from 0.75 (no snow cover) to 0.84 (snow-covered surfaces). For solid precipitation, this increased rate of detection is larger than its liquid counterpart by almost 8%. The main reasons are found to be related to the multi-frequency capabilities of the nearest neighbor matching that can properly isolate the atmospheric signal from the background emission and the fact that the precipitation can exhibit an emission-like (warmer

  19. Monitoring NEON terrestrial sites phenology with daily MODIS BRDF/albedo product and landsat data

    The MODerate resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo products (MCD43) have already been in production for more than a decade. The standard product makes use of a linear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR) BRDF m...

  20. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  1. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  2. Snow cover and End of Summer Snowline statistics from a simple stochastic model

    Petrelli, A.; Crouzy, B.; Perona, P.

    2012-04-01

    One essential parameter characterizing snow cover statistics is the End Of Summer Snowline (EOSS), which is also a good indicator of actual climatic trends in mountain regions. EOSS is usually modelled by means of spatially distributed physically based models, and typically require heavy parameterization. In this paper we validate the simple stochastic model proposed by Perona et al. (2007), by showing that the snow cover statistics and the position of EOSS can in principle be explained by only four essential (meteorological) parameters. Perona et al. (2007) proposed a model accounting for stochastic snow accumulation in the cold period, and deterministic melting dynamics in the warm period, and studied the statistical distribution of the snowdepth on the long term. By reworking the ensemble average of the steady state evolution equation we single out a relationship between the snowdepth statistics (including the position of EOSS) and the involved parameters. The validation of the established relationship is done using 50 years of field data from 73 Swiss stations located above 2000 m a.s.l. First an estimation of the meteorological parameters is made. Snow height data are used as a precipitation proxy, using temperature data to estimate SWE during the precipitation event. Thresholds are used both to separate accumulation from actual precipitation and wind transport phenomena, and to better assess summer melting rate, considered to be constant over the melting period according to the simplified model. First results show that data for most of the weather stations actually scales with the proposed relationship. This indicates that, on the long term, the effect of spatial and temporal noise masks most of the process detail so that minimalist models suffice to obtain reliable statistics. Future works will test the validity of this approach at different spatial scales, e.g., regional, continental and planetary. Reference: P. Perona, A. Porporato, and L. Ridolfi, "A

  3. C-Band SAR Imagery for Snow-Cover Monitoring at Treeline, Churchill, Manitoba, Canada

    Frédérique C. Pivot

    2012-07-01

    Full Text Available RADARSAT and ERS-2 data collected at multiple incidence angles are used to characterize the seasonal variations in the backscatter of snow-covered landscapes in the northern Hudson Bay Lowlands during the winters of 1997/98 and 1998/99. The study evaluates the usefulness of C-band SAR systems for retrieving the snow water equivalent under dry snow conditions in the forest–tundra ecotone. The backscatter values are compared against ground measurements at six sampling sites, which are taken to be representative of the land-cover types found in the region. The contribution of dry snow to the radar return is evident when frost penetrates the first 20 cm of soil. Only then does the backscatter respond positively to changes in snow water equivalent, at least in the open and forested areas near the coast, where 1-dB increases in backscatter for each approximate 5–10 mm of accumulated water equivalent are observed at 20–31° incidence angles. Further inland, the backscatter shows either no change or a negative change with snow accumulation, which suggests that the radar signal there is dominated by ground surface scattering (e.g., fen when not attenuated by vegetation (e.g., forested and transition. With high-frequency ground-penetrating radar, we demonstrate the presence of a 10–20-cm layer of black ice underneath the snow cover, which causes the reduced radar returns (−15 dB and less observed in the inland fen. A correlation between the backscattering and the snow water equivalent cannot be determined due to insufficient observations at similar incidence angles. To establish a relationship between the snow water equivalent and the backscatter, only images acquired with similar incidence angles should be used, and they must be corrected for both vegetation and ground effects.

  4. IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation

    Yuan, Chaoxia; Tozuka, Tomoki; Yamagata, Toshio [The University of Tokyo, Department of Earth and Planetary Science, Graduate School of Science, Tokyo (Japan)

    2012-10-15

    Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Nino, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated. (orig.)

  5. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.

    Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton

    2002-08-01

    Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance. Copyright 2002 Elsevier Science B.V.

  6. EVALUATION OF THE URBAN DEVELOPMENT INFLUENCE ON POLLUTION OF SNOW COVER USING GEOINFORMATION AND STATISTICAL ANALYSIS

    I. D. Korlyakov

    2017-01-01

    Full Text Available The influence of urban development parameters on the pollution of snow with heavy metals and metalloids (HMM has been assessed.The aim of the work is to assess the barrier functions of urban development by means of a joint analysis of data on the content of HMM in the snow cover and the parameters of the artificial relief. The residential area of the Ulan-Ude city was chosen as an object of the study, where 27 snow samples were selected. According to the data of the snow survey in 2014, the total content of HMM in the snow suspension was determined, the priority pollutants of the snow were received and the total indicator of immission at the sampling points was calculated. Data processing in the OpenStreetMap, 2GIS, ArcGis 10.0 and Statistica 7.0 software packages made it possible to determine the main parameters of the buildings near the sampling points. Correlation analysis has shown a significant influence of building parameters on the HMM immission in the snow cover. With an increase in the total and average building area, proximity of buildings to the sampling point, an increase in the immission of most or all HMMs has been observed. The height of houses is a secondary factor which positively affects the immission of Cu and Bi. The maximum correlation links are established in radii of 50, 100 and 150 m. The parameters of development affect the total precipitation of pollutants both in all cardinal directions, and in the south-western, northeast, southeast directions, which can be explained by the wind regime features during the winter season. 

  7. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological

  8. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  9. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  10. Technique for radionuclide composition analysis of snow cover in the Chernobyl' NPP 30-km zone using fiber sorbents

    Kham'yanov, L.P.; Rau, D.F.; Amosov, M.M.; Strel'nikova, A.E.; Tereshchenko, V.I.; Veber, T.S.

    1989-01-01

    The high-sensitivity, simple and fast technique for analysis of large-dispersive and ionic components of snow cover radioactivity is suggested. It is based on separation of a sample by fractions, concentration of the dispersive fraction on mechanical filters and the dissolved one on ion-exchange sorbents and separated fraction spectrometry. The minimum measured contamination level is 3.7 Bq/dm 3 for each radionuclide analyzed. The conclusion is made that the technique suggested is the reliable method for radionuclide content analysis is snow cover samples of the Chernobyl' NPP zone. 1 tab

  11. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites

    Stephan Paul

    2015-04-01

    Full Text Available The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS. Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composites for a long period of time. These approaches are well suited for static-nature, slow changing surface features (e.g., fast-ice extent. However, this is not applicable to fast-changing features, like sea-ice polynyas. Therefore, we developed a spatial feature reconstruction to derive information for cloud-covered sea-ice areas based on the surrounding days weighted directly proportional with their temporal proximity to the initial day of interest. Its performance is tested based on manually-screened and artificially cloud-covered case studies of MODIS-derived polynya area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are able to completely restore the artificially cloud-covered test areas with a spatial correlation of 0.83 and a mean absolute spatial deviation of 21%.

  12. Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S during the years 2000–2016

    A. Stehr

    2017-10-01

    Full Text Available Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability. Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA and snow cover dynamic (SCD. With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño–Southern Oscillation (ENSO events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000–2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing

  13. Snow cover dynamics in Andean watersheds of Chile (32.0-39.5° S) during the years 2000-2016

    Stehr, Alejandra; Aguayo, Mauricio

    2017-10-01

    Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño-Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000-2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in

  14. A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: model description and testing

    K. Rankinen

    2004-01-01

    Full Text Available Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters: average soil thermal conductivity, specific heat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981–August 1990 were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R2-values of the testing period were between 0.87 and 0.94 at a depth of 20cm, and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means that the model is suitable for addition to catchment scale models. Keywords: soil temperature, snow model

  15. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    Jadoon, Khan; Lambot, Sé bastien; Dimitrov, Marin; Weihermü ller, Lutz

    2013-01-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn

  16. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  17. Estimation of the condition of snow cover in Voronezh according to the chemical analysis of water from melted snow

    Prozhorina Tatyana Ivanovna; Bespalova Elena Vladimirovna; Yakunina Nadezhda

    2014-01-01

    Snow cover possesses high sorption ability and represents informative object to identify technogenic pollution of an urban environment. In this article the investigation data of a chemical composition of snow fallen in Voronezh during the winter period of 2014 are given. Relationships between existence of pollutants in snow and the level of technogenic effect are analyzed.

  18. Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec

    Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc

    2016-04-01

    Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to

  19. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  20. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  1. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data

    Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn

    2011-01-01

    Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....

  2. Snow cover monitoring model and change over both time and space in pastoral area of northern China

    Cui, Yan; Li, Suju; Wang, Ping; Zhang, Wei; Nie, Juan; Wen, Qi

    2014-11-01

    Snow disaster is a natural phenomenon owning to widespread snowfall for a long time and usually affect people's life, property and economic. During the whole disaster management circle, snow disaster in pastoral area of northern china which including Xinjiang, Inner Mongolia, Qinghai, Tibet has been paid more attention. Thus do a good job in snow cover monitoring then found snow disaster in time can help the people in disaster area to take effective rescue measures, which always been the central and local government great important work. Remote sensing has been used widely in snow cover monitoring for its wide range, high efficiency, less conditions, more methods and large information. NOAA/AVHRR data has been used for wide range, plenty bands information and timely acquired and act as an import data of Snow Cover Monitoring Model (SCMM). SCMM including functions list below: First after NOAA/AVHRR data has been acquired, geometric calibration, radiometric calibration and other pre-processing work has been operated. Second after band operation, four threshold conditions are used to extract snow spectrum information among water, cloud and other features in NOAA/AVHRR image. Third snow cover information has been analyzed one by one and the maximum snow cover from about twenty images in a week has been selected. Then selected image has been mosaic which covered the pastoral area of China. At last both time and space analysis has been carried out through this operational model ,such as analysis on the difference between this week and the same period of last year , this week and last week in three level regional. SCMM have been run successfully for three years, and the results have been take into account as one of the three factors which led to risk warning of snow disaster and analysis results from it always play an important role in disaster reduction and relief.

  3. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V

    2013-01-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  4. Trace element distribution in the snow cover from an urban area in central Poland.

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-05-01

    This work presents the first results from winter field campaigns focusing on trace metals and metalloid chemistry in the snow cover from an urbanized region in central Poland. Samples were collected between January and March 2013 and trace element concentrations were determined using GF-AAS. A large inter-seasonal variability depending on anthropogenic emission, depositional processes, and meteorological conditions was observed. The highest concentration (in μg L(-1)) was reported for Pb (34.90), followed by Ni (31.37), Zn (31.00), Cu (13.71), Cr (2.36), As (1.58), and Cd (0.25). In addition, several major anthropogenic sources were identified based on principal component analysis (PCA), among which the most significant was the activity of industry and coal combustion for residential heating. It was stated that elevated concentrations of some trace metals in snow samples were associated with frequent occurrence of south and southeast advection of highly polluted air masses toward the sampling site, suggesting a large impact of regional urban/industrial pollution plumes.

  5. Carbon dioxide evolution from snow-covered agricultural ecosystems in Finland

    Hiroshi Koizumi

    1996-07-01

    Full Text Available The release of CO2 from the snow surface in winter and the soil surface in summer was directly or indirectly measured in three different soil types (peat, sand and clay in agricultural ecosystems in Finland. The closed chamber (CC method was used for the direct and Pick’s diffusion model (DM method for the indirect measurements. The winter soil temperatures at 2-cm depth were between 0 and 1°C for each soil type. The concentration of CO2 within the snowpack increased linearly with snow depth. The average fluxes of CO2 calculated from the gradients of CO2 concentration in the snow using the DM method ranged from 10 to 27 mg CO2 m2h-1 and with the CC method from 18 to 27 mg CO2 m2h-1. These results suggest that the snow insulates the soil thermally, allowing CO2 production to continue at soil temperatures slightly above freezing in the winter. Carbon dioxide formed in the soil can move across the snowpack up to the atmosphere. The winter/summer ratio of CO2 evolution was estimated to exceed 4%. Therefore, the snow-covered crop soil served as a source of CO2 in winter, and CO2 evolution constitutes an important part of the annual CO2 budget in snowy regions.

  6. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  7. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Stigter, Emmy E.; Wanders, Niko; Saloranta, Tuomo M.; Shea, Joseph M.; Bierkens, M.F.P.; Immerzeel, W.W.

    2017-01-01

    Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water

  8. MODIS/Aqua Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V005

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  9. MODIS/Terra Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V005

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  10. MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V5.1

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  11. MODIS/Terra Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG V5.1

    National Aeronautics and Space Administration — MODIS was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS...

  12. Estimation de la superficie du couvert nival a partir d'une combinaison des donnees de teledetection MODIS et AMSR-E dans un contexte de prevision des crues printanieres au Quebec

    Bergeron, Jean

    Snow cover estimation is a principal source of error for spring streamflow simulations in Québec, Canada. Optical and near infrared remote sensing can improve snow cover area (SCA) estimation due to high spatial resolution but is limited by cloud cover and incoming solar radiation. Passive microwave remote sensing is complementary by its near-transparence to cloud cover and independence to incoming solar radiation, but is limited by its coarse spatial resolution. The study aims to create an improved SCA product from blended passive microwave (AMSR-E daily L3 Brightness Temperature) and optical (MODIS Terra and Aqua daily snow cover L3) remote sensing data in order to improve estimation of river streamflow caused by snowmelt with Québec's operational MOHYSE hydrological model through direct-insertion of the blended SCA product in a coupled snowmelt module (SPH-AV). SCA estimated from AMSR-E data is first compared with SCA estimated with MODIS, as well as with in situ snow depth measurements. Results show good agreement (+95%) between AMSR-E-derived and MODIS-derived SCA products in spring but comparisons with Environment Canada ground stations and SCA derived from Advanced Very High Resolution Radiometer (AVHRR) data show lesser agreements (83 % and 74% respectively). Results also show that AMSR-E generally underestimates SCA. Assimilating the blended snow product in SPH-AV coupled with MOHYSE yields significant improvement of simulated streamflow for the aux Écorces et au Saumon rivers overall when compared with simulations with no update during thaw events, These improvements are similar to results driven by biweekly ground data. Assimilation of remotely-sensed passive microwave data was also found to have little positive impact on springflood forecast due to the difficulty in differentiating melting snow from snow-free surfaces. Considering the direct-insertion and Newtonian nudging assimilation methods, the study also shows the latter method to be superior to

  13. On a snow cover composition in the vicinity of the Verkhnekamsky Salt Deposit

    S. M. Blinov

    2015-01-01

    Full Text Available The snow cover chemical composition was investigated on the territory of the Verkhnekamskiy potash-magnesium salt deposit in the zone of influence of atmospheric emissions of Berezniki Potash Mining Complex (Perm Region. The object of researches was the snow in this area. Features of specific pollutants contained in the emissions of these mine groups and their relationship with the air intake and following atmospheric deposition were examined. With regard for specific character of pollutants in the emissions, studies of melt water included determination of the following chemical components – SO42-, Cl-, NO3-, NO2-, НCO3-, Ca2+, Mg2+, Na+, K+, of the pH value as well as suspended solid substances, and total mineralization. An analysis of snow composition was performed on two sites from which one was the surrounding background territory, while another area was the urban territory of city Berezniki, i.e. area of operating mine group. To assess the results the indicator of specific stock macro component was used. Increased specific stock relative to the background snowpack is clearly indicative of components directly related to the extraction and processing of salts Cl-, Na+, K+. The revealed anomalies have a local character and, as a rule, do not extend beyond boundaries of sanitary protection zones of the enterprises. Maps of distribution of values of the specific reserves for the analyzed list of components in the melt water were constructed. Our results obtained for the Verkhnekamskiy Deposit area were compared with similar published data on the territories of cities in the zone influenced by motor roads, reserves, and coastal zones of the Russian Arctic seas.

  14. Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Mingquan Wu

    2015-12-01

    Full Text Available With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD, Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV, Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM. In addition, the onset date of greenness increase (OGI and greenness decrease (OGD were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data.

  15. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  16. Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters

    Steele, Caitriana; Dialesandro, John; James, Darren; Elias, Emile; Rango, Albert; Bleiweiss, Max

    2017-12-01

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM +) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS' coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between -2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM

  17. Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.

    2010-12-01

    Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the

  18. Distribution and variability of total mercury in snow cover?a case study from a semi-urban site in Pozna?, Poland

    Siudek, Patrycja

    2016-01-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Pozna? (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5?ng?L?1, with a mean value of 4.62?ng?L?1. The highest Hg conc...

  19. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Snow Fraction Environmental Data Record (EDR) from IDPS

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Snow Cover/Depth Fraction (SCF) from the Visible Infrared Imaging Radiometer...

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Snow Cover/Depth (SCD) Binary Map Environmental Data Record (EDR) from IDPS

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Binary Snow Cover (BSC) from the Visible Infrared Imaging Radiometer Suite...

  2. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland.

    Siudek, Patrycja

    2016-12-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  3. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    E. E. Stigter

    2017-07-01

    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  4. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  5. Performances of an expanding insect under elevated CO{sub 2} and snow cover in the Alps

    Battisti, B.; Petrucco-Toffolo, E. [University of Padova, Legnaro (Italy). Dept. of Environmental Agronomy

    2008-09-30

    Variations of phenology and distribution have been recently highlighted in numerous insect species and attributed to climate change, particularly the increase of temperature and atmospheric carbon dioxide (CO{sub 2}). Both have been shown to have direct and indirect effects on insect species of various ecosystems, though the responses are often species-specific. The pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, Notodontidae) is an important pest of conifers in the Mediterranean region, and has been recently shown to expand its altitudinal range in the Alps, including the mountain pine Pinus mugo as a novel host. We had the opportunity to transplant colonies of the pine processionary moth to a high elevation site well outside of the current range of the insect (Stillberg, Davos, Switzerland, 2180 m), where trees of the mountain pine have been grown for five years under ambient and elevated CO{sub 2} concentrations (ca. 570 ppm). The aim of the study was to evaluate the response of first instar larvae to extreme conditions of temperature and to an altered performance induced by the change of host metabolism under elevated CO{sub 2}. Larval mortality and relative growth rate did not differ between host trees grown in ambient or elevated CO{sub 2}. As extended snow cover may be an important mortality factor of larval colonies on the dwarf trees of mountain pine, we tested the survival of colonies transplanted at two extreme sites of Eastern Alps. The snow cover extended over more than one month proved to be an important mortality factor of larval colonies on mountain pine. We concluded that the first instar larvae of the pine processionary moth are not concerned by unusually low temperature and CO{sub 2} increase whereas they can be later strongly affected by snow accumulation. The decrease of snow cover observed in the last decades, however, may reduce such a risk.

  6. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  7. Insects, Fires, and Climate Change: Implications for Snow Cover, Water Resources and Ecosystem Recovery in Western North America

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.

    2012-12-01

    Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.

  8. Linking Changes in Snow Cover with Nitrogen Cycling and Microbial Abundance and Functional Gene Expression in Agricultural Soils

    Goyer, C.; Brin, L.; Zebarth, B.; Burton, D.; Wertz, S.; Chantigny, M.

    2016-12-01

    In eastern Canada, climate change-related warming and increased precipitation may alter winter snow cover, with potential consequences for soil conditions, microbes, and N2O fluxes. We conducted a two-year field study with snow removal, passive snow addition, and ambient treatments in a potato-barley crop system. We measured in situ greenhouse gas (N2O and CO2) fluxes and belowground gas accumulation, and quantified abundance and expression of denitrifier (nirS, nirK, nosZ) and nitrifier (ammonium oxidizing archaeal (AOA) and bacterial (AOB) amoA) genes. Soil gas accumulated throughout winter, and surface fluxes were greatest during spring thaw. Greatest mid-winter soil N2O accumulation and spring thaw N2O fluxes were associated with snow removal in winter 1 and ambient snow in winter 2. High N2O accumulation and fluxes may have been due to increased substrate availability with increased frost intensity in removal plots in winter 1, but with greatest water content in ambient plots in winter 2. In each winter, greatest abundances of nirS, nirK gene denitrifiers and/or amoA gene of AOA were observed in the treatments with the greatest N2O accumulation and fluxes. Gene expression did not vary with treatment, but highest expression of amoA gene of AOA and AOB, and nosZ gene was measured near 0ºC, indicating activity during periods of stable snow cover and spring thaw. Results suggest that the magnitude of fluxes during spring thaw were related to soil conditions and microbial communities present during the prior winter, and not solely those during thaw. Furthermore, the effects of changing snow cover on microbes and N2O fluxes were not a straightforward effect of snow depth, but were likely mediated by temperature and moisture.

  9. Measurement of the reduction of terrestrial gamma-ray dose rates by the snow cover using TL-dosimeters

    Sakamoto, Ryuichi; Saito, Kimiaki; Nagaoka, Toshi; Tsutsumi, Masahiro; Moriuchi, Shigeru

    1990-12-01

    The objective of the investigation is to make clear the effect of the snow cover on environmental gamma-ray field. The reduction in the natural terrestrial gamma-ray dose rate due to snow cover was measured by TL-dosimeters. The measurements were performed in autumn before snowfall and in winter from September 1987 through March 1988 in Nagaoka city, Niigata prefecture. The dosimeters were set at four points, both outside and inside of the houses, for three months. The penetration factors (ratios of terrestrial gamma-ray dose accumulated during snow covered period to those during snow free period) were 0.54-0.67 in the open field, and 0.73-0.95 in the houses. According to theoretical calculation by the Monte Carlo method and the published snowfall data, the corresponding penetration factor was estimated at 0.54 in an ideal open field. As a result, the measured penetration factors were larger than calculated one by 24 % at maximum. The variation of dose rate inside houses by the difference of the amount of snow fall has been investigated. In general, though the amount of snow fall changes every year, dose rates inside the house were proved to be affected little by them. And, the optimum value of snow density which adapted for inference of penetration factor was found to be 0.3 g/cm 3 . The penetration factors inferred from snowdepth data for the year distributed between 0.6 and 1.0 in winter from November 1985 through April 1986 in Niigata prefecture. (author)

  10. Building Daily 30-meter Spatial Resolution Maps of Surface Water Bodies from MODIS Data Using a Novel Technique for Transferring Information Across Space and Time

    Khandelwal, A.; Karpatne, A.; Kumar, V.

    2017-12-01

    In this paper, we present novel methods for producing surface water maps at 30 meter spatial resolution at a daily temporal resolution. These new methods will make use of the MODIS spectral data from Terra (available daily since 2000) to produce daily maps at 250 meter and 500 meter resolution, and then refine them using the relative elevation ordering of pixels at 30 meter resolution. The key component of these methods is the use of elevation structure (relative elevation ordering) of a water body. Elevation structure is not explicitly available at desired resolution for most water bodies in the world and hence it will be estimated using our previous work that uses the history of imperfect labels. In this paper, we will present a new technique that uses elevation structure (unlike existing pixel based methods) to enforce temporal consistency in surface water extents (lake area on nearby dates is likely to be very similar). This will greatly improve the quality of the MODIS scale land/water labels since daily MODIS data can have a large amount of missing (or poor quality) data due to clouds and other factors. The quality of these maps will be further improved using elevation based resolution refinement approach that will make use of elevation structure estimated at Landsat scale. With the assumption that elevation structure does not change over time, it provides a very effective way to transfer information between datasets even when they are not observed concurrently. In this work, we will derive elevation structure at Landsat scale from monthly water extent maps spanning 1984-2015, publicly available through a joint effort of Google Earth Engine and the European Commission's Joint Research Centre (JRC). This elevation structure will then be used to refine spatial resolution of Modis scale maps from 2000 onwards. We will present the analysis of these methods on a large and diverse set of water bodies across the world.

  11. Influence of snowpack and melt energy heterogeneity on snow cover depletion and snowmelt runoff simulation in a cold mountain environment

    DeBeer, Chris M.; Pomeroy, John W.

    2017-10-01

    The spatial heterogeneity of mountain snow cover and ablation is important in controlling patterns of snow cover depletion (SCD), meltwater production, and runoff, yet is not well-represented in most large-scale hydrological models and land surface schemes. Analyses were conducted in this study to examine the influence of various representations of snow cover and melt energy heterogeneity on both simulated SCD and stream discharge from a small alpine basin in the Canadian Rocky Mountains. Simulations were performed using the Cold Regions Hydrological Model (CRHM), where point-scale snowmelt computations were made using a snowpack energy balance formulation and applied to spatial frequency distributions of snow water equivalent (SWE) on individual slope-, aspect-, and landcover-based hydrological response units (HRUs) in the basin. Hydrological routines were added to represent the vertical and lateral transfers of water through the basin and channel system. From previous studies it is understood that the heterogeneity of late winter SWE is a primary control on patterns of SCD. The analyses here showed that spatial variation in applied melt energy, mainly due to differences in net radiation, has an important influence on SCD at multiple scales and basin discharge, and cannot be neglected without serious error in the prediction of these variables. A single basin SWE distribution using the basin-wide mean SWE (SWE ‾) and coefficient of variation (CV; standard deviation/mean) was found to represent the fine-scale spatial heterogeneity of SWE sufficiently well. Simulations that accounted for differences in (SWE ‾) among HRUs but neglected the sub-HRU heterogeneity of SWE were found to yield similar discharge results as simulations that included this heterogeneity, while SCD was poorly represented, even at the basin level. Finally, applying point-scale snowmelt computations based on a single SWE depth for each HRU (thereby neglecting spatial differences in internal

  12. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  13. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  14. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s

    Yin, Zhicong; Wang, Huijun

    2018-04-01

    The haze pollution in December has become increasingly serious over recent decades and imposes damage on society, ecosystems, and human health. In addition to anthropogenic emissions, climate change and variability were conducive to haze in China. In this study, the relationship between the snow cover over eastern Europe and western Siberia (SCES) and the number of haze days in December in central North China was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the SCES and the Eurasian atmospheric circulations. During 1998-2016, the SCES significantly influenced the soil moisture and land surface radiation, and then the combined underlying drivers of enhanced soil moisture and radiative cooling moved the the East Asia jet stream northward and induced anomalous, anti-cyclonic circulation over central North China. Modulated by such atmospheric circulations, the local lower boundary layer, the decreased surface wind, and the more humid air were conducive to the worsening dispersion conditions and frequent haze occurrences. In contrast, from 1979 to 1997, the linkage between the SCES and soil moisture was negligible. Furthermore, the correlated radiative cooling was distributed narrowly and far from the key area of snow cover. The associated atmospheric circulations with the SCES were not significantly linked with the ventilation conditions over central North China. Consequently, the relationship between the SCES and the number of hazy days in central North China was insignificant before the mid-1990s but has strengthened and has become significant since then.

  15. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s

    Z. Yin

    2018-04-01

    Full Text Available The haze pollution in December has become increasingly serious over recent decades and imposes damage on society, ecosystems, and human health. In addition to anthropogenic emissions, climate change and variability were conducive to haze in China. In this study, the relationship between the snow cover over eastern Europe and western Siberia (SCES and the number of haze days in December in central North China was analyzed. This relationship significantly strengthened after the mid-1990s, which is attributed to the effective connections between the SCES and the Eurasian atmospheric circulations. During 1998–2016, the SCES significantly influenced the soil moisture and land surface radiation, and then the combined underlying drivers of enhanced soil moisture and radiative cooling moved the the East Asia jet stream northward and induced anomalous, anti-cyclonic circulation over central North China. Modulated by such atmospheric circulations, the local lower boundary layer, the decreased surface wind, and the more humid air were conducive to the worsening dispersion conditions and frequent haze occurrences. In contrast, from 1979 to 1997, the linkage between the SCES and soil moisture was negligible. Furthermore, the correlated radiative cooling was distributed narrowly and far from the key area of snow cover. The associated atmospheric circulations with the SCES were not significantly linked with the ventilation conditions over central North China. Consequently, the relationship between the SCES and the number of hazy days in central North China was insignificant before the mid-1990s but has strengthened and has become significant since then.

  16. Snow and Ice Climatology of the Western United States and Alaska from MODIS

    Rittger, K. E.; Painter, T. H.; Mattmann, C. A.; Seidel, F. C.; Burgess, A.; Brodzik, M.

    2013-12-01

    The climate and hydroclimate of the Western US and Alaska are tightly coupled to their snow and ice cover. The Western US depends on mountain snowmelt for the majority of its water supply to agriculture, industrial and urban use, hydroelectric generation, and recreation, all driven by increasing population and demand. Alaskan snow and glacier cover modulate regional climate and, as with the Western US, dominate water supply and hydroelectric generation in much of the state. Projections of climate change in the Western US and Alaska suggest that the most pronounced impacts will include reductions of mountain snow and ice cover, earlier runoff, and a greater fraction of rain instead of snow. We establish a snow and ice climatology of the Western US and Alaska using physically based MODIS Snow Covered Area and Grain size model (MODSCAG) for fractional snow cover, the MODIS Dust Radiative Forcing in Snow model (MODDRFS) for radiative forcing by light absorbing impurities in snow, and the MODIS Permanent Ice model (MODICE) for annual minimum exposed snow. MODSCAG and MODDRFS use EOS MOD09GA historical reflectance data (2000-2012) to provide daily and 8-day composites and near real time products since the beginning of 2013, themselves ultimately composited to 8-day products. The compositing method considers sensor-viewing geometry, solar illumination, clouds, cloud shadows, aerosols and noisy detectors in order to select the best pixel for an 8-day period. The MODICE annual minimum exposed snow and ice product uses the daily time series of fractional snow and ice from MODSCAG to generate annual maps. With this project we have established an ongoing, national-scale, consistent and replicable approach to assessing current and projected climate impacts and climate-related risk in the context of other stressors. We analyze the products in the Northwest, Southwest, and Alaska/Arctic regions of the National Climate Assessment for the last decade, the nation's hottest on record

  17. Using NASA Earth Observations to Assist the National Park Service in Assessing Snow Cover Distribution and Persistence Changes in the Sky Islands

    Bayat, F.; Barrow, C., III; Gonsoroski, E.; Dutta, S.; Lynn, T.; Harville, K.; Spruce, J.

    2017-12-01

    Saguaro National Park in southeastern Arizona occupies one of several unique mountain ranges known collectively as the Sky Islands or the Madrean Archipelago. The Sky Islands are biodiversity hotspots and host different ecosystems, ranging from arid deserts to temperate forests. Snowmelt provides a source of water during the dry season for various flora and fauna inhabiting the region. Climate change and its effect on snow cover is of growing concern by resource managers in this location. Currently, the National Park Service (NPS) monitors water presence via stream gauges, but a synoptic record of snow presence does not exist due to the remote and rugged topography of the region. As a result, it is difficult to study how climate change has affected water resources in the Sky Islands and what effect this has on wildlife and vegetation. This project used NASA Earth observations (e.g., Landsat data) and GIS technology to help the NPS in understanding the role of snow cover in the Sky Islands. Historical snow cover maps were compiled using a combination of snow detection indices to provide spatio-temporal information on snow presence and phenology. With a more complete understanding of snow cover trends in the park, the NPS can further analyze snow cover impacts to improve future land management decisions.

  18. Optimized extraction of daily bio-optical time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa

    Horion, Stéphanie; Bergamino, N; Stenuite, S

    2010-01-01

    the MODIS-Aqua sensor. Standard MODIS Aqua Ocean Color products were found to not provide a suitable calibration for high altitude lakes such as the Lake Tanganyika. An optimization of the extraction process and the validation of the dataset were performed with independent sets of in situ measurements. Our......Lake Tanganyika is one of the world's great freshwater ecosystems. In recent decades its hydrodynamic characteristics have undergone important changes that have had consequences on the lake's primary productivity. The establishment of a long-term Ocean Color dataset for Lake Tanganyika...

  19. Some Characteristics of Dust Particles in Atmosphere of Kemerovo City According to Pollution Data of Snow Cover

    Golokhvast, K. S.; Manakov, Yu A.; Bykov, A. A.; Chayka, V. V.; Nikiforov, P. A.; Rogulin, R. S.; Romanova, T. Yu; Karabtsov, A. A.; Semenikhin, V. A.

    2017-10-01

    The given paper presents the study results of solid particles contained in snow samples, taken on 10 sites in Kemerovo city in spring 2013. The sites were chosen in such a way as to prevent particles flow into the snow cover in other ways, except with atmospheric precipitation. Kuzbass Botanical Garden was chosen as the check point. In 7 out of 10 sampling sites on the territory of Kemerovo city the presence of particles that are particularly dangerous for human health was found. In one of the areas the particles of 200-400 nm size and with a specific surface area of 14,813.34 cm2/cm3 were detected in ecologically significant quantity (8%).

  20. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data

    Ran Huang

    2015-07-01

    Full Text Available Air temperature is one of the most important factors in crop growth monitoring and simulation. In the present study, we estimated and mapped daily mean air temperature using daytime and nighttime land surface temperatures (LSTs derived from TERRA and AQUA MODIS data. Linear regression models were calibrated using LSTs from 2003 to 2011 and validated using LST data from 2012 to 2013, combined with meteorological station data. The results show that these models can provide a robust estimation of measured daily mean air temperature and that models that only accounted for meteorological data from rural regions performed best. Daily mean air temperature maps were generated from each of four MODIS LST products and merged using different strategies that combined the four MODIS products in different orders when data from one product was unavailable for a pixel. The annual average spatial coverage increased from 20.28% to 55.46% in 2012 and 28.31% to 44.92% in 2013.The root-mean-square and mean absolute errors (RMSE and MAE for the optimal image merging strategy were 2.41 and 1.84, respectively. Compared with the least-effective strategy, the RMSE and MAE decreased by 17.2% and 17.8%, respectively. The interpolation algorithm uses the available pixels from images with consecutive dates in a sliding-window mode. The most appropriate window size was selected based on the absolute spatial bias in the study area. With an optimal window size of 33 × 33 pixels, this approach increased data coverage by up to 76.99% in 2012 and 89.67% in 2013.

  1. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  2. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  3. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  4. Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century

    M. Ménégoz

    2013-03-01

    Full Text Available We used a coupled climate-chemistry model to quantify the impacts of aerosols on snow cover north of 30° N both for the present-day and for the middle of the 21st century. Black carbon (BC deposition over continents induces a reduction in the mean number of days with snow at the surface (MNDWS that ranges from 0 to 10 days over large areas of Eurasia and Northern America for the present-day relative to the pre-industrial period. This is mainly due to BC deposition during the spring, a period of the year when the remaining of snow accumulated during the winter is exposed to both strong solar radiation and a large amount of aerosol deposition induced themselves by a high level of transport of particles from polluted areas. North of 30° N, this deposition flux represents 222 Gg BC month−1 on average from April to June in our simulation. A large reduction in BC emissions is expected in the future in all of the Representative Concentration Pathway (RCP scenarios. In particular, considering the RCP8.5 in our simulation leads to a decrease in the spring BC deposition down to 110 Gg month−1 in the 2050s. However, despite the reduction of the aerosol impact on snow, the MNDWS is strongly reduced by 2050, with a decrease ranging from 10 to 100 days from present-day values over large parts of the Northern Hemisphere. This reduction is essentially due to temperature increase, which is quite strong in the RCP8.5 scenario in the absence of climate mitigation policies. Moreover, the projected sea-ice retreat in the next decades will open new routes for shipping in the Arctic. However, a large increase in shipping emissions in the Arctic by the mid-21st century does not lead to significant changes of BC deposition over snow-covered areas in our simulation. Therefore, the MNDWS is clearly not affected through snow darkening effects associated with these Arctic ship emissions. In an experiment without nudging toward atmospheric reanalyses, we simulated

  5. Ligninolytic Activity at 0 °C of Fungi on Oak Leaves Under Snow Cover in a Mixed Forest in Japan.

    Miyamoto, Toshizumi; Koda, Keiichi; Kawaguchi, Arata; Uraki, Yasumitsu

    2017-08-01

    Despite the importance of litter decomposition under snow cover in boreal forests and tundra, very little is known regarding the characteristics and functions of litter-decomposing fungi adapted to the cold climate. We investigated the decomposition of oak leaves in a heavy snowfall forest region of Japan. The rate of litter weight loss reached 26.5% during the snow cover period for 7 months and accounted for 64.6% of the annual loss (41.1%). Although no statistically significant lignin loss was detected, decolourization portions of oak leaf litter, which was attributable to the activities of ligninolytic fungi, were observed during snow cover period. This suggests that fungi involved in litter decomposition can produce extracellular enzymes to degrade lignin that remain active at 0 °C. Fungi were isolated from oak leaves collected from the forest floor under the snow layer. One hundred and sixty-six strains were isolated and classified into 33 operational taxonomic units (OTUs) based on culture characteristics and nuclear rDNA internal transcribed spacer (ITS) region sequences. To test the ability to degrade lignin, the production of extracellular phenoloxidases by isolates was quantified at 0 °C. Ten OTUs (9 Ascomycota and 1 Basidiomycota) of fungi exhibited mycelial growth and ligninolytic activity. These results suggested that some litter-decomposing fungi that had the potential to degrade lignin at 0 °C significantly contribute to litter decomposition under snow cover.

  6. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales

    Härer, Stefan; Bernhardt, Matthias; Siebers, Matthias; Schulz, Karsten

    2018-05-01

    Knowledge of current snow cover extent is essential for characterizing energy and moisture fluxes at the Earth's surface. The snow-covered area (SCA) is often estimated by using optical satellite information in combination with the normalized-difference snow index (NDSI). The NDSI thereby uses a threshold for the definition if a satellite pixel is assumed to be snow covered or snow free. The spatiotemporal representativeness of the standard threshold of 0.4 is however questionable at the local scale. Here, we use local snow cover maps derived from ground-based photography to continuously calibrate the NDSI threshold values (NDSIthr) of Landsat satellite images at two European mountain sites of the period from 2010 to 2015. The Research Catchment Zugspitzplatt (RCZ, Germany) and Vernagtferner area (VF, Austria) are both located within a single Landsat scene. Nevertheless, the long-term analysis of the NDSIthr demonstrated that the NDSIthr at these sites are not correlated (r = 0.17) and different than the standard threshold of 0.4. For further comparison, a dynamic and locally optimized NDSI threshold was used as well as another locally optimized literature threshold value (0.7). It was shown that large uncertainties in the prediction of the SCA of up to 24.1 % exist in satellite snow cover maps in cases where the standard threshold of 0.4 is used, but a newly developed calibrated quadratic polynomial model which accounts for seasonal threshold dynamics can reduce this error. The model minimizes the SCA uncertainties at the calibration site VF by 50 % in the evaluation period and was also able to improve the results at RCZ in a significant way. Additionally, a scaling experiment shows that the positive effect of a locally adapted threshold diminishes using a pixel size of 500 m or larger, underlining the general applicability of the standard threshold at larger scales.

  7. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  8. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency

    Wu, Zhiwei [Nanjing University of Information Science and Technology, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing (China); Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Jiang, Zhihong; Zhong, Shanshan; Wang, Lijuan [Nanjing University of Information Science and Technology, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing (China); Li, Jianping [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China)

    2012-11-15

    Northern China has been subject to increased heatwave frequency (HWF) in recent decades, which deteriorates the local droughts and desertification. More than half a billion people face drinking water shortages and worsening ecological environment. In this study, the variability in the western Tibetan Plateau snow cover (TPSC) is observed to have an intimate linkage with the first empirical orthogonal function mode of the summer HWF across China. This distinct leading mode is dominated by the decadal to inter-decadal variability and features a mono-sign pattern with the extreme value center prevailing over northern China and high pressure anomalies at mid- and upper troposphere over Mongolia and the adjacent regions. A simplified general circulation model is utilized to examine the possible physical mechanism. A reduced TPSC anomaly can induce a positive geopotential height anomaly at the mid- and upper troposphere and subsequently enhance the climatological high pressure ridge over Mongolia and the adjacent regions. The subsidence associated with the high pressure anomalies tends to suppress the local cloud formation, which increases the net radiation budget, heats the surface, and favors more heatwaves. On the other hand, the surface heating can excite high pressure anomalies at mid- and upper troposphere. The latter further strengthens the upper troposphere high pressure anomalies over Mongolia and the adjacent regions. Through such positive feedback effect, the TPSC is tied to the interdecadal variations of the northern China HWF. (orig.)

  9. Effects of soil water and heat relationship under various snow cover during freezing-thawing periods in Songnen Plain, China.

    Fu, Qiang; Hou, Renjie; Li, Tianxiao; Jiang, Ruiqi; Yan, Peiru; Ma, Ziao; Zhou, Zhaoqiang

    2018-01-22

    In this study, the spatial variations of soil water and heat under bare land (BL), natural snow (NS), compacted snow (CS) and thick snow (TS) treatments were analyzed. The relationship curve between soil temperature and water content conforms to the exponential filtering model, by means of the functional form of the model, it was defined as soil water and heat relation function model. On this basis, soil water and heat function models of 10, 20, 40, 60, 100, and 140 cm were established. Finally, a spatial variation law of the relationship effect was described based on analysising of the differences between the predicted and measured results. During freezing period, the effects of external factors on soil were hindered by snow cover. As the snow increased, the accuracy of the function model gradually improved. During melting period, infiltration by snowmelt affected the relationship between the soil temperature and moisture. With the increasing of snow, the accuracy of the function models gradually decreased. The relationship effects of soil water and heat increased with increasing depth within the frozen zone. In contrast, below the frozen layer, the relationship of soil water and heat was weaker, and the function models were less accurate.

  10. Using hacked point and shoot cameras for time-lapse snow cover monitoring in an Alpine valley

    Weijs, S. V.; Diebold, M.; Mutzner, R.; Golay, J. R.; Parlange, M. B.

    2012-04-01

    In Alpine environments, monitoring snow cover is essential get insight in the hydrological processes and water balance. Although measurement techniques based on LIDAR are available, their cost is often a restricting factor. In this research, an experiment was done using a distributed array of cheap consumer cameras to get insight in the spatio-temporal evolution of snowpack. Two experiments are planned. The first involves the measurement of eolic snow transport around a hill, to validate a snow saltation model. The second monitors the snowmelt during the melting season, which can then be combined with data from a wireless network of meteorological stations and discharge measurements at the outlet of the catchment. The poster describes the hardware and software setup, based on an external timer circuit and CHDK, the Canon Hack Development Kit. This latter is a flexible and developing software package, released under a GPL license. It was developed by hackers that reverse engineered the firmware of the camera and added extra functionality such as raw image output, more full control of the camera, external trigger and motion detection, and scripting. These features make it a great tool for geosciences. Possible other applications involve aerial stereo photography, monitoring vegetation response. We are interested in sharing experiences and brainstorming about new applications. Bring your camera!

  11. Empirical and theoretical evidence concerning the response of the earth's ice and snow cover to a global temperature increase

    Hollin, J T; Barry, R G

    1979-01-01

    As a guide to the possible effects of a CO/sub 2/-induced warming on the cryosphere, we review the effects of three warm periods in the past, and our theoretical understanding of fluctuations in mountain glaciers, the Greenland and Antarctic ice sheets, ground ice, sea ice and seasonal snow cover. Between 1890 and 1940 A.D. the glaciated area in Switzerland was reduced by over 25%. In the Hypsithermal, at about 6000 BP, ground ice in Eurasia retreated northward by several hundred kilometers. In the interglacial Stage 5e, at about 120 000 BP, glocal sea-level rose by over 6 m. Fluctuations of mountain glaciers depend on mesoscale weather and on their mechanical response to it. Any melting of the Greenland ice sheet is likely to be slow in human terms. The West Antarctic ice sheet (its base below sea-level) is susceptible to an ungrounding, and such an event may have been the cause of the sea-level rise above. The East Antarctic ice sheet is susceptible to mechanical surges, which might be triggered by a warming at its margin. Both an ungrounding and a surge might occupy less than 100 yr, and are potentially the most important ice changes in human terms. Modeling studies suggest that a 5/sup 0/C warming would remove the Arctic pack ice in summer. and this may be the most significant effect for further climatic change.

  12. Features of Duration and Borders of the Bedding of Snow Cover in the Conditions of Climatic Changes in the Territory of Northern Kazakhstan According to Land and Space Monitoring

    Salnikov, Vitaliy; Turulina, Galina; Polyakova, Svetlana; Muratova, Nadiya; Kauazov, Azamat; Abugalieva, Aigul; Tazhibayeva, Tamara

    2014-05-01

    Precipitation and air temperature datasets from 34 meteorological stations were analyzed to reveal the regional climate changes at the territory in North Kazakhstan over the last 58 years (i.e., 1950-2008). Peculiarities and conditions of snow cover formation and melting have been analyzed at territory of Northern Kazakhstan using surface and space monitoring data. Methods of both the geo-informational processing of remote probing data and statistical processing of databases on snow cover, air temperature and precipitations have been used. Analysis of snow cover observations data for territory of Northern Kazakhstan has shown that the stable snow cover might be observed since the middle of November till the beginning of April. In a few last decades the tendency is observed for longevity decrease of snow cover bedding that appears to be on the background air temperature increase and insignificant increase of cold period precipitations due to the later bedding of the snow cover and its earlier destruction. Peculiarities of atmospheric circulation in Atlantic-Eurasian sector of Northern Semi sphere and their influence of formation of snow cover at territory of Northern Kazakhstan. The higher longevity of the snow cover bedding is defined by the predominance of E form circulation and lower longevity - by the predominance of W+C circulation form. Analysis conducted of the highest height of snow cover bedding has shown that for period of 1936-2012 in the most cases the statistically reliable decreasing trends are observed with the linear trend coefficients of 0,50 - 0,60 cm/year. The method is offered for determination of probable characteristics of the snow cover decade height. Using data of space monitoring are allocated the frontiers of snow cover bedding for the period of snow melting 1982-2008 and the snow cover melting maps are developed. The results further confirm the proposition that snow cover availability is an important and limiting factor in the generation

  13. The bright side of snow cover effects on PV production - How to lower the seasonal mismatch between electricity supply and demand in a fully renewable Switzerland

    Kahl, Annelen; Dujardin, Jérôme; Dupuis, Sonia; Lehning, Michael

    2017-04-01

    One of the major problems with solar PV in the context of a fully renewable electricity production at mid-latitudes is the trend of higher production in summer and lower production in winter. This trend is most often exactly opposite to demand patterns, causing a seasonal mismatch that requires extensive balancing power from other production sources or large storage capacities. Which possibilities do we have to bring PV production into closer correlation with demand? This question motivated our research and in response we investigated the effects of placing PV panels at different tilt angles in regions with extensive snow cover to increase winter production from ground reflected short wave radiation. The aim of this project is therefore to quantify the effect of varying snow cover duration (SCD) and of panel tilt angle on the annual total production and on production during winter months when electricity is most needed. We chose Switzerland as ideal test site, because it has a wide range of snow cover conditions and a high potential for renewable electricity production. But methods can be applied to other regions of comparable conditions for snow cover and irradiance. Our analysis can be separated into two steps: 1. A systematic, GIS and satellite-based analysis for all of Switzerland: We use time series of satellite-derived irradiance, and snow cover characteristics together with land surface cover types and elevation information to quantify the environmental conditions and to estimate potential production and ideal tilt angles. 2. A scenario-based analysis that contrasts the production patterns of different placement scenarios for PV panels in urban, rural and mountainous areas. We invoke a model of a fully renewable electricity system (including Switzerland's large hydropower system) at national level to compute the electricity import and storage capacity that will be required to balance the remaining mismatch between production and demand to further illuminate

  14. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia).

    Gustaytis, M A; Myagkaya, I N; Chumbaev, A S

    2018-07-01

    Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m 2 ∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m 2 ∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Utilizing LiDAR Datasets From Experimental Watersheds to Advance Ecohydrological Understanding in Seasonally Snow-Covered Forests

    Harpold, A. A.; Broxton, P. D.; Guo, Q.; Barlage, M. J.; Gochis, D. J.

    2014-12-01

    The Western U.S. is strongly reliant on snowmelt from forested areas for ecosystem services and downstream populations. The ability to manage water resources from snow-covered forests faces major challenges from drought, disturbance, and regional changes in climate. An exciting avenue for improving ecohydrological process understanding is Light Detection and Ranging (LiDAR) because the technology simultaneously observes topography, forest properties, and snow/ice at high-resolution (100 km2). The availability and quality of LiDAR datasets is increasing rapidly, however they remain under-utilized for process-based ecohydrology investigations. This presentation will illustrate how LiDAR datasets from the Critical Zone Observatory (CZO) network have been applied to advance ecohydrological understanding through direct empirical analysis, as well as model parameterization and verification. Direct analysis of the datasets has proved fruitful for pre- and post-disturbance snow distribution estimates and interpreting in-situ snow depth measurements across sites. In addition, we illustrate the potential value of LiDAR to parameterize and verify of physical models with two examples. First, we use LiDAR to parameterize a land surface model, Noah multi-parameterization (Noah-MP), to investigate the sensitivity of modeled water and energy fluxes to high-resolution forest information. Second, we present a Snow Physics and Laser Mapping (SnowPALM) model that is parameterized with LiDAR information at its native 1-m scale. Both modeling studies demonstrate the value of LiDAR for representing processes with greater fidelity. More importantly, the increased model fidelity led to different estimates of water and energy fluxes at larger, watershed scales. Creating a network of experimental watersheds with LiDAR datasets offers the potential to test theories and models in previously unexplored ways.

  16. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    Jadoon, Khan

    2013-07-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up an ultra-wideband stepped-frequency continuous-wave radar. Measurements were performed during nine days and the surface of the bare soil was exposed to snow fall, evaporation and precipitation as the GPR antenna was mounted 110 cm above the ground. Soil surface dielectric permittivity was retrieved using an inversion of time-domain GPR data focused on the surface reflection. The GPR forward model used combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propagation in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. Temperature and permittivity sensors were installed at six depths to monitor the soil dynamics in the top 8 cm depth. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and permittivity data and in particular freeze and thaw events were clearly visible. A good agreement of the trend was observed between the temperature, permittivity and GPR time-lapse data with respect to five freeze-thaw cycles. The GPR-derived permittivity was in good agreement with sensor observations. The proposed method appears to be promising for the real-time mapping and monitoring of the frozen layer at the field scale. © 2013 IEEE.

  17. Use of time series of optical and SAR images in the estimation of snow cover for the optimization of water use in the Andes of Argentina and Chile

    Salinas de Salmuni, Graciela; Cabezas Cartes, Ricardo; Menicocci, Felix

    2014-05-01

    This paper describes the progress in the bilateral cooperation project between academic and water resources management institutions from the Andes region of Argentina and Chile. The study zone is located in fragile ecosystems and mountain areas of the Andes (limit zone between the Province of San Juan, Argentina, and the IV Region of Coquimbo, Chile), with arid climate, where snow precipitates in the headwaters of watershed feed the rivers of the region by melting, which are the only source of water for human use, productive and energetic activities, as well as the native flora and fauna. CONAE, the Argentine Space Agency, participates in the Project through the provision of satellite data to the users and by this it contributes to ensuring the continuity of the results of the project. Also, it provides training in digital image processing. The project also includes the participation of water resource management institutions like Secretaria de Recursos Hidricos of Argentina and the Centro de Información de Recursos Naturales de Chile (CIREN), and of academic institution like the University of San Juan (Argentina) and University of La Serena (Chile). These institutions benefit from the incorporation of new methodologies advanced digital image processing and training of staff (researcher, lecturers, PhD Students and technical). Objectives: 1-Improve water distribution incorporating space technology for application in the prediction models of the stream flow. 2- Conduct an inventory of glaciers as well as studies in selected watersheds in the Andean region, aiming to know the water resource, its availability and potential risks to communities in the region. 3. Contribute to vulnerability studies in biodiversity Andean watersheds. Results: For estimation Snow cover Area, the MODIS images are appropriate due their high temporal resolution and allows for monitoring large areas (greater than 10 km) The proposed methodology (Use of snow index, NSDI) is appropriate for

  18. [MONITORING OF THE CONTENT OF HEAVY METALS AND ELEMENTS IN THE SNOW COVER IN AGRICULTURAL SOILS AT THE TERRITORY OF THE MOSCOW REGION].

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2015-01-01

    The monitoring of snow cover pollution by heavy metals and elements (zinc, copper, lead, cadmium, arsenic, nickel, chromium, strontium, manganese, fluorine, lithium) was performed in 20 districts of the Moscow region in 2009, 2012 and 2013. The assessment of the levels of contamination by heavy metals and elements was given by means of comparison of them with the average values in the snow cover near Moscow in the end of the last century and in some areas of the world, that no exposed to technological environmental impact. 7 districts of Moscow region were characterized by a high content of lead and cadmium in the snow water. It requires the control of water, soil and agricultural products pollution.

  19. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate

  20. Long-range transported dissolved organic matter, ions and black carbon deposited on Central Asian snow covered glaciers

    Schmale, Julia; Kang, Shichang; Peltier, Richard

    2014-05-01

    Ninety percent of the Central Asian population depend on water precipitated in the mountains stored in glaciers and snow cover. Accelerated melting of the snow and ice can be induced by the deposition of airborne impurities such as mineral dust, black carbon and co-emitted species leading to significant reductions of the surface albedo. However, Central Asia is a relatively understudied region and data on the source regions, chemical and microphysical characteristics as well as modelling studies of long-range transported air pollution and dust to the Tien Shan mountains is very scarce. We studied the atmospheric aerosol deposited most likely between summer 2012 and summer 2013on three different glaciers in the Kyrgyz Republic. Samples were taken from four snow pits on the glaciers Abramov (2 pits, 39.59 °N, 71.56 °E, 4390 m elevation, 240 cm deep, and 39.62°N, 71.52 °E, 4275 m elevation, 125 cm deep), Ak-Shiirak (41.80 °N, 78.18 °E, 4325 m elevation, 75 cm deep) and Suek (41.78 °N, 77.75 °E, 4341 m elevation, 200 cm deep). The latter two glaciers are located roughly within 6 and 38 km of an operating gold mine. The snow was analyzed for black carbon, ions, metals and organic carbon. We here focus on the results of inorganic ion measurements and organic carbon speciation based on analysis with an Aerodyne high-resolution time-of-flight aerosol spectrometer (HR-ToF-AMS) and potential pollution sources that can be deduced from the chemical information as well as back trajectories. Average contributions of snow impurities measured by the HR-ToF-AMS were dominated by organic carbon. Relative concentrations of organic carbon, sulfate, nitrate and ammonium in snow were 86 %, 3 %, 9 % and 2 % respectively for Abramov, 92 %, 1 %, 5 % and 1 % for Suek, and 95 %, 1 %, 3 % and 1 % for Ak-Shiirak. Generally, impurities on Suek and Ak-Shiirak were three and five times higher than on Abramov. Mass concentrations of organic carbon were on average 6 times higher in samples

  1. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    Georgievsky, M V

    2009-01-01

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  2. Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images

    Georgievsky, M V, E-mail: mgeorgievsky@hotmail.co [State Hydrological Institute, St Petersburg (Russian Federation)

    2009-10-15

    This paper analyses an opportunity to integrate remote sensing data in a forecasting scheme of river inflow to the Krasnodar reservoir. MODIS MOD10A2 eight-day composite snow cover data was selected as the basic remote sensing information. Based on these data, a database which consists of maximal snow extent maps covering the Kuban river basin over the period from March 2000 to the present, along with the technique of operative monitoring of the maximal snow covered area for the main basins of the rivers flowing into the Krasnodar reservoir were developed. It was revealed that the snow cover distribution data could be useful in the prediction of flooding in the basin. In addition, the Snowmelt Runoff model, application of which is based on snow cover remote sensing data as the input information, was tested as a short-term forecasting model. The obtained results enable us to conclude that the model can be used for short-term runoff forecasts in the mountain and foothill areas of the Krasnodar reservoir basin.

  3. [Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season].

    He, Run-lian; Chen, Ya-mei; Deng, Chang-chun; Yan, Wan-qin; Zhang, Jian; Liu, Yang

    2015-03-01

    In order to understand the relationship between litter decomposition and soil fauna diversity during snow cover season, litterbags with plant debris of Actinothuidium hookeri, Cystopteris montana, two representative understory plants in the alpine timberline ecotone, and their mixed litter were incubated in the dark coniferous forest, timberline and alpine meadow, respectively. After a snow cover season, the mass loss and soil fauna in litterbags were investigated. After decomposition with a snow cover season, alpine meadow showed the highest mass loss of plant debris in comparison with coniferous forest and timberline, and the mass loss of A. hookeri was more significant. The mixture of two plants debris accelerated the mass loss, especially in the timberline. A total of 968 soil invertebrates, which belonged to 5 classes, 10 orders and 35 families, were captured in litterbags. Acarina and Collembola were the dominant groups in plant debris. The numbers of individuals and groups of soil faunal communities in litter of timberline were higher than those of alpine meadow and dark coniferous forest. Canonical correspondence analysis (CCA) indicated that the groups of soil animals were related closely with the average temperature, and endemic species such as Isoptera and Geophilomorpha were observed only in coniferous forest, while Hemiptera and Psocoptera only in.the alpine meadow. The diversity of soil faunal community was more affected by plant debris varieties in the timberline than in the coniferous forest and alpine meadow. Multiple regression analysis indicated that the average temperature and snow depth explained 30.8% of the variation of litter mass loss rate, soil animals explained 8.3%, and altogether explained 34.1%. Snow was one of the most critical factors impacting the decomposition of A. hookeri and C. montana debris in the alpine timberline ecotone.

  4. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    A. A. Marks; M. D. King

    2013-01-01

    The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section ov...

  5. Toxic elements (As, Se, Cd, Hg, Pb) and their mineral and technogenic formations in the snow cover in the vicinity of the industrial enterprises of Tomsk

    Talovskaya, A V; Filimonenko, E A; Osipova, N A; Lyapina, E E; Azikov, E G Y

    2014-01-01

    Snow samples were collected in four industrial areas of Tomsk where brickworks, factories for the production of reinforced concrete structures, machine repair industries and local boilers, petrochemical plant and thermal power station are located. Study of insoluble fraction of aerosols in snow and melted snow water was performed to determine the contents of the emissions from these facilities. The insoluble fraction of aerosols in snow is aerosol particles deposited on snow cover. As, Se, Cd, Hg, Pb concentration was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Mineral modes of the elements were determined by scanning electron microscope. It was found the snow cover is mainly polluted by As, Se, Cd, Hg, Pb in the thermal power station impact area, by As – in the brickworks impact area, by Se – in the impact area of densely located factories for the production of reinforced concrete structures, machine repair industries and local boilers. The research results show that the mineral modes of As are associated with arsenopyrite, of Pb – with galena in the insoluble fraction of aerosols in snow

  6. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  7. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Linkosalmi, Maiju; Melih Tanis, Cemal; Tuovinen, Juha-Pekka; Nadir Arslan, Ali

    2018-01-01

    In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862). Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  8. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  9. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  10. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    M. Peltoniemi

    2018-01-01

    Full Text Available In recent years, monitoring of the status of ecosystems using low-cost web (IP or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1–3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/. Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862. Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  11. Financial evaluation of the integration of satellite technology for snow cover measurements at a hydroelectric plant. (Utilization of Radarsat I in the La Grande river basin, Quebec)

    Martin, D.; Bernier, M.; Sasseville, J.L.; Charbonneau, R.

    1999-01-01

    The emergence, on the markets, of new technologies evokes, for the potential users, a lot of questions concerning the implementation and operation costs associated with these technologies. Nevertheless, for a lot of users, costs should be considered with the benefits these technologies are able to generate. The benefit-cost analysis is a useful tool for a financial evaluation of the transferability of the technology. This method has been selected to evaluate the eventual implementation of remote sensing technologies for snow cover measurements in the La Grande river basin (Quebec, Canada). Indeed, a better assessment of the snow water equivalent leads to a better forecasting of the water inputs due to the snowmelt. Thus, the improvement of the snow cover monitoring has direct impact on hydroelectric reservoir management. The benefit-cost analysis was used to compare three acquisition modes of the satellite Radarsat 1 (ScanSAR, Wide and Standard). The costs considered for this project are: R and D costs and operations costs (the purchase of images and costs of ground truth measurements). We evaluated the raw benefits on the basis of reducing the standard deviation of predicted inflows. The results show that the ScanSAR mode is the primary remote sensing tool for the monitoring of the snow cover, on an operational basis. With this acquisition mode, the benefit-cost ratios range between 2.3:1 and 3.9:1, using a conservative 4% reduction of the standard deviation. Even if the reduction is only 3%, ScanSAR remains profitable. Due to the large number of images needed to cover all the territory, the Standard and Wide modes are penalized by the purchase and the processing costs of the data and with delays associated to the processing. Nevertheless, with these two modes, it could be possible to work with a partial coverage of the watershed, 75% being covered in 4 days in Wide mod. The estimated B/C ratios (1.5:1 and 2:1) confirm the advantages of this alternative

  12. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  13. Frozen soil and snow cover with respect to the hydrological land-surface behaviour; Gefrorener Boden und Schneebedeckung unter besonderer Beruecksichtigung des hydrologischen Verhaltens der Landoberflaeche

    Warrach, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Investigations of the water and energy cycle in the climate system using atmospheric circulation models require a proper representation of the land surface. The land-surface model SEWAB calculates the vertical exchange of water and energy between the atmosphere and the land-surface. This includes the calculation of runoff from the land-surface into the rivers and of the vertical heat and water fluxes within the soil. The inclusion of soil freezing and thawing and the accumulation and ablation of a snow cover in SEWAB is introduced. Additionally changes in the runoff calculation such as the inclusion of the TOPMODEL-approach to consider orographic effects are made. Applications carried out for various regions of North America show good agreement between model results and measurements. (orig.)

  14. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  15. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  16. On the Linkage between Springtime Eurasian Snow Cover Retreat due to the Global Warming and Changes in Summertime Atmospheric Circulation over Japan and East Asia

    Nozawa, T.; Fujiwara, S.

    2017-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), snow cover extent (SCE) over the northern hemisphere is greatly decreasing in spring. This change is expected to affect atmospheric circulation change via land-atmosphere interactions. In this study, we investigated relationships between spring SCE anomaly over the Eurasia and changes in atmospheric circulations, mainly analyzing the Japanese 55-year Reanalysis (JRA-55). Differences in composites of zonal winds at upper and middle levels between large and small SCE years over Western Siberia in spring show that, around Japan and East Asia, jet stream in small SCE years is shifted southward in April and June. We also analyzed surface temperature and soil moisture and find that, in small SCE years, surface temperature in Western Siberia and Central Asia is increased and soil moisture reduced significantly in June. The air temperature in the middle and low level atmosphere also significantly increased and have wave-like pattern in May. These results suggest that there are some linkages between the springtime Eurasian SCE reduction and changes in summertime jet stream over Japan and East Asia through land-atmosphere interactions.

  17. Mossin, Mody

    2005-01-01

    Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning.......Katalog til udstillingen på KA d. 12. - 30. oktober 2005. Kataloget til udstillingen Mossin: Mody, til udstillingens fotografier og til det arkitektoniske udviklingsarbejde, som fotografierne dokumenterer igennem deres formidling af et særligt og kritisk syn på by og bygning....

  18. Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves

    Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun

    2018-03-01

    The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.

  19. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  20. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  1. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  2. Interannual variability of dust-mass loading and composition of dust deposited on snow cover in the San Juan Mountains, CO, USA: Insights into effects on snow melt

    Goldstein, H. L.; Reynolds, R. L.; Derry, J.; Kokaly, R. F.; Moskowitz, B. M.

    2017-12-01

    Dust deposited on snow cover (DOS) in the American West can enhance snow-melt rates and advance the timing of melting, which together can result in earlier-than-normal runoff and overall smaller late-season water supplies. Understanding DOS properties and how they affect the absorption of solar radiation can lead to improved snow-melt models by accounting for important dust components. Here, we report on the interannual variability of DOS-mass loading, particle size, organic matter, and iron mineralogy, and their correspondences to laboratory-measured reflectance of samples from the Swamp Angel Study Plot in the San Juan Mountains, Colorado, USA. Samples were collected near the end of spring in water year 2009 (WY09) and from WY11-WY16, when dust layers deposited throughout the year had merged into one layer at the snow surface. Dust-mass loading on snow ranged 2-64 g/m2, mostly as particles with median sizes of 13-33 micrometers. Average reflectance values of DOS varied little across total (0.4 to 2.50 µm) and visible (0.4 to 0.7 µm) wavelengths at 0.30-0.45 and 0.19-0.27, respectively. Reflectance values lacked correspondence to particle-size. Total reflectance values inversely corresponded to concentrations of (1) organic matter content (4-20 weight %; r2 = 0.71) that included forms of black carbon and locally derived material such as pollen, and (2) magnetite (0.05 to 0.13 weight %; r2 = 0.44). Magnetite may be a surrogate for related dark, light-absorbing minerals. Concentrations of crystalline ferric oxide minerals (hematite+goethite) based on magnetic properties at room-temperature did not show inverse association to visible reflectance values. These ferric oxide measures, however, did not account for the amounts of nano-sized ferric oxides known to exist in these samples. Quantification of such nano-sized particles is required to evaluate their possible effects on visible reflectance. Nonetheless, our results emphasize that reflectance values of year

  3. SNOW COVER OF THE CENTRAL ANTARCTICA (VOSTOK STATION AS AN IDEAL NATURAL TABLET FOR COSMIC DUST COLLECTION: PRELIMINARY RESULTS ON THE IDENTIFICATION OF MICROMETEORITES OF CARBONACEOUS CHONDRITE TYPE

    E. S. Bulat

    2012-01-01

    Full Text Available During the 2010/11 season nearby the Vostok station the 56th Russian Antarctic Expedition has collected surface snow in a big amount from a 3 m deep pit using 15 220 L vol. containers (about 70 kg snow each. Snow melting and processing by ultra-centrifugation was performed in a clean (class 10 000 and 100 laboratory. Total dust concentrations were not exceeded 37.4 mkg per liter with particle dispersal mode around 2.5 mkm. To analyze the elemental composition of fine dust particles aimed to reveal Antarctic micrometeorites (AMM two electron microscopy devices equipped with different micro-beams were implemented. As a preliminary result, three particles (of 107 analyzed featured by Mg content clearly dominated over Al along with Si and Fe as major elements (a feature of carbonaceous chondrites were observed. By this the Vostok AMM CS11 collection was established. The occurrence of given particles was averaged 2.8% – the factual value obtained for the first time for chondritic type AMM at Vostok which should be considered as the lowest estimate for all other families of AMM. Given the reference profile of total dust content in East Antarctic snow during Holocene (18 mkg/kg the MM deposition in Antarctica was quantified for the first time – 14 tons per day for carbonaceous chondrites for the Vostok AMM CS11 collection and up to 245 tons per day for all MM types for the Concordia AMM DC02 collection. The results obtained allowed to prove that snow cover (ice sheet in total of Central East Antarctica is the best spot (most clean of other natural locations and always below 0 ºC for collecting native MM deposited on the Earth during the last million years and could be useful in deciphering the origin and evolution of solid matter in our Solar System and its effects on Earth-bound biogeochemical and geophysical processes including the life origin. The farther analyses of the Vostok AMMs are in a progress.

  4. Indicative properties on snow cover based on the results of experimental studies in the winter 2011/12 in the central part of the East European Plain

    L. M. Kitaev

    2013-01-01

    Full Text Available Local and regional differences in the snow formation were studied in different landscapes of the central part of the East European Plain – within reserves in the Moscow and Tver’ regions (south-north direction; the study period is the winter 2011/12. The observed increase of snow storage in 1.3–1.5 times in the direction south-north is connected, apparently. The difference in the five-day appearance of snow cover maximum is related to differences in regional winter air temperature. Throughout the snow depth and snow storage in spruce are smaller than in deciduous forest – in the ratio of 0.81 in south area and 0.93 in north area; in spruce the large part of solid precipitation is intercepted by the crowns pine trees. Snow stratigraphy at south areas has four layers, six layers at the north area are more variable in snow density and snow storage. Perhaps, gravitational conversion is more noticeable due to larger snow depth. Snow density and snow storage at the open areas are more heterogeneous than in the forest. This is due to sharp fluctuations in air temperature, wind transport and compaction of snow, evaporation from the snow surface. The stratigraphy of snow also reflects the history of winter changes of air temperature and snow accumulation. Common feature for reserves at south and north is the availability of layers with maximum snow storage in the middle of the snow thickness, which were formed during the air temperature drops to the lowest seasonal values in period with increase of snow depth to maximum. Formation of depth hoar in snow thickness are touched everywhere the bottom and middle layers, respectively, it was formed both before and during the period with minimal air temperature. Thus, the results of experimental studies confirm the significance of the differences of individual components of the landscape setting. Analytical conclusions are largely qualitative in nature due to the lack to date of initial information, and

  5. Enhancement of the MODIS Snow and Ice Product Suite Utilizing Image Segmentation

    Tilton, James C.; Hall, Dorothy K.; Riggs, George A.

    2006-01-01

    A problem has been noticed with the current NODIS Snow and Ice Product in that fringes of certain snow fields are labeled as "cloud" whereas close inspection of the data indicates that the correct labeling is a non-cloud category such as snow or land. This occurs because the current MODIS Snow and Ice Product generation algorithm relies solely on the MODIS Cloud Mask Product for the labeling of image pixels as cloud. It is proposed here that information obtained from image segmentation can be used to determine when it is appropriate to override the cloud indication from the cloud mask product. Initial tests show that this approach can significantly reduce the cloud "fringing" in modified snow cover labeling. More comprehensive testing is required to determine whether or not this approach consistently improves the accuracy of the snow and ice product.

  6. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi

    2015-01-01

    -series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology...... model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy...... albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43...

  7. Quantifying the potential for low-level transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic.

    Hall, Joanne V.; Loboda, Tatiana V.

    2017-12-01

    Short-lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts’ ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March - May) cropland active fires (7% annual) likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority ( 90% - depending on injection height) of all potential spring deposition occurs below 75°N.

  8. Quantifying the Potential for Low-Level Transport of Black Carbon Emissions from Cropland Burning in Russia to the Snow-Covered Arctic

    Joanne V. Hall

    2017-12-01

    Full Text Available Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Among those black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide, with a total climate forcing of +1.1 Wm−2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic. However, commonly applied atmospheric transport models rely on estimates of black carbon emissions from cropland burning which are known to be highly inaccurate in both the amount and the timing of release. Instead, this study quantifies the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia, identified by the Moderate Resolution Imaging Spectroradiometer (MODIS active fire detections, through low-level transport to the snow in the Arctic using wind vectors from the European Centre for Medium-Range Weather Forecasts' ERA-Interim Reanalysis product. Our results confirm that Russian cropland burning is a potentially significant source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Approximately 10% of the observed spring (March–May cropland active fires (7% annual likely contribute to black carbon deposition on the Arctic snow from as far south as at least 40°N. Furthermore, our results show that potential spring black carbon emissions from cropland burning in Russia can be deposited beyond 80°N, however, the majority (~90%-depending on injection height of all potential spring deposition occurs below 75°N.

  9. Airborne gamma-radiation snow water-equivalent and soil-moisture measurements and satellite areal extent of snow-cover measurements. A user's guide. Version 3.0

    Carroll, T.; Allen, M.

    1988-01-01

    The National Remote Sensing Hydrology Program is managed by the Office of Hydrology and consists of the Airborne Snow Survey Section and the Satellite Hydrology Section. The Airborne Snow Survey Section makes airborne snow water-equivalent and soil-moisture measurements over large areas of the country subject to a severe and chronic snowmelt flooding threat. The User's Guide is intended primarily to provide field hydrologists with some background on the technical and administrative aspects of the National Remote Sensing Hydrology Program. The guide summarizes the techniques and procedures used to make and distribute real-time, operational airborne snow water-equivalent measurements and satellite areal extent of snow-cover measurements made over large areas of the country. The current airborne and satellite databases are summarized, and procedures to access the real-time observations through both AFOS and through a commercial, electronic bulletin board system are given in the appendices

  10. Seasonal and inter-annual variability of aerosol optical properties during 2005-2010 over Red Mountain Pass and Impact on the Snow Cover of the San Juan Mountains

    Singh, R. P.; Gautam, R.; Painter, T. H.

    2011-12-01

    Growing body of evidence suggests the significant role of aerosol solar absorption in accelerated seasonal snowmelt in the cryosphere and elevated mountain regions via snow contamination and radiative warming processes. Characterization of aerosol optical properties over seasonal snow cover and snowpacks is therefore important towards the better understanding of aerosol radiative effects and associated impact on snow albedo. In this study, we present seasonal variations in column-integrated aerosol optical properties retrieved from AERONET sunphotometer measurements (2005-2010) at Red Mountain Pass (37.90° N, 107.72° W, 3368 msl) in the San Juan Mountains, in the vicinity of the North American Great Basin and Colorado Plateau deserts. The aerosol optical depth (AOD) measured at 500nm is generally low (pollutant transport. In addition, the possibility of the observed increased coarse-mode influence associated with mineral dust influx cannot be ruled out, due to westerly-airmass driven transport from arid/desert regions as suggested by backward trajectory simulations. A meteorological coupling is also found in the summer season between AOD and column water vapor retrieved from AERONET with co-occurring enhanced water vapor and AOD. Based on column measurements, it is difficult to ascertain the aerosol composition, however, the summer-time enhanced aerosol loading as presented here is consistent with the increased dust deposition in the San Juan mountain snow cover as reported in recent studies. In summary, this study is expected to better understand the seasonal and inter-annual aerosol column variations and is an attempt to provide an insight into the effects of aerosol solar absorption on accelerated seasonal snowmelt in the San Juan mountains.

  11. eMODIS: A User-Friendly Data Source

    Jenkerson, Calli B.; Maiersperger, Thomas; Schmidt, Gail

    2010-01-01

    , created daily with the most recent 7 days of acquisition, to users monitoring real-time vegetation conditions. eMODIS Alaska is not part of expedited processing, but does cover the Terra mission life (2000-present). A simple file transfer protocol (FTP) distribution site currently is enabled on the Internet for direct download of eMODIS products (ftp://emodisftp.cr.usgs.gov/eMODIS), with plans to expand into an interactive portal environment.

  12. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    The response of the cryosphere to climate forcings largely determines Earth's climate sensitivity. However, our understanding of the strength of the simulated snow albedo feedback varies by a factor of three in the GCMs used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, mainly caused by uncertainties in snow extent and the albedo of snow-covered areas from imprecise remote sensing retrievals. Additionally, the Western US and other regions of the globe depend predominantly on snowmelt for their water supply to agriculture, industry and cities, hydroelectric power, and recreation, against rising demand from increasing population. In the mountains of the Upper Colorado River Basin, dust radiative forcing in snow shortens snow cover duration by 3-7 weeks. Extended to the entire upper basin, the 5-fold increase in dust load since the late-1800s results in a 3-week earlier peak runoff and a 5% annual loss of total runoff. The remotely sensed dynamics of snow cover duration and melt however have not been factored into hydrological modeling, operational forecasting, and policymaking. To address these deficiencies in our understanding of snow properties, we have developed and validated a suite of MODIS snow products that provide accurate fractional snow covered area and radiative forcing of dust and carbonaceous aerosols in snow. The MODIS Snow Covered Area and Grain size (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithms, developed and transferred from imaging spectroscopy techniques, leverage the complete MODIS surface reflectance spectrum. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. We have created the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties, and provide complete

  13. Genetika MODY diabetu

    Dušátková, Petra

    2012-01-01

    The most common form of monogenic diabetes is MODY (Maturity-Onset Diabetes of the Young). It ranks among genetic defects of the β cell. It is clinically heterogenous group of disorders characterised with non insulin-dependent diabetes mellitus with autosomal dominant inheritance and age at diagnosis up to 40 years. We specified the diagnosis of MODY in more than 240 Czech families using molecular-genetic approach. The most common subtype of MODY is GCK-MODY which was proved in 376 subjects f...

  14. State of the Earth’s cryosphere at the beginning of the 21st century : glaciers, global snow cover, floating ice, and permafrost and periglacial environments: Chapter A in Satellite image atlas of glaciers of the world

    Williams, Richard S.; Ferrigno, Jane G.; Williams, Richard S.; Ferrigno, Jane G.

    2012-01-01

    This chapter is the tenth in a series of 11 book-length chapters, collectively referred to as “this volume,” in the series U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World. In the other 10 chapters, each of which concerns a specific glacierized region of Earth, the authors used remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, in order to analyze that glacierized region and to monitor changes in its glaciers. Landsat images, acquired primarily during the period 1972 through 1981, were used by an international team of glaciologists and other scientists to study the various glacierized regions and (or) to discuss related glaciological topics. In each glacierized region, the present distribution of glaciers within its geographic area is compared, wherever possible, with historical information about their past areal extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of an expanding international scientific effort to measure global environmental change on the Earth’s surface. However, this chapter differs from the other 10 in its discussion of observed changes in all four elements of the Earth’s cryosphere (glaciers, snow cover, floating ice, and permafrost) in the context of documented changes in all components of the Earth System. Human impact on the planet at the beginning of the 21st century is pervasive. The focus of Chapter A is on changes in the cryosphere and the importance of long-term monitoring by a variety of sensors carried on Earth-orbiting satellites or by a ground-based network of observatories in the case of permafrost. The chapter consists of five parts. The first part provides an introduction to the Earth System, including the interrelationships of the geosphere (cryosphere, hydrosphere, lithosphere, and atmosphere), the biosphere, climate processes, biogeochemical cycles, and the

  15. Towards Year-round Estimation of Terrestrial Water Storage over Snow-Covered Terrain via Multi-sensor Assimilation of GRACE/GRACE-FO and AMSR-E/AMSR-2.

    Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.

    2017-12-01

    The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.

  16. Brilliant Colours from a White Snow Cover

    Vollmer, Michael; Shaw, Joseph A

    2013-01-01

    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  17. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    T. Maki

    2018-06-01

    Full Text Available The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols, that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation and upper (spring accumulation parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia, northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which

  18. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities

    Maki, Teruya; Furumoto, Shogo; Asahi, Yuya; Lee, Kevin C.; Watanabe, Koichi; Aoki, Kazuma; Murakami, Masataka; Tajiri, Takuya; Hasegawa, Hiroshi; Mashio, Asami; Iwasaka, Yasunobu

    2018-06-01

    The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice

  19. Enhanced MODIS Atmospheric Total Water Vapour Content Trends in Response to Arctic Amplification

    Dunya Alraddawi

    2017-12-01

    Full Text Available In order to assess the strength of the water vapour feedback within Arctic climate change, 15 years of the total column-integrated density of water vapour (TCWV from the moderate resolution imaging spectrometer (MODIS are analysed. Arctic TCWV distribution, trends, and anomalies for the 2001–2015 period, broken down into seasons and months, are analysed. Enhanced local spring TCWV trends above the terrestrial Arctic regions are discussed in relation to land snow cover and vegetation changes. Upward TCWV trends above the oceanic areas are discussed in lien with sea ice extent and sea surface temperature changes. Increased winter TCWV (up to 40% south of the Svalbard archipelago are observed; these trends are probably driven by a local warming and sea ice extent decline. Similarly, the Barents/Kara regions underwent wet trends (up to 40%, also associated with winter/fall local sea ice loss. Positive late summer TCWV trends above the western Greenland and Beaufort seas (about 20% result from enhanced upper ocean warming and thereby a local coastal decline in ice extent. The Mackenzie and Siberia enhanced TCWV trends (about 25% during spring are found to be associated with coincident decreased snow cover and increased vegetation, as a result of the earlier melt onset. Results show drier summers in the Eurasia and western Alaska regions, thought to be affected by changes in albedo from changing vegetation. Other TCWV anomalies are also presented and discussed in relation to the dramatic decline in sea ice extent and the exceptional rise in sea surface temperature.

  20. Using MODIS spectral information to classify sea ice scenes for CERES radiance-to-flux inversion

    Corbett, J.; Su, W.; Liang, L.; Eitzen, Z.

    2013-12-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments on NASA's Terra and Aqua satellites measure the shortwave (SW) radiance reflected from the Earth. In order to provide an estimate of the top-of-atmosphere reflected SW flux we need to know the anisotropy of the radiance reflected from the scene. Sea Ice scenes are particularly complex due to the wide range of surface conditions that comprise sea ice. For example, the anisotropy of snow-covered sea ice is quite different to that of sea ice with melt-ponds. To attempt to provide a consistent scene classification we have developed the Sea Ice Brightness Index (SIBI). The SIBI is defined as one minus the normalized difference between reflectances from the 0.469 micron and 0.858 micron bands from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. For brighter snow-covered sea ice scenes the SIBI value is close to 1.0. As the surface changes to bare ice, melt ponds, etc. the SIBI decreases. For open water the SIBI value is around 0.2-0.3. The SIBI exhibits no dependence on viewing zenith or solar zenith angle, allowing for consistent scene identification. To use the SIBI we classify clear-sky CERES field-of-views over sea ice into 3 groups; SIBI≥0.935, 0.935>SIBI≥0.85 and SIBISIBI based ADMs. Using the second metric, we see a reduction in the latitude/longitude binned mean RMS error between the ADM predicted radiance and the measured radiance from 8% to 7% in May and from 17% to 12% in July. These improvements suggest that using the SIBI to account for changes in the sea ice surface will lead to improved CERES flux retrievals.

  1. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    Safarpour, Sahabeh; Abdullah, Khiruddin; Lim, Hwee San; Dadras, Mohsen

    2014-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R 2 is 0.844 and a regression equation of τ M = 0.91·τ A + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R 2 is 0.764 and τ M = 0.95·τ A + 0.03) and the Deep Blue algorithm (correlation coefficient R 2 is 0.652 and τ M = 0.81·τ A + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  2. MODY diabetes - diagnostika a terapie

    Verner, Miroslav

    2010-01-01

    This work summarized basic informations about different types of MODY diabetes. The keypoint is diagnostic, based on family history, followed by analysis of MODY diabetes types with suggestion of optimal therapy. In conclusion I suggest a possible solution of the underestimated diagnostic in MODY diabetes with an information poster in diabetological consulting rooms.

  3. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  4. Can MODIS detect trends in aerosol optical depth over land?

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  5. A Comparison of MODIS/VIIRS Cloud Masks over Ice-Bearing River: On Achieving Consistent Cloud Masking and Improved River Ice Mapping

    Simon Kraatz

    2017-03-01

    Full Text Available The capability of frequently and accurately monitoring ice on rivers is important, since it may be possible to timely identify ice accumulations corresponding to ice jams. Ice jams are dam-like structures formed from arrested ice floes, and may cause rapid flooding. To inform on this potential hazard, the CREST River Ice Observing System (CRIOS produces ice cover maps based on MODIS and VIIRS overpass data at several locations, including the Susquehanna River. CRIOS uses the respective platform’s automatically produced cloud masks to discriminate ice/snow covered grid cells from clouds. However, since cloud masks are produced using each instrument’s data, and owing to differences in detector performance, it is quite possible that identical algorithms applied to even nearly identical instruments may produce substantially different cloud masks. Besides detector performance, cloud identification can be biased due to local (e.g., land cover, viewing geometry, and transient conditions (snow and ice. Snow/cloud confusions and large view angles can result in substantial overestimates of clouds and ice. This impacts algorithms, such as CRIOS, since false cloud cover precludes the determination of whether an otherwise reasonably cloud free grid consists of water or ice. Especially for applications aiming to frequently classify or monitor a location it is important to evaluate cloud masking, including false cloud detections. We present an assessment of three cloud masks via the parameter of effective revisit time. A 100 km stretch of up to 1.6 km wide river was examined with daily data sampled at 500 m resolution, examined over 317 days during winter. Results show that there are substantial differences between each of the cloud mask products, especially while the river bears ice. A contrast-based cloud screening approach was found to provide improved and consistent cloud and ice identification within the reach (95%–99% correlations, and 3%–7% mean

  6. Synergetic use of Aerosol Robotic Network (AERONET) and Moderate Image Spectrometer (MODIS)

    Kaufman, Y.

    2004-01-01

    I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.

  7. MODIS/Terra Geolocation Fields 5-Min L1A Swath 1km V005

    National Aeronautics and Space Administration — The geolocation fields are calculated for each 1 km MODIS Instantaneous Field of Views (IFOV) for all orbits daily. The locations and ancillary information...

  8. Undiagnosed MODY: Time for Action

    Kleinberger, Jeffrey W.; Pollin, Toni I.

    2016-01-01

    Maturity-Onset Diabetes of the Young (MODY) is a monogenic form of diabetes that accounts for at least 1% of all cases of diabetes mellitus. MODY classically presents as non-insulin requiring diabetes in lean individuals younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95% of MODY cases in the U.S. are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals. PMID:26458381

  9. Evaluation of MODIS NPP and GPP products across multiple biomes.

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Steve W. Running; Maosheng Zhao; Marcos H. Costa; Al A. Kirschbaum; Jay M. Ham; Scott R. Saleska; Douglas E. Ahl

    2006-01-01

    Estimates of daily gross primary production (GPP) and annual net primary production (NPP) at the 1 km spatial resolution are now produced operationally for the global terrestrial surface using imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Ecosystem-level measurements of GPP at eddy covariance flux towers and plot-level measurements of...

  10. Analysis of Accuracy of Modis BRDF Product (MCD43 C6) Based on Misr Land Surface Brf Product - a Case Study of the Central Part of Northeast Asia

    Li, J.; Chen, S.; Qin, W.; Murefu, M.; Wang, Y.; Yu, Y.; Zhen, Z.

    2018-04-01

    EOS/MODIS land surface Bi-directional Reflectance Distribution Function (BRDF) product (MCD43), with the latest version C6, is one of the most important operational BRDF products with global coverage. The core sub-product MCD43A1 stores 3 parameters of the RossThick-LiSparseR semi-empirical kernel-driven BRDF model. It is important for confident use of the product to evaluate the accuracy of bi-directional reflectance factor (BRF) predicted by MCD43A1 BRDF model (mBRF). A typical region in the central part of Northeast Asia is selected as the study area. The performance of MCD43A1 BRDF model is analyzed in various observation geometries and phenological phases, using Multi-angle Imaging SpectroRadiometer (MISR) land-surface reflectance factor product (MILS_BRF) as the reference data. In addition, MODIS products MCD12Q1 and MOD/MYD10A1 are used to evaluate the impacts of land cover types and snow covers on the model accuracy, respectively. The results show an overall excellent performance of MCD43A1 in representing the anisotropic reflectance of land surface, with root mean square error (RMSE) of 0.0262 and correlation coefficient (R) of 0.9537, for all available comparable samples of MILS_BRF and mBRF pairs. The model accuracy varies in different months, which is related to the phenological phases of the study area. The accuracy for pixels labelled as `snow' by MCD43 is obviously low, with RMSE/R of 0.0903/0.8401. Ephemeral snowfall events further decrease the accuracy, with RMSE/R of 0.1001/0.7715. These results provide meaningful information to MCD43 users, especially those, whose study regions are subject to phenological cycles as well as snow cover and change.

  11. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  12. NAMMA MODIS/AQUA AND MODIS/TERRA DEEP BLUE PRODUCTS V1

    National Aeronautics and Space Administration — The NAMMA MODIS/AQUA and MODIS/TERRA Deep Blue Products dataset is a collection of images depicting the aerosol optical depth derived from the MODIS deep blue...

  13. Undiagnosed MODY: Time for Action.

    Kleinberger, Jeffrey W; Pollin, Toni I

    2015-12-01

    Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.

  14. MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V041

    National Aeronautics and Space Administration — The MYD11C2.041 dataset was decommissioned as of March 1, 2018. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily L3...

  15. ANALYSIS OF ACCURACY OF MODIS BRDF PRODUCT (MCD43 C6 BASED ON MISR LAND SURFACE BRF PRODUCT – A CASE STUDY OF THE CENTRAL PART OF NORTHEAST ASIA

    J. Li

    2018-04-01

    Full Text Available EOS/MODIS land surface Bi-directional Reflectance Distribution Function (BRDF product (MCD43, with the latest version C6, is one of the most important operational BRDF products with global coverage. The core sub-product MCD43A1 stores 3 parameters of the RossThick-LiSparseR semi-empirical kernel-driven BRDF model. It is important for confident use of the product to evaluate the accuracy of bi-directional reflectance factor (BRF predicted by MCD43A1 BRDF model (mBRF. A typical region in the central part of Northeast Asia is selected as the study area. The performance of MCD43A1 BRDF model is analyzed in various observation geometries and phenological phases, using Multi-angle Imaging SpectroRadiometer (MISR land-surface reflectance factor product (MILS_BRF as the reference data. In addition, MODIS products MCD12Q1 and MOD/MYD10A1 are used to evaluate the impacts of land cover types and snow covers on the model accuracy, respectively. The results show an overall excellent performance of MCD43A1 in representing the anisotropic reflectance of land surface, with root mean square error (RMSE of 0.0262 and correlation coefficient (R of 0.9537, for all available comparable samples of MILS_BRF and mBRF pairs. The model accuracy varies in different months, which is related to the phenological phases of the study area. The accuracy for pixels labelled as ‘snow’ by MCD43 is obviously low, with RMSE/R of 0.0903/0.8401. Ephemeral snowfall events further decrease the accuracy, with RMSE/R of 0.1001/0.7715. These results provide meaningful information to MCD43 users, especially those, whose study regions are subject to phenological cycles as well as snow cover and change.

  16. The MODIS Vegetation Canopy Water Content product

    Ustin, S. L.; Riano, D.; Trombetti, M.

    2008-12-01

    Vegetation water stress drives wildfire behavior and risk, having important implications for biogeochemical cycling in natural ecosystems, agriculture, and forestry. Water stress limits plant transpiration and carbon gain. The regulation of photosynthesis creates close linkages between the carbon, water, and energy cycles and through metabolism to the nitrogen cycle. We generated systematic weekly CWC estimated for the USA from 2000-2006. MODIS measures the sunlit reflectance of the vegetation in the visible, near-infrared, and shortwave infrared. Radiative transfer models, such as PROSPECT-SAILH, determine how sunlight interacts with plant and soil materials. These models can be applied over a range of scales and ecosystem types. Artificial Neural Networks (ANN) were used to optimize the inversion of these models to determine vegetation water content. We carried out multi-scale validation of the product using field data, airborne and satellite cross-calibration. An Algorithm Theoretical Basis Document (ATBD) of the product is under evaluation by NASA. The CWC product inputs are 1) The MODIS Terra/Aqua surface reflectance product (MOD09A1/MYD09A1) 2) The MODIS land cover map product (MOD12Q1) reclassified to grassland, shrub-land and forest canopies; 3) An ANN trained with PROSPECT-SAILH; 4) A calibration file for each land cover type. The output is an ENVI file with the CWC values. The code is written in Matlab environment and is being adapted to read not only the 8 day MODIS composites, but also daily surface reflectance data. We plan to incorporate the cloud and snow mask and generate as output a geotiff file. Vegetation water content estimates will help predicting linkages between biogeochemical cycles, which will enable further understanding of feedbacks to atmospheric concentrations of greenhouse gases. It will also serve to estimate primary productivity of the biosphere; monitor/assess natural vegetation health related to drought, pollution or diseases

  17. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  18. Comparing Stream Discharge, Dissolved Organic Carbon, and Selected MODIS Indices in Freshwater Basins

    Shaver, W. T.; Wollheim, W. M.

    2009-12-01

    In a preliminary study of the Ipswich Basin in Massachusetts, a good correlation was found to exist between the MODIS (Moderate Resolution Imaging Spectroradiometer) Enhanced Vegetation Index and stream dissolved organic carbon (DOC). Further study was warranted to determine the utility of MODIS indices in predicting temporal stream DOC. Stream discharge rates and DOC data were obtained from the USGS National Water Quality Assessment Program (NAWQA) database. Twelve NAWQA monitoring sites were selected for evaluation based on the criteria of having drainage basin sizes less than 600 km2 with relatively continuous, long-term DOC and discharge data. MODIS indices were selected based on their connections with terrestrial DOC and were obtained for each site's catchment area. These included the Normalized Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Daily Photosynthesis (PSN) and the Leaf Area Index (LAI). Regression analysis was used to evaluate the relationships between DOC, discharge and MODIS products. Data analysis revealed several important trends. Sites with strong positive correlation coefficients (r values ranging from 0.462 to 0.831) between DOC and discharge displayed weak correlations with all of the MODIS indices (r values ranging from 0 to 0.322). For sites where the DOC/discharge correlation was weak or negative, MODIS indices were moderately correlated, with r values ranging from 0.35 to 0.647, all of which were significant at less than 1 percent. Some sites that had weak positive correlations with MODIS indices displayed a lag time, that is, the MODIS index rose and fell shortly before the DOC concentration rose and fell. Shifting the MODIS data forward in time by roughly one month significantly increased the DOC/MODIS r values by about 10%. NDVI and EVI displayed the strongest correlations with temporal DOC variability (r values ranging from 0.471 to 0.647), and therefore these indices are the most promising for being incorporated

  19. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  20. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests

    Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.

    2015-05-01

    The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.

  1. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily

  2. MODIS/Aqua Atmosphere Aeronet Subsetting Product

    National Aeronautics and Space Administration — The MODIS/Aqua Atmosphere Aeronet Subsetting Product (MYDARNSS) consists of MODIS Atmosphere and Ancillary Products subsets that are generated over a number of...

  3. Evaluation, Calibration and Comparison of the Precipitation-Runoff Modeling System (PRMS) National Hydrologic Model (NHM) Using Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) Gridded Datasets

    Norton, P. A., II; Haj, A. E., Jr.

    2014-12-01

    The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.

  4. Comparing MODIS Net Primary Production Estimates with Terrestrial National Forest Inventory Data in Austria

    Mathias Neumann

    2015-04-01

    Full Text Available The mission of this study is to compare Net Primary Productivity (NPP estimates using (i forest inventory data and (ii spatio-temporally continuous MODIS (MODerate resolution Imaging Spectroradiometer remote sensing data for Austria. While forest inventories assess the change in forest growth based on repeated individual tree measurements (DBH, height etc., the MODIS NPP estimates are based on ecophysiological processes such as photosynthesis, respiration and carbon allocation. We obtained repeated national forest inventory data from Austria, calculated a “ground-based” NPP estimate and compared the results with “space-based” MODIS NPP estimates using different daily climate data. The MODIS NPP estimates using local Austrian climate data exhibited better compliance with the forest inventory driven NPP estimates than the MODIS NPP predictions using global climate data sets. Stand density plays a key role in addressing the differences between MODIS driven NPP estimates versus terrestrial driven inventory NPP estimates. After addressing stand density, both results are comparable across different scales. As forest management changes stand density, these findings suggest that management issues are important in understanding the observed discrepancies between MODIS and terrestrial NPP.

  5. History and Future for the Happy Marriage between the MODIS Land team and Fluxnet

    Running, S. W.

    2015-12-01

    When I wrote the proposal to NASA in 1988 for daily global evapotranspiration and gross primary production algorithms for the MODIS sensor, I had no validation plan. Fluxnet probably saved my MODIS career by developing a global network of rigorously calibrated towers measuring water and carbon fluxes over a wide variety of ecosystems that I could not even envision at the time that first proposal was written. However my enthusiasm for Fluxnet was not reciprocated by the Fluxnet community until we began providing 7 x 7 pixel MODIS Land datasets exactly over each of their towers every 8 days, without them having to crawl thru the global datasets and make individual orders. This system, known informally as the MODIS ASCII cutouts, began in 2002 and operates at the Oak Ridge DAAC to this day, cementing a mutually beneficial data interchange between the Fluxnet and remote sensing communities. This talk will briefly discuss the history of MODIS validation with flux towers, and flux spatial scaling with MODIS data. More importantly I will detail the future continuity of global biophysical datasets in the post-MODIS era, and what next generation sensors will provide.

  6. MODIS Hotspot Validation over Thailand

    Veerachai Tanpipat

    2009-11-01

    Full Text Available To ensure remote sensing MODIS hotspot (also known as active fire products or hotspots quality and precision in forest fire control and management in Thailand, an increased level of confidence is needed. Accuracy assessment of MODIS hotspots utilizing field survey data validation is described. A quantitative evaluation of MODIS hotspot products has been carried out since the 2007 forest fire season. The carefully chosen hotspots were scattered throughout the country and within the protected areas of the National Parks and Wildlife Sanctuaries. Three areas were selected as test sites for validation guidelines. Both ground and aerial field surveys were also conducted in this study by the Forest Fire Control Division, National Park, Wildlife and Plant Conversation Department, Ministry of Natural Resources and Environment, Thailand. High accuracy of 91.84 %, 95.60% and 97.53% for the 2007, 2008 and 2009 fire seasons were observed, resulting in increased confidence in the use of MODIS hotspots for forest fire control and management in Thailand.

  7. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection.

    Ekholm, E; Shaat, N; Holst, J J

    2012-10-01

    The aim of this study was to evaluate the beta cell and incretin function in patients with HNF4A and HNF1A MODY during a test meal. Clinical characteristics and biochemical data (glucose, proinsulin, insulin, C-peptide, GLP-1 and GIP) during a test meal were compared between MODY patients from eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P MODY showed an attenuated early phase of insulin secretion similar to T2Ds. AUC insulin during the test meal was strongly correlated with GIP secretion, whereas no such correlation was seen for insulin and GLP-1. Thus, GIP may be a more important factor for insulin secretion than GLP-1 in MODY patients.

  8. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250

  9. Characterization of beta cell and incretin function in patients with MODY1 (HNF4A MODY) and MODY3 (HNF1A MODY) in a Swedish patient collection

    Ekholm, E; Shaat, N; Holst, Jens Juul

    2012-01-01

    eight different families. BMI-matched T2D and healthy subjects were used as two separate control groups. The early phase of insulin secretion was attenuated in HNF4A, HNF1A MODY and T2D (AUC0-30 controls: 558.2 ± 101.2, HNF4A MODY: 93.8 ± 57.0, HNF1A MODY: 170.2 ± 64.5, T2D: 211.2 ± 65.3, P ....01). Markedly reduced levels of proinsulin were found in HNF4A MODY compared to T2D and that tended to be so also in HNF1A MODY (HNF4A MODY: 3.7 ± 1.2, HNF1A MODY: 8.3 ± 3.8 vs. T2D: 26.6 ± 14.3). Patients with HNF4A MODY had similar total GLP-1 and GIP responses as controls (GLP-1 AUC: (control: 823.9 ± 703.......8, T2D: 556.4 ± 698.2, HNF4A MODY: 1,257.0 ± 999.3, HNF1A MODY: 697.1 ± 818.4) but with a different secretion pattern. The AUC insulin during the test meal was strongly correlated with the GIP secretion (Correlation coefficient 1.0, P

  10. U.S. West Coast MODIS Aqua High Resolution CHLA Anomaly Fields (July 2002 - March 2014)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  11. U.S. West Coast MODIS Aqua High Resolution SST Climatology Fields (July 2002 - March 2014)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  12. U.S. West Coast MODIS Aqua High Resolution CHLA Climatology Fields (July 2002 - March 2014)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  13. U.S. West Coast MODIS Aqua High Resolution SST Anomaly Fields (July 2002 - March 2014)

    National Oceanic and Atmospheric Administration, Department of Commerce — This suite of CHLA and SST climatology and anomaly data products are derived from daily, 0.0125 degree x 0.0125 degree, MODIS Aqua CHLA and SST fields that cover the...

  14. Multitemporal MODIS-EVI relationships with precipitation and temperature at the Santa Rita Experimental Range

    Jorry Z. U. Kaurivi; Alfredo R. Huete; Kamel Didan

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides temporal enhanced vegetation index (EVI) data at 250, 500, and 1,000 m spatial resolutions that can be compared to daily, weekly, monthly, and annual weather parameters. A study was conducted at the grassland site (less than 10 percent velvet mesquite [Prosopis juliflora, var. velutina]) and the...

  15. Western Italian Alps Monthly Snowfall and Snow Cover Duration

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of snow observations for 18 stations in the western Italian Alps. Two types of data are included: monthly snowfall amounts and monthly snow...

  16. Snow and Water: Imaging Spectroscopy for coasts and snow cover

    National Aeronautics and Space Administration — This proposal addresses the NASA Earth Science focus areas of Carbon Cycle & Ecosystems, and Water & Energy Cycle. We will develop and demonstrate a scalable...

  17. Land cover mapping of Greater Mesoamerica using MODIS data

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  18. MODIS Collection 6 Land Product Subsets Web Service

    National Aeronautics and Space Administration — The MODIS Web Service provides data access capabilities for Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 land products. The web service...

  19. Cloud vector mapping using MODIS 09 Climate Modeling Grid (CMG) for the year 2010 and 2011

    Jah, Asjad Asif; Farrukh, Yousaf Bin; Ali, Rao Muhammad Saeed

    2013-01-01

    An alternate use for MODIS images was sought by mapping cloud movement directions and dissipation time during the 2010 and 2011 floods. MODIS Level-02 daily CMG (Climate Modelling Grid) land-cover images were downloaded and subsequently rectified and clipped to the study area. These images were then put together to observe the direction of cloud movement and vectorize the observed paths. Initial findings suggest that usually cloud does not have a prolonged coverage period over the northern humid region of the country and dissipates within less than 24-hours. Additionally, this led to the development of a robust methodology for cloud motion analysis using FOSS and market leading GIS utilities

  20. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  1. Contribution of National near Real Time MODIS Forest Maximum Percentage NDVI Change Products to the U.S. ForWarn System

    Spruce, Joseph P.; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip D.

    2012-01-01

    is computed for the current compositing period and integrated into the change images to account for snow related NDVI drops. The supplemental snow classification product was needed because other available QA cloud/snow mask typically underestimates snow cover. MODIS true and false color composites were also computed from eMODIS reflectance data and the true color RGBs are also posted on ForWarn?s FCAV; this data is used for assessing apparent occasional quality issues on the change products due to residual unmasked cloud cover. New forest change products are posted with typical latencies of 1-2 days after the last input eMODIS data collection date for a given 24 day compositing period.

  2. Applications of Near Real-Time Image and Fire Products from MODIS

    Schmaltz, J. E.; Ilavajhala, S.; Teague, M.; Ye, G.; Masuoka, E.; Davies, D.; Murphy, K. J.; Michael, K.

    2010-12-01

    NASA’s MODIS Rapid Response Project (http://rapidfire.sci.gsfc.nasa.gov/) has been providing MODIS fire detections and imagery in near real-time since 2001. The Rapid Response system is part of the Land and Atmospheres Near-real time Capability for EOS (LANCE-MODIS) system. Current capabilities include providing MODIS imagery in true color and false color band combinations, a vegetation index, and temperature - in both uncorrected swath format and geographically corrected subset regions. The geographically-corrected subsets images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. These data are available within a few hours of data acquisition. The images are accessed by large number of user communities to obtain a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (fires, oil spills, floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. In addition, the scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. The MODIS Rapid Response project has also been providing a near real-time data feed on fire locations and MODIS imagery subsets to the Fire Information for Resource Management System (FIRMS) project (http://maps.geog.umd.edu/firms). FIRMS provides timely availability of fire location information, which is essential in preventing and fighting large forest/wild fires. Products are available through a WebGIS for visualizing MODIS hotspots and MCD45 Burned Area images, an email alerting tool to deliver fire data on daily/weekly/near real-time basis, active data downloads in formats such as shape, KML, CSV, WMS, etc., along with MODIS imagery subsets. FIRMS’ user base covers more than 100 countries and territories. A recent user

  3. [MODY type diabetes: overview and recent findings].

    Ben Khelifa, Souhaïra; Barboura, Ilhem; Dandana, Azza; Ferchichi, Selima; Miled, Abdelhedi

    2011-01-01

    We present an update of knowledge on diabetes MODY (maturity onset diabetes of the young), including the recent molecular discoveries, and new diagnostic strategies. Considerable progress has been made in understanding the different molecular abnormalities that cause MODY and the phenotypic consequences resulting therefrom. MODY diabetes is very heterogeneous and is the most common form of monogenic diabetes. Its distribution is worldwide. MODY is an autosomal dominant diabetes mellitus, nonketotic and occurs at an early age (usually before 25 years). To date, at least seven genes are associated with MODY, with frequencies that differ from one population to another. Both 2 and 3 subtypes predominate, while other subtypes (1, 4, 5, 6 and 7) concern only a few families. Since its discovery in the sixties, studies have succeeded to fully clarify the epidemiological, molecular and clinical diagnosis of each subtype, to provide better care for patients. However, the subject of MODY has not yet revealed all its secrets. Indeed, it remains to identify other genes that are associated with MODY X.

  4. [Humoral response markers in GCK MODY].

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Wyka, Krystyna; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    The prevalence of antibodies to pancreatic islets in monogenic diabetes remains unknown and the incidence estimation is difficult as the occurrence of autoantibodies in patient is one of the well-known exclusion criteria for further genetic diagnostics. They has been found not only among patients with type 1 diabetes, but also in other types of diabetes: Type 2 diabetes, Latent Autoimmune Diabetes in Adults (LADA) (16) and monogenic diabetes (MD). Immunological characteristic of GCK MODY patients. The study group included families of 27 adolescent patients with GCK MODY (39 parents and 19 siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. All patients and family members with GCK MODY underwent a blood sample drawing for immunological (classic humoral response markers: ICA, GAD, IA-2, IAA) and biochemical diagnostics. Pediatric, diabetes and family medical history was collected from the subjects and parents. Immunological diagnostics was performed in all patients except 1 (96.3%). Immunological diagnostics included 17 (89.5%) parents and 7 (87.5%) siblings with diagnosed GCK MODY. 8 (30.8%) adolescent patients with GCK MODY, 3 subjects (17.64%) among parents (with GCK MODY), as well as 2 subjects (28.57%) among siblings (with GCK MODY) showed a positive antibodies screen. The results of our study in children with GCK MODY and their family members suggest that the occurrence of classic antibodies directed against pancreatic islets antigens is fairly common in patients with GCK MODY. Despite various observations and many legitimate discussions, it is difficult to clarify the pathogenesis of the occurrence of autoantibodies in monogenic diabetes. © Polish Society for Pediatric Endocrinology and Diabetology.

  5. Estimation of snowpack matching ground-truth data and MODIS satellite-based observations by using regression kriging

    Juan Collados-Lara, Antonio; Pardo-Iguzquiza, Eulogio; Pulido-Velazquez, David

    2016-04-01

    The estimation of Snow Water Equivalent (SWE) is essential for an appropriate assessment of the available water resources in Alpine catchment. The hydrologic regime in these areas is dominated by the storage of water in the snowpack, which is discharged to rivers throughout the melt season. An accurate estimation of the resources will be necessary for an appropriate analysis of the system operation alternatives using basin scale management models. In order to obtain an appropriate estimation of the SWE we need to know the spatial distribution snowpack and snow density within the Snow Cover Area (SCA). Data for these snow variables can be extracted from in-situ point measurements and air-borne/space-borne remote sensing observations. Different interpolation and simulation techniques have been employed for the estimation of the cited variables. In this paper we propose to estimate snowpack from a reduced number of ground-truth data (1 or 2 campaigns per year with 23 observation point from 2000-2014) and MODIS satellite-based observations in the Sierra Nevada Mountain (Southern Spain). Regression based methodologies has been used to study snowpack distribution using different kind of explicative variables: geographic, topographic, climatic. 40 explicative variables were considered: the longitude, latitude, altitude, slope, eastness, northness, radiation, maximum upwind slope and some mathematical transformation of each of them [Ln(v), (v)^-1; (v)^2; (v)^0.5). Eight different structure of regression models have been tested (combining 1, 2, 3 or 4 explicative variables). Y=B0+B1Xi (1); Y=B0+B1XiXj (2); Y=B0+B1Xi+B2Xj (3); Y=B0+B1Xi+B2XjXl (4); Y=B0+B1XiXk+B2XjXl (5); Y=B0+B1Xi+B2Xj+B3Xl (6); Y=B0+B1Xi+B2Xj+B3XlXk (7); Y=B0+B1Xi+B2Xj+B3Xl+B4Xk (8). Where: Y is the snow depth; (Xi, Xj, Xl, Xk) are the prediction variables (any of the 40 variables); (B0, B1, B2, B3) are the coefficients to be estimated. The ground data are employed to calibrate the multiple regressions. In

  6. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  7. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  8. Photosynthetic Efficiency of Northern Forest Ecosystems Using a MODIS-Derived Photochemical Reflectance Index (PRI)

    Middleton, E. M.; Huemmrich, K. F.; Landis, D. R.; Black, T. A.; Barr, A. G.; McCaughey, J. H.

    2016-01-01

    This study evaluates a direct remote sensing approach from space for the determination of ecosystem photosynthetic light use efficiency (LUE), through measurement of vegetation reflectance changes expressed with the Photochemical Reflectance Index (PRI). The PRI is a normalized difference index based on spectral changes at a physiologically active wavelength (approximately 531 nanometers) as compared to a reference waveband, and is only available from a very few satellites. These include the two Moderate-Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites each of which have a narrow (10-nanometer) ocean band centered at 531 nanometers. We examined several PRI variations computed with candidate reference bands, since MODIS lacks the traditional 570-nanometer reference band. The PRI computed using MODIS land band 1 (620-670 nanometers) gave the best performance for daily LUE estimation. Through rigorous statistical analyses over a large image collection (n equals 420), the success of relating in situ daily tower-derived LUE to MODIS observations for northern forests was strongly influenced by satellite viewing geometry. LUE was calculated from CO2 fluxes (moles per moles of carbon absorbed quanta) measured at instrumented Canadian Carbon Program flux towers in four Canadian forests: a mature fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed deciduous/coniferous forest site in Ontario. All aspects of the viewing geometry had significant effects on the MODIS-PRI, including the view zenith angle (VZA), the view azimuth angle, and the displacement of the view azimuth relative to the solar principal plane, in addition to illumination related variables.Nevertheless, we show that forward scatter sector views (VZA, 16 degrees-45 degrees) provided the strongest relationships to daily LUE, especially those collected in the early afternoon by Aqua (r squared = 0.83, RMSE (root mean square error) equals 0

  9. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  10. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests

    Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E.

    2018-02-01

    Monitoring forest phenology allows us to study the effects of climate change on vegetated land surfaces. Daily and composite time series (TS) of several vegetation indices (VIs) from MODerate resolution Imaging Spectroradiometer (MODIS) data have been widely used in scientific works for phenological studies since the beginning of the MODIS mission. The objective of this work was to use MODIS data to find the best VI/TS combination to estimate start-of-season (SOS) and end-of-season (EOS) dates across 50 temperate deciduous forests. Our research used as inputs 2001-2012 daily reflectance from MOD09GQ/MOD09GA products and 16-day composite VIs from the MOD13Q1 dataset. The 50 pixels centered on the 50 forest plots were extracted from the above-mentioned MODIS imagery; we then generated 5 different types of TS (1 daily from MOD09 and 4 composite from MOD13Q1) and used all of them to implement 6 VIs, obtaining 30 VI/TS combinations. SOS and EOS estimates were determined for each pixel/year and each VI/TS combination. SOS/EOS estimations were then validated against ground phenological observations. Results showed that, in our test areas, composite TS, if actual acquisition date is considered, performed mostly better than daily TS. EVI, WDRVI0.20 and NDVI were more suitable to SOS estimation, while WDRVI0.05 and EVI were more convenient in estimating early and advanced EOS, respectively.

  11. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Neumann, Mathias; Moreno, Adam; Thurnher, Christopher; Mues, Volker; Härkönen, Sanna; Mura, Matteo; Bouriaud, Olivier; Lang, Mait; Cardellini, Giuseppe; Thivolle-Cazat, Alain; Bronisz, Karol; Merganic, Jan; Alberdi, Iciar; Astrup, Rasmus; Mohren, Frits

    2016-01-01

    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily g...

  12. Desarrollo de metgis, un sistema combinado de información geográfica, meteorológica y de cobertura de nieve de alta resolución, para la región andina Development of metgis, a combined high-resolution system of geographic, meteorological and snow cover information for the andes region

    Gerald Spreitzhofer

    2006-12-01

    Shuttle Radar Topographic Mission (SRTM and representations of roads, railway lines, rivers, frontiers and cities. On top of various modes of terrain (elevation, slope, aspect, meteorological and snow information can be visualized in a variety of styles. The combined display of observations from various networks, of forecasts from numerical models like MM5 and of forecast errors will be possible. For a variety of parameters, meteorological input data may be subject to downscaling procedures using the VERA system (Vienna Enhanced Resolution Analysis. Regarding features of the system specifically related to mountain areas, the SRTM data combined with VERA allows a good estimation of areas with temperatures below zero and snow accumulation. For the future the inclusion of the Swiss model SNOWPACK is planned which provides simulations of the snow cover.

  13. [Diagnosis of MODY - brief overview for clinical practice].

    Urbanová, Jana; Brunerová, Ludmila; Brož, Jan

    2018-01-01

    Maturity Onset Diabetes of the Young (MODY) comprises inherited forms of diabetes mellitus caused by the mutations in the genes involved in the development, differentiation and function of beta-cells. The majority of patients with MODY remains misdiagnosed and erroneously classified as type 1 or type 2 diabetic patients. Correct MODY diagnosis is, however, essential since it enables individualization of treatment, assessment of the prognosis and identification of diabetes among patient´s relatives. Clinical presentation of MODY is highly variable and it could resemble other types of diabetes, thus identification of MODY patients might be difficult. In this review, we describe typical clinical presentation of the most common MODY subtypes, we summarize current diagnostic guidelines in confirmation of MODY and we raise the question of possible need for extension of current clinical criteria indicating a patient for molecular-genetic testing.Key words: clinical course - diagnosis - differential diagnosis - glucokinase - hepatocyte nuclear factors - MODY.

  14. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  15. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  16. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  17. Calculation of new snow densities from sub-daily automated snow measurements

    Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc

    2017-04-01

    In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1

  18. MODIS/Terra Land Water Mask Derived from MODIS and SRTM L3 Global 250m SIN Grid V005

    National Aeronautics and Space Administration — The MODIS 250 m land-water mask (Short Name: MOD44W) is an improvement over the existing MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted...

  19. Operationalizing a Research Sensor: MODIS to VIIRS

    Grant, K. D.; Miller, S. W.; Puschell, J.

    2012-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and NASA are jointly acquiring the next-generation civilian environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellite will carry a suite of sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The primary sensor for the JPSS mission is the Visible/Infrared Imager Radiometer Suite (VIIRS) developed by Raytheon Space and Airborne Systems (SAS). The ground processing system for the JPSS mission is known as the Common Ground System (JPSS CGS), and consists of a Command, Control, and Communications Segment (C3S) and the Interface Data Processing Segment (IDPS) which are both developed by Raytheon Intelligence and Information Systems (IIS). The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by Raytheon SAS for the NASA Earth Observing System (EOS) as a research instrument to capture data in 36 spectral bands, ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). MODIS data provides unprecedented insight into large-scale Earth system science questions related to cloud and aerosol characteristics, surface emissivity and processes occurring in the oceans, on land, and in the lower atmosphere. MODIS has flown on the EOS Terra satellite since 1999 and on the EOS Aqua satellite since 2002 and provided excellent data for scientific research and operational use for more than a decade. The value of MODIS-derived products for operational environmental monitoring motivated led to the development of an operational counterpart to MODIS for the next-generation polar-orbiting environmental satellites, the Visible/Infrared Imager

  20. Prevalence of Retinopathy in Adult Patients with GCK-MODY and HNF1A-MODY.

    Szopa, M; Wolkow, J; Matejko, B; Skupien, J; Klupa, T; Wybrańska, I; Trznadel-Morawska, I; Kiec-Wilk, B; Borowiec, M; Malecki, M T

    2015-10-01

    We aimed to assess the prevalence of diabetic retinopathy (DR) in adult patients with GCK-MODY and HNF1A-MODY in Poland and to identify biochemical and clinical risk factors associated with its occurrence.We examined 74 GCK mutation carriers, 51 with diabetes and 23 with prediabetes, respectively, and 63 patients with HNF1A-MODY. Retinal photographs, 12 for each patient, were done by a fundus camera. Signs of DR were graded according to the DR disease severity scale. Statistical tests were performed to assess differences between the groups and logistic regression was done for the association with DR.The mean age at examination was 34.5±14.8 and 39.9±15.2 in the GCK-MODY and HNF1A-MODY groups, respectively. Mild nonproliferative DR (NPDR) was found in one patient with the GCK mutation and likely concomitant type 1 diabetes, whereas DR was diagnosed in 15 HNF1A-MODY patients: 9 with proliferative, 3 with moderate NPDR and 2 with mild NPDR. In univariate logistic regression analysis in the HNF1A-MODY group, significant results were found for diabetes duration, fasting glycemia, HbA1c, arterial hypertension, age at the examination, and eGFR. The strongest independent predictors of DR in HNF1A-MODY were markers of glucose control: HbA1c (OR: 2.05, CL%95: 1.2-3.83, p=0.01) and glucose (p=0.006, OR: 1.40, CL%95: 1.12-1.83) analyzed in 2 separated models. Additionally, arterial hypertension independently predicted DR (OR: 9.06, CL%95: 1.19-98.99, p=0.04) in the model with HbA1c as glycaemic control marker.In conclusion, DR of any degree was not present in our GCK-MODY group, while in spite of young age almost every fourth subject with HNF1A-MODY showed signs of this complication. © Georg Thieme Verlag KG Stuttgart · New York.

  1. MODIS Near real-time (NRT) data for fire applications

    Wong, M.; Davies, D.; Ilavajhala, S.; Molinario, G.; Justice, C.; Latham, J.; Martucci, A.; Murphy, K. J.

    2011-12-01

    This paper describes the lessons learned from the development of the Fire Information for Resource Management System (FIRMS) prototype and its transition to an operational system, the Global Fire Information Management System (GFIMS), at the United Nations Food and Agriculture Organization (FAO) in August 2010. These systems provide active fire data from the MODIS sensor, on board NASA's Terra and Aqua Earth Observing Satellites, to users at no cost, in near-real time and in easy-to-use formats. The FIRMS prototype evolved from simply providing daily active fire text files via FTP, to include services such as providing fire data in various data formats, an interactive WebGIS allowing users to view and query the data and an email alert service enabling users to receive emails of near real-time fire data of their chosen area of interest. FIRMS was designed to remove obstacles to the uptake and use of fire data by addressing issues often associated with satellite data: cost, timeliness of delivery, limited data formats and the need for technical expertise to process and analyze the data. We also illustrate how the MODIS active fire data are routinely used for firefighting and conservation monitoring. We present results from a user survey, completed by approximately 345 people from 65 countries, and provide case studies highlighting how the provision of MODIS active fire data have made an impact on conservation and firefighting, especially in remote areas where it is difficult to have on-the-ground surveillance. We highlight the gaps in current capabilities, both with users and the data. A major obstacle still for some users is having low or no internet connectivity and a possible solution is through the use of cell phone technologies such as SMS text messaging of fire locations and information. GFIMS, and its precursor, FIRMS, were developed by the University of Maryland with funding from NASA's Applied Sciences Program. With GFIMS established at FAO as an operational

  2. Maturity-onset diabetes of the young (MODY): an update.

    Anık, Ahmet; Çatlı, Gönül; Abacı, Ayhan; Böber, Ece

    2015-03-01

    Maturity-onset diabetes of the young (MODY) is a group of monogenic disorders characterized by autosomal dominantly inherited non-insulin dependent form of diabetes classically presenting in adolescence or young adults before the age of 25 years. MODY is a rare cause of diabetes (1% of all cases) and is frequently misdiagnosed as Type 1 diabetes (T1DM) or Type 2 diabetes (T2DM). A precise molecular diagnosis is essential because it leads to optimal treatment of the patients and allows early diagnosis for their asymptomatic family members. Mutations in the glucokinase (GCK) (MODY 2) and hepatocyte nuclear factor (HNF)1A/4A (MODY 3 and MODY 1) genes are the most common causes of MODY. GCK mutations cause a mild, asymptomatic, and stable fasting hyperglycemia usually requiring no specific treatment. However, mutations in the HNF1A and HNF4A cause a progressive pancreatic β-cell dysfunction and hyperglycemia that can result in microvascular complications. Sulfonylureas are effective in these patients by acting on adenosine triphosphate (ATP)-sensitive potassium channels, although insulin therapy may be required later in life. Mutations in the HNF1B (MODY 5) is associated with pancreatic agenesis, renal abnormalities, genital tract malformations, and liver dysfunction. Compared to MODY 1, 2, 3, and 5, the remaining subtypes of MODY have a much lower prevalence. In this review, we summarize the main clinical and laboratory characteristics of the common and rarer causes of MODY.

  3. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes

    Althari, Sara; Gloyn, Anna L.

    2015-01-01

    The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119

  4. MODIS NDVI Response Following Fires in Siberia

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  5. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks

    F. J. Barbero

    2006-09-01

    Full Text Available In this study, two different methodologies are used to develop two models for estimating daily solar UV radiation. The first is based on traditional statistical techniques whereas the second is based on artificial neural network methods. Both models use daily solar global broadband radiation as the only measured input. The statistical model is derived from a relationship between the daily UV and the global clearness indices but modulated by the relative optical air mass. The inputs to the neural network model were determined from a large number of radiometric and atmospheric parameters using the automatic relevance determination method, although only the daily solar global irradiation, daily global clearness index and relative optical air mass were shown to be the optimal input variables. Both statistical and neural network models were developed using data measured at Almería (Spain, a semiarid and coastal climate, and tested against data from Table Mountain (Golden, CO, USA, a mountainous and dry environment. Results show that the statistical model performs adequately in both sites for all weather conditions, especially when only snow-free days at Golden were considered (RMSE=4.6%, MBE= –0.1%. The neural network based model provides the best overall estimates in the site where it has been trained, but presents an inadequate performance for the Golden site when snow-covered days are included (RMSE=6.5%, MBE= –3.0%. This result confirms that the neural network model does not adequately respond on those ranges of the input parameters which were not used for its development.

  6. Genetic counseling in monogenic diabetes GCK MODY.

    Skała-Zamorowska, Eliza; Deja, Grażyna; Borowiec, Maciej; Fendler, Wojciech; Małachowska, Beata; Kamińska, Halla; Młynarski, Wojciech; Jarosz-Chobot, Przemysława

    2016-01-01

    Genetic testing in families with monogenic GCK MODY has predictive, diagnostic, and preventive utility. Predictive tests relate to people who have no features of the disorder themselves at the time of testing. Diagnostic tests relate to family members who have been previously diagnosed with diabetes mellitus or glucose metabolism disturbances. The preventive value of genetic testing for families is to raise awareness of the circumstances leading to glucose metabolism disorders. The detection of mutation carriers among family members of patients with GCK MODY and the determination of the clinical significance of the genetic test result. The study group included 27 families of adolescent patients with GCK MODY (39 (75%) of parents and 19 (73.08%) of siblings) monitored in the Department of Pediatrics, Endocrinology and Diabetes and in the Diabetes Clinic of John Paul II Upper Silesian Child Health Centre in Katowice in the years 2007-2012. Subjects underwent a blood sample drawing for genetic and biochemical testing. Through the genetic diagnostics we diagnosed GCK MODY in 14 (63.64%) mothers, 6 (35.29%) fathers and in 7 (36,84%) siblings. Genetic testing has contributed to the detection of 7 (26.92%) asymptomatic carriers of GCK gene mutation among parents and 3 (15,79%) asymptomatic carriers among siblings declaring no carbohydrate metabolism disturbances (before genetic testing there were no indications suggesting carbohydrate metabolism disturbances; OGTT were performed after positive genetic testing). Each case of mutation detection, which is the cause of monogenic diabetes in a patient, justifies the genetic testing in other members of his/her family. Awareness of the genetic status may allow sick family member to confirm the diagnosis, while asymptomatic mutation carriers could benefit from an early clinical observation. Consequently, in each case it gives an opportunity to take diagnostic and therapeutic measures in accordance with the current state of

  7. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  8. Analysis of Extracting Prior BRDF from MODIS BRDF Data

    Hu Zhang; Ziti Jiao; Yadong Dong; Peng Du; Yang Li; Yi Lian; Tiejun Cui

    2016-01-01

    Many previous studies have attempted to extract prior reflectance anisotropy knowledge from the historical MODIS Bidirectional Reflectance Distribution Function (BRDF) product based on land cover or Normalized Difference Vegetation Index (NDVI) data. In this study, the feasibility of the method is discussed based on MODIS data and archetypal BRDFs. The BRDF is simplified into six archetypal BRDFs that represent different reflectance anisotropies. Five-year time series of MODIS BRDF data over ...

  9. Mody-3: novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy.

    Docena, Maricor K; Faiman, Charles; Stanley, Christine M; Pantalone, Kevin M

    2014-02-01

    An estimated 1 to 2% of cases of diabetes mellitus have a monogenic basis; however, delayed diagnosis and misdiagnosis as type 1 and 2 diabetes are common. Correctly identifying the molecular basis of an individual's diabetes may significantly alter the management approach to both the patient and his or her relatives. We describe a case of mature onset diabetes of the young (MODY) with sufficient evidence to support the classification of a novel HNF1A (hepatocyte nuclear factor-1-α) mutation as a cause of MODY-3. A 21-year-old Caucasian female presented to our office with a diagnosis of noninsulin-dependent diabetes mellitus (NIDDM) at age 10; glycemia was initially managed with oral antidiabetic (OAD) agents and insulin detemir. The patient reported a strong family history of early-onset NIDDM in both her mother and maternal grandmother, both of whom eventually required insulin therapy to control glycemia. The patient's medical and family history were highly suggestive of maturity-onset diabetes of the young (MODY), and genetic testing was performed. Genetic screening detected a mutation p. Arg200Trp in the HNF1A gene in the patient, her mother, and maternal grandmother, suggesting a diagnosis of MODY-3. This finding resulted in a change of antidiabetic therapy in all 3 patients, including the addition of once-daily liraglutide therapy, which helped improve their glycemic control. Our case report supports the classification of the p. Arg200Trp mutation as a cause of MODY-3. The findings also suggest that glucagon-like peptide-1 (GLP-1) receptor agonist therapy may be of value in managing glycemia in patients with MODY-3.

  10. Machine learning-based Landsat-MODIS data fusion approach for 8-day 30m evapotranspiration monitoring

    Im, J.; Ke, Y.; Park, S.

    2016-12-01

    Continuous monitoring of evapotranspiration (ET) is important for understanding of hydrological cycles and energy flux dynamics. At regional and local scales, routine ET estimation is a critical for efficient water management, drought impact assessment and ecosystem health monitoring, etc. Remote sensing has long been recognized to be able to provide ET monitoring over large areas. However, no single satellite could provide temporally continuous ET at relatively high spatial resolution due to the trade-off between the spatial and temporal resolution of current satellite sensors. Landsat-series satellites provide optical and thermal imagery at 30-100m resolution, whereas the 16-day revisit cycle hinders the observation of ET dynamics; MODIS provides sources of ET estimation at daily basis, but the 500-1000m ground sampling distance is too coarse for field level applications. In this study, we present a machine learning and STARFM based method for Landsat/MODIS ET fusion. The approach first downscales MODIS 8-day 1km ET (MOD16A2) to 30m based on eleven Landsat-derived indicators such as NDVI, EVI, NDWI etc on the cloud-free Landsat-available days using Random Forest approach. For the days when Landsat data are not available, downscaled ET is synthesized by MODIS and Landsat data fusion with STARFM and STI-FM approaches. The models are evaluated using in situ flux tower measurements at US-ARM and US-Twt AmeriFlux sites the United States. Results show that the downscaled 30m ET have good agreement with MODIS ET (RMSE=0.42-3.4mm/8days, rRMSE=3.2%-26%) and the downscaled ET have higher accuracy than MODIS ET when compared to in-situ measurements.

  11. Spatio-temporal dynamics of phytoplankton and primary production in Lake Tanganyika using a MODIS based bio-optical time series

    Bergamino, N; Horion, Stéphanie; Stenuite, S

    2010-01-01

    dynamics throughout the lake. In the present work, daily MODIS-AQUA satellite measurements were used to estimate chlorophyll-a concentrations and the diffuse attenuation coefficient (K490) for surface waters. The spatial regionalisation of Lake Tanganyika, based on Empirical Orthogonal Functions...

  12. Phenological monitoring of Acadia National Park using Landsat, MODIS and VIIRS observations and fused data

    Liu, Y.; McDonough MacKenzie, C.; Primack, R.; Zhang, X.; Schaaf, C.; Sun, Q.; Wang, Z.

    2015-12-01

    Monitoring phenology with remotely sensed data has become standard practice in large-plot agriculture but remains an area of research in complex terrain. Landsat data (30m) provides a more appropriate spatial resolution to describe such regions but may only capture a few cloud-free images over a growing period. Daily data from the MODerate resolution Imaging Spectroradiometer(MODIS) and Visible Infrared Imaging Radiometer Suite(VIIRS) offer better temporal acquisitions but at coarse spatial resolutions of 250m to 1km. Thus fused data sets are being employed to provide the temporal and spatial resolutions necessary to accurately monitor vegetation phenology. This study focused on Acadia National Park, Maine, attempts to compare green-up from remote sensing and ground observations over varying topography. Three north-south field transects were established in 2013 on parallel mountains. Along these transects, researchers record the leaf out and flowering phenology for thirty plant species biweekly. These in situ spring phenological observations are compared with the dates detected by Landsat 7, Landsat 8, MODIS, and VIIRS observations, both separately and as fused data, to explore the ability of remotely sensed data to capture the subtle variations due to elevation. Daily Nadir BRDF Adjusted Reflectances(NBAR) from MODIS and VIIRS are fused with Landsat imagery to simulate 30m daily data via the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model(ESTARFM) algorithm. Piecewise logistic functions are fit to the time series to establish spring leaf-out dates. Acadia National Park, a region frequently affected by coastal clouds, is a particularly useful study area as it falls in a Landsat overlap region and thus offers the possibility of acquiring as many as 4 Landsat observations in a 16 day period. With the recent launch of Sentinel 2A, the community will have routine access to such high spatial and temporal data for phenological monitoring.

  13. Spatio-temporal variability of the phytoplankton biomass in the Levantine basin between 2002 and 2015 using MODIS products

    Roy El Hourany; Ali Fadel; Elissar Gemayel; Marie Abboud-Abi Saab; Ghaleb Faour

    2017-01-01

    The Levantine basin in the Eastern Mediterranean Sea is subject to spatial and seasonal variations in primary production and physical-chemical properties both on a short and long-term basis. In this study, the monthly means of daily MODIS product images were averaged between 2002 and 2015, and used to characterize the phytoplankton blooms in different bioregions of the Levantine basin. The selected products were the sea surface temperature (SST), the chlorophyll-a concentration (Chl-a), the d...

  14. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    Shen Suhung; Leptoukh, Gregory G

    2011-01-01

    Surface air temperature (T a ) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T a from satellite remotely sensed land surface temperature (T s ) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T a and MODIS T s . The relationships between the maximum T a and daytime T s depend significantly on land cover types, but the minimum T a and nighttime T s have little dependence on the land cover types. The largest difference between maximum T a and daytime T s appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T a were estimated from 1 km resolution MODIS T s under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T a were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T a varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum T a is about 3.0 °C.

  15. Toward daily monitoring of vegetation conditions at field scale through fusing data from multiple sensors

    Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...

  16. Exploring the differences in cloud properties observed by the Terra and Aqua MODIS Sensors

    N. Meskhidze

    2009-05-01

    Full Text Available The aerosol-cloud interaction in different parts of the globe is examined here using multi-year statistics of remotely sensed data from two MODIS sensors aboard NASA's Terra (morning and Aqua (afternoon satellites. Simultaneous retrievals of aerosol loadings and cloud properties by the MODIS sensor allowed us to explore morning-to-afternoon variation of liquid cloud fraction (CF and optical thickness (COT for clean, moderately polluted and heavily polluted clouds in different seasons. Data analysis for seven-years of MODIS retrievals revealed strong temporal and spatial patterns in morning-to-afternoon variation of cloud fraction and optical thickness over different parts of the global oceans and the land. For the vast areas of stratocumulus cloud regions, the data shows that the days with elevated aerosol abundance were also associated with enhanced afternoon reduction of CF and COT pointing to the possible reduction of the indirect climate forcing. A positive correlation between aerosol optical depth and morning-to-afternoon variation of trade wind cumulus cloud cover was also found over the northern Indian Ocean, though no clear relationship between the concentration of Indo-Asian haze and morning-to-afternoon variation of COT was established. Over the Amazon region during wet conditions, aerosols are associated with an enhanced convective process in which morning shallow warm clouds are organized into afternoon deep convection with greater ice cloud coverage. Analysis presented here demonstrates that the new technique for exploring morning-to-afternoon variability in cloud properties by using the differences in data products from the two daily MODIS overpasses is capable of capturing some of the major features of diurnal variations in cloud properties and can be used for better understanding of aerosol radiative effects.

  17. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  18. Exome sequencing and genetic testing for MODY.

    Stefan Johansson

    Full Text Available Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive.The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results.We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism.On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes.Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  19. MODIS multi-temporal data retrieval and processing toolbox

    Mattiuzzi, M.; Verbesselt, J.; Klisch, A.

    2012-01-01

    The package functionalities are focused for the download and processing of multi-temporal datasets from MODIS sensors. All standard MODIS grid data can be accessed and processed by the package routines. The package is still in alpha development and not all the functionalities are available for now.

  20. Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP

    V. Pappas

    2013-08-01

    Full Text Available The new global aerosol climatology named HAC (Hamburg Aerosol Climatology is compared against MODIS (Collection 5, 2000–2007 and CALIOP (Level 2-version 3, 2006–2011 retrievals. The comparison of aerosol optical depth (AOD from HAC against MODIS shows larger HAC AOD values over regions with higher aerosol loads and smaller HAC AOD values than MODIS for regions with lower loads. The HAC data are found to be more reliable over land and for low AOD values. The largest differences between HAC and MODIS occur from March to August for the Northern Hemisphere and from September to February for the Southern Hemisphere. In addition, both the spectral variability and vertical distribution of the HAC AOD are examined at selected AERONET (1998–2007 sites, representative of main aerosol types (pollutants, sea salt, biomass and dust. Based on comparisons against spectral AOD values from AERONET, the mean absolute percentage error in HAC AOD data is 25% at ultraviolet wavelengths (400 nm, 6–12% at visible and 18% at near-infrared (1000 nm. For the same AERONET sites, the HAC AOD vertical distribution is compared against CALIOP space lidar data. On a daily average basis, HAD AOD is less by 9% in the lowest 3 km than CALIOP values, especially for sites with biomass burning smoke, desert dust and sea salt spray. Above the boundary layer, the HAC AOD vertical distribution is reliable.

  1. Maturity-onset diabetes of the young--MODY. Molekylaergenetiske, patofysiologiske og kliniske karakteristika

    Hansen, Torben; Urhammer, Søren A; Pedersen, Oluf Borbye

    2002-01-01

    Maturity-onset diabetes of the young (MODY) is a genetically and clinically heterogeneous subtype of type 2 diabetes characterised by an early onset, an autosomal dominant inheritance, and a primary defect in insulin secretion. MODY comprises 2-5% of cases of type 2 diabetes. So far, six MODY genes...... have been identified (MODY1-6): hepatocyte nuclear factor (HNF-4 alpha), glucokinase, HNF-1 alpha, HNF-1 beta, insulin promoter factor 1(IPF-1), and neurogenic differentiation factor 1 (NEUROD1). MODY2 and MODY3 are the most common forms of MODY. Mutations in glucokinase/MODY2 result in a mild form...... of diabetes. In contrast, MODY3 and some of the other MODY forms are characterised by major insulin secretory defects and severe hyperglycaemia associated with microvascular complications. About 25% of known MODY is caused by mutations in yet unknown genes and present results suggest that other monogenic...

  2. Managing Daily Life

    ... Duchenne / Managing Daily Life Print Email Managing Daily Life Environmental accessibility As the person with Duchenne starts ... such as wider doorways and ramps, can make life easier once the person with Duchenne cannot climb ...

  3. Daily Weather Records

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  4. Radiative effects of global MODIS cloud regimes

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  5. Surface spectral emissivity derived from MODIS data

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  6. Radiative Effects of Global MODIS Cloud Regimes

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  7. Improved VIIRS and MODIS SST Imagery

    Irina Gladkova

    2016-01-01

    Full Text Available Moderate Resolution Imaging Spectroradiometers (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS radiometers, flown onboard Terra/Aqua and Suomi National Polar-orbiting Partnership (S-NPP/Joint Polar Satellite System (JPSS satellites, are capable of providing superior sea surface temperature (SST imagery. However, the swath data of these multi-detector sensors are subject to several artifacts including bow-tie distortions and striping, and require special pre-processing steps. VIIRS additionally does two irreversible data reduction steps onboard: pixel aggregation (to reduce resolution changes across the swath and pixel deletion, which complicate both bow-tie correction and destriping. While destriping was addressed elsewhere, this paper describes an algorithm, adopted in the National Oceanic and Atmospheric Administration (NOAA Advanced Clear-Sky Processor for Oceans (ACSPO SST system, to minimize the bow-tie artifacts in the SST imagery and facilitate application of the pattern recognition algorithms for improved separation of ocean from cloud and mapping fine SST structure, especially in the dynamic, coastal and high-latitude regions of the ocean. The algorithm is based on a computationally fast re-sampling procedure that ensures a continuity of corresponding latitude and longitude arrays. Potentially, Level 1.5 products may be generated to benefit a wide range of MODIS and VIIRS users in land, ocean, cryosphere, and atmosphere remote sensing.

  8. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY.

    Bishay, Ramy H; Greenfield, Jerry R

    2016-11-21

    Maturity onset diabetes of the young (MODY), the most common monogenic form of diabetes, accounts for 1-2% of all diabetes diagnoses. Glucokinase (GCK)-MODY (also referred to as MODY2) constitutes 10-60% of all MODY cases and is inherited as an autosomal dominant heterozygous mutation, resulting in loss of function of the GCK gene. Patients with GCK-MODY generally have mild, fasting hyperglycaemia that is present from birth, are commonly leaner and diagnosed at a younger age than patients with type 2 diabetes, and rarely develop complications from diabetes. Hence, treatment is usually unnecessary and may be ceased. Therefore, genetic screening is recommended in all young patients (MODY, such as hepatocyte nuclear factor 1A mutations (MODY3) where hyperglycaemia is managed with low dose sulfonylurea rather than insulin. Patients with GCK-MODY, in line with trends in the general population, are becoming older and more overweight and obese, and are concomitantly developing features of insulin resistance and glucose intolerance. Therefore, controversy exists as to whether such "treatment-exempt" patients should be reassessed for treatment later in life. As testing becomes more accessible, clinicians and patients are likely to embrace genetic screening earlier in the course of diabetes, which may avert the consequences of delayed testing years after diagnosis and treatment initiation.

  9. Slovenian experience in applicability of remote sensing data in hydrology

    Horvat, A; Vidmar, A; Petan, S; Brilly, M [University of Ljubljana, Faculty of Civil and Geodetic Engineering, Chair of Hydrology and Hydraulic Engineering, Hajdrihova 28, Ljubljana (Slovenia)], E-mail: mbrillygg@uni-lj.si

    2008-11-01

    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.

  10. Slovenian experience in applicability of remote sensing data in hydrology

    Horvat, A; Vidmar, A; Petan, S; Brilly, M

    2008-01-01

    Nowadays remote sensing data are great value for many ways of use as for snow hydrology. Snow cover mapping on basis of satellite images is widely spread because it is easier than in-situ measuring and interpolating. To verify the use of satellite imagery (MODIS product) we used all available data of snow cover and satellite images and compared detected snow cover on images and in-situ measured snow cover. The information about clouds and snow cover measured on the Ljubljana climatological station were acquired and analysed. The use of satellite images showed out to be useless because of climate characteristics of Slovenia and low elevation of much area.

  11. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations

    P. Koutrakis

    2011-08-01

    Full Text Available Epidemiological studies investigating the human health effects of PM2.5 are susceptible to exposure measurement errors, a form of bias in exposure estimates, since they rely on data from a limited number of PM2.5 monitors within their study area. Satellite data can be used to expand spatial coverage, potentially enhancing our ability to estimate location- or subject-specific exposures to PM2.5, but some have reported poor predictive power. A new methodology was developed to calibrate aerosol optical depth (AOD data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS. Subsequently, this method was used to predict ground daily PM2.5 concentrations in the New England region. 2003 MODIS AOD data corresponding to the New England region were retrieved, and PM2.5 concentrations measured at 26 US Environmental Protection Agency (EPA PM2.5 monitoring sites were used to calibrate the AOD data. A mixed effects model which allows day-to-day variability in daily PM2.5-AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentrations measured at the monitoring sites were compared to those predicted for the corresponding grid cells. Both cross-sectional and longitudinal comparisons between the observed and predicted concentrations suggested that the proposed new calibration approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentrations. Furthermore, the estimated PM2.5 levels within the study domain were examined in relation to air pollution sources. Our approach made it possible to investigate the spatial patterns of PM2.5 concentrations within the study domain.

  12. MEaSUREs Northern Hemisphere State of Cryosphere Daily 25km EASE-Grid 2.0

    National Aeronautics and Space Administration — This data set reports the location of Northern Hemisphere snow cover and sea ice extent, the status of melt onset across Greenland and Artic sea ice, and the level...

  13. Towards an improved Land Surface Phenology mapping using a new MODIS product: A case study of Bavarian Forest National Park

    Misra, Gourav; Buras, Allan; Asam, Sarah; Menzel, Annette

    2017-04-01

    State Ministry of the Environment and Consumer Protection. References: 1. Fisher, J.I.; Mustard, J.F. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sens. Environ. 2007, 109, 261-273. 2. Misra, G.; Buras, A.; Menzel, A. Effects of Different Methods on the Comparison be-tween Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany. Remote Sens. 2016, 8, 753. 3. Asam, S.; Callegari, M.; Fiore, G.; Matiu, M.; De Gregorio, L.; Jacob, A.; Staab, J.; Men-zel, A.; Notarnicola, C. Analysis of spatiotemporal variations of climate, snow cover and plant phenology over the Alps. 2017 (in preparation). 4. Stöckli, R.; Rutishauser, T.; Dragoni, D.; O'Keefe, J.; Thornton, P. E.; Jolly, M.; Lu, L.; Denning, A. S. Remote sensing data assimilation for a prognostic phenology model. Journal of Geophysical Research: Biogeosciences. 2008, 113.

  14. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  15. Assigning dates and identifying areas affected by fires in Portugal based on MODIS data

    JESSICA PANISSET

    Full Text Available ABSTRACT An automated procedure is here presented that allows identifying and dating burned areas in Portugal using values of daily reflectance from near-infrared and middle-infrared bands, as obtained from the MODIS instrument. The algorithm detects persistent changes in monthly composites of the so-called (V,W Burn-Sensitive Index and the day of maximum change in daily time series of W is in turn identified as the day of the burning event. The procedure is tested for 2005, the second worst fire season ever recorded in Portugal. Comparison between the obtained burned area map and the reference derived from Landsat imagery resulted in a Proportion Correct of 95.6%. Despite being applied only to the months of August and September, the algorithm is able to identify almost two-thirds of all scars that have occurred during the entire year of 2005. An assessment of the temporal accuracy of the dating procedure was also conducted, showing that 75% of estimated dates presented deviations between -5 and 5 days from dates of hotspots derived from the MODIS instrument. Information about location and date of burning events as provided by the proposed procedure may be viewed as complementary to the currently available official maps based on end-of-season Landsat imagery.

  16. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition1B)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  17. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Ed2A-NoSW)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  18. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2A)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  19. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM1-MODIS_Edition2A)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  20. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_Terra-FM2-MODIS_Edition2B)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  1. CERES Single Satellite Footprint, TOA and Surface Fluxes, Clouds (SSF) data in HDF (CER_SSF_Aqua-FM4-MODIS_Edition2A)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  2. Estimation of daily evapotranspiration in Northern China Plain by using MODIS/TERRA images

    Yanbo He,; Su, Z.; Jia, L.; Yuanyuan Zhang,; Roerink, G.J.; Shili Wang,; Jun Wen,; Yingyu Hou,

    2005-01-01

    Evapotranspiration (ET) in regional scale is not only a major component of energy and water balance, but also a linking medium between ecological system and climatic system. Due to the increased needs from hydrological, climatological and ecological communities, more interest has been paid on

  3. MODY in Ukraine: genes, clinical phenotypes and treatment.

    Globa, Evgenia; Zelinska, Nataliya; Elblova, Lenka; Dusatkova, Petra; Cinek, Ondrej; Lebl, Jan; Colclough, Kevin; Ellard, Sian; Pruhova, Stepanka

    2017-10-26

    Maturity-onset diabetes of the young (MODY) has not been previously studied in Ukraine. We investigated the genetic etiology in a selected cohort of patients with diabetes diagnosed before 18 years of age, and in their family members. Genetic testing of the most prevalent MODY genes (GCK, HNF1A, HNF4A, HNF1B and INS) was undertaken for 36 families (39 affected individuals) by Sanger or targeted next generation sequencing. A genetic diagnosis of MODY was made in 15/39 affected individuals from 12/36 families (33%). HNF1A and HNF4A MODY were the most common subtypes, accounting for 9/15 of MODY cases. Eight patients with HNF1A or HNF4A MODY and inadequate glycemic control were successfully transferred to sulfonylureas. Median HbA1c decreased from 67 mmol/mol (range 58-69) to 47 mmol/mol (range 43-50) (8.3% [7.5-8.5] to 6.4% [6.1-6.7]) 3 months after transfer (p=0.006). Genetic testing identified pathogenic HNF1A and HNF4A variants as the most common cause of MODY in Ukraine. Transfer to sulfonylureas substantially improved the glycemic control of these patients.

  4. MODY in Siberia – molecular genetics and clinical characteristics

    Alla Konstantinovna Ovsyannikova

    2017-05-01

    Full Text Available The diagnosis of maturity onset diabetes of the young (MODY has high clinical significance in young patients (no absolute need for exogenous insulin; normoglycaemia in most patients achieved by dieting or taking oral hypoglycaemic agents and their relatives (high probability of first-degree relatives being carriers of mutations, which requires a thorough collection of family history and determination of the parameters of carbohydrate metabolism. Aim. This study aimed was to determine the clinical characteristics of different subtypes of MODY in a Siberian region. Materials and Methods. We performed an examination, biochemical and hormonal blood tests, ultrasound and molecular genetic testing of 20 patients with a clinical diagnosis of MODY. Results. Four subtypes of MODY were verified: MODY2 in 11 patients, MODY3 in two, MODY8 in one and MODY12 in two. Eleven patients (69% exhibited no clinical manifestations of carbohydrate metabolism disorders, and one patient showed weight loss during early stage of the disease. Comorbidities included dyslipidemia, thyroid gland disorders and arterial hypertension. One patient (6% exhibited diabetic nephropathy; two (13%, diabetic retinopathy and three (19%, peripheral neuropathy of lower legs. All patients achieved the target carbohydrate metabolism; the level of C-peptide was within the reference range. Conclusion. Four different subtypes of MODY (2, 3, 8, 12 were diagnosed in the present study, which differed in their clinical characteristics, presence of complications and treatment strategies. Our knowledge of monogenic forms of diabetes is expanding with the development in molecular genetics, but several aspects related to them require further study.

  5. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  6. Remote Sensing of Ecosystem Light Use Efficiency Using MODIS

    Huemmrich, K. F.; Middleton, E.; Landis, D.; Black, T. A.; Barr, A. G.; McCaughey, J. H.; Hall, F.

    2009-12-01

    Understanding the dynamics of the global carbon cycle requires an accurate determination of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Optimal photosynthetic function is negatively affected by stress factors that cause down-regulation (i.e., reduced rate of photosynthesis). Present modeling approaches to determine ecosystem carbon exchange rely on meteorological data as inputs to models that predict the relative photosynthetic function in response to environmental conditions inducing stress (e.g., drought, high/low temperatures). This study examines the determination of ecosystem photosynthetic light use efficiency (LUE) from remote sensing, through measurement of vegetation spectral reflectance changes associated with physiologic stress responses exhibited by photosynthetic pigments. This approach uses the Moderate-Resolution Spectroradiometer (MODIS) on Aqua and Terra to provide frequent, narrow-band measurements. The reflective ocean MODIS bands were used to calculate the Photochemical Reflectance Index (PRI), an index that is sensitive to reflectance changes near 531nm associated with vegetation stress responses exhibited by photosynthetic pigments in the xanthophyll cycle. MODIS PRI values were compared with LUE calculated from CO2 flux measured at four Canadian forest sites: A mature Douglas fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed forest site in Ontario, all part of the Canadian Carbon Program network. The relationships between LUE and MODIS PRI were different among forest types, with clear differences in the slopes of the relationships for conifer and deciduous forests. The MODIS based LUE measurements provide a more accurate estimation of observed LUE than the values calculated in the MODIS GPP model. This suggests the possibility of a GPP model that uses MODIS LUE instead of modeled LUE. This type of model may provide a useful contrast to existing

  7. Flood mapping with multitemporal MODIS data

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2014-05-01

    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  8. Simulation of snow distribution and melt under cloudy conditions in an Alpine watershed

    H.-Y. Li

    2011-07-01

    Full Text Available An energy balance method and remote-sensing data were used to simulate snow distribution and melt in an alpine watershed in northwestern China within a complete snow accumulation-melt period. The spatial energy budgets were simulated using meteorological observations and a digital elevation model of the watershed. A linear interpolation method was used to estimate the daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer (MODIS data. Hourly snow distribution and melt, snow cover extent and daily discharge were included in the simulated results. The root mean square error between the measured snow-water equivalent samplings and the simulated results is 3.2 cm. The Nash and Sutcliffe efficiency statistic (NSE between the measured and simulated discharges is 0.673, and the volume difference (Dv is 3.9 %. Using the method introduced in this article, modelling spatial snow distribution and melt runoff will become relatively convenient.

  9. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for

  10. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  11. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  12. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  13. High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies

    Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment

  14. SST, Aqua MODIS, NPP, 0.0125 degrees, Indonesia, Daytime

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch provides SST data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) carried aboard...

  15. Monthly statistics for WRF with and without MODIS vegetation

    U.S. Environmental Protection Agency — The 2006 monthly average statistical metrics for 2m Q (g kg-1) domain-wide for the base and MODIS WRF simulations against MADIS observations. This dataset is...

  16. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, West US

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  17. Fluorescence, Aqua MODIS, NPP, 0.125 degrees, East US

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures chlorophyll fluorescence, which gives insight into the physiology of phytoplankton in the ocean. When phytoplankton are under stress, the rate at...

  18. AfSIS MODIS Collection: Vegetation Indices, April 2014

    Center for International Earth Science Information Network, Columbia University — The Africa Soil Information Service (AfSIS) Moderate Resolution Imaging Spectroradiometer (MODIS) Collection's Vegetation Indices data set contains rasters with the...

  19. Large-sized seaweed monitoring based on MODIS

    Ma, Long; Li, Ying; Lan, Guo-xin; Li, Chuan-long

    2009-10-01

    In recent years, large-sized seaweed, such as ulva lactuca, blooms frequently in coastal water in China, which threatens marine eco-environment. In order to take effective measures, it is important to make operational surveillance. A case of large-sized seaweed blooming (i.e. enteromorpha), occurred in June, 2008, in the sea near Qingdao city, is studied. Seaweed blooming is dynamically monitored using Moderate Resolution Imaging Spectroradiometer (MODIS). After analyzing imaging spectral characteristics of enteromorpha, MODIS band 1 and 2 are used to create a band ratio algorithm for detecting and mapping large-sized seaweed blooming. In addition, chlorophyll-α concentration is inversed based on an empirical model developed using MODIS. Chlorophyll-α concentration maps are derived using multitemporal MODIS data, and chlorophyll-α concentration change is analyzed. Results show that the presented methods are useful to get the dynamic distribution and the growth of large-sized seaweed, and can support contingency planning.

  20. GHRSST Level 2P USA NASA MODIS Terra SST:1

    National Aeronautics and Space Administration — The production of the MODIS L2P data is a joint collaboration between JPL, OBPG and RSMAS. RSMAS is responsible for sea surface temperature algorithm development,...

  1. GHRSST Level 2P USA NASA MODIS Aqua SST:1

    National Aeronautics and Space Administration — The production of the MODIS L2P data is a joint collaboration between JPL, OBPG and RSMAS. RSMAS is responsible for sea surface temperature algorithm development,...

  2. CAMEX-4 ER-2 MODIS AIRBORNE SIMULATOR (MAS) V1

    National Aeronautics and Space Administration — The MODIS Airborne Simulator (MAS) is an airborne scanning spectrometer that acquires high spatial resolution imagery of cloud and surface features from its vantage...

  3. ASTER cloud coverage reassessment using MODIS cloud mask products

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  4. USAID Expands eMODIS Coverage for Famine Early Warning

    Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.

    2011-12-01

    Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.

  5. Heterozygous ABCC8 mutations are a cause of MODY.

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  6. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  7. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  8. Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data

    Kharbouche, Said; Muller, Jan-Peter

    2017-04-01

    We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.

  9. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  10. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  11. Lipoprotein composition in HNF1A-MODY: differentiating between HNF1A-MODY and type 2 diabetes.

    McDonald, Tim J; McEneny, Jane; Pearson, Ewan R; Thanabalasingham, Gaya; Szopa, Magdalena; Shields, Beverley M; Ellard, Sian; Owen, Katharine R; Malecki, Maciej T; Hattersley, Andrew T; Young, Ian S

    2012-05-18

    The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type. 1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value. 1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes. The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers

    Pinty, B.; Clerici, M.; Andredakis, I.; Kaminski, T.; Taberner, M.; Verstraete, M. M.; Gobron, N.; Plummer, S.; Widlowski, J.-L.

    2011-05-01

    The two-stream model parameters and associated uncertainties retrieved by inversion against MODIS broadband visible and near-infrared white sky surface albedos were discussed in a companion paper. The present paper concentrates on the partitioning of the solar radiation fluxes delivered by the Joint Research Centre Two-stream Inversion Package (JRC-TIP). The estimation of the various flux fractions related to the vegetation and the background layers separately capitalizes on the probability density functions of the model parameters discussed in the companion paper. The propagation of uncertainties from the observations to the model parameters is achieved via the Hessian of the cost function and yields a covariance matrix of posterior parameter uncertainties. This matrix is propagated to the radiation fluxes via the model's Jacobian matrix of first derivatives. Results exhibit a rather good spatiotemporal consistency given that the prior values on the model parameters are not specified as a function of land cover type and/or vegetation phenological states. A specific investigation based on a scenario imposing stringent conditions of leaf absorbing and scattering properties highlights the impact of such constraints that are, as a matter of fact, currently adopted in vegetation index approaches. Special attention is also given to snow-covered and snow-contaminated areas since these regions encompass significant reflectance changes that strongly affect land surface processes. A definite asset of the JRC-TIP lies in its capability to control and ultimately relax a number of assumptions that are often implicit in traditional approaches. These features greatly help us understand the discrepancies between the different data sets of land surface properties and fluxes that are currently available. Through a series of selected examples, the inverse procedure implemented in the JRC-TIP is shown to be robust, reliable, and compliant with large-scale processing requirements

  13. Quantitative estimation of land surface evapotranspiration in Taiwan based on MODIS data

    Che-sheng Zhan

    2011-09-01

    Full Text Available Land surface evapotranspiration (ET determines the local and regional water-heat balances. Accurate estimation of regional surface ET provides a scientific basis for the formulation and implementation of water conservation programs. This study set up a table of the momentum roughness length and zero-plane displacement related with land cover and an empirical relationship between land surface temperature and air temperature. A revised quantitative remote sensing ET model, the SEBS-Taiwan model, was developed. Based on Moderate Resolution Imaging Spectroradiometer (MODIS data, SEBS-Taiwan was used to simulate and evaluate the typical actual daily ET values in different seasons of 2002 and 2003 in Taiwan. SEBS-Taiwan generally performed well and could accurately simulate the actual daily ET. The simulated daily ET values matched the observed values satisfactorily. The results indicate that the net regional solar radiation, evaporation ratio, and surface ET values for the whole area of Taiwan are larger in summer than in spring, and larger in autumn than in winter. The results also show that the regional average daily ET values of 2002 are a little higher than those of 2003. Through analysis of the ET values from different types of land cover, we found that forest has the largest ET value, while water areas, bare land, and urban areas have the lowest ET values. Generally, the Northern Taiwan area, including Ilan County, Nantou County, and Hualien County, has higher ET values, while other cities, such as Chiayi, Taichung, and Tainan, have lower ET values.

  14. Lightship Daily Observations

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board lightships along the United States coasts from 1936 - 1983. Generally 4-6 observations daily. Also includes deck logs, which give...

  15. DailyMed

    U.S. Department of Health & Human Services — DailyMed provides high quality information about marketed drugs. This information includes FDA labels (package inserts). This Web site provides health information...

  16. Daily Weather Maps

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  17. Antarctic Temperature Extremes from MODIS Land Surface Temperatures: New Processing Methods Reveal Data Quality Puzzles

    Grant, G.; Gallaher, D. W.

    2017-12-01

    New methods for processing massive remotely sensed datasets are used to evaluate Antarctic land surface temperature (LST) extremes. Data from the MODIS/Terra sensor (Collection 6) provides a twice-daily look at Antarctic LSTs over a 17 year period, at a higher spatiotemporal resolution than past studies. Using a data condensation process that creates databases of anomalous values, our processes create statistical images of Antarctic LSTs. In general, the results find few significant trends in extremes; however, they do reveal a puzzling picture of inconsistent cloud detection and possible systemic errors, perhaps due to viewing geometry. Cloud discrimination shows a distinct jump in clear-sky detections starting in 2011, and LSTs around the South Pole exhibit a circular cooling pattern, which may also be related to cloud contamination. Possible root causes are discussed. Ongoing investigations seek to determine whether the results are a natural phenomenon or, as seems likely, the results of sensor degradation or processing artefacts. If the unusual LST patterns or cloud detection discontinuities are natural, they point to new, interesting processes on the Antarctic continent. If the data artefacts are artificial, MODIS LST users should be alerted to the potential issues.

  18. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  19. [Maturity onset diabetes of the young (MODY) - screening, diagnostic and therapy].

    Kaser, Susanne; Resl, Michael

    2016-04-01

    Maturity onset diabetes of the young (MODY) is a group of monogenetic diabetes types affecting up to 2% all known diabetics. Transcription factor MODY (HNF1α, HNF4α), the most frequent forms of MODY, allow treatment with sulfonylureas, mutations of glucokinase (GCK-MODY) usually do not require any therapy. Especially in younger patients correct diagnosis of MODY often results in discontinuation of insulin therapy and initiation of a sulfonylurea. Accordingly, in patients with diabetes onset below age of 25 years, with a positive family history for diabetes and negative autoantibodies screening for MODY is recommended.

  20. HDL cholesterol as a diagnostic tool for clinical differentiation of GCK-MODY from HNF1A-MODY and type 1 diabetes in children and young adults.

    Fendler, Wojciech; Borowiec, Maciej; Antosik, Karolina; Szadkowska, Agnieszka; Deja, Grazyna; Jarosz-Chobot, Przemyslawa; Mysliwiec, Malgorzata; Wyka, Krystyna; Pietrzak, Iwona; Skupien, Jan; Malecki, Maciej T; Mlynarski, Wojciech

    2011-09-01

    Confirmation of monogenic diabetes caused by glucokinase mutations (GCK-MODY) allows pharmacogenetic intervention in the form of insulin discontinuation. This is especially important among paediatric and young adult populations where GCK-MODY is most prevalent. The study evaluated the utility of lipid parameters in screening for patients with GCK-MODY. Eighty-nine children with type 1 diabetes and 68 with GCK-MODY were screened for triglyceride (TG), total and HDL cholesterol levels. Standardization against a control group of 171 healthy children was applied to eliminate the effect of development. Clinical applicability and cut-off value were evaluated in all available patients with GCK-MODY (n = 148), hepatocyte nuclear factor 1-alpha-MODY (HNF1A MODY) (n = 37) or type 1 diabetes (n = 221). Lower lipid parameter values were observed in GCK-MODY than in patients with type 1 diabetes. Standard deviation scores were -0·22 ± 2·24 vs 1·31 ± 2·17 for HDL cholesterol (P MODY selection [sensitivity 87%, specificity 54%, negative predictive value (NPV) 86%, positive PV 56%]. A threshold HDL concentration of 1·56 mm offered significantly better diagnostic efficiency than total cholesterol (cut-off value 4·51 mm; NPV 80%; PPV 38%; P MODY and differentiation from T1DM and HNF1A-MODY, regardless of treatment or metabolic control. © 2011 Blackwell Publishing Ltd.

  1. MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms

    Xuanyu Wang

    2017-12-01

    Full Text Available Terrestrial latent heat flux (LE is a key component of the global terrestrial water, energy, and carbon exchanges. Accurate estimation of LE from moderate resolution imaging spectroradiometer (MODIS data remains a major challenge. In this study, we estimated the daily LE for different plant functional types (PFTs across North America using three machine learning algorithms: artificial neural network (ANN; support vector machines (SVM; and, multivariate adaptive regression spline (MARS driven by MODIS and Modern Era Retrospective Analysis for Research and Applications (MERRA meteorology data. These three predictive algorithms, which were trained and validated using observed LE over the period 2000–2007, all proved to be accurate. However, ANN outperformed the other two algorithms for the majority of the tested configurations for most PFTs and was the only method that arrived at 80% precision for LE estimation. We also applied three machine learning algorithms for MODIS data and MERRA meteorology to map the average annual terrestrial LE of North America during 2002–2004 using a spatial resolution of 0.05°, which proved to be useful for estimating the long-term LE over North America.

  2. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but

  3. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification

    Rubén Ramo

    2017-11-01

    Full Text Available This paper aims to develop a global burned area (BA algorithm for MODIS BRDF-corrected images based on the Random Forest (RF classifier. Two RF models were generated, including: (1 all MODIS reflective bands; and (2 only the red (R and near infrared (NIR bands. Active fire information, vegetation indices and auxiliary variables were taken into account as well. Both RF models were trained using a statistically designed sample of 130 reference sites, which took into account the global diversity of fire conditions. For each site, fire perimeters were obtained from multitemporal pairs of Landsat TM/ETM+ images acquired in 2008. Those fire perimeters were used to extract burned and unburned areas to train the RF models. Using the standard MD43A4 resolution (500 × 500 m, the training dataset included 48,365 burned pixels and 6,293,205 unburned pixels. Different combinations of number of trees and number of parameters were tested. The final RF models included 600 trees and 5 attributes. The RF full model (considering all bands provided a balanced accuracy of 0.94, while the RF RNIR model had 0.93. As a first assessment of these RF models, they were used to classify daily MCD43A4 images in three test sites for three consecutive years (2006–2008. The selected sites included different ecosystems: Australia (Tropical, Boreal (Canada and Temperate (California, and extended coverage (totaling more than 2,500,000 km2. Results from both RF models for those sites were compared with national fire perimeters, as well as with two existing BA MODIS products; the MCD45 and MCD64. Considering all three years and three sites, commission error for the RF Full model was 0.16, with an omission error of 0.23. For the RF RNIR model, these errors were 0.19 and 0.21, respectively. The existing MODIS BA products had lower commission errors, but higher omission errors (0.09 and 0.33 for the MCD45 and 0.10 and 0.29 for the MCD64 than those obtained with the RF models, and

  4. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  5. BRDF Characterization and Calibration Inter-Comparison between Terra MODIS, Aqua MODIS, and S-NPP VIIRS

    Chang, Tiejun; Xiong, Xiaoxiong (Jack); Angal, Amit; Wu, Aisheng

    2016-01-01

    The inter-comparison of reflective solar bands (RSB) between Terra MODIS, Aqua MODIS, and SNPP VIIRS is very important for assessment of each instrument's calibration and to identify calibration improvements. One of the limitations of using their ground observations for the assessment is a lack of the simultaneous nadir overpasses (SNOs) over selected pseudo-invariant targets. In addition, their measurements over a selected Earth view target have significant difference in solar and view angles, and these differences magnify the effects of Bidirectional Reflectance Distribution Function (BRDF). In this work, an inter-comparison technique using a semi-empirical BRDF model is developed for reflectance correction. BRDF characterization requires a broad coverage of solar and view angles in the measurements over selected pseudo-invariant targets. Reflectance measurements over Libya 1, 2, and 4 desert sites from both the Aqua and Terra MODIS are regressed to a BRDF model with an adjustable coefficient accounting for the calibration difference between the two instruments. The BRDF coefficients for three desert sites for MODIS bands 1 to 9 are derived and the wavelength dependencies are presented. The analysis and inter-comparison are for MODIS bands 1 to 9 and VIIRS moderate resolution radiometric bands (M bands) M1, M2, M4, M5, M7, M8, M10 and imaging bands (I bands) I1-I3. Results show that the ratios from different sites are in good agreement. The ratios between Terra and Aqua MODIS from year 2003 to 2014 are presented. The inter-comparison between MODIS and VIIRS are analyzed for year 2014.

  6. Fuel type characterization based on coarse resolution MODIS satellite data

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  7. Towards a systematic nationwide screening strategy for MODY.

    Shields, Beverley; Colclough, Kevin

    2017-04-01

    MODY is an early-onset monogenic form of diabetes. Correctly identifying MODY is of considerable importance as diagnosing the specific genetic subtype can inform the optimal treatment, with many patients being able to discontinue unnecessary insulin treatment. Diagnostic molecular genetic testing to confirm MODY is expensive, so screening strategies are required to identify the most appropriate patients for testing. In this issue of Diabetologia, Johansson and colleagues (DOI 10.1007/s00125-016-4167-1 ) describe a nationwide systematic screening approach to identify individuals with MODY in the paediatric age range. They focused testing on patients negative for both GAD and islet antigen 2 (IA-2) islet autoantibodies, thereby ruling out those with markers of type 1 diabetes, the most common form of diabetes in this age group. This commentary discusses the advantages and limitations of the approach, and the caution required when interpreting variants of uncertain pathogenicity identified from testing whole populations rather than targeting only patients with a strong MODY phenotype.

  8. MODIS on-orbit thermal emissive bands lifetime performance

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  9. Improvement in the Characterization of MODIS Subframe Difference

    Li, Yonghong; Angal, Amit; Chen, Na; Geng, Xu; Link, Daniel; Wang, Zhipeng; Wu, Aisheng; Xiong, Xiaoxiong

    2016-01-01

    MODIS is a key instrument of NASA's Earth Observing System. It has successfully operated for 16+ years on the Terra satellite and 14+ years on the Aqua satellite, respectively. MODIS has 36 spectral bands at three different nadir spatial resolutions, 250m (bands 1-2), 500m (bands 3-7), and 1km (bands 8-36). MODIS subframe measurement is designed for bands 1-7 to match their spatial resolution in the scan direction to that of the track direction. Within each 1 km frame, the MODIS 250 m resolution bands sample four subframes and the 500 m resolution bands sample two subframes. The detector gains are calibrated at a subframe level. Due to calibration differences between subframes, noticeable subframe striping is observed in the Level 1B (L1B) products, which exhibit a predominant radiance-level dependence. This paper presents results of subframe differences from various onboard and earth-view data sources (e.g. solar diffuser, electronic calibration, spectro-radiometric calibration assembly, Earth view, etc.). A subframe bias correction algorithm is proposed to minimize the subframe striping in MODIS L1B image. The algorithm has been tested using sample L1B images and the vertical striping at lower radiance value is mitigated after applying the corrections. The subframe bias correction approach will be considered for implementation in future versions of the calibration algorithm.

  10. Impact of Sensor Degradation on the MODIS NDVI Time Series

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  11. Chronic daily headaches

    Fayyaz Ahmed

    2012-01-01

    Full Text Available Chronic Daily Headache is a descriptive term that includes disorders with headaches on more days than not and affects 4% of the general population. The condition has a debilitating effect on individuals and society through direct cost to healthcare and indirectly to the economy in general. To successfully manage chronic daily headache syndromes it is important to exclude secondary causes with comprehensive history and relevant investigations; identify risk factors that predict its development and recognise its sub-types to appropriately manage the condition. Chronic migraine, chronic tension-type headache, new daily persistent headache and medication overuse headache accounts for the vast majority of chronic daily headaches. The scope of this article is to review the primary headache disorders. Secondary headaches are not discussed except medication overuse headache that often accompanies primary headache disorders. The article critically reviews the literature on the current understanding of daily headache disorders focusing in particular on recent developments in the treatment of frequent headaches.

  12. Broadband IR Measurements for Modis Validation

    Jessup, Andrew T.

    2003-01-01

    The primary objective of this research was the development and deployment of autonomous shipboard systems for infrared measurement of ocean surface skin temperature (SST). The focus was on demonstrating long-term, all-weather capability and supplying calibrated skin SST to the MODIS Ocean Science Team (MOCEAN). A secondary objective was to investigate and account for environmental factors that affect in situ measurements of SST for validation of satellite products. We developed and extensively deployed the Calibrated, InfraRed, In situ Measurement System, or CIRIMS, for at-sea validation of satellite-derived SST. The design goals included autonomous operation at sea for up to 6 months and an accuracy of +/- 0.1 C. We used commercially available infrared pyrometers and a precision blackbody housed in a temperature-controlled enclosure. The sensors are calibrated at regular interval using a cylindro-cone target immersed in a temperature-controlled water bath, which allows the calibration points to follow the ocean surface temperature. An upward-looking pyrometer measures sky radiance in order to correct for the non-unity emissivity of water, which can introduce an error of up to 0.5 C. One of the most challenging aspects of the design was protection against the marine environment. A wide range of design strategies to provide accurate, all-weather measurements were investigated. The CIRIMS uses an infrared transparent window to completely protect the sensor and calibration blackbody from the marine environment. In order to evaluate the performance of this approach, the design incorporates the ability to make measurements with and without the window in the optical path.

  13. Review of the Probable Maximum Flood (PMF) Snowmelt Analysis for Success Dam

    2015-11-01

    watershed; and the USACE reports (1998, 2013) further describe the watershed characteris- tics, vegetation , climate, precipitation, and flooding. The...developed SCA product, MOD10A1, the MODIS/ Terra Snow Cover Daily L3 Global 500 m Grid (Hall et al. 2006), which provides a daily estimate of the fSCA of...find mean cloud persistence, or the average time between cloud-free scenes, to be less than a day at Terra MODIS’s temporal scale (approxi- mately 1

  14. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  15. MODIS/Aqua Thermal Anomalies/Fire 5-Min L2 Swath 1km V005

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  16. MODIS/Aqua Aerosol 5-Min L2 Swath 10km V5.1

    National Aeronautics and Space Administration — MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS with its...

  17. MODIS/Terra Aerosol 5-Min L2 Swath 10km V5.1

    National Aeronautics and Space Administration — MODIS was launched aboard the Terra satellite on December 18, 1999 (10:30 am equator crossing time) as part of NASA's Earth Observing System (EOS) mission. MODIS...

  18. The Use of MODIS NDVI Data for Characterizing Cropland Across the Great Lakes Basin

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides new opportunities for characterizing land-cover (LC) to support monitoring and assessment studies at watershed, regional and global scales. This research evaluated the potential for using the MODIS Normalized Diff...

  19. NLCD - MODIS land cover- albedo dataset for the continental United States

    U.S. Environmental Protection Agency — The NLCD-MODIS land cover-albedo database integrates high-quality MODIS albedo observations with areas of homogeneous land cover from NLCD. The spatial resolution...

  20. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath V006

    National Aeronautics and Space Administration — The MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath (MYD01) product contains reformatted and packaged raw instrument data. MODIS instrument data, in packetized...

  1. MODIS/Aqua Raw Radiances in Counts 5-Min L1A Swath - NRT

    National Aeronautics and Space Administration — This is MODIS Level-1A Near Real Time (NRT) product containing reformatted and packaged raw instrument data. MODIS instrument data, in packetized form, is reversibly...

  2. MODIS/Terra Thermal Anomalies/Fire 5-Min L2 Swath 1km V005

    National Aeronautics and Space Administration — MODIS Thermal Anomalies/Fire products are primarily derived from MODIS 4- and 11-micrometer radiances. The fire detection strategy is based on absolute detection of...

  3. Modeling GPP in the Nordic forest landscape with MODIS time series data—Comparison with the MODIS GPP product

    Schubert, Per; Lagergren, Fredrik; Aurela, Mika

    2012-01-01

    . The main objective of this study was to investigate if MODIS 500m reflectance data can be used to drive empirical models for regional estimations of GPP in Nordic forests. The performance of the proposed models was compared with the MODIS 1km GPP product. Linear regression analyses were made on 8-day...... averages of eddy covariance GPP from three deciduous and ten coniferous sites in relation to MODIS 8-day composite data and 8-day averages of modeled incoming PPFD (photosynthetic photon flux density). Time series of EVI2 (two-band enhanced vegetation index) were calculated from MODIS 500m reflectance data...... and smoothed by a curve fitting procedure. For most sites, GPP was fairly strongly to strongly related to the product of EVI2 and PPFD (Deciduous: R2=0.45–0.86, Coniferous: R2=0.49–0.90). Similar strengths were found between GPP and the product of EVI2 and MODIS 1km daytime LST (land surface temperature) (R2...

  4. 21-Year-Old Pregnant Woman with MODY-5 Diabetes

    Anastasia Mikuscheva

    2017-01-01

    Full Text Available The term “Maturity-Onset Diabetes of the Young” (MODY was first described in 1976 and is currently referred to as monogenic diabetes. There are 14 known entities accounting for 1-2% of diabetes and they are frequently misdiagnosed as either type 1 or type 2 diabetes. MODY-5 is an entity of monogenic diabetes that is associated with genitourinary malformations and should be considered by obstetricians in pregnant women with a screen positive for diabetes, genitourinary malformations, and fetal renal anomalies. Correct diagnosis of monogenic diabetes has implications on managing patients and their families. We are reporting a case of a 21-year-old pregnant woman with a bicornuate uterus, fetal renal anomalies, and a family history of diabetes that were suggestive of a MODY-5 diabetes.

  5. Estimating Coastal Turbidity using MODIS 250 m Band Observations

    Davies, James E.; Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Walker, Nan D.

    2004-01-01

    Terra MODIS 250 m observations are being applied to a Suspended Sediment Concentration (SSC) algorithm that is under development for coastal case 2 waters where reflectance is dominated by sediment entrained in major fluvial outflows. An atmospheric correction based on MODIS observations in the 500 m resolution 1.6 and 2.1 micron bands is used to isolate the remote sensing reflectance in the MODIS 25Om resolution 650 and 865 nanometer bands. SSC estimates from remote sensing reflectance are based on accepted inherent optical properties of sediment types known to be prevalent in the U.S. Gulf of Mexico coastal zone. We present our findings for the Atchafalaya Bay region of the Louisiana Coast, in the form of processed imagery over the annual cycle. We also apply our algorithm to selected sites worldwide with a goal of extending the utility of our approach to the global direct broadcast community.

  6. Global Near Real-Time MODIS and Landsat Flood Mapping and Product Delivery

    Policelli, F. S.; Slayback, D. A.; Tokay, M. M.; Brakenridge, G. R.

    2014-12-01

    Flooding is the most destructive, frequent, and costly natural disaster faced by modern society, and is increasing in frequency and damage (deaths, displacements, and financial costs) as populations increase and climate change generates more extreme weather events. When major flooding events occur, the disaster management community needs frequently updated and easily accessible information to better understand the extent of flooding and coordinate response efforts. With funding from NASA's Applied Sciences program, we developed and are now operating a near real-time global flood mapping system to help provide flood extent information within 24-48 hours of events. The principal element of the system applies a water detection algorithm to MODIS imagery, which is processed by the LANCE (Land Atmosphere Near real-time Capability for EOS) system at NASA Goddard within a few hours of satellite overpass. Using imagery from both the Terra (10:30 AM local time overpass) and Aqua (1:30 PM) platforms allows the system to deliver an initial daily assessment of flood extent by late afternoon, and more robust assessments after accumulating cloud-free imagery over several days. Cloud cover is the primary limitation in detecting surface water from MODIS imagery. Other issues include the relatively coarse scale of the MODIS imagery (250 meters) for some events, the difficulty of detecting flood waters in areas with continuous canopy cover, confusion of shadow (cloud or terrain) with water, and accurately identifying detected water as flood as opposed to normal water extent. We are working on improvements to address these limitations. We have also begun delivery of near real time water maps at 30 m resolution from Landsat imagery. Although Landsat is not available daily globally, but only every 8 days if imagery from both operating platforms (Landsat 7 and 8) is accessed, it can provide useful higher resolution data on water extent when a clear acquisition coincides with an active

  7. Glucokinase gene mutations (MODY 2) in Asian Indians.

    Kanthimathi, Sekar; Jahnavi, Suresh; Balamurugan, Kandasamy; Ranjani, Harish; Sonya, Jagadesan; Goswami, Soumik; Chowdhury, Subhankar; Mohan, Viswanathan; Radha, Venkatesan

    2014-03-01

    Heterozygous inactivating mutations in the glucokinase (GCK) gene cause a hyperglycemic condition termed maturity-onset diabetes of the young (MODY) 2 or GCK-MODY. This is characterized by mild, stable, usually asymptomatic, fasting hyperglycemia that rarely requires pharmacological intervention. The aim of the present study was to screen for GCK gene mutations in Asian Indian subjects with mild hyperglycemia. Of the 1,517 children and adolescents of the population-based ORANGE study in Chennai, India, 49 were found to have hyperglycemia. These children along with the six patients referred to our center with mild hyperglycemia were screened for MODY 2 mutations. The GCK gene was bidirectionally sequenced using BigDye(®) Terminator v3.1 (Applied Biosystems, Foster City, CA) chemistry. In silico predictions of the pathogenicity were carried out using the online tools SIFT, Polyphen-2, and I-Mutant 2.0 software programs. Direct sequencing of the GCK gene in the patients referred to our Centre revealed one novel mutation, Thr206Ala (c.616A>G), in exon 6 and one previously described mutation, Met251Thr (c.752T>C), in exon 7. In silico analysis predicted the novel mutation to be pathogenic. The highly conserved nature and critical location of the residue Thr206 along with the clinical course suggests that the Thr206Ala is a MODY 2 mutation. However, we did not find any MODY 2 mutations in the 49 children selected from the population-based study. Hence prevalence of GCK mutations in Chennai is MODY 2 mutations from India and confirms the importance of considering GCK gene mutation screening in patients with mild early-onset hyperglycemia who are negative for β-cell antibodies.

  8. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  9. Comparison of MODIS and VIIRS On-board Blackbody Performance

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  10. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  11. Estimating Global Cropland Extent with Multi-year MODIS Data

    Christopher O. Justice

    2010-07-01

    Full Text Available This study examines the suitability of 250 m MODIS (MODerate Resolution Imaging Spectroradiometer data for mapping global cropland extent. A set of 39 multi-year MODIS metrics incorporating four MODIS land bands, NDVI (Normalized Difference Vegetation Index and thermal data was employed to depict cropland phenology over the study period. Sub-pixel training datasets were used to generate a set of global classification tree models using a bagging methodology, resulting in a global per-pixel cropland probability layer. This product was subsequently thresholded to create a discrete cropland/non-cropland indicator map using data from the USDA-FAS (Foreign Agricultural Service Production, Supply and Distribution (PSD database describing per-country acreage of production field crops. Five global land cover products, four of which attempted to map croplands in the context of multiclass land cover classifications, were subsequently used to perform regional evaluations of the global MODIS cropland extent map. The global probability layer was further examined with reference to four principle global food crops: corn, soybeans, wheat and rice. Overall results indicate that the MODIS layer best depicts regions of intensive broadleaf crop production (corn and soybean, both in correspondence with existing maps and in associated high probability matching thresholds. Probability thresholds for wheat-growing regions were lower, while areas of rice production had the lowest associated confidence. Regions absent of agricultural intensification, such as Africa, are poorly characterized regardless of crop type. The results reflect the value of MODIS as a generic global cropland indicator for intensive agriculture production regions, but with little sensitivity in areas of low agricultural intensification. Variability in mapping accuracies between areas dominated by different crop types also points to the desirability of a crop-specific approach rather than attempting

  12. MODIS phenology image service ArcMap toolbox

    Talbert, Colin; Kern, Tim J.; Morisette, Jeff; Brown, Don; James, Kevin

    2013-01-01

    Seasonal change is important to consider when managing conservation areas at landscape scales. The study of such patterns throughout the year is referred to as phenology. Recurring life-cycle events that are initiated and driven by environmental factors include animal migration and plant flowering. Phenological events capture public attention, such as fall color change in deciduous forests, the first flowering in spring, and for those with allergies, the start of the pollen season. These events can affect our daily lives, provide clues to help understand and manage ecosystems, and provide evidence of how climate variability can affect the natural cycle of plants and animals. Phenological observations can be gathered at a range of scales, from plots smaller than an acre to landscapes of hundreds to thousands of acres. Linking these observations to diverse disciplines such as evolutionary biology or climate sciences can help further research in species and ecosystem responses to climate change scenarios at appropriate scales. A cooperative study between the National Park Service (NPS), the U.S. Geological Survey (USGS), and the National Aeronautics and Space Administration (NASA) has been exploring how satellite information can be used to summarize phenological patterns observed at the park or landscape scale and how those summaries can be presented to both park managers and visitors. This study specifically addressed seasonal changes in plants, including the onset of growth, photosynthesis in the spring, and the senescence of deciduous vegetation in the fall. The primary objective of the work is to demonstrate that seasonality even in protected areas changes considerably across years. A major challenge is to decouple natural variability from possible trends—directional change that can lead to a permanent and radically different ecosystem state. Trends can be either a gradual degradation of the landscape (often from external influences) or steady improvement (by

  13. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  14. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  15. Remote sensing of aerosols by synergy of caliop and modis

    Kudo Rei; Nishizawa Tomoaki; Higurashi Akiko; Oikawa Eiji

    2018-01-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obt...

  16. Investigation of Cloud Properties and Atmospheric Profiles with Modis

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter

    1997-01-01

    A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.

  17. Influence of composite period and date of observation on phenological metrics extracted from MODIS data

    Wessels, Konrad J

    2009-05-01

    Full Text Available ) The 8-day, 500m MODIS data (MOD09) for the Skukuza EOS site were downloaded from the MODIS ASCII Subsets website (http://daac.ornl.gov/cgi-bin/MODIS/GR_1/button.slim.pl). The data comprised 14 x 14 pixels of data covering a 7x7 km area for the period...

  18. Snow-covered Landsat time series stacks improve automated disturbance mapping accuracy in forested landscapes

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy B. Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2011-01-01

    Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated...

  19. Monitoring of carbon isotope composition of snow cover for Tomsk region

    Akulov, P. A.; Volkov, Y. V.; Kalashnikova, D. A.; Markelova, A. N.; Melkov, V. N.; Simonova, G. V.; Tartakovskiy, V. A.

    2016-11-01

    This article shows the potential of using δ13C values of pollutants in snow pack to study the human impact on the environment of Tomsk and its surroundings. We believe that it is possible to use a relation between the isotope compositions of a fuel and black carbon for establishing the origin of the latter. The main object of our investigation was dust accumulated by the snow pack in the winter of 2015-2016. The study of dust samples included the following steps: determination of the total carbon content in snow pack samples of Tomsk and its surroundings, extraction of black carbon from the dust, as well as the determination of δ13C values of the total and black carbon accumulated in the snow pack. A snow survey was carried out on the 26th of January and on the 18th of March. The relative carbon content in the dust samples was determined by using an EA Flash 2000 element analyzer. It varied from 3 to 24%. The maximum carbon content was in the dust samples from areas of cottage building with individual heating systems. The δ13C values of the total and black carbon were determined by using a DELTA V Advantage isotope mass spectrometer (TomTsKP SB RAS). The isotope composition of black carbon corresponded to that of the original fuel. This fact allowed identifying the origin of black carbon in some areas of Tomsk.

  20. Infra-red thermography for detecting frost pockets on snow-covered clear-fellings

    Mattsson, J.O.; Odin, H.; Palenius, H.P.

    1983-01-01

    The purpose of the investigation was to find out if IR-thermography from aircraft could be a useful method for registration and studies of regional variation of frost exposition within an area and of distribution of frost risks within individual felling areas. The technique, which was successful, has up till now not been utilized in Sweden for such studies in woodland

  1. Airborn Ku-band polarimetric radar remote sensing of terrestrial snow cover

    Simon H. Yueh; Steve J. Dinardo; Ahmed Akgiray; Richard West; Donald W. Cline; Kelly Elder

    2009-01-01

    Characteristics of the Ku-band polarimetric scatterometer (POLSCAT) data acquired from five sets of aircraft flights in the winter months of 2006-2008 for the second Cold Land Processes Experiment (CLPX-II) in Colorado are described in this paper. The data showed the response of the Ku-band radar echoes to snowpack changes for various types of background vegetation in...

  2. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiatio