WorldWideScience

Sample records for modifying operating cycles

  1. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-01-01

    Full Text Available Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.

  2. Performance assessment of simple and modified cycle turboshaft gas turbines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-06-01

    Full Text Available This paper focuses on investigations encompassing comparative assessment of gas turbine cycle options. More specifically, investigation was carried out of technical performance of turboshaft engine cycles based on existing simple cycle (SC and its projected modified cycles for civil helicopter application. Technically, thermal efficiency, specific fuel consumption, and power output are of paramount importance to the overall performance of gas turbine engines. In course of carrying out this research, turbomatch software established at Cranfield University based on gas turbine theory was applied to conduct simulation of a simple cycle (baseline two-spool helicopter turboshaft engine model with free power turbine. Similarly, some modified gas turbine cycle configurations incorporating unconventional components, such as engine cycle with low pressure compressor (LPC zero-staged, recuperated engine cycle, and intercooled/recuperated (ICR engine cycle, were also simulated. In doing so, design point (DP and off-design point (OD performances of the engine models were established. The percentage changes in performance parameters of the modified cycle engines over the simple cycle were evaluated and it was found that to a large extent, the modified engine cycles with unconventional components exhibit better performances in terms of thermal efficiency and specific fuel consumption than the traditional simple cycle engine. This research made use of public domain open source references.

  3. Universality, marginal operators, and limit cycles

    International Nuclear Information System (INIS)

    Glazek, Stanislaw D.; Wilson, Kenneth G.

    2004-01-01

    The universality of renormalization-group limit-cycle behavior is illustrated with a simple discrete Hamiltonian model. A nonperturbative renormalization-group equation for the model is soluble analytically at criticality and exhibits one marginal operator (made necessary by the limit cycle) and an infinite set of irrelevant operators. Relevant operators are absent. The model exhibits an infinite series of bound-state energy eigenvalues. This infinite series approaches an exact geometric series as the eigenvalues approach zero--also a consequence of the limit cycle. Wegner's eigenvalues for irrelevant operators are calculated generically for all choices of parameters in the model. We show that Wegner's eigenvalues are independent of location on the limit cycle, in contrast with Wegner's operators themselves, which vary depending on their location on the limit cycle. An example is then used to illustrate numerically how one can tune the initial Hamiltonian to eliminate the first two irrelevant operators. After tuning, the Hamiltonian's bound-state eigenvalues converge much more quickly than otherwise to an exact geometric series

  4. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  5. Development of long operating cycle simplified BWR

    International Nuclear Information System (INIS)

    Heki, H.; Nakamaru, M.; Maruya, T.; Hiraiwa, K.; Arai, K.; Narabayash, T.; Aritomi, M.

    2002-01-01

    This paper describes an innovative plant concept for long operating cycle simplified BWR (LSBWR) In this plant concept, 1) Long operating cycle ( 3 to 15 years), 2) Simplified systems and building, 3) Factory fabrication in module are discussed. Designing long operating core is based on medium enriched U-235 with burnable poison. Simplified systems and building are realized by using natural circulation with bottom located core, internal CRD and PCV with passive system and an integrated reactor and turbine building. This LSBWR concept will have make high degree of safety by IVR (In Vessel Retention) capability, large water inventory above the core region and no PCV vent to the environment due to PCCS (Passive Containment Cooling System) and internal vent tank. Integrated building concept could realize highly modular arrangement in hull structure (ship frame structure), ease of seismic isolation capability and high applicability of standardization and factory fabrication. (authors)

  6. Modified-open fuel cycle performance with breed-and-burn advanced reactor concepts

    International Nuclear Information System (INIS)

    Heidet, Florent; Kim, Taek K.; Taiwo, Temitope A.

    2011-01-01

    Recent advances in fast reactor designs enable significant increase in the uranium utilization in an advanced fuel cycle. The category of fast reactors, collectively termed breed-and-burn reactor concepts, can use a large amount of depleted uranium as fuel without requiring enrichment with the exception of the initial core critical loading. Among those advanced concepts, some are foreseen to operate within a once-through fuel cycle such as the Traveling Wave Reactor, CANDLE reactor or Ultra-Long Life Fast Reactor, while others are intended to operate within a modified-open fuel cycle, such as the Breed-and-Burn reactor and the Energy Multiplier Module. This study assesses and compares the performance of the latter category of breed-and-burn reactors at equilibrium state. It is found that the two reactor concepts operating within a modified-open fuel cycle can significantly improve the sustainability and security of the nuclear fuel cycle by decreasing the uranium resources and enrichment requirements even further than the breed-and-burn core concepts operating within the once-through fuel cycle. Their waste characteristics per unit of energy are also found to be favorable, compared to that of currently operating PWRs. However, a number of feasibility issues need to be addressed in order to enable deployment of these breed-and-burn reactor concepts. (author)

  7. Restoring Environmental Flows by Modifying Dam Operations

    Directory of Open Access Journals (Sweden)

    Brian D. Richter

    2007-06-01

    Full Text Available The construction of new dams has become one of the most controversial issues in global efforts to alleviate poverty, improve human health, and strengthen regional economies. Unfortunately, this controversy has overshadowed the tremendous opportunity that exists for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. This paper describes an assessment framework that can be used to evaluate the benefits that might be restored through dam re-operation. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. The paper highlights a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the

  8. Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers

    International Nuclear Information System (INIS)

    Yan, Gang; Bai, Tao; Yu, Jianlin

    2016-01-01

    This study presents a modified ejector expansion cycle with zeotropic mixtures (R290/R600a) for freezers, in which an ejector and a phase-separator are employed to enhance the cycle performance. Energetic and exergetic methods are used to theoretically investigate the system operating characteristics. In addition, comparative research among the modified cycle, conventional ejector expansion cycle and basic throttling cycle is carried out. The results demonstrate that the modified cycle exhibits higher refrigeration COP (coefficient of performance), volumetric refrigeration capacity and system exergy efficiency than conventional ejector expansion cycle and basic throttling cycle. Under the given operation conditions, the system performance improvements of the modified cycle in terms of the COP, refrigeration capacity and system exergy efficiency over the basic throttling cycle could reach about 56.0%, 4.5% and 77.7%, respectively. The performance characteristics of the proposed cycle show its potential practical advantages in freezer applications. - Highlights: • A zeotropic mixture based ejector refrigeration cycle with a separator is proposed. • Comparative research among the different cycles is carried out. • Energetic and exergetic methods are used to investigate the system performance. • The COP and system exergy efficiency are improved by 56.0% and 77.7%, respectively.

  9. Inflation, operating cycle, and cash holdings

    Directory of Open Access Journals (Sweden)

    Yanchao Wang

    2014-12-01

    Full Text Available A corporate cash-holding strategy is a trade-off between the costs and benefits of holding cash. At the macrolevel, firms are inclined to adjust and optimize their cash-holding strategies in response to changes in purchasing power due to inflation. At the microlevel, the operating cycle, which indicates the speed and turnover of corporate cash flow, also influences the corporate cash-holding strategy. Firms flexibly adjust their cash-holding strategies in response to changes in the internal and external environment, which is referred to as the cash adjustment strategy. We examine these predicted relationships using a sample of listed firms in China’s stock market over the 1998–2009 period. Consistent with our predictions, the empirical results indicate a significant negative association between cash holdings and the CPI, but the relationship is reversed when the CPI reaches a certain level. There is also a U-shaped relationship between operating cycle and cash holdings, and this relationship is similarly influenced by changes in the inflation level. In examining the macroeconomic environment and microlevel firm-specific characteristics simultaneously, our findings supplement the literature on firms’ cash-holding strategies and provide theoretical and practical implications.

  10. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  11. 14 CFR 121.434 - Operating experience, operating cycles, and consolidation of knowledge and skills.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operating experience, operating cycles, and... Qualifications § 121.434 Operating experience, operating cycles, and consolidation of knowledge and skills. (a... position, the operating experience, operating cycles, and the line operating flight time for consolidation...

  12. 40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Cycle-validation criteria for operation over specified duty cycles. 1065.514 Section 1065.514 Protection of Environment ENVIRONMENTAL... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...

  13. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  14. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  15. VVER-440 fuel cycles possibilities using modified FA design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.; Razym, V.; Dostal, M.; Jenik, J.; Krupar, P.

    2009-01-01

    A nearly equilibrium five-year cycle has been achieved at Dukovany NPP over the last years. This means that working fuel assemblies (WFA) with an average enrichment of 4.25 w% (control assemblies (CA) with an average enrichment of 3.82 w%) are normally loaded and reloaded for five years. Operation at uprated thermal power (105% of the original one, increase from 1375 MW t to 1444 MW t ) is being prepared by use of WFA with an average enrichment of 4.38 w% (CA with an average enrichment of 4.25 w%). With the aim of fuel cycle economy improvement, the fuel residence time in the core has to be prolonged up to six years with one cycle duration time up to 18 months and preserving loadings with very low leakage. In order to achieve this goal, at least neutron-physical characteristics of FA must be improved and such changes should be evaluated from other viewpoints. Some particular changes have already been analyzed earlier. Designs of new fuel assemblies with higher (and in the central part of a FA the highest possible, i.e. 4.95 w%) enrichment with preserving low pin power non-uniformity are described in the presented paper. An FA with an average enrichment of 4.66 w% (lower than originally evaluated) containing six fuel pins with 3.35 w% Gd 2 O 3 content was selected in the end. Fuel pins have bigger pellet diameter, bigger pin pitch and thinner FA shroud. A newly designed FA was evaluated from the viewpoint of physics (pin power non-uniformity, criticality of fuel at transport and storage and determination of basic quantities for spent fuel storage purposes by ORIGEN code), thermo-hydraulics (comparison of subchannel output temperatures and the departure from nucleate boiling ratio - DNBR) and mechanical properties. The purpose of this study was to simulate an FA subject to the loads during its six- year lifetime whereas normal working conditions were taken into account. There are presented two models with different shroud thickness undergoing these analyses. Both

  16. Approximation properties of certain modified Szasz-Mirakyan operators

    Directory of Open Access Journals (Sweden)

    Lucyna Rempulska

    2000-05-01

    Full Text Available We introduce certain modified Szasz - Mirakyan operators in exponential weighted spaces of functions of one variable. We give theorems on the degree of approximation and the Voronovskaya type theorem.

  17. Post operation: The changing characteristics of nuclear fuel cycle costs

    International Nuclear Information System (INIS)

    Frank, F.J.

    1986-01-01

    Fundamental changes have occurred in the nuclear fuel cycle. These changes forged by market forces, legislative action, and regulatory climate appear to be a long term characteristic of the nuclear fuel cycle. The nature of these changes and the resulting emerging importance of post-operation and its impact on fuel cycle costs are examined

  18. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  19. Modeling Operating Modes during Plant Life Cycle

    DEFF Research Database (Denmark)

    Jørgensen, Sten Bay; Lind, Morten

    2012-01-01

    Modelling process plants during normal operation requires a set a basic assumptions to define the desired functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during start-up and shut down as well as during batch operation an ensemble of interrelated...... modes are required to cover the whole operational window of a processs plant including intermediary operating modes. Development of such an model ensemble for a plant would constitute a systematic way of defining the possible plant operating modes and thus provide a platform for also defining a set...... of candidate control structures. The present contribution focuses on development of a model ensemble for a plant with an illustartive example for a bioreactor. Starting from a functional model a process plant may be conceptually designed and qualitative operating models may be developed to cover the different...

  20. Reprocessing on the whole fuel cycle operations

    International Nuclear Information System (INIS)

    Megy, J.

    1983-11-01

    Spent fuel reprocessing, in France, is become an industrial reality which takes an importance place in several fields: place surely essential in the fuel cycle from the energetic material economy and waste management point of view; place priority in the CEA (Commissariat a l'Energie Atomique) research and development programs; place in the industry where it is an important activity sector with the realizations in progress [fr

  1. The effect of elevated progesterone levels before HCG triggering in modified natural cycle frozen-thawed embryo transfer cycles

    DEFF Research Database (Denmark)

    Groenewoud, Eva R; Macklon, Nick S; Cohlen, Ben J

    2017-01-01

    follicular phase progesterone levels may occur in unstimulated cycles before frozen-thawed embryo transfer, or what affect they may have on outcomes. In this cohort study, 271 patients randomized to the modified natural cycle arm of a randomized controlled trial comparing two endometrial preparation regimens....... Whether monitoring of progesterone and LH in natural cycle frozen-thawed embryo transfer has added clinical value should studied further....

  2. Primary water chemistry optimization for extended fuel cycle operation. Results of the 'Duo experimentation' after three cycles

    International Nuclear Information System (INIS)

    Viricel, L.; Andrieu, C.; Segura, J.C.; Rocher, A.; Thomazet, J.; Clinard, M.H.; Dacquait, F.

    2002-01-01

    The primary coolant conditioning in French nuclear power plants is essentially based on the boron-lithium coordinated chemistry, with a target pH of 7.2 at 300 C and a maximum lithium concentration of 2.2 mg/kg. In 1996, EDF 1300 MWe units began operating 18-month fuel cycles, increasing boron concentrations at the beginning of the cycles. Since today the maximum lithium concentration in normal operation is 2.2 mg/kg, extended cycle operation results in a decrease in the pH at the beginning of the cycles, which may possibly lead to deposits in RCS, and particularly on the fuel cladding, and increased dose rates. It has to be noted that today, the fuel assemblies maximum burnup is set at 52 GWd/tU. One solution is to adjust the pH by increasing the lithium content at the beginning of the cycles, which is easy to implement and does not require any modification on the units. Hence, EDF is testing a ''modified'' chemistry regime in the > during 4 fuel cycles, with a maximum authorized lithium content of 3.5 mg/kg at the beginning of the cycles in the Cattenom 2 pilot unit. The Golfech 1 reference unit implements a standard boron-lithium coordination pH 300 7.2. The major goal of the experimentation is to assess the impact of elevated lithium concentrations at the beginning of the cycles on fuel cladding oxide behavior, mass transport and dose rates. This paper presents the results of the first three cycles of the Duo experimentation. (author)

  3. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  4. Life Cycle Costs in Education: Operations & Maintenance Considered.

    Science.gov (United States)

    Moussatche, Helena; Languell-Urquhart, Jennifer; Woodson, Carol

    2000-01-01

    Discusses life cycle cost analysis when deciding on flooring finishes and examines operations and maintenance cost effectiveness relative to hard, resilient, and soft flooring. A chart of evaluated flooring materials' characteristics, appropriate maintenance procedures, and recommended frequency is included. (GR)

  5. Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yan, Gang; Yu, Jianlin

    2015-01-01

    In this paper, a modified dual-evaporator CO 2 transcritical refrigeration cycle with two-stage ejector (MDRC) is proposed. In MDRC, the two-stage ejector are employed to recover the expansion work from cycle throttling processes and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analyses. The simulation results for the modified cycle show that two-stage ejector exhibits more effective system performance improvement than the single ejector in CO 2 dual-temperature refrigeration cycle, and the improvements of the maximum system COP (coefficient of performance) and system exergy efficiency could reach 37.61% and 31.9% over those of the conventional dual-evaporator cycle under the given operating conditions. The exergetic analysis for each component at optimum discharge pressure indicates that the gas cooler, compressor, two-stage ejector and expansion valves contribute main portion to the total system exergy destruction, and the exergy destruction caused by the two-stage ejector could amount to 16.91% of the exergy input. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system. - Highlights: • Two-stage ejector is used in dual-evaporator CO 2 transcritical refrigeration cycle. • Energetic and exergetic methods are carried out to analyze the system performance. • The modified cycle could obtain dual-temperature refrigeration simultaneously. • Two-stage ejector could effectively improve system COP and exergy efficiency

  6. Dynamics of nuclear reactor operational cycles

    International Nuclear Information System (INIS)

    Chapman, L.D.; Wayland, J.R.

    With this system dynamics computer model, one can explore the long term effects of a nuclear reactor program. Given an input demand for reactors, the consequences on each sector and the interactions among sectors can be simulated to provide a better understanding of the time development of a nuclear reactor program. The model permits the determination of various levels of activity as a function of time for plant enrichment, fuel fabrication, fuel reprocessing and storage of waste products. In addition, the rates of construction of reactors, spent fuel transit, disposal of waste, mining, shipping, recycling and enrichment can be investigated for optimal planning purposes. The model has been written in a very general manner so that it can be used to simulate any nuclear reactor program. It is an easy task to relate the amount of accidental or operational release of radioactive contaminants into our environment to the activity levels of each of the above sectors. (U.S.)

  7. Laparotomy operative note template constructed through a modified Delphi method.

    Science.gov (United States)

    Moore, Lolonya; Churley-Strom, Ruth; Singal, Bonita; O'Leary, Sharon

    2009-05-01

    An operative note is indispensable to physician documentation and decision-making; however, there are no accepted standards for operative note content. Our aim was to use a modified Delphi consensus-building method to construct a uniform operative note template for laparotomy. Using Joint Commission on Accreditation of Healthcare Organizations requirements, literature review, and feedback from 15 medical malpractice defense attorneys, we compiled a draft operative note template of 31 elements. We surveyed 37 Association of Professor of Gynecology and Obstetrics/Solvay scholars asking for their input on inclusion of each item as essential content of the operative note. Two iterations of the survey were required to reach a predetermined 75% level of consensus. Nine elements were eliminated from the template: 6 original and 3 expert-suggested elements. We provide an operative note template that was compiled through a Delphi process.

  8. Operating regimes of signaling cycles: statics, dynamics, and noise filtering.

    Directory of Open Access Journals (Sweden)

    Carlos Gomez-Uribe

    2007-12-01

    Full Text Available A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK cascades. Our paper explores the kind of information processing and filtering that can be accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultrasensitive input-output characteristic in a certain steady-state regime. Here, we systematically study the cycle's steady-state behavior and its response to time-varying stimuli. We demonstrate that the cycle can actually operate in four different regimes, each with its specific input-output characteristics. These results are obtained using the total quasi-steady-state approximation, which is more generally valid than the typically used Michaelis-Menten approximation for enzymatic reactions. We invoke experimental data that suggest the possibility of signaling cycles operating in one of the new regimes. We then consider the cycle's dynamic behavior, which has so far been relatively neglected. We demonstrate that the intrinsic architecture of the cycles makes them act--in all four regimes--as tunable low-pass filters, filtering out high-frequency fluctuations or noise in signals and environmental cues. Moreover, the cutoff frequency can be adjusted by the cell. Numerical simulations show that our analytical results hold well even for noise of large amplitude. We suggest that noise filtering and tunability make signaling cycles versatile components of more elaborate cell-signaling pathways.

  9. Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic

    International Nuclear Information System (INIS)

    Singh, Vimal

    2007-01-01

    A criterion in the form of linear matrix inequality for the elimination of limit cycles in a class of state-space digital filters using saturation arithmetic is presented. The criterion is a modified form of a previously reported criterion

  10. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  11. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  12. Effectiveness of indometacin to prevent ovulation in modified natural-cycle IVF : A randomized controlled trial

    NARCIS (Netherlands)

    Rijken-Zijlstra, T. M.; Haadsma, M. L.; Hammer, C.; Burgerhof, J. G. M.; Pelinck, M. J.; Simons, A. H. M.; van Echten-Arends, J.; Arts, J. G. E. M.; Land, J. A.; Groen, H.; Hoek, A.

    Modified natural-cycle IVF has a lower pregnancy rate per started cycle as compared with IVF with ovarian stimulation due to, for example, premature ovulation. Indometacin administered before ovulation prevents follicle rupture. Therefore, addition of indometacin may improve the effectiveness of

  13. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  14. Introduction of long term cycle of reactor operation

    International Nuclear Information System (INIS)

    Aoyati, M.; Tanaka, T.

    2004-01-01

    Introduction of long term cycle of LWR reactor operation at NPP in Japan is considered, and problems of technical, legislative and economical character, increase of power coefficient are discussed. More long term operation period provides decreasing frequency of periodic inspections and reduction of personnel radiation doses. Reliability of fuel, energetic equipment, mechanisms and devices must be taken into account for the decision of technical problems. Consumptions for electric power generation are studied [ru

  15. The nuclear fuel cycle associated with the operation of nuclear ...

    African Journals Online (AJOL)

    The nuclear power option has been mentioned as an alternative for Ghana but the issue of waste management worries both policy makers and the public. In this paper, the nuclear fuel cycle associated with the operation of nuclear power plants (NPPs) for electric power generation has been extensively reviewed. Different ...

  16. Core concept for long operating cycle simplified BWR (LSBWR)

    International Nuclear Information System (INIS)

    Kouji, Hiraiwa; Noriyuki, Yoshida; Mikihide, Nakamaru; Hideaki, Heki; Masanori, Aritomi

    2002-01-01

    An innovative core concept for a long operating cycle simplified BWR (LSBWR) is currently being developed under a Toshiba Corporation and Tokyo Institute of Technology joint study. In this core concept, the combination of enriched uranium oxide fuels and loose-pitched lattice is adopted for an easy application of natural circulation. A combination of enriched gadolinium and 0.7-times sized small bundle with peripheral-positioned gadolinium rod is also adopted as a key design concept for 15-year cycle operation. Based on three-dimensional nuclear and thermal hydraulic calculation, a nuclear design for fuel bundle has been determined. Core performance has been evaluated based on this bundle design and shows that thermal performance and reactivity characteristics meet core design criteria. Additionally, a control rod operation plan for an extension of control rod life has been successfully determined. (author)

  17. Characteriztion of particulate plutonium released in fuel cycle operations

    International Nuclear Information System (INIS)

    Seefeldt, W.B.; Mecham, W.J.; Steindler, M.J.

    1976-05-01

    An estimate of the plutonium source terms is made for the fuel cycles of three reactor types on the basis of currently applied, currently available, and estimated future technology. The three reactors are LWR-U, LWR-Pu, and LMFBR. The source terms are characterized as to quantity, form, and particle size distribution. Historical operating data for existing plants and the state of the art of the technology of air cleaning are reviewed

  18. Overview of the Modified SI Cycle to Produce Nuclear Hydrogen Coupled to VHTR

    International Nuclear Information System (INIS)

    Shin, Youngjoon; Lee, Taehoon; Lee, Kiyoung; Kim, Minhwan

    2016-01-01

    The steam reforming of methane is one of hydrogen production processes that rely on cheap fossil feedstocks. An overview of the VHTR-based nuclear hydrogen production process with the modified SI cycle has been carried out to establish whether it can be adopted as a feasible technology to produce nuclear hydrogen

  19. Mutual influences of reactor operation and fuel cycle management

    International Nuclear Information System (INIS)

    Lewiner, C.; Schaerer, R.

    1989-01-01

    OPEN (Organisation des Producteurs d'Energie Nucleaire) comprises the electricity producers from seven European countries which now operate or intend to operate nuclear power plants. Its activities include the study of technical, economic and legal subjects related to nuclear electricity. A continuous analysis of the fuel cycle market has been pursued within OPEN for almost 15 years. For the past few years, OPEN has also been concerned with the subject of fuel management in the reactors operated by its members. The purpose of this effort was to obtain an overall picture of possible fuel improvements and to evaluate the effects, in particular the economic ones, of diverse fuel reload managements and of reprocessed uranium and plutonium recycling. The conclusions of this study are as follows: Increase in burn-ups produces notable savings in electricity generating costs. It also permits adaptation of fuel loading mode to the desirable irradiation campaign length. This allows for better management of the country's overall means of electricity generation (nuclear, fossil-fuelled or hydro plants), and adjustment to the electrical demand. These new reload schemes have various impacts on natural uranium consumption and enrichment, but, above all, they affect directly all fuel cycle operations linked to the number of assemblies (fabrication, reprocessing, etc.). 6 figs

  20. Optimization of operation cycles in BWRs using neural networks

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo, A.; Alejandro P, D.

    2011-11-01

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  1. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  2. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  3. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  5. Advanced exergy analysis on a modified auto-cascade freezer cycle with an ejector

    International Nuclear Information System (INIS)

    Bai, Tao; Yu, Jianlin; Yan, Gang

    2016-01-01

    This paper presents a study on a modified ejector enhanced auto-cascade freezer cycle with conventional thermodynamic and advanced exergy analysis methods. The energetic analysis shows that the modified cycle exhibits better performance than the conventional auto-cascade freezer cycle, and the system COP and volumetric refrigeration capacity could be improved by 19.93% and 28.42%. Furthermore, advanced exergy analysis is adopted to better evaluate the performance of the proposed cycle. The exergy destruction within a system component is split into endogenous/exogenous and unavoidable/avoidable parts in the advanced exergy analysis. The results show that the compressor with the largest avoidable endogenous exergy destruction has highest improvement priority, followed by the condenser, evaporator and ejector, which is different from the conclusion obtained from the conventional exergy analysis. The evaporator/condenser greatly affects the exogenous exergy destruction within the system components, and the compressor has large impact on the exergy destruction within the condenser. Improving the efficiencies of the compressor efficiency and the ejector could effectively reduce the corresponding avoidable endogenous exergy destruction. The exergy destruction within the evaporator almost entirely belongs to the endogenous part, and reducing the temperature difference at the evaporator is the main approach of reducing its exergy destruction. - Highlights: • A modified ejector enhanced auto-cascade freezer cycle is proposed. • Conventional and advanced exergy analyses are performed in this study. • Compressor should be firstly improved first, followed by condenser and evaporator. • Interactions among the system components are assessed with advanced exergy analysis.

  6. Primary water chemistry optimization for extended fuel cycle operation. Results of the 'Duo experimentation' after three cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viricel, L.; Andrieu, C.; Segura, J.C.; Rocher, A. [Electricite de France (France); Thomazet, J.; Clinard, M.H. [Framatome ANP (France); Dacquait, F. [Commissariat a l' Energie Atomique (France)

    2002-07-01

    The primary coolant conditioning in French nuclear power plants is essentially based on the boron-lithium coordinated chemistry, with a target pH of 7.2 at 300 C and a maximum lithium concentration of 2.2 mg/kg. In 1996, EDF 1300 MWe units began operating 18-month fuel cycles, increasing boron concentrations at the beginning of the cycles. Since today the maximum lithium concentration in normal operation is 2.2 mg/kg, extended cycle operation results in a decrease in the pH at the beginning of the cycles, which may possibly lead to deposits in RCS, and particularly on the fuel cladding, and increased dose rates. It has to be noted that today, the fuel assemblies maximum burnup is set at 52 GWd/tU. One solution is to adjust the pH by increasing the lithium content at the beginning of the cycles, which is easy to implement and does not require any modification on the units. Hence, EDF is testing a ''modified'' chemistry regime in the << Duo experimentation >> during 4 fuel cycles, with a maximum authorized lithium content of 3.5 mg/kg at the beginning of the cycles in the Cattenom 2 pilot unit. The Golfech 1 reference unit implements a standard boron-lithium coordination pH{sub 300} 7.2. The major goal of the experimentation is to assess the impact of elevated lithium concentrations at the beginning of the cycles on fuel cladding oxide behavior, mass transport and dose rates. This paper presents the results of the first three cycles of the Duo experimentation. (author)

  7. Extended fuel cycle operation for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1978-01-01

    A nuclear steam turbine power plant system having an arrangement therein for extended fuel cycle operation is described. The power plant includes a turbine connected at its inlet to a source of motive fluid having a predetermined pressure associated therewith. The turbine has also connected thereto an extraction conduit which extracts steam from a predetermined location therein for use in an associated apparatus. A bypass conduit is provided between a point upstream of the inlet and the extraction conduit. A flow control device is provided within the bypass conduit and opens when the pressure of the motive steam supply drops beneath the predetermined pressure as a result of reactivity loss within the nuclear reactor. Opening of the bypass conduit provides flow to the associated apparatus and at the same time provides an increased flow orifice to maintain fluid flow rate at a predetermined level

  8. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  9. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar; Jupudi, Ravichandra; Wijeyakulasuriya, Sameera; Gubba, Sreenivasa Rao; Im, Hong G.; Jaasim, Mohammed; Primus, Roy; Klingbeil, Adam; Finney, Charles

    2017-01-01

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP

  10. Modified natural cycle for embryo transfer using frozen-thawed blastocysts: A satisfactory option.

    Science.gov (United States)

    Le, Quoc V; Abhari, Sina; Abuzeid, Omar M; DeAnna, Jennifer; Satti, Mohamed A; Abozaid, Tarek; Khan, Iqbal; Abuzeid, Mostafa I

    2017-06-01

    To describe pregnancy outcomes of frozen-thawed blastocysts cycles using modified natural cycle frozen embryo transfers (NC-FET) and down-regulated hormonally controlled frozen embryo transfers (HC-FET) protocols. This retrospective cohort study included all patients undergoing either modified NC-FET or down-regulated HC-FET using frozen-thawed day 5 embryos. Cycles with donor blastocysts were excluded. Four hundred twenty eight patients underwent a total of 493 FET cycles. Patients with regular menses and evidence of ovulation underwent modified NC-FET. These patients were given hCG 10,000 IU IM on the day of LH-surge. Vaginal progesterone (P4) was started two days later and blastocyst transfer was planned seven days after detecting the LH surge. Anovulatory patients and some ovulatory patients underwent down-regulated HC-FET. These patients were placed on medroxy-progesterone acetate (10mg) for 10days to bring on menses and were also given a half-dose of GnRH-agonist (GnRH-a) on the third day of medroxy-progesterone acetate. Exogenous estradiol was initiated on the third day of menses. Once serum E2 levels reached >500pg/mL and endometrial lining reached >8mm, intramuscular (IM) P4 in oil was administered. Blastocyst FET was planned 6days after initiating P4. The primary outcomes included clinical pregnancy and delivery rates. There were 197 patients in the modified NC-FET protocol and 181 in the down-regulated HC-FET protocol. Mean age (years), day-3 FSH levels (mIU/mL) and percentage of patients with male factor infertility were significantly higher and mean BMI (kg/m 2 ) was significantly lower in modified NC-FET compared to HC-FET, respectively. Analysis of the first cycle pregnancy outcomes revealed no significant differences in clinical pregnancy rate (54.3% vs. 52.5%) and delivery rate (47.2% vs. 43.6%) between modified NC-FET and HC-FET. Logistic regression analysis showed age (OR=0.939, 95% CI 0.894-0.989, p=0.011), number of blastocysts transferred (OR

  11. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  12. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    Maj M.

    2013-03-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.

  13. Modified natural cycle IVF and mild IVF: a 10 year Swedish experience.

    Science.gov (United States)

    Aanesen, Arthur; Nygren, Karl-Gösta; Nylund, Lars

    2010-01-01

    Modified natural cycle IVF (mnc-IVF) or mild IVF (m-IVF) was offered to selected patients between 1996 and 2007; 43 patients during 129 cycles were treated with mnc-IVF and 145 couples during 250 cycles were treated with m-IVF. Comparison with outcome from conventional IVF cycles during the same time period and in the same clinic was performed. Although 53.5 and 39.6% of started cycles respectively never reached embryo transfer, the ongoing pregnancy rates per embryo transfer were 26.7% for mnc-IVF and 27.2% for m-IVF. During the same time period, cancellation rate for conventional IVF was 13.7% and the ongoing pregnancy rate per embryo transfer was 34.3%. For patients > or =38years of age, the ongoing pregnancy rate per embryo transfer was 17.5% in the m-IVF group. None of the patients aged > or =38years in the mnc-IVF group achieved an ongoing pregnancy. For patients treated with conventional IVF, the > or =38years of age pregnancy rate per embryo transfer was 27.0%. Costs of medication for m-IVF and mnc-IVF were 96.3 and 97.5% less than for the least expensive conventional IVF cycle respectively. Pregnancy rates per embryo transfer are acceptable for these treatment modalities, the cost for medication is low, risks for complications are dramatically reduced, and the treatments may be more psychologically acceptable to the patients. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.

    Science.gov (United States)

    Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin

    2016-10-24

    Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.

  15. Exploring perceptions of hospital operations by a modified SERVQUAL approach.

    Science.gov (United States)

    Reidenbach, R E; Sandifer-Smallwood, B

    1990-12-01

    The authors employ a modified SERVQUAL approach to understanding the relationships among patients' perceptions of inpatient, outpatient, and emergency room services and their overall perceptions of service quality, satisfaction with their care, and willingness to recommend the hospital's services to others. Three models of these perceptions and related behavioral variables are developed. Dominating these models is a dimension labeled "patient confidence," which has a significant impact on nearly all measures of patient satisfaction.

  16. Approximation by modified Szasz–Mirakjan operators on weighted ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    English translation in Math. Notes 20(5–6) (1976) 996–998. [3] Gadzhiev A D, Positive linear operators in weighted spaces of functions of several vari- ables, Izv. Akad. Nauk. SSR Ser. Fiz-Tekhn. Math. Nauk 4 (1980) 32–37. [4] Gadzhiev A D, Weighted approximation of continuous functions by linear operators on the whole ...

  17. Modified natural cycle versus controlled ovarian hyperstimulation IVF: a cost-effectiveness evaluation of three simulated treatment scenarios

    NARCIS (Netherlands)

    Groen, Henk; Tonch, Nino; Simons, Arnold H. M.; van der Veen, Fulco; Hoek, Annemieke; Land, Jolande A.

    2013-01-01

    Can modified natural cycle IVF or ICSI (MNC) be a cost-effective alternative for controlled ovarian hyperstimulation IVF or ICSI (COH)? The comparison of simulated scenarios indicates that a strategy of three to six cycles of MNC with minimized medication is a cost-effective alternative for one

  18. Modified natural cycle versus controlled ovarian hyperstimulation IVF : a cost-effectiveness evaluation of three simulated treatment scenarios

    NARCIS (Netherlands)

    Groen, Henk; Tonch, Nino; Simons, Arnold H. M.; van der Veen, Fulco; Hoek, Annemieke; Land, Jolande A.

    2013-01-01

    STUDY QUESTION: Can modified natural cycle IVF or ICSI (MNC) be a cost-effective alternative for controlled ovarian hyperstimulation IVF or ICSI (COH)? SUMMARY ANSWER: The comparison of simulated scenarios indicates that a strategy of three to six cycles of MNC with minimized medication is a

  19. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer

    NARCIS (Netherlands)

    Groenewoud, E. R.; Cohlen, B. J.; Al-Oraiby, A.; Brinkhuis, E. A.; Broekmans, F. J. M.; de Bruin, J. P.; van den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; Hoek, A.; Hoozemans, D. A.; Kaaijk, E. M.; Koks, C. A. M.; Laven, J. S. E.; van der Linden, P. J. Q.; Manger, A. P.; Slappendel, E.; Spinder, T.; Kollen, B. J.; Macklon, N. S.

    2016-01-01

    Are live birth rates (LBRs) after artificial cycle frozen-thawed embryo transfer (AC-FET) non-inferior to LBRs after modified natural cycle frozen-thawed embryo transfer (mNC-FET)? AC-FET is non-inferior to mNC-FET with regard to LBRs, clinical and ongoing pregnancy rates (OPRs) but AC-FET does

  20. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer

    NARCIS (Netherlands)

    Groenewoud, E. R.; Cohlen, B. J.; Al-Oraiby, A.; Brinkhuis, E. A.; Broekmans, F. J. M.; de Bruin, J. P.; van den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; Hoek, A.; Hoozemans, D. A.; Kaaijk, E. M.; Koks, C. A. M.; Laven, J. S. E.; van der Linden, P. J. Q.; Manger, A. P.; Slappendel, E.; Spinder, T.; Kollen, B. J.; Macklon, N. S.

    STUDY QUESTION: Are live birth rates (LBRs) after artificial cycle frozen-thawed embryo transfer (AC-FET) non-inferior to LBRs after modified natural cycle frozen-thawed embryo transfer (mNC-FET)? SUMMARY ANSWER: AC-FET is non-inferior to mNC-FET with regard to LBRs, clinical and ongoing pregnancy

  1. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer

    NARCIS (Netherlands)

    Groenewoud, E. R.; Cohlen, B. J.; Al-Oraiby, A.; Brinkhuis, E. A.; Broekmans, F. J M; De Bruin, J. P.; Van Den Dool, G.; Fleisher, K.; Friederich, J.; Goddijn, M.; Hoek, A.; Hoozemans, D. A.; Kaaijk, E. M.; Koks, C. A M; Laven, J. S E; Van Der Linden, P. J Q; Manger, A. P.; Slappendel, E.; Spinder, T.; Kollen, B. J.; Macklon, N. S.

    2016-01-01

    studyquestion: Are live birth rates (LBRs) after artificial cycle frozen-thawed embryo transfer (AC-FET) non-inferior to LBRs after modified natural cycle frozen-thawed embryo transfer (mNC-FET)? summaryanswer: AC-FET is non-inferior to mNC-FET with regard to LBRs, clinical and ongoing pregnancy

  2. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  3. Physical security in multinational nuclear-fuel-cycle operations

    International Nuclear Information System (INIS)

    Willrich, M.

    1977-01-01

    Whether or not multinationalization will reduce or increase risks of theft or sabotage will depend on the form and location of the enterprise, the precise nature of the physical security arrangements applied to the enterprise, and the future course of crime and terrorism in the nuclear age. If nuclear operations are multinationalized, the host government is likely to insist on physical security measures that are at least as stringent as those for a national or private enterprise subject to its jurisdiction. At the same time, the other participants will want to be sure the host government, as well as criminal groups, do not steal nuclear material from the facility. If designed to be reasonably effective, the physical security arrangements at a multinational nuclear enterprise seem likely to reduce the risk that any participating government will seek to divert material from the facility for use in a nuclear weapons program. Hence, multinationalization and physical security will both contribute to reducing the risks of nuclear weapons proliferation to additional governments. If economic considerations dominate the timing, scale and location of fuel-cycle facilities, the worldwide nuclear power industry is likely to develop along lines where the problems of physical security will be manageable. If, however, nuclear nationalism prevails, and numerous small-scale facilities become widely dispersed, the problem of security against theft and sabotage may prove to be unmanageable. It is ironic, although true, that in attempting to strengthen its security by pursuing self-sufficiency in nuclear power, a nation may be reducing its internal security against criminal terrorists

  4. Some results on modified Szasz-Mirakjan operators

    Science.gov (United States)

    Finta, Zoltan; Govil, N. K.; Gupta, Vijay

    2007-03-01

    In this paper we study the mixed summation-integral type operators having Szasz and Beta basis functions. We extend the study of Gupta and Noor [V. Gupta, M.A. Noor, Convergence of derivatives for certain mixed Szasz-Beta operators, J. Math. Anal. Appl. 321 (1) (2006) 1-9] and obtain some direct results in local approximation without and with iterative combinations. In the last section are established direct global approximation theorems.

  5. Surveillance strategy for an extended operating cycle in commercial nuclear reactors

    International Nuclear Information System (INIS)

    McHenry, R.S.; Moore, T.J.; Maurer, J.H.; Todreas, N.E.

    1997-01-01

    The impetus for improved economic performance of commercial nuclear power plants can be partially satisfied by increasing plant capacity factors through operating cycle extension. One aspect of an operating cycle extension effort is the modification of plant surveillance programs to complete required regulatory and investment protection surveillance activities within the extended planned outage schedule. The goal is to introduce a general strategy for existing power plants to transition their surveillance programs to an extended operating cycle up to 48 months in length, and to test the feasibility of this strategy through the complete analysis of the surveillance programs at operating BWR and PWR case study plants. The reconciliation of surveillances at these plants demonstrates that surveillance performance will not preclude 48 month operating cycles. Those surveillance activities that could not be resolved to an extended cycle are identified for further study. Finally, a number of general issues are presented that should be considered before implementing a cycle extension effort

  6. Surveillance strategy for an extended operating cycle in commercial nuclear reactors

    International Nuclear Information System (INIS)

    McHenry, R.S.; Moore, T.J.; Maurer, J.H.; Todreas, N.E.

    1997-01-01

    The impetus for improved economic performance of commercial nuclear power plants can be partially satisfied by increasing plant capacity factors through operating cycle extension. One aspect of an operating cycle extension effort is the modification of plant surveillance programs to complete required regulatory and investment protection surveillance activities within the extended planned outage schedule. The goal of this paper is to introduce a general strategy for existing power plants to transition their surveillance programs to an extended operating cycle up to 48 months in length, and to test the feasibility of this strategy through the complete analysis of the surveillance programs at operating BWR and PWR case study plants. The reconciliation of surveillances at these plants demonstrates that surveillance performance will not preclude 48 month operating cycles. Those surveillance activities that could not be resolved to an extended cycle are identified for further study. Finally, a number of general issues are presented that should be considered before implementing a cycle extension effort

  7. Self-adjoint oscillator operator from a modified factorization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Marco A. [Departamento de Fisica, DCI Campus Leon, Universidad de Guanajuato, Apdo. Postal E143, 37150 Leon, Gto. (Mexico); Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Gutierrez, M. Ranferi [Departamento de Fisica, DCI Campus Leon, Universidad de Guanajuato, Apdo. Postal E143, 37150 Leon, Gto. (Mexico)

    2011-05-30

    By using an alternative factorization, we obtain a self-adjoint oscillator operator of the form L{sub δ}=d/(dx) (p{sub δ}(x)d/(dx) )-((x{sup 2})/(p{sub δ}(x)) +p{sub δ}(x)-1), where p{sub δ}(x)=1+δe{sup -x{sup 2}}, with δ element of (-1,∞) an arbitrary real factorization parameter. At positive values of δ, this operator interpolates between the quantum harmonic oscillator Hamiltonian for δ=0 and a scaled Hermite operator at high values of δ. For the negative values of δ, the eigenfunctions look like deformed quantum mechanical Hermite functions. Possible applications are mentioned. -- Highlights: → We present a generalization of the Mielnik factorization. → We study the case of linear relationship between the factorization coefficients. → We introduce a new one-parameter self-adjoint oscillator operator. → We show its properties depending on the values of the parameter.

  8. Modified Brokk Demolition Machine with Remote Operator Console. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The Low-Cost D and D System modifies a commercially available BROKK demolition system for remote viewing and long tether remote operation that provides a portable facility camera pod and interfaces with the Compact Remote Operator Console (TMS Tech ID 2180) to extend the applicability of the BROKK system to projects that require removal of the operator from the work area due to exposure to radiological, chemical, or industrial hazards. The modified BROKK has been integrated with the Compact Remote Operator Console to provide a true remotely operated low-cost D and D system applicable to a wide range of small D and D demolition tasks across the DOE complex

  9. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  10. Selected aspects of operation of supercritical (transcritical organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Mocarsk Szymon

    2015-06-01

    Full Text Available The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.

  11. Data base for a CANDU-PHW operating on a once-through natural uranium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, describes a standard 600 MW(e) CANDU-PHW reactor operating on a once-through natural uranium fuel cycle. Subsequently, data are given for an extrapolated 1000 MW(e) design (the nominal capacity adopted for the INFCE study) operating on the same fuel cycle. (author)

  12. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  13. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    Johnson, E.R.; Best, R.E.

    2009-01-01

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the 'UREX+3c fuel cycle' and the 'Alternative Fuel Cycle' (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the

  14. A life cycle cost economics model for projects with uniformly varying operating costs. [management planning

    Science.gov (United States)

    Remer, D. S.

    1977-01-01

    A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.

  15. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  16. Approximation theorems for modified Szasz-Mirakjan operators in polynomial weight spaces

    Directory of Open Access Journals (Sweden)

    Monika Herzog

    1999-05-01

    Full Text Available In this paper we will study properties of Szasz-Mirakjan type operators A_n^ν , B_n^ ν defined by modified Bessel function I_ν . We shall present theorems giving a degree of approximation for these operators.

  17. Potential Improvements of Supercritical Recompression CO2 Brayton Cycle Coupled with KALIMER-600 by Modifying Critical Point of CO2

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon

    2010-01-01

    Most of the existing designs of a Sodium cooled Fast Reactor (SFR) have a Rankine cycle as an electric power generation cycle. This has the risk of a sodium water reaction. To prevent any hazards from a sodium water reaction, an indirect Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluids for a SFR is an alternative approach to improve the current SFR design. The supercritical Brayton cycle is defined as a cycle with operating conditions above the critical point and the main compressor inlet condition located slightly above the critical point of working fluid. This is because the main advantage of the cycle comes from significantly decreased compressor work just above the critical point due to high density near boundary between supercritical state and subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the minimum temperature of a thermodynamic cycle can increase the efficiency and the minimum temperature can be decreased by shifting the critical point of CO 2 as mixed with other gases. In this paper, potential enhancement of S-CO 2 cycle coupled with KALIMER-600, which has been developed at KAERI, was investigated using a developed cycle code with a gas mixture property program

  18. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  19. Operating power plant experience with condensate polishing units in morpholine/ammonia-OH cycle

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Padmakumari, T.V.; Narasimhan, S.V.; Mathur, P.K.

    1995-01-01

    Impurity removal efficiency of condensate polisher plant (CPP) in ammonium cycle is poor. Cost considerations demand CPP operation in amine-OH cycle. With certain precautions such as higher regeneration levels, good regenerent quality, minimized cross contamination, continuous monitoring of influent and effluent and provision for 100% standby bed, it is possible to operate CPP beyond H-OH cycle while keeping the effluent impurities within the specified limits. This paper presents problem associated with the Madras Atomic Power Station (MAPS) CPP operation in morpholine-OH form and Korba Super Thermal Power Station (KSTPS) CPP in ammonia-OH form and suggested remedial measures. (author). 3 refs., 1 fig

  20. Time cycle calculation procedure for the special crew during the mining mobile machine complex operation

    International Nuclear Information System (INIS)

    Shmurygin, V; Lukyanov, V; Maslovsky, A

    2015-01-01

    The relevance of the research is specified by the necessity to optimize the delft mobile tunneling equipment operation. Target of the research is tunneling time cycle justification for the special crew during the mining mobile machine complex operation. Methods of the research included the consideration of operation organization schemes in the drifting face and effective use of the mobile equipment during mine exploratory working operations. Time cycle calculation procedures for major processes have been considered. This has been done for the special crew during the mobile machine complex operations for several working faces and various organization schemes

  1. Cumulative pregnancy rates after sequential treatment with modified natural cycle IVF followed by IVF with controlled ovarian stimulation

    NARCIS (Netherlands)

    Pelinck, M. J.; Knol, H. M.; Vogel, N. E. A.; Arts, E. G. J. M.; Simons, A. H. M.; Heineman, M. J.; Hoek, A.

    BACKGROUND: In modified natural cycle IVF (MNC-IVF), treatment is aimed at using the one follicle that spontaneously develops to dominance, using a GnRH-antagonist together with gonadotrophins in the late follicular phase only. The MNC-IVF is of interest because of its low-risk and patient-friendly

  2. Cumulative pregnancy rates after sequential treatment with modified natural cycle IVF followed by IVF with controlled ovarian stimulation

    NARCIS (Netherlands)

    Pelinck, M. J.; Knol, H. M.; Vogel, N. E. A.; Arts, E. G. J. M.; Simons, A. H. M.; Heineman, M. J.; Hoek, A.

    2008-01-01

    BACKGROUND: In modified natural cycle IVF (MNC-IVF), treatment is aimed at using the one follicle that spontaneously develops to dominance, using a GnRH-antagonist together with gonadotrophins in the late follicular phase only. The MNC-IVF is of interest because of its low-risk and patient-friendly

  3. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF

    NARCIS (Netherlands)

    Nagy, R. A.; van Montfoort, A. P. A.; Dikkers, A.; van Echten-Arends, J.; Homminga, I.; Land, J. A.; Hoek, A.; Tietge, U. J. F.

    STUDY QUESTION: Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? SUMMARY ANSWER: BAconcentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid

  4. A Comparative Life Cycle Assessment of Hot Mixes Asphalt Containing Bituminous Binder Modified with Waste and Virgin Polymers

    NARCIS (Netherlands)

    Oliveira dos Santos, Joao Miguel; Cerezo, Veronique; Soudani, Khedoudja; Bressi, Sara

    2018-01-01

    This paper presents the results of a life cycle assessment undertaken to compare the potential environmental impacts associated with the use of asphalt surface mixtures produced with polymer modified bitumen with those of a conventional asphalt surface mixture. Seven types of hot mix asphalt

  5. Analysis of ideal sorption compressor cycles operating with gas mixtures

    NARCIS (Netherlands)

    Tzabar, N.; ter Brake, H.J.M.

    2018-01-01

    Sorption-based compressors are thermally driven and because of the absence of moving parts they are vibration free, and have the potential for long life. Sorption-based compressors have been reported to operate Joule–Thomson (JT) cryogenic coolers with pure working fluids. However, using mixed

  6. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  7. Breaking the Conflict Cycle: Incorporating Stability Operations into a Cycle Framework

    Science.gov (United States)

    2008-06-13

    conflict cycle – early warning, conflict prevention, conflict management , and post-conflict reconstruction retain all the basic principles of FM 3-0...accepted in the field of international relations and is instrumental for understanding how conflict prevention, conflict management , and post-conflict...Conflict Prevention and Conflict Management in Northeast Asia. Retrieved 25 February 2009 from www.silkroadstudies.org/new/docs/beijing

  8. Life cycle management of french operating nuclear power plants

    International Nuclear Information System (INIS)

    Valibus, L.; Loriette, Ph.

    1998-01-01

    The PWR units of the EDF generation capacity in operation are young. They represent a technical and financial asset with a strategic significance both for the company and for France. According to regulations, even if the safety reports take into account a 40-year lifetime for the NSSS, the French regulations do not specify a time limit for the operation of the facilities according to the plant authorization decree. The Safety Authorities may, at any time require another safety re-examination. In fact, it was decided to carry out unit safety periodic reviews according to types of series. A program was set up in order to achieve regular assessments on the aging of the facilities. This program, combining all the skills within EDF and the manufacturers, is a guarantee for the coherence and the exhaustivity of the consideration as it relies on a great number of evaluation areas. It seems to day that under operational conditions, an appropriate surveillance and maintenance of components the 900 and 1300 MWe units should be able to fulfill the expected duty for a 40-year design life and very likely even longer. (author)

  9. Operating cycle optimization for a Magnus effect-based airborne wind energy system

    International Nuclear Information System (INIS)

    Milutinović, Milan; Čorić, Mirko; Deur, Joško

    2015-01-01

    Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results

  10. World class performance: the outage/operating cycle continuum

    Energy Technology Data Exchange (ETDEWEB)

    Remphal, M. [Ontario Power Generation, Darlington, Ontario (Canada)

    2011-07-01

    It's all about Performance! Predictable and sustainable high performance is the key to public and stakeholder confidence in the nuclear industry. Why? Because nuclear is unique and safe, reliable operation each and every day is required to keep public trust. What better way to demonstrate this predictability than in breaker to breaker operating runs? Delivering on what was promised is the essence of our OPG accountability model: 'Say it, Do it'. This presentation is drawn from practical experience gained during the most recent planned maintenance outages at Darlington Nuclear. Key elements for outage success that will be discussed include; Human Performance: Ensuring each action is deliberate and executed right the first time; Continuous Learning: Recent examples demonstrating how drawing from lessons learned and operating experience worldwide can dramatically improve outage performance; Teamwork and Partnership: Recognizing our industry is too complex for a single; individual or organization to run on its own; Scope Selection: Darlington currently has an industry leading 0.5% Forced Loss Rate (FLR). If right work is selected and executed at the right time then ultimately the plant speaks and it shows up in low FLR and high Nuclear Performance Index; Planning: Ask and anticipate what can go wrong, what options exist and then pre-decide what path you would take. Some practical tools will be provided which have been recently used to plan out surprises; Oversight: An outage left to run its own course will have a surprise outcome. Strong management oversight is required to meet the goals of outage execution. Tips on how to improve communication and accountability will be discussed. Trust is built on confidence and confidence is built on sustainable performance. World class sustainable performance requires using all the tools available. This discussion will provide insight on these very tools. (author)

  11. World class performance: the outage/operating cycle continuum

    International Nuclear Information System (INIS)

    Remphal, M.

    2011-01-01

    It's all about Performance! Predictable and sustainable high performance is the key to public and stakeholder confidence in the nuclear industry. Why? Because nuclear is unique and safe, reliable operation each and every day is required to keep public trust. What better way to demonstrate this predictability than in breaker to breaker operating runs? Delivering on what was promised is the essence of our OPG accountability model: 'Say it, Do it'. This presentation is drawn from practical experience gained during the most recent planned maintenance outages at Darlington Nuclear. Key elements for outage success that will be discussed include; Human Performance: Ensuring each action is deliberate and executed right the first time; Continuous Learning: Recent examples demonstrating how drawing from lessons learned and operating experience worldwide can dramatically improve outage performance; Teamwork and Partnership: Recognizing our industry is too complex for a single; individual or organization to run on its own; Scope Selection: Darlington currently has an industry leading 0.5% Forced Loss Rate (FLR). If right work is selected and executed at the right time then ultimately the plant speaks and it shows up in low FLR and high Nuclear Performance Index; Planning: Ask and anticipate what can go wrong, what options exist and then pre-decide what path you would take. Some practical tools will be provided which have been recently used to plan out surprises; Oversight: An outage left to run its own course will have a surprise outcome. Strong management oversight is required to meet the goals of outage execution. Tips on how to improve communication and accountability will be discussed. Trust is built on confidence and confidence is built on sustainable performance. World class sustainable performance requires using all the tools available. This discussion will provide insight on these very tools. (author)

  12. Thermal performance of a modified ammonia–water power cycle for reclaiming mid/low-grade waste heat

    International Nuclear Information System (INIS)

    Junye, Hua; Yaping, Chen; Jiafeng, Wu

    2014-01-01

    Highlights: • A modified Kalina cycle is proposed for power and heat cogeneration from mid/low-grade waste heat. • A water-cooling solution cooler is set for cogeneration of sanitary or heating hot water. • Work concentration is determined for suitable turbine inlet pressure and positive back pressure. • Basic concentration should match work concentration for higher efficiency. • Sanitary water with 50.7 °C and capacity of a quarter of total reclaimed heat load is cogenerated. - Abstract: A modified Kalina cycle was simulated, which is a triple-pressure ammonia–water power cycle adding a preheater and a water-cooling solution cooler to the original loop. The cycle acquires higher power recovery efficiency by realizing proper internal recuperation and suitable temperature-difference in phase change processes to match both heat source and cooling water. The influences of some key parameters on the thermodynamic performance of the cycle were discussed, including the work and basic concentrations of solution, circulation multiple and the turbine inlet temperature. It is shown that the basic concentration should match the work concentration for higher efficiency. Although higher work concentration could be slightly beneficial to cycle efficiency, the work concentration is mainly determined by considering the suitable turbine inlet/back pressure. Besides, this cycle can be used as a cogeneration system of power and sanitary or heating hot water. The calculation example presented finally with the turbine inlet parameters of 300 °C/6 MPa and the cycle lowest temperature of 30 °C shows that the power recovery efficiency reaches 15.87%, which is about 16.6% higher than that of the steam Rankine cycle. And it also provides 50.7 °C sanitary water with about a quarter of the total heating load reclaimed

  13. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  14. Modified Truncated Multiplicity Analysis to Improve Verification of Uranium Fuel Cycle Materials

    International Nuclear Information System (INIS)

    LaFleur, A.; Miller, K.; Swinhoe, M.; Belian, A.; Croft, S.

    2015-01-01

    Accurate verification of 235U enrichment and mass in UF6 storage cylinders and the UO2F2 holdup contained in the process equipment is needed to improve international safeguards and nuclear material accountancy at uranium enrichment plants. Small UF6 cylinders (1.5'' and 5'' diameter) are used to store the full range of enrichments from depleted to highly-enriched UF6. For independent verification of these materials, it is essential that the 235U mass and enrichment measurements do not rely on facility operator declarations. Furthermore, in order to be deployed by IAEA inspectors to detect undeclared activities (e.g., during complementary access), it is also imperative that the measurement technique is quick, portable, and sensitive to a broad range of 235U masses. Truncated multiplicity analysis is a technique that reduces the variance in the measured count rates by only considering moments 1, 2, and 3 of the multiplicity distribution. This is especially important for reducing the uncertainty in the measured doubles and triples rates in environments with a high cosmic ray background relative to the uranium signal strength. However, we believe that the existing truncated multiplicity analysis throws away too much useful data by truncating the distribution after the third moment. This paper describes a modified truncated multiplicity analysis method that determines the optimal moment to truncate the multiplicity distribution based on the measured data. Experimental measurements of small UF6 cylinders and UO2F2 working reference materials were performed at Los Alamos National Laboratory (LANL). The data were analyzed using traditional and modified truncated multiplicity analysis to determine the optimal moment to truncate the multiplicity distribution to minimize the uncertainty in the measured count rates. The results from this analysis directly support nuclear safeguards at enrichment plants and provide a more accurate verification method for UF6

  15. Strength calculation of NPP equipment and pipelines during operation. Low- and high-cycle corrosion fatigue

    International Nuclear Information System (INIS)

    Filatov, V.M.; Evropin, S.V.

    2004-01-01

    This paper presents empirical equations and design curves for structural steels employed in nuclear power facilities with light water reactors. These equations allow to take into account the effects of cycle asymmetry, water coolant and ductility decrease during operation. The fatigue curves cover the low-cycle and high-cycle regions (up to 10 12 cycles). The equations include the mechanical characteristics of steels under static tension. The coolant effect on steel fatigue is allowed for using a model developed at the Argonne National Laboratory

  16. Power ramping/cycling experience and operational recommendations in KWU power plants

    International Nuclear Information System (INIS)

    Jan, R. von; Wunderlich, F.; Holzer, R.

    1980-01-01

    The power cycling and ramping experience of KWU is based on experiments in test and commercial reactors, and on evaluation of plant operation (PHWR, PWR and BWR). Power cycling of fuel rods have never lead to PCI failures. In ramping experiments, for fast ramps PCI failure thresholds of 480/420 W/cm are obtained at 12/23 GWd/t(U) burn-up for pressurized PWR fuel. No failures occurred during limited exceedance of the threshold with reduced ramp rate. Operational recommendations used by KWU are derived from experiments and plant experience. The effects of ramping considerations on plant operation is discussed. No rate restrictions are required for start-ups during an operating cycle or load follow operation within set limits for the distortion of the local power distribution. In a few situations, e.g. start-up after refueling, ramp rates of 1 to 5 %/h are recommended depending on plant and fuel design

  17. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  18. Assess How Changes in Fuel Cycle Operation Impact Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Adigun, Babatunde John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division; Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Engineering and Nonproliferation Division

    2016-10-31

    Since the beginning of commercial nuclear power generation in the 1960s, the ability of researchers to understand and control the isotopic content of spent fuel has improved. It is therefore not surprising that both fuel assembly design and fuel assembly irradiation optimization have improved over the past 50+ years. It is anticipated that the burnup and isotopics of the spent fuel should exhibit less variation over the decades as reactor operators irradiate each assembly to the optimum amount. In contrast, older spent fuel is anticipated to vary more in burnup and resulting isotopics for a given initial enrichment. Modern fuel therefore should be more uniform in composition, and thus, measured safeguards results should be easier to interpret than results from older spent fuel. With spent fuel ponds filling up, interim and long-­term storage of spent fuel will need to be addressed. Additionally after long periods of storage, spent fuel is no longer self-­protecting and, as such, the IAEA will categorize it as more attractive; in approximately 20 years many of the assemblies from early commercial cores will no longer be considered self-­protecting. This study will assess how more recent changes in the reactor operation could impact the interpretation of safeguards measurements. The status quo for spent fuel assay in the safeguards context is that the overwhelming majority of spent fuel assemblies are not measured in a quantitative way except for those assemblies about to be loaded into a difficult or impossible to access location (dry storage or, in the future, a repository). In other words, when the assembly is still accessible to a state actor, or an insider, when it is cooling in a pool, the inspectorate does not have a measurement database that could assist them in re-­verifying the integrity of that assembly. The spent fuel safeguards regime would be strengthened if spent fuel assemblies were measured from discharge to loading into a difficult or impossible

  19. Development of 80- and 100- Mile Work Day Cycles Representative of Commercial Pickup and Delivery Operation

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kresse, John [Cummins; Li, Ke [Cummins

    2018-04-03

    When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true 'work day' cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from more than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation. In total, over 2.5 million miles of real-world vehicle operation were condensed into a pair of duty cycles, an 80-mile cycle and a 100-mile cycle representative of the daily operation of U.S. class 3-6 commercial pickup and delivery trucks. Using novel machine learning clustering methods combined with mileage-based weighting, these composite representative cycles correspond to 90th and 95th percentiles for daily vehicle miles traveled by the vehicles observed. In addition to including vehicle speed vs time drive cycles, in an effort to better represent the environmental factors encountered by pickup and delivery vehicles operating across the United States, a nationally representative grade profile and key status information were also appended to the speed vs. time profiles to produce a 'work day' cycle that captures the effects of vehicle dynamics, geography, and driver behavior which can be used for future design, development, and validation of technology.

  20. Integrated Life Cycle Management: A Strategy for Plants to Extend Operating Lifetimes Safely with High Operational Reliability

    International Nuclear Information System (INIS)

    Esselman, Thomas; Bruck, Paul; Mengers, Charles

    2012-01-01

    Nuclear plant operators are studying the possibility of extending their existing generating facilities operating lifetime to 60 years and beyond. Many nuclear plants have been granted licenses to operate their facilities beyond the original 40 year term; however, in order to optimize the long term operating strategies, plant decision-makers need a consistent approach to support their options. This paper proposes a standard methodology to support effective decision-making for the long-term management of selected station assets. Methods detailed are intended to be used by nuclear plant site management, equipment reliability personnel, long term planners, capital asset planners, license renewal staff, and others that intend to look at operation between the current time and the end of operation. This methodology, named Integrated Life Cycle Management (ILCM), will provide a technical basis to assist decision makers regarding the timing of large capital investments required to get to the end of operation safely and with high plant reliability. ILCM seeks to identify end of life cycle failure probabilities for individual plant large capital assets and attendant costs associated with their refurbishment or replacement. It will provide a standard basis for evaluation of replacement and refurbishment options for these components. ILCM will also develop methods to integrate the individual assets over the entire plant thus assisting nuclear plant decision-makers in their facility long term operating strategies. (author)

  1. Using Dynamic Simulation to Evaluate Attemperator Operation in a Natural Gas Combined Cycle With Duct Burners in the Heat Recovery Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Liese, Eric [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: eric.liese@netl.doe.gov; Zitney, Stephen E. [National Energy Technology Laboratory,Department of Energy,Systems Engineering and Analysis Division,Morgantown, WV 26507e-mail: stephen.zitney@netl.doe.gov

    2017-09-26

    A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature. The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.

  2. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  3. Extending Depot Length and Intervals for DDG 51 Class Ships: Examining the 72 Month Operational Cycle

    Science.gov (United States)

    2016-01-01

    would inherit should it choose to extend the operational cycle of the DDG-51 fleet. Our model does not project overall cost sav- ings in the long run for...clients and sponsors. Support RAND Make a tax -deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Library of Congress...Class Ships: The 72-Month Cycle removal of the crew during the execution of maintenance to mitigate costs in this employment approach. This research

  4. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  5. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S.A.; Besuner, P.H.; Grimsrud, P. [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A. [Electric Supply Board, Dublin (Ireland)

    1998-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  6. Optimizing power plant cycling operations while reducing generating plant damage and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lefton, S A; Besuner, P H; Grimsrud, P [Aptech Engineering Services, Inc., Sunnyvale, CA (United States); Bissel, A [Electric Supply Board, Dublin (Ireland)

    1999-12-31

    This presentation describes a method for analyzing, quantifying, and minimizing the total cost of fossil, combined cycle, and pumped hydro power plant cycling operation. The method has been developed, refined, and applied during engineering studies at some 160 units in the United States and 8 units at the Irish Electric Supply Board (ESB) generating system. The basic premise of these studies was that utilities are underestimating the cost of cycling operation. The studies showed that the cost of cycling conventional boiler/turbine fossil power plants can range from between $2,500 and $500,000 per start-stop cycle. It was found that utilities typically estimate these costs by factors of 3 to 30 below actual costs and, thus, often significantly underestimate their true cycling costs. Knowledge of the actual, or total, cost of cycling will reduce power production costs by enabling utilities to more accurately dispatch their units to manage unit life expectancies, maintenance strategies and reliability. Utility management responses to these costs are presented and utility cost savings have been demonstrated. (orig.) 7 refs.

  7. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  8. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  9. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria.

    Science.gov (United States)

    Kwong, Waldan K; Zheng, Hao; Moran, Nancy A

    2017-04-28

    The tricarboxylic acid (TCA) cycle is central to energy production and biosynthetic precursor synthesis in aerobic organisms. There are few known variations of a complete TCA cycle, with the common notion being that the enzymes involved have already evolved towards optimal performance. Here, we present evidence that an alternative TCA cycle, in which acetate:succinate CoA-transferase (ASCT) replaces the enzymatic step typically performed by succinyl-CoA synthetase (SCS), has arisen in diverse bacterial groups, including microbial symbionts of animals such as humans and insects.

  10. Implementation of ICRP recommendation in nuclear fuel cycle operations: challenges and achievements

    International Nuclear Information System (INIS)

    Gupta, V.K.

    1999-01-01

    The operating experience with regard to occupational exposure and environmental releases in Nuclear Fuel Cycle Facilities are described. The achievements of Nuclear Fuel Cycle Facilities in adhering to the revised radiological protection standards are highlighted, with particular reference to Nuclear Power Plants (NPPs). The downward trend of occupational and public doses due to nuclear power plant operation is emphasised. Some of the important radiologically significant jobs executed at NPPs are listed. With the vast experiences in the field of radiological protection, vis-a-vis stringent regulatory requirements, and design modifications envisaged in future facilities the radiological impact, both in the occupational and public domain is bound to be minimum. (author)

  11. Peer groups and operational cycle enhancements to the performance indicator report

    International Nuclear Information System (INIS)

    Stromberg, H.M.; DeHaan, M.S.; Gentillon, C.D.; Wilson, G.E.; Vanden Heuvel, L.N.

    1992-01-01

    Accurate performance evaluation and plant trending by the performance indicator program are integral parts of monitoring the operation of commercial nuclear power plants. The presentations of the NRC/AEOD performance indicator program have undergone a number of enhancements. The diversity of the commercial nuclear plants, coupled with continued improvements in the performance indicator program, has resulted in the evaluation of plants in logical peer groups and highlighted the need to evaluate the impact of plant operational conditions on the performance indicators. These enhancements allow a more-meaningful evaluation of operating commercial nuclear power plant performance. This report proposes methods to enhance the presentation of the performance indicator data by analyzing the data in logical peer groups and displaying the performance indicator data based on the operational status of the plants. Previously, preliminary development of the operational cycle displays of the performance indicator data was documented. This report extends the earlier findings and presents the continued development of the peer groups and operational cycle trend and deviation data and displays. This report describes the peer groups and enhanced PI data presentations by considering the operational cycle phase breakdowns, calculation methods, and presentation methods

  12. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In all these cycles thorium is the main fertile component of the fuel and all assume recycling of the uranium component. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30,000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93% U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is ''denatured''. The effects of varying the fuel burnup and the recycle delay time are discussed for the reference cases. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally supplied fissile material. The special case of ''self sufficient equilibrium thorium cycles'', which require no external source of fissile material for equilibrium operation, is also treated

  13. Design of a Rankine cycle operating with a passive turbine multi fluid

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M., E-mail: guilhermeplacco@gmail.com [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Guimarães, Lamartine N.F., E-mail: guimarae@ieav.cta.br [Instituto de Estudo Avançados (CTA/IEAV), São José dos Campos, SP, (Brazil); Santos, Gabriela S. B., E-mail: siqueira.gsb@gmail.com [Universidade Paulista (UNIP), São José dos Campos, SP (Brazil)

    2017-07-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  14. Design of a Rankine cycle operating with a passive turbine multi fluid

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimarães, Lamartine N.F.; Santos, Gabriela S. B.

    2017-01-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  15. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  16. Optimum operating conditions for a combined power and cooling thermodynamic cycle

    International Nuclear Information System (INIS)

    Sadrameli, S.M.; Goswami, D.Y.

    2007-01-01

    The combined production of thermal power and cooling with an ammonia-water based cycle proposed by Goswami is under intensive investigation. In the cycle under consideration, simultaneous cooling output is produced by expanding an ammonia-rich vapor in an expander to sub-ambient temperatures and subsequently heating the cool exhaust. When this mechanism for cooling production is considered in detail, it is apparent that the cooling comes at some expense to work production. To optimize this trade-off, a very specific coefficient-of-performance has been defined. In this paper, the simulation of the cycle was carried out in the process simulator ASPEN Plus. The optimum operating conditions have been found by using the Equation Oriented mode of the simulator and some of the results have been compared with the experimental data obtained from the cycle. The agreement between the two sets proves the accuracy of the optimization results

  17. The SPS beam parameters, the operational cycle, and proton sharing with the SHiP facility

    CERN Document Server

    Arduini, Gianluigi; Gatignon, Lau; Cornelis, Karel

    2015-01-01

    The SHiP experiment aims at acquiring a total of 4×1019 protons on target per year. Based on demonstrated SPS performance for CNGS, the expected proton sharing between the TCC2 targets and SHiP is estimated taking into account the constraints in the super-cycle composition. We review the SPS beam parameters, the operational cycles taking into account the concurrent operation of the SPS as LHC injector and for the TCC2 experiments and the limitations on the maximum possible power dissipation and the expected sharing of the protons on target of the SHiP facility with the TCC2 targets. As a typical example this aim could be achieved while maintaining a duty cycle for the other fixed target experiments of about 18%.

  18. Operation of a full cycle of solvent extraction under IMPUREX process conditions

    International Nuclear Information System (INIS)

    Andaur, C.; Falcon, Marcelo F.; Granatelli, Fernado; Russo Analia; Vaccaro, Jorge O.; Gauna, Alberto C.

    1999-01-01

    This work describes a series of experiences performed at the Solvent Extraction Laboratory of the Nuclear Materials and Fuel Unity in Ezeiza Atomic Center. The experiences were mainly focused on the setup and operation of a full cycle of uranium solvent extraction, using IMPUREX process. (author)

  19. All-inside arthroscopic modified Broström operation for chronic ankle instability: a biomechanical study.

    Science.gov (United States)

    Lee, Kyung Tai; Kim, Eung Soo; Kim, Young Ho; Ryu, Je Seong; Rhyu, Im Joo; Lee, Young Koo

    2016-04-01

    The all-inside arthroscopic modified Broström operation has been developed for lateral ankle instability. We compared the biomechanical parameters of the all-inside arthroscopic procedure to the open modified Broström operation. Eleven matched pairs of human cadaver specimens [average age 71.5 (range 58-98) years] were subject to the arthroscopic modified Broström operation using a suture anchor and the open modified Broström operation. The ligaments were loaded cyclically 20 times and then tested to failure. Torque to failure, degrees to failure, and stiffness were measured. A matched-pair analysis was performed. There was no significant difference in torque to failure between the open and arthroscopic modified Broström operation (19.9 ± 8.9 vs. 23.3 ± 12.1 Nm, n.s). The degrees to failure did not differ significantly between the open and arthroscopic modified Broström operations (46.8 ± 9.9° vs. 46.7 ± 7.6°, n.s). The working construct stiffness (or stiffness to failure) was no significant difference in the two groups (0.438 ± 0.21 vs. 0.487 ± 0.268 Nm/deg for the open and arthroscopic modified Broström operations, respectively, n.s). The all-inside arthroscopic modified Broström operation and the open modified Broström operation resulted in no significantly different torque to failure, degrees to failure, and working construct stiffness with no significant differences (n.s, n.s, and n.s, respectively). Our results indicate that the arthroscopic modified Broström operation is a reasonable alternative procedure for chronic ankle instability.

  20. Characteristics of Chemical and Functional Properties of Modified Cassava Flour (Manihot esculenta) by Autoclaving-Cooling Cycles Method

    Science.gov (United States)

    Cecep Erwan Andriansyah, Raden; Rahman, Taufik; Herminiati, Ainia; Rahman, Nurhaidar; Luthfiyanti, Rohmah

    2017-12-01

    The modified cassava flour can be made using the method of the autoclaving cooling cycle (AAC). The stability of the warming can be seen from the decreasing value of breakdown viscosity, while the stability of the stirring process can be seen by the decreasing value of setback viscosity. The stages of research include: (1) the making of cassava flour, (2) the making of modified cassava flour by the method of treatment of ACC with a variety of flour concentration and autoclaving time, (3) chemical analysis of the moisture, ash, fat, protein, carbohydrate; The functional properties of the pasting characteristics to the initial temperature of the pasting, peak viscosity, hot paste viscosity, breakdown viscosity, cold paste viscosity and setback viscosity. The result shows that cassava flour modified by treatment of flour concentration 16% and autoclaving time 41 minutes having pasting code and pasting viscosity which is resistant to high temperature. Flour with this character is flour that is expected to maintain the texture of processed products with a paste form that remains stable. Utilization of modified cassava flour by the ACC method can be applied to the pasting product such as noodle and spaghetti, hoping to support for food diversification program to reduce dependence on wheat flour in Indonesia.

  1. Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Yiwei Ma

    2015-01-01

    Full Text Available An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.

  2. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  3. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  4. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  5. NSSS design and cycle 1 operating history data for Arkansas Nuclear One, Unit-2. Final report

    International Nuclear Information System (INIS)

    Gagne, P.A.

    1981-03-01

    This report contains design and cycle 1 operating data for the Arkansas Nuclear One, Unit-2 nuclear steam supply system. The design data include descriptions of the reactor core, reactor coolant system, and control systems which are a part of the nuclear steam supply system. Operating history data are provided for the period of December 1978 through January 1980. The most important operating history data provided include reactor power, cumulative fuel burnup, control rod position, primary coolant temperature, and a series of power distribution state points

  6. Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle

    Directory of Open Access Journals (Sweden)

    Si Huang

    2017-01-01

    Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.

  7. Data base for a CANDU-PHW operating on the thorium cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on various thorium cycles. In the reference cycle, the requirements for externally supplied fissile material are met using U-235, with the feed adjusted to provide a fuel burnup of approximately 30 000 MW.d/t(U). Two versions of the reference cycle are treated. In one, the U-235 is supplied in a highly enriched form (93 percent U-235 in uranium); in the other, the U-235 is supplied at a lower enrichment, such that the uranium present in the feed fuel is 'denatured'. The effects of varying the fuel burnup and the recycle delay time are discussed. Data are also given for thorium cycles using plutonium instead of U-235 to meet requirements for externally-supplied fissile material. The special case of 'self-sufficient equilibrium thorium cycles', which require no external source of fissile material for equilibrium operation, is also treated. (author)

  8. [Effect of modified Badenoch operation on the treatment of posterior urethral stricture].

    Science.gov (United States)

    Wang, Ping-xian; Zhang, Gen-pu; Huang, Chi-bing; Fan, Ming-qi; Feng, Jia-yu; Xiao, Ya

    2012-02-01

    To determine the effects of modified pull-through operation (Badenoch operation) on the treatment of posterior urethral stricture. From September 2001 to December 2010 traditional pull-through operation was Modified for two times in our center. A total of 129 patients with posttraumatic posterior urethral stricture resulting from pelvic fracture injury underwent the modified urethral pull-through operation. Stricture length was 1.5 to 5.3 cm (mean 2.9 cm). Of the patients 43 had undergone at least 1 previous failed management for stricture. In phase 1 (from September 2001 to January 2008), the improving items include: (1) The distal urethral end was stitched and tied to the catheter. (2) As catheter was inserted into bladder and 20 ml water was injected into catheter balloon, the distal urethral end was fixed in the proximal urethra and an overlaying of 1.5 cm was formed between the two ends. (3) Three weeks later, it was tried to insert the catheter to bladder. After the urethral stump necrosis and the catheter separating from the urethra, the catheter was removed. In phase 2 (from February 2008 to December 2010), based on the above, irrigating catheter was used. After the surgery, urethra was irrigated with 0.02% furacillin solution through the catheter 3 times a day. All patients were followed up for at least 6 months. If patients had no conscious dysuria and maximum urinary flow rate (Qmax) > 15 ml/s, the treatment was considered successful. All complications were recorded. In phase 1, the 96 patients (101 times) underwent the procedure. The treatment was successful in 88 patients (success rate 92%). Within 1 to 13 days after removal of the catheter, urethral stricture was recurred in 8 patients. They had to undergo cystostomy once more for 3 to 11 months before reoperation (the 3 patients' reoperation was in phase 2). The 8 cases were treated successfully. In phase 2, 33 patients (total 36 times) underwent the procedure. One patient was failed (success rate 97

  9. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  10. 3D simulation of a core operation cycle of a BWR using Serpent

    International Nuclear Information System (INIS)

    Barrera Ch, M. A.; Del Valle G, E.; Gomez T, A. M.

    2016-09-01

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  11. Modifying Post-Operative Medical Care after EBV Implant May Reduce Pneumothorax Incidence.

    Directory of Open Access Journals (Sweden)

    Dominik Herzog

    Full Text Available Endoscopic lung volume reduction (ELVR with valves has been shown to improve COPD patients with severe emphysema. However, a major complication is pneumothoraces, occurring typically soon after valve implantation, with severe consequences if not managed promptly. Based on the knowledge that strain activity is related to a higher risk of pneumothoraces, we asked whether modifying post-operative medical care with the inclusion of strict short-term limitation of strain activity is associated with a lower incidence of pneumothorax.Seventy-two (72 emphysematous patients without collateral ventilation were treated with bronchial valves and included in the study. Thirty-two (32 patients received standard post-implantation medical management (Standard Medical Care (SMC, and 40 patients received a modified medical care that included an additional bed rest for 48 hours and cough suppression, as needed (Modified Medical Care (MMC.The baseline characteristics were similar for the two groups, except there were more males in the SMC cohort. Overall, ten pneumothoraces occurred up to four days after ELVR, eight pneumothoraces in the SMC, and only two in the MMC cohorts (p=0.02. Complicated pneumothoraces and pneumothoraces after upper lobe treatment were significantly lower in MMC (p=0.02. Major clinical outcomes showed no significant differences between the two cohorts.In conclusion, modifying post-operative medical care to include bed rest for 48 hours after ELVR and cough suppression, if needed, might reduce the incidence of pneumothoraces. Prospective randomized studies with larger numbers of well-matched patients are needed to confirm the data.

  12. Confirming competence of operators - A regulatory approach to fuel cycle facilities

    International Nuclear Information System (INIS)

    Vesely, M.; Sigetich, J.

    2013-01-01

    For the past 40 years the Canadian Nuclear Safety Commission (CNSC), formerly the Atomic Energy Control Board, has certified workers in nuclear facilities. The requirement for certified personnel has ensured that workers assigned to positions that have a direct impact on the safe operation of the facility are fully qualified to perform their duties. This certification regime is defined in the regulatory framework under which the CNSC operates. Traditionally, this certification regime has been applied to Reactor Operators, Shift Supervisors and Health Physicists in Nuclear Power Plants and research reactors as well as to Exposure Device Operators who use nuclear substances for the purposes of industrial radiography. Stemming from progress made in implementing risk-informed regulatory oversight activities as well as a formal suggestion from the International Atomic Energy Agency - International Regulatory Review Service (IRRS) conducted on the CNSC in 2009, a regulatory approach to confirming the competence of Operators at Fuel Cycle Facilities has been initiated by CNSC staff. In the first stage of the implementation of this new regulatory approach, the CNSC had Cameco Corporation implement a formal internal qualification programme for the UF6 Operators at its Port Hope Conversion Facility (PHCF) in Port Hope, Ontario. In the future, following a review of the results of the qualification programme at the PHCF, the CNSC staff will evaluate the need for the application of a similar regulatory approach to confirm the competence of the Operators at other Fuel Cycle Facilities in Canada. (authors)

  13. Improvement of performance operation and cycle efficiency of Al Anbar combined power plant

    International Nuclear Information System (INIS)

    Jabbar, Mohammed Q.

    2014-01-01

    The present work will be focusing on available solution which can serve to increase total efficiency of Al Anbar combined cycle power plant - CCPP, and thus to improve the operation performance as much as possible in order to decrease hydrocarbon, CO2, NOx emissions to environment.The simulation and calculations were performed by program software cycle-tempo software. The results were compared with basic design of Alanbar power plant after making modernization with solar tower receiver system-STRS, which represented a heat source in preheat process for a compressor air. Key Words: CCPP, STRS, Solar potential energy, fuel consumption, hydrocarbon emission

  14. Default cycle phases determined after modifying discrete DNA sequences in plant cells

    International Nuclear Information System (INIS)

    Sans, J.; Leyton, C.

    1997-01-01

    After bromosubstituting DNA sequences replicated in the first, second, or third part of the S phase, in Allium cepa L. meristematic cells, radiation at 313 nm wavelength under anoxia allowed ascription of different sequences to both the positive and negative regulation of some cycle phase transitions. The present report shows that the radiation forced cells in late G 1 phase to advance into S, while those in G 2 remained in G 2 and cells in prophase returned to G 2 when both sets of sequences involved in the positive and negative controls were bromosubstituted and later irradiated. In this way, not only G 2 but also the S phase behaved as cycle phases where cells accumulated by default when signals of different sign functionally cancelled out. The treatment did not halt the rates of replication or transcription of plant bromosubstituted DNA. The irradiation under hypoxia apparently prevents the binding of regulatory proteins to Br-DNA. (author)

  15. Life cycle assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects

    International Nuclear Information System (INIS)

    Kloepffer, W.; Renner, I.; Schmidt, E.; Tappeser, B.; Gensch, C.O.; Gaugitsch, H.

    2001-01-01

    In the preceding project 'Life Cycle Assessment of genetically modified products as a basis for a comprehensive assessment of possible environmental effects' for the first time the risks of deliberate release of genetically modified organisms (GMOs) into the environment have been taken into account in a Life Cycle Assessment (LCA). This was performed by a risk assessment in addition to a quantitative impact assessment. As from a methodological perspective this was not satisfactory, the Federal Environment Agency commissioned the C.A.U. GmbH and the Institute of Applied Ecology Freiburg to further develop the impact assessment methodology for the risks of GMOs. Any further development of the methodology of impact assessment in LCAs has to be performed on the basis of the standard EN/ISO 14042. There are 2 options for taking into account risks of deliberate release of GMOs: 1. allocation of the potential effects resulting from the genetic modification on human beings and the environment to existing categories of the impact assessment and attempt to quantify within those existing methods of characterization; 2. development of a new category, e.g. 'effects of genetically modified crop plants'. In order to asses the possibilities under option 1 various models of characterization within the categories human toxicity, ecotoxicity and land use (appropriation of environmental space) have been analyzed. The risks of GMOs identified and dealt with in the preceding study were allocated to these categories. It seemed to be impossible to integrate the risks in existing models of characterization for human toxicity and ecotoxicity, as these are based on exposure and impact factors. The development of a factor for exposure seems possible for GMOs, however a suitable impact factor is not possible to generate. In addition it was analyzed if in other impact categories which are difficult to quantify any solutions for operationalization exist. This does not seem to be the case. As a

  16. Peak visual gamma frequency is modified across the healthy menstrual cycle.

    Science.gov (United States)

    Sumner, Rachael L; McMillan, Rebecca L; Shaw, Alexander D; Singh, Krish D; Sundram, Fred; Muthukumaraswamy, Suresh D

    2018-04-17

    Fluctuations in gonadal hormones over the course of the menstrual cycle are known to cause functional brain changes and are thought to modulate changes in the balance of cortical excitation and inhibition. Animal research has shown this occurs primarily via the major metabolite of progesterone, allopregnanolone, and its action as a positive allosteric modulator of the GABA A receptor. Our study used EEG to record gamma oscillations induced in the visual cortex using stationary and moving gratings. Recordings took place during twenty females' mid-luteal phase when progesterone and estradiol are highest, and early follicular phase when progesterone and estradiol are lowest. Significantly higher (∼5 Hz) gamma frequency was recorded during the luteal compared to the follicular phase for both stimuli types. Using dynamic causal modeling, these changes were linked to stronger self-inhibition of superficial pyramidal cells in the luteal compared to the follicular phase. In addition, the connection from inhibitory interneurons to deep pyramidal cells was found to be stronger in the follicular compared to the luteal phase. These findings show that complex functional changes in synaptic microcircuitry occur across the menstrual cycle and that menstrual cycle phase should be taken into consideration when including female participants in research into gamma-band oscillations. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  17. Restoring Natural Streamflow Variability by Modifying Multi-purpose Reservoir Operation

    Science.gov (United States)

    Shiau, J.

    2010-12-01

    Multi-purpose reservoirs typically provide benefits of water supply, hydroelectric power, and flood mitigation. Hydroelectric power generations generally do not consume water. However, temporal distribution of downstream flows is highly changed due to hydro-peaking effects. Associated with offstream diversion of water supplies for municipal, industrial, and agricultural requirements, natural streamflow characteristics of magnitude, duration, frequency, timing, and rate of change is significantly altered by multi-purpose reservoir operation. Natural flow regime has long been recognized a master factor for ecosystem health and biodiversity. Restoration of altered flow regime caused by multi-purpose reservoir operation is the main objective of this study. This study presents an optimization framework that modifying reservoir operation to seeking balance between human and environmental needs. The methodology presented in this study is applied to the Feitsui Reservoir, located in northern Taiwan, with main purpose of providing stable water-supply and auxiliary purpose of electricity generation and flood-peak attenuation. Reservoir releases are dominated by two decision variables, i.e., duration of water releases for each day and percentage of daily required releases within the duration. The current releasing policy of the Feitsui Reservoir releases water for water-supply and hydropower purposes during 8:00 am to 16:00 pm each day and no environmental flows releases. Although greater power generation is obtained by 100% releases distributed within 8-hour period, severe temporal alteration of streamflow is observed downstream of the reservoir. Modifying reservoir operation by relaxing these two variables and reserve certain ratio of streamflow as environmental flow to maintain downstream natural variability. The optimal reservoir releasing policy is searched by the multi-criterion decision making technique for considering reservoir performance in terms of shortage ratio

  18. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    Directory of Open Access Journals (Sweden)

    Stachel Aleksander A.

    2015-03-01

    Full Text Available In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam in the upper cycle has been assessed as well as the type of working fluid in the lower cycle. The results of calculations have been referred to the single-cycle classical steam power plant operating at the same parameters of superheated steam and the same mass flow rate of water circulating in both cycles. On the basis of accomplished analysis it has been shown that the binary power plant shows a greater power with respect to the reference power plant.

  19. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  20. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  1. Life cycle inventory and risk assessment of genetic modified perennial ryegrass in a technology foresight perspective

    DEFF Research Database (Denmark)

    Borch, K.; Rasmussen, B.; Schleisner, L.

    2000-01-01

    important and uncertain fac-tors for the future direction of GM crops: 1) publicparticipation in regulation, 2) utility value for the consumers, 3) being first to market GM-ryegrass, and 4) an efficient professional network. Based on the identified drivers several scenar-ios were constructed, of which two......, a methodological approach is suggested to analyse the uncertainties that the biotech industry and the authorities face when implementing genetically modified (GM) crops. These uncertainties embracescientific rationality regarding technological development and risk assessments, as well as ethic political and social...

  2. Diurnal Freeze-Thaw Cycles Modify Winter Soil Respiration in a Desert Shrub-Land Ecosystem

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-07-01

    Full Text Available Winter soil respiration (Rs is becoming a significant component of annual carbon budgets with more warming in winter than summer. However, little is known about the controlling mechanisms of winter Rs in dryland. We made continuous measurements of Rs in four microsites (non-crust (BS, lichen (LC, moss (MC, and a mixture of moss and lichen (ML in a desert shrub-land ecosystem northern China, to investigate the causes of Rs dynamics in winter. The mean winter Rs ranged from 0.10 to 0.17 µmol CO2 m−2·s−1 across microsites, with the highest value in BS. Winter Q10 (known as the increase in respiration rate per 10 °C increase in temperature values (2.8–19 were much higher than those from the growing season (1.5. Rs and Q10 were greatly enhanced in freeze-thaw cycles compared to frozen days. Diurnal patterns of Rs between freeze-thaw and frozen days differed. Although the freeze-thaw period was relatively short, its cumulative Rs contributed significantly to winter Rs. The presence of biocrust might induce lower temperature, thus having fewer freeze-thaw cycles relative to bare soil, leading to the lower Rs for microsites with biocrusts. In conclusion, winter Rs in drylands was sensitive to soil temperature (Ts and Ts-induced freeze-thaw cycles. The temperature impact on Rs varied among soil cover types. Winter Rs in drylands may become more important as the climate is continuously getting warmer.

  3. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  4. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Pushparaja; Gopalakrishnan, R.K.; Subramaniam, G.

    2000-01-01

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  5. Preliminary study of S-CO{sub 2} cycle control logic for part load operation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonhan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-05-15

    The benefits of S-CO{sub 2} cycle are relatively high efficiency under the mild turbine inlet temperature region, simple layout configuration and small foot-print. In addition, the safety of the SFR system can be inherently enhanced as the violent sodium-water reaction can be substituted with the mild sodium-CO{sub 2} reaction. 75MWe S-CO{sub 2} recompression cycle with radial type turbomachineries and PCHE was designed. Under various part load conditions (30-100% thermal load), off-design performance of the designed system was assessed, and different control logics were first tested. It was identified that the inventory control strategy is the most efficient logic for the part load operation. In the system operation, the compressor surge condition is seriously considered and controlled to avoid the system damage.

  6. Modified natural cycle versus controlled ovarian hyperstimulation IVF: a cost-effectiveness evaluation of three simulated treatment scenarios.

    Science.gov (United States)

    Groen, Henk; Tonch, Nino; Simons, Arnold H M; van der Veen, Fulco; Hoek, Annemieke; Land, Jolande A

    2013-12-01

    Can modified natural cycle IVF or ICSI (MNC) be a cost-effective alternative for controlled ovarian hyperstimulation IVF or ICSI (COH)? The comparison of simulated scenarios indicates that a strategy of three to six cycles of MNC with minimized medication is a cost-effective alternative for one cycle of COH with strict application of single embryo transfer (SET). MNC is cheaper per cycle than COH but also less effective in terms of live birth rate (LBR). However, strict application of SET in COH cycles reduces effectiveness and up to three MNC cycles can be performed at the same costs as one COH cycle. The cost-effectiveness of MNC versus COH was evaluated in three simulated treatment scenarios: three cycles of MNC versus one cycle of COH with SET or double embryo transfer (DET) and subsequent transfer of cryopreserved embryos (Scenario 1); six cycles of MNC versus one cycle of COH with strictly SET and subsequent transfer of cryopreserved embryos (Scenario 2); six cycles of MNC with minimized medication (hCG ovulation trigger only) versus one cycle of COH with SET or DET and subsequent transfer of cryopreserved embryos (Scenario 3). We used baseline data obtained from two retrospective cohorts of consecutive patients (2005-2008) undergoing MNC in the University Medical Center Groningen (n = 499, maximum six cycles per patient) or their first COH cycle with subsequent transfer of cryopreserved embryos in the Academic Medical Center Amsterdam (n = 392). Data from 1994 MNC cycles (958 MNC-IVF and 1036 MNC-ICSI) and 392 fresh COH cycles (one per patient, 196 COH-IVF and 196 COH-ICSI) with subsequent transfer of cryopreserved embryos (n = 72 and n = 94 in MNC and COH cycles, respectively) in ovulatory, subfertile women cost-effectiveness ratio (ICER) was calculated, defined as the ratio of the difference in IVF costs up to 6 weeks postpartum to the difference in LBR. Live birth was the primary outcome measure and was defined as the birth of at least one living child

  7. Modified Chaos Particle Swarm Optimization-Based Optimized Operation Model for Stand-Alone CCHP Microgrid

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-07-01

    Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.

  8. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Homdoung, N.; Tippayawong, N.; Dussadee, N.

    2015-01-01

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  9. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    International Nuclear Information System (INIS)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-01-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented

  10. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    Science.gov (United States)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-01

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  11. International co-operation in the supply of nuclear fuel and fuel cycle services

    International Nuclear Information System (INIS)

    Sievering, N.F. Jr.

    1977-01-01

    Recent changes in the United States' nuclear policy, in recognition of the increased proliferation risk, have raised questions of US intentions in international nuclear fuel and fuel-cycle service co-operation. This paper details those intentions in relation to the key elements of the new policy. In the past, the USA has been a world leader in peaceful nuclear co-operation with other nations and, mindful of the relationships between civilian nuclear technology and nuclear weapon proliferation, remains strongly committed to the Non-Proliferation Treaty, IAEA safeguards and other elements concerned with international nuclear affairs. Now, in implementing President Carter's nuclear initiatives, the USA will continue its leading role in nuclear fuel and fuel-cycle co-operation in two ways, (1) by increasing its enrichment capacity for providing international LWR fuel supplies and (2) by taking the lead in solving the problems of near and long-term spent fuel storage and disposal. Beyond these specific steps, the USA feels that the international community's past efforts in controlling the proliferation risks of nuclear power are necessary but inadequate for the future. Accordingly, the USA urges other similarly concerned nations to pause with present developments and to join in a programme of international co-operation and participation in a re-assessment of future plans which would include: (1) Mutual assessments of fuel cycles alternative to the current uranium/plutonium cycle for LWRs and breeders, seeking to lessen proliferation risks; (2) co-operative mechanisms for ensuring the ''front-end'' fuel supply including uranium resource exploration, adequate enrichment capacity, and institutional arrangements; (3) means of dealing with short-, medium- and long-term spent fuel storage needs by means of technical co-operation and assistance and possibly establishment of international storage or repository facilities; and (4) for reprocessing plants, and related fuel-cycle

  12. Data base for a CANDU-PHW operating on a once-through, natural uranium fuel cycle

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, describes a standard 600 MW(e) CANDU-PHW reactor operating on a once-through natural uranium fuel cycle. Subsequently, data are given for an extrapolated 1000 MW(e) design (the nominal capacity adopted for the INFCE study) operating on the same fuel cycle. (author)

  13. Two 850 MW turbines on daily cycling, design and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Stodieck, W; Straetz, A [Maschinenfabrik Augsburg-Nuernberg (M.A.N.) A.G., Nuernberg (Germany, F.R.)

    1979-02-01

    When Pennsylvania Power and Light Company (PPandL) of Allentown, U.S.A. signed a contract in 1970 with M.A.N. for the supply of two 850 MW turbines as part of extension of its existing coal-fired power station at Martins Creek by two oil-fired units, continuous base load operation was planned for the initial years. After about ten years both units should have been curbed to low load operation at night and completely shutdown at weekends. Then in 1973 when the oil crisis led to fuel prices which proved the operation of both units uneconomic the way they were planned for the initial years, all conditions were given to operate both turbines on a daily cycling basis from their commissioning day on. This was due to the installation of quality equipment for the improvement of thermal performance.

  14. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  15. Pasture degradation modifies the water and carbon cycles of the Tibetan highlands

    Directory of Open Access Journals (Sweden)

    W. Babel

    2014-12-01

    Full Text Available The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

  16. Can We Modify the Intrauterine Environment to Halt the Intergenerational Cycle of Obesity?

    Directory of Open Access Journals (Sweden)

    Kristi B. Adamo

    2012-04-01

    Full Text Available Child obesity is a global epidemic whose development is rooted in complex and multi-factorial interactions. Once established, obesity is difficult to reverse and epidemiological, animal model, and experimental studies have provided strong evidence implicating the intrauterine environment in downstream obesity. This review focuses on the interplay between maternal obesity, gestational weight gain and lifestyle behaviours, which may act independently or in combination, to perpetuate the intergenerational cycle of obesity. The gestational period, is a crucial time of growth, development and physiological change in mother and child. This provides a window of opportunity for intervention via maternal nutrition and/or physical activity that may induce beneficial physiological alternations in the fetus that are mediated through favourable adaptations to in utero environmental stimuli. Evidence in the emerging field of epigenetics suggests that chronic, sub-clinical perturbations during pregnancy may affect fetal phenotype and long-term human data from ongoing randomized controlled trials will further aid in establishing the science behind ones predisposition to positive energy balance.

  17. Can We Modify the Intrauterine Environment to Halt the Intergenerational Cycle of Obesity?

    Science.gov (United States)

    Adamo, Kristi B.; Ferraro, Zachary M.; Brett, Kendra E.

    2012-01-01

    Child obesity is a global epidemic whose development is rooted in complex and multi-factorial interactions. Once established, obesity is difficult to reverse and epidemiological, animal model, and experimental studies have provided strong evidence implicating the intrauterine environment in downstream obesity. This review focuses on the interplay between maternal obesity, gestational weight gain and lifestyle behaviours, which may act independently or in combination, to perpetuate the intergenerational cycle of obesity. The gestational period, is a crucial time of growth, development and physiological change in mother and child. This provides a window of opportunity for intervention via maternal nutrition and/or physical activity that may induce beneficial physiological alternations in the fetus that are mediated through favourable adaptations to in utero environmental stimuli. Evidence in the emerging field of epigenetics suggests that chronic, sub-clinical perturbations during pregnancy may affect fetal phenotype and long-term human data from ongoing randomized controlled trials will further aid in establishing the science behind ones predisposition to positive energy balance. PMID:22690193

  18. Evaluation of spectral shift controlled reactors operating on the uranium fuel cycle. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Sider, F.M.

    1979-08-01

    The performance of the spectral shift controlled reactor (SSCR) operating on uranium fuel cycles was evaluated and compared with the conventional pressurized water reactor (PWR). In order to analyze the SSCR, the PSR design methodology was extended to include systems moderated by mixtures of light water and heavy water and these methods were validated by comparison with experimental results. Once the design methods had been formulated, the resouce requirements and power costs were determined for the uranium-fueled SSCR. The ore requirements of the UO 2 once-through fuel cycle and the UO 2 fuel cycle with self-generated recycle (SGR) of plutonium were found to be 10% and 19% less than those of similarly fueled PWRs, respectively. A fuel cycle optimization study was performed for the UO 2 once-through SSCR and the SGR SSCR. By individually altering lattice parameters, discharge exposure or number of in-core batches, savings of less than 8% in resource requirements and less than 1% in power costs were obtained

  19. Modified hMG stimulated: an effective option in endometrial preparation for frozen-thawed embryo transfer in patients with normal menstrual cycles.

    Science.gov (United States)

    Huang, Pinxiu; Wei, Lihong; Li, Xinlin; Lin, Zhong

    2018-04-20

    To evaluate the clinical efficacy of modified human menopausal gonadotropin (hMG) stimulated, hormone replacement therapy (HRT), natural cycling and letrozole ovulation induction during endometrial preparation for frozen-thawed embryo transfer (FET) in patients with normal menstrual cycles. This retrospective analysis included a total of 5070 cycles of patients with normal menstrual patterns who underwent FET between October 2009 and September 2015. The patients were divided into four groups according to the method of endometrial preparation for FET: 1838 cycles were natural, 1666 underwent HRT, 340 underwent letrozole ovulation induction and 1226 underwent modified hMG stimulated. Reproduction-related clinical outcomes in the four groups were compared. The clinical pregnancy rates and live birth rates of patients in the modified hMG stimulated group were significantly higher than that in the other groups p .05). Modified hMG stimulated resulted in a higher pregnancy rate compared to the other treatment groups. Therefore, modified hMG stimulated may be an effective option in endometrial preparation for FET in patients with normal menstrual cycles.

  20. Advanced maintenance strategies for power plant operators--introducing inter-plant life cycle management

    International Nuclear Information System (INIS)

    Graeber, Ulrich

    2004-01-01

    One of the most important goals of competing power plant operators is to ensure safe operation of their plants, characterized by maximum availability throughout the entire life cycle and minimized specific generating costs. One parameter crucial to the total price of electricity--and one that can be actively influenced by the power plant operators--is maintenance. Up to 30% of all electricity generating costs accrue from maintenance. In the past years maintenance measures have been optimized particularly by the application and continuing development of testing and diagnostic techniques, by the increased level of system and component automation as well as more efficient organization structures. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. But the risks connected to reliability, availability and safety need to be analyzed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realized. The systematic application of condition-based maintenance and the implementation of structured life cycle management are essential requirements. An inter-plant approach is recommended to make a quick implementation of maintenance optimization potentials possible. Plant-specific improvement potentials can be established with the help of a best-practice comparison, and measures and priorities can be defined for realizing them. Creating an inter-plant database will allow experience and findings to be analyzed quickly and efficiently by experts and made available to all participants on a neutral platform. Despite--or maybe owing to--the increasingly competitive marketplace, a sustained reduction in the maintenance costs of power plant operators can only be achieved through a structured, inter-plant exchange of experience. The ZES offers the industry a suitable platform for cooperation with its 'Condition-Based Maintenance' research focus. The introduction

  1. Thermal cycling behavior of EB-PVD TBCs on CVD platinum modified aluminide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxubiam@aliyun.com; Wang, Zhankao; Huang, Guanghong; Mu, Rende; He, Limin

    2015-07-15

    Highlights: • The removed ridges at the grain boundaries with grit blasting. • The ridge, oxidation and cracking are features of damage initiation in TBCs. • Spalled location either at TGO/bond coat interface or inside of TGO layer. • The lower strain energy release rate within TGO layer can prolong of TBCs life. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, cyclic oxidation behaviors and residual stresses of the TBCs were studied in detail. It was found that the fracture path traverses through the ceramic coating to TGO interface, as well as at the TGO to bond coat interface is obviously detected. The change in fracture plane occurs at grain boundaries. The ridge top spallation leads to separate of sufficient size to result in unstable fracture driven by the strain energy stored in the TGO. The bond coat can undergo a volume increase upon oxidation, so that a cavity, enlarged strictly by oxidation would be full to overflowing with TGO layer. The spalled location of the TBCs probably occurs either at the interface of TGO layer and bond coat or inside of TGO layer. The lower strain energy release rate within TGO layer during thermal cycling is beneficial to prolong of TBCs life. The lower is the compressive stress within TGO layer, the longer is the lifetime of TBCs.

  2. Specific emissions analysis for a combustion engine in dynamometer operation in relation to the thermal state of the exhaust gas aftertreatment systems in a modified NRSC test

    Directory of Open Access Journals (Sweden)

    Merkisz Jerzy

    2017-01-01

    Full Text Available Exhaust gas aftertreatment systems have been present in motor vehicles for decades and have contributed to reducing their impact on the environment and people. Most of them for oxidation or reduction of harmful emissions of particulates and fumes require a certain temperature to be reached that changes with the exhaust temperature, i.e. the points of engine operation. The article describes the effect of oxidation reactor and particulate filter temperatures on specific emissions of gaseous compounds and particulate matter during the modified NRSC engine test. Before the first measurement cycle, the engine was idling, before the second measurement cycle, the exhaust system was heated with exhaust gases at full engine load until passive regeneration of the particle filter occurred (noticeable decrease in instantaneous particle concentration.

  3. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    Science.gov (United States)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  4. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  5. Hardness and posting of foot orthoses modify plantar contact area, plantar pressure, and perceived comfort when cycling.

    Science.gov (United States)

    Bousie, Jaquelin A; Blanch, Peter; McPoil, Thomas G; Vicenzino, Bill

    2018-07-01

    To evaluate the effects of hardness and posting of orthoses on plantar profile and perceived comfort and support during cycling. A repeated measures study with randomised order of orthoses, hardness, and posting conditions. Twenty-three cyclists cycled at a cadence of 90rpm and a perceived exertion rating of twelve. Contoured soft and hard orthoses with or without a medial forefoot or lateral forefoot post were evaluated. Plantar contact area, mean pressure and peak pressure were measured for nine plantar regions using the pedar ® -X system and represented as a percentage of the total (CA%, MP%, and PP% respectively). Perceived comfort and support was rated on a visual analogue scale. The softer orthosis significantly increased CA% (p=0.014) across the midfoot and heel with a decrease in the toe region and forefoot. MP% (p=0.034) and PP% (p=0.012) were significantly increased at the mid and lateral forefoot with reductions in MP% at the midfoot and in PP% at the hallux and toes. Forefoot posting significantly increased CA% (p=0.018) at the toes and forefoot and decreased it at the heel. PP% was significantly altered (p=0.013) based on posting position. Lateral forefoot posting significantly decreased heel comfort (p=0.036). When cycling, a soft, contoured orthosis increased contact across the midfoot and heel, modulating forefoot and midfoot plantar pressures but not altering comfort or support. Forefoot postings significantly modified contact areas and plantar pressures and reduced comfort at the heel. Copyright © 2017. Published by Elsevier Ltd.

  6. Social impact assessment of sugar production operations in South Africa : a social life cycle assessment perspective

    OpenAIRE

    2013-01-01

    M.Tech. (Quality and Operations Management) This paper focuses on the social impact of the sugar industry in South Africa. A social impact assessment is a method that aims to assess social features of the product and their positive and negative aspects in terms of its processing of raw material to the final stages of its disposal. The objectives of the study were guided by the guidelines on social life cycle assessment of products of the South African Sugar Industry developed by the United...

  7. Application of exergy analysis to the thermodynamical study of operation cycles of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Zellat, M

    1987-01-01

    To simulate the operation cycle of a diesel engine a general methodology is proposed, called as exergy theory, based on the simultaneous application of the first and second principles of thermodynamics. This analysis accounts for the exergy losses in function of what can be recovered from the second principle and give a more fruitful representation than the pure energy analysis which takes into account only the first principle. The concept of a recovery power turbine RPT, linked to the driving shaft and declutchable is described. The yield increase in nominal power and at half-charge when the RPT is disconnected, is explained by exergy analysis.

  8. Operational forecasting based on a modified Weather Research and Forecasting model

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  9. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    Science.gov (United States)

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  10. Performance evaluation of free piston compressor coupling organic Rankine cycle under different operating conditions

    International Nuclear Information System (INIS)

    Han, Yongqiang; Kang, Jianjian; Zhang, Guangpan; Liu, Zhongchang; Tian, Jing; Chai, Jiahong

    2014-01-01

    Highlights: • An ORC-FPC is proposed to recover the waste heat of exhaust gas. • The simulation model has been established in GT-Suite ver. 7.0. • Performances of ORC-FPC under different operating conditions have been evaluated. • Performances prediction of the ORC-FPC for real application has been made in the paper. - Abstract: An organic Rankine cycle coupling free piston compressor (ORC-FPC) system has been proposed, which is used in recovering the waste heat of exhaust gas from the stationary compressed nature gas (CNG) fueled internal combustion compressor. The free piston compressor functions as an expander in ORC and operates reciprocally to compress natural gas in compression cylinders to demanded pressure. After capturing the waste heat available and turning into vapor in evaporator, the working fluid R245ca can provide power to drive the free piston moving reciprocally in expander. The model of ORC-FPC built up in the GT-suite ver. 7.0 assists evaluating performances of this system under different operating conditions. In this paper, the operating condition includes two aspects: thermodynamic state of working fluid and input power. The purpose of simulation based on the model is to specify appropriate thermodynamic states of working fluid which yield high value of η (the ratio of work produced by the power piston to enthalpy reduction of working fluid in the power cylinder) and k (the ratio of output CNG’s mass to enthalpy reduction of working fluid in the power cylinder) value. Performances of the ORC-FPC under different input power, which determined by the operating frequency and injection quantity of the heated working fluid, have also been evaluated. Results show that when the heated working fluid is at 11.5 bar and 383 K, the system achieves better performances than other thermodynamic states, of which k is 601.1 mg/kJ and η is 44.3%. Based on the optimum thermodynamic state and the principle of obtaining the maximum k, the specific input

  11. Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions

    International Nuclear Information System (INIS)

    He, Zhonglu; Zhang, Yufeng; Dong, Shengming; Ma, Hongting; Yu, Xiaohui; Zhang, Yan; Ma, Xuelian; Deng, Na; Sheng, Ying

    2017-01-01

    Highlights: • An ORC power plant driven by low grade heat source is set up. • Energy and exergy analysis at off-design conditions is conducted. • The twin screw expander performance is characterized. • An empirical model to predict the net power output and thermal efficiency. - Abstract: This paper deals with an experimental study on a 50-kW Organic Rankine cycle (ORC) power generation plant driven by low-grade heat source. Hot water boiler and solar-thermal system were used as the low-grade heat source providing hot water at temperature ranging from 65 to 95 °C. A twin screw compressor has been modified as the expansion machine in the ORC module and its expansion efficiency under variable operating conditions was tested in the experiments. This work was purposed to assess the ORC system and get the performance map at off-design operating conditions in a typical year from the view of the first and the second law of thermodynamics. The maximum electricity production and thermal efficiency were 46.5 kW and 6.52% respectively at the optimal operating condition. The highest exergetic efficiency reached 36.3% and the exergy analysis showed that evaporation pressure and condensation pressure were the key parameters to influence the exergy flow and exergetic efficiency. Furthermore, by fitting the actual plant data obtained in different months, an empirical model has been developed to predict the net power output and thermal efficiency with acceptable accuracy. Lastly, as an illustration, the empirical model is used to analyze the performance of the solar-driven ORC system.

  12. Prospect and problems of self-supporting nuclear fuel cycle operation in Korea beyond the year 2000

    International Nuclear Information System (INIS)

    Kim, Chang Hyo

    1988-01-01

    Korea ranks tenth in the free world in the installed capacity of nuclear power plants. Since she lacks in indigenous uranium resources and built-in domestic fuel cycle technology, however, she had to rely heavily upon overseas uranium markets and fuel cycle services. Despite the fact that localization of fuel fabrication technology is nearly achieved, such issues as the timely and stable procurement of front-end fuel cycle services including uranium ore, interim storage and ultimate fuel cycle services including uranium ore, interim storage and ultimate disposal of ever-accumulating spent fuels, disposal of radioactive waste, and decommissioning of the retiring nuclear power plants has yet fuel cycle technology beyond the year 2000. The purpose of this report is to identify these issues of fuel cycle operation and to suggest mobilizing nation's research potential for establishing self-reliant fuel cycle technology beyond the year 2000

  13. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  14. The study of operating an air conditioning system using Maisotsenko-Cycle

    Science.gov (United States)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  15. Experiences in commissioning and in the first operating cycle of GKN-II

    International Nuclear Information System (INIS)

    Grauf, E.; Zaiss, W.; Tschannerl, J.

    1990-01-01

    In 1989, after only four and a half years of construction, the second unit of the Neckar Joint Nuclear Power Station (GKN-II) was commissioned as the third convoy type nuclear power plant. Its gross power of 1314 MWe makes the pressurized water reactor of GKN-II a unit in the highest power category so far of Siemens/KWU. Delivery to the operators ahead of schedule and observance of the budget are conclusive proof of the advantages of the convoy principle. In addition, GKN-II was able to benefit from the experience accumulated in the construction and commissioning of the two earlier convoy plants. This was reflected in the speedy completion, without major disturbances, of the warranty tests and the trial period of operation. It also has an impact on power operation, the first cycle of which showed the plant to have an availability of 100% throughout and is considered to be a full success by the operators. A special feature of GKN-II is the hybrid cooling tower ensuring that no heated cooling water is returned from the plant into the Neckar river. (orig.) [de

  16. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    Science.gov (United States)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  17. Effect of Female Body Mass Index on Oocyte Quantity in Fertility Treatments (IVF: Treatment Cycle Number Is a Possible Effect Modifier. A Register-Based Cohort Study.

    Directory of Open Access Journals (Sweden)

    Mette Wulf Christensen

    Full Text Available Overweight and obese women may require higher doses of gonadotrophin when undergoing In Vitro Fertilization Treatment (IVF. Consequently, one may expect a sub-optimal oocyte retrieval in the first treatment cycle and thus a larger compensation in gonadotrophin-dose in the following treatment-cycles and a more favorable outcome. The main objective was to explore if treatment cycle number modifies the outcome when investigating the effect of female Body Mass Index (BMI on oocyte quantity in IVF.A historical cohort study was conducted on 5,342 treatment-cycles during the period 1999-2009. Exclusion criteria were missing information on BMI or treatment type. Further, women were excluded if they had ovulated before oocyte retrieval. According to baseline BMI, women were divided into four categories following the World Health Organization standards. Multiple linear regressions analyses were performed accounting for the non-independence of ≥2 cycles in a woman.Stratification according to cycle number revealed a more suboptimal outcome in the first treatment- cycles than in the following cycles, suggesting a possible interaction or effect modification from cycle number or a factor related to cycle number. The median dose of total follicular stimulating hormone given to the four BMI groups could not straight forwardly explain the less optimal oocyte outcome observed in first treatment cycles. No statistically significant differences were observed in oocyte yield for underweight, overweight and obesity compared to normal weight women when analyzing all treatment-cycles. Overweight women had significantly fewer mature (MII oocytes (p = 0.009 than normal weight women, whereas no differences was observed for underweight and obese women.Our study suggests a possible interaction or effect modification related to treatment cycle number. Investigating the effects of BMI on IVF-results in first treatment-cycles alone should be carried out cautiously.

  18. Thermodynamic analysis of combined cycle under design/off-design conditions for its efficient design and operation

    International Nuclear Information System (INIS)

    Zhang, Guoqiang; Zheng, Jiongzhi; Xie, Angjun; Yang, Yongping; Liu, Wenyi

    2016-01-01

    Highlights: • Based on the PG9351FA gas turbine, two gas-steam combined cycles are redesigned. • Analysis of detailed off-design characteristics of the combined cycle main parts. • Suggestions for improving design and operation performance of the combined cycle. • Higher design efficiency has higher off-design efficiency in general PR range. • High pressure ratio combined cycles possess good off-design performance. - Abstract: To achieve a highly efficient design and operation of combined cycles, this study analyzed in detail the off-design characteristics of the main components of three combined cycles with different compressor pressure ratios (PRs) based on real units. The off-design model of combined cycle was built consisting of a compressor, a combustor, a gas turbine, and a heat recovery steam generator (HRSG). The PG9351FA unit is selected as the benchmark unit, on the basis of which the compressor is redesigned with two different PRs. Then, the design/off-design characteristics of the three units with different design PRs and the interactive relations between topping and bottoming cycles are analyzed with the same turbine inlet temperature (TIT). The results show that the off-design characteristics of the topping cycle affect dramatically the combined cycle performance. The variation range of the exergy efficiency of the topping cycle for the three units is between 11.9% and 12.4% under the design/off-design conditions. This range is larger than that of the bottoming cycle (between 9.2% and 9.5%). The HRSG can effectively recycle the heat/heat exergy of the gas turbine exhaust. Comparison among the three units shows that for a traditional gas-steam combined cycle, a high design efficiency results in a high off-design efficiency in the usual PR range. The combined cycle design efficiency of higher pressure ratio is almost equal to that of the PG9351FA, but its off-design efficiency is higher (maximum 0.42%) and the specific power decreases. As for

  19. Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

    Directory of Open Access Journals (Sweden)

    Amol M. Dalavi

    2016-07-01

    Full Text Available Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

  20. Presence of bile acids in human follicular fluid and their relation with embryo development in modified natural cycle IVF.

    Science.gov (United States)

    Nagy, R A; van Montfoort, A P A; Dikkers, A; van Echten-Arends, J; Homminga, I; Land, J A; Hoek, A; Tietge, U J F

    2015-05-01

    Are bile acids (BA) and their respective subspecies present in human follicular fluid (FF) and do they relate to embryo quality in modified natural cycle IVF (MNC-IVF)? BA concentrations are 2-fold higher in follicular fluid than in serum and ursodeoxycholic acid (UDCA) derivatives were associated with development of top quality embryos on Day 3 after fertilization. Granulosa cells are capable of synthesizing BA, but a potential correlation with oocyte and embryo quality as well as information on the presence and role of BA subspecies in follicular fluid have yet to be investigated. Between January 2001 and June 2004, follicular fluid and serum samples were collected from 303 patients treated in a single academic centre that was involved in a multicentre cohort study on the effectiveness of MNC-IVF. Material from patients who underwent a first cycle of MNC-IVF was used. Serum was not stored from all patients, and the available material comprised 156 follicular fluid and 116 matching serum samples. Total BA and BA subspecies were measured in follicular fluid and in matching serum by enzymatic fluorimetric assay and liquid chromatography-mass spectrometry, respectively. The association of BA in follicular fluid with oocyte and embryo quality parameters, such as fertilization rate and cell number, presence of multinucleated blastomeres and percentage of fragmentation on Day 3, was analysed. Embryos with eight cells on Day 3 after oocyte retrieval were more likely to originate from follicles with a higher level of UDCA derivatives than those with fewer than eight cells (P IVF were used, which resulted in 14 samples only from women with an ongoing pregnancy, therefore further prospective studies are required to confirm the association of UDCA with IVF pregnancy outcomes. The inter-cycle variability of BA levels in follicular fluid within individuals has yet to be investigated. We checked for macroscopic signs of contamination of follicular fluid by blood but the

  1. A new tool for life cycle inventories of agricultural machinery operations

    Directory of Open Access Journals (Sweden)

    Daniela Lovarelli

    2016-03-01

    Full Text Available The interest in environmental assessments about agricultural processes is fast growing and asking for new tools for accurate impact evaluations. The methodology commonly used to go through these studies is the life cycle assessment, of which the inventory phase (life cycle inventory, LCI is an essential step. For studies focusing on agricultural productions, the completion of LCI is particularly complex: taking into account the pedo-climatic and mechanical operative variability is evidently difficult. However, the prediction of the environmental impact of mechanical operations caused by the agricultural sector is essential to quantify the impact categories for which it is responsible. A new tool, ENVIAM, was developed to complete LCI to guarantee the availability of local data that describe the mechanical and pedo-climatic conditions occurring in the Po Valley area and widely applicable as well. It calculates mechanical power requests, directly consumed inputs (i.e., fuel, lubricant and material consumption of a productive system by taking into account soil texture, specific machinery operations and coupling solutions as defined by the user. A subdivision of working time and defined engine load have been considered to calculate fuel consumption; with regard to outputs, exhaust gases emissions from internal combustion engines have been assessed by evaluating the emissive stages of belonging as stated by the EU Directive. A case study was also performed to highlight the differences that occur when an analysis is fulfilled in a context with features different from the average, and resulted in significant variations for the inventory. In more details, a comparison was carried out both with Ecoinvent database and within ENVIAM. With regard to fuel consumption, by changing the soil texture, the analysis showed a range between 64%-184% for sandy and clay soils, respectively, if compared with medium texture ones. With this tool, local contexts defined

  2. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  3. Impact of closed Brayton cycle test results on gas cooled reactor operation and safety

    International Nuclear Information System (INIS)

    Wright, St.A.; Pickard, P.S.

    2007-01-01

    This report summarizes the measurements and model predictions for a series of tests supported by the U.S. Department of Energy that were performed using the recently constructed Sandia Brayton Loop (SBL-30). From the test results we have developed steady-state power operating curves, controls methodologies, and transient data for normal and off-normal behavior, such as loss of load events, and for decay heat removal conditions after shutdown. These tests and models show that because the turbomachinery operates off of the temperature difference (between the heat source and the heat sink), that the turbomachinery can continue to operate (off of sensible heat) for long periods of time without auxiliary power. For our test hardware, operations up to one hour have been observed. This effect can provide significant operations and safety benefits for nuclear reactors that are coupled to a Brayton cycles because the operating turbomachinery continues to provide cooling to the reactor. These capabilities mean that the decay-heat removal can be accommodated by properly managing the electrical power produced by the generator/alternator. In some conditions, it may even be possible to produce sufficient power to continue operating auxiliary systems including the waste heat circulatory system. In addition, the Brayton plant impacts the consequences of off-normal and accident events including loss of load and loss of on-site power. We have observed that for a loss of load or a loss of on-site power event, with a reactor scram, the transient consists initially of a turbomachinery speed increase to a new stable operating point. Because the turbomachinery is still spinning, the reactor is still being cooled provided the ultimate heat sink remains available. These highly desirable operational characteristics were observed in the Sandia Brayton loop. This type of behavior is also predicted by our models. Ultimately, these results provide the designers the opportunity to design gas

  4. A Modified Model to Estimate Building Rental Multipiers Accounting for Advalorem Operating Expenses

    Directory of Open Access Journals (Sweden)

    Smolyak S.A.

    2016-09-01

    Full Text Available To develop ideas on building element valuation contained in the first article on the subject published in REMV, we propose an elaboration of the approach accounting for ad valorem expenses incidental to property management, such as land taxes, income/capital gains tax, and insurance premium costs; all such costs, being of an ad valorem nature in the first instance, cause circularity in the logic of the model, which, however, is not intractable under the proposed approach. The resulting formulas for carrying out practical estimation of building rental multipliers and, in consequence, of building values, turn out to be somewhat modified, and we demonstrate the sensitivity of the developed approach to the impact of these ad valorem factors. On the other hand, it is demonstrated that (accounting for building depreciation charges, which should seemingly be included among the considered ad valorem factors, cancel out and do not have any impact on the resulting estimates. However, treating the depreciation of buildings in quantifiable economic terms as a reduction in derivable operating benefits over time (instead of mere physical indications, such as age, we also demonstrate that the approach has implications for estimating the economic service lives of buildings and can be practical when used in conjunction with the market-related approach to valuation – from which the requisite model inputs can be extracted as shown in the final part of the paper.

  5. Sensitization behaviour of modified 316N and 316L stainless steel weld metals after complex annealing and stress relieving cycles

    International Nuclear Information System (INIS)

    Parvathavarthini, N.; Dayal, R.K.; Khatak, H.S.; Shankar, V.; Shanmugam, V.

    2006-01-01

    Sensitization behaviour of austenitic stainless steel weld metals prepared using indigenously developed modified 316N (C = 0.05%; N = 0.12%) and 316L (C = 0.02%; N = 0.07%) electrodes was studied. Detailed optical and scanning electron microscopic examination was carried out to understand the microstructural changes occurring in the weld metal during isothermal exposure at various temperatures ranging from 500 deg. C to 850 deg. C (773-1123 K). Based on these studies the mechanism of sensitization in the austenite-ferrite weld metal has been explained. Time-temperature-sensitization (TTS) diagrams were established using ASTM A262 Practice E test. From the TTS diagrams, critical cooling rate (CCR) above which there is no risk of sensitization was calculated for both materials. The heating/cooling rates to be followed for avoiding sensitization during heat treatment cycles consisting of solution-annealing and stress-relieving in fabrication of welded components of AISI 316LN stainless steel (SS) were estimated taking into account the soaking time and the number of times the component undergoes thermal excursions in the sensitization regime. The results were validated by performing controlled heating and cooling heat treatment trials on welded specimens

  6. Embryo quality and impact of specific embryo characteristics on ongoing implantation in unselected embryos derived from modified natural cycle in vitro fertilization

    NARCIS (Netherlands)

    Pelinck, Marie-Jose; Hoek, Annemieke; Simons, Arnold H. M.; Heineman, Maas Jan; van Echten-Arends, Janny; Arts, Eus G. J. M.

    Objective: To study the implantation potential of unselected embryos derived from modified natural cycle IVF according to their morphological characteristics. Design: Cohort study. Setting: Academic department of reproductive medicine. Patient(S): A series of 449 single embryo transfers derived from

  7. Application of load follow operation to equilibrium cycle of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeongju; Choe, Jiwon; Lee, Deokjung [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-10-15

    All nuclear power plants in Korea are operated at a base load, that is 100% rated power, and do not rely largely on power tracking control except for startup, shutdown, and some minor problem occurrences. However, if the electricity from nuclear power plants exceeds 50% of total electricity generation according to national energy plan, load follow operation is necessary to efficiently use the electrical energy. But it is very difficult to control the axial power distribution and reactor core reactivity at the same time as needed because of variations in nuclear system parameters. In 1990s, an advanced reactor control algorithm, Mode-K, was developed which uses regulation banks, boron control, and a heavy-worth bank (H-bank). The regulation banks and boron control are used for core reactivity control and the H-bank is used for the control of axial power shape. In this study, reactor core simulations with HELIOS/MASTER code system using Mode-K strategy are applied to the daily load follow operation in equilibrium cycle of OPR1000.

  8. Operational energy in the life cycle of residential dwellings: The experience of Spain and Colombia

    International Nuclear Information System (INIS)

    Ortiz, Oscar; Castells, Francesc; Sonnemann, Guido

    2010-01-01

    Life Cycle Assessment (LCA) has been applied within the residential building sector of two buildings, one in each a developed (Spain) and a developing (Colombia) country. The main goal of this paper involves the environmental loads and also brings together the operational energy for activities during the operation phase such as HVAC, domestic hot water, electrical appliances, cooking and illumination. The present research compares two real scenarios: Situation 1, where 100% of the dwelling's energy is supplied with electricity only and Situation 2, where dwellings can be operated with natural gas plus electricity. The results for the environmental impacts using natural gas plus electricity show that of the Spanish environmental impacts air conditioning had the highest impact with approximately 27-42% due to the electricity used to power it. In Colombian results showed that electrical appliances had the highest environmental impacts in the same order of magnitude with approximately 60% and cooking had the best reduction of emissions due to the use of natural gas, from 10% down to less than 2%. The origin of the energy source used in each Country plays an important role to minimize environmental impacts, as was demonstrated by the environmental impacts of its use in Colombia where 78% of the electricity came from hydroelectric plants whereas in Spain it is more mixed, fossil fuels represented 55%, nuclear 18% and wind 9%. In summary, LCA has been applied because this methodology supports the decision making to concern environmental sustainability.

  9. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Science.gov (United States)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  10. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  11. Impact of UO{sub 2} Enrichment of Fuel Zoning Rods in Long Cycle Operation of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Lee, Deokjung [KHNP CRI, Daejeon (Korea, Republic of); Jeong, Eun; Choe, Jiwon [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Extending the cycle length can not only increase the energy production, but also bring down outage costs by reducing the number of refueling outages during the lifetime of a nuclear power plant. It is reasonable that more fresh fuels are loaded for long cycle operation. However, minimizing the number of fresh fuels is essential in aspect of fuel economics. This can cause high power peaking near the water holes, due to increased thermalization of neutrons in those regions. To prevent this, special fuel zoning rods are used and surround the water holes. These rods use lower-enriched uranium (they have an enrichment rate lower than the other fuel rods). If we adjust the enrichment rate of fuel zoning rods, we can reduce power peaking and moreover increase cycle length. In this paper, we designed a core suitable for long cycle operation and we conducted sensitivity tests of fuel cycle length on UO2 enrichment rate in fuel zoning region in order to extend the cycle length while using the same number of fresh fuels. The correlations between the fuel zoning enrichment and cycle length, peaking factor, CBC and shutdown margin were analyzed. The more the enrichment rate in fuel zoning region increases, the more the fuel cycle length increases. At the same time, CBC, Fq and shutdown margin do not change significantly. Increasing the fuel zoning enrichment rate presents the right property of increasing the fuel cycle length without causing a large change to CBC, Fq and shutdown margin. In conclusion, by increasing the uranium enrichment rate in fuel zoning region, fuel cycle length can be increased and the safety margins can be maintained for long cycle operation of cores.

  12. Parametrized overview of CO_2 power cycles for different operation conditions and configurations – An absolute and relative performance analysis

    International Nuclear Information System (INIS)

    Cardemil, José M.; Silva, Alexandre K. da

    2016-01-01

    Highlights: • Thermodynamic modeling of CO_2-based power cycles. • A multi-parameter analysis for different cycle configurations. • Performance comparison between CO_2 and four other fluids. • Detailed discussion considering optimized operational parameters (i.e., pressure, HX size). • Overview of the technical applicability of the CO_2. - Abstract: This thermodynamically based study focuses on the thermal performance of power cycles using CO_2 as the working fluid. The work considers numerous aspects that can influence the cycle's performance, such as the type of cycle (i.e., Rankine or Brayton), its configuration (i.e., with and without a recuperator), and different operational conditions (i.e., heat source temperature and the upper and lower operating pressures of the CO_2). To account for all possible scenarios, a thermodynamic routine was especially implemented and linked to a library that contained all the thermodynamics properties of CO_2. The results are mostly presented in terms of the absolute and relative 1st and 2nd Law efficiencies of CO_2 as well as the cycle's scale, here represented by the global conductance (UA) of the heat exchangers used within the cycle. For the relative performance assessment, four other working fluids, commonly used in energy conversion cycles, were considered (i.e., ethane, toluene, D4 siloxane and water). As expected, the absolute performance results indicate a strong dependence of the cycle's efficiencies on the operational conditions. As for the relative performance, the results suggest that while the CO_2's 1st Law efficiency might be lower than other fluids, its exergetic efficiency can be significantly higher. Furthermore, the calculations also indicate that the CO_2's needed global conductance is potentially lower than competing fluids (e.g., toluene) for certain operational conditions, which suggests that CO_2-based power plants can be more compact, since they might require smaller heat exchangers to produce

  13. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  14. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  15. EFO-LCI: A New Life Cycle Inventory Database of Forestry Operations in Europe

    Science.gov (United States)

    Cardellini, Giuseppe; Valada, Tatiana; Cornillier, Claire; Vial, Estelle; Dragoi, Marian; Goudiaby, Venceslas; Mues, Volker; Lasserre, Bruno; Gruchala, Arkadiusz; Rørstad, Per Kristian; Neumann, Mathias; Svoboda, Miroslav; Sirgmets, Risto; Näsärö, Olli-Pekka; Mohren, Frits; Achten, Wouter M. J.; Vranken, Liesbet; Muys, Bart

    2018-06-01

    Life cycle assessment (LCA) has become a common methodology to analyze environmental impacts of forestry systems. Although LCA has been widely applied to forestry since the 90s, the LCAs are still often based on generic Life Cycle Inventory (LCI). With the purpose of improving LCA practices in the forestry sector, we developed a European Life Cycle Inventory of Forestry Operations (EFO-LCI) and analyzed the available information to check if within the European forestry sector national differences really exist. We classified the European forests on the basis of "Forest Units" (combinations of tree species and silvicultural practices). For each Forest Unit, we constructed the LCI of their forest management practices on the basis of a questionnaire filled out by national silvicultural experts. We analyzed the data reported to evaluate how they vary over Europe and how they affect LCA results and made freely available the inventory data collected for future use. The study shows important variability in rotation length, type of regeneration, amount and assortments of wood products harvested, and machinery used due to the differences in management practices. The existing variability on these activities sensibly affect LCA results of forestry practices and raw wood production. Although it is practically unfeasible to collect site-specific data for all the LCAs involving forest-based products, the use of less generic LCI data of forestry practice is desirable to improve the reliability of the studies. With the release of EFO-LCI we made a step toward the construction of regionalized LCI for the European forestry sector.

  16. Analysis of a BWR direct cycle forced circulation power plants operation

    International Nuclear Information System (INIS)

    Andrade, G.G. de.

    1973-01-01

    First, it is established a general view over the operational problems of the BWR direct cycle forced circulation power plants, and then it is analysed the possibility of the utilization of the energy purged from the turbine as an additional energy for the electrical generation. To simulate the BWR power plant and to obtain the solution of the mathematical model it was developed a computer code named ATOR which shows the feasibility of the proposed method. In this way it is shown the possibility to get a better maneuvering allowance for the BWR power plant whenever it is permitted a convenient use of the vapor extracted from the turbine for the feedwater pre-heaters of the reactor. (author)

  17. Energy consumption during the building life cycle – influence of investment activities and operations

    Directory of Open Access Journals (Sweden)

    Vytlačil Dalibor

    2018-01-01

    Full Text Available The paper describes the dynamic model of maintenance and investments of a building structure and HVAC systems. The aim of the research is finding the time dependent curve for energy consumption and also the cash flow that depends on the investments to energy saving arrangements and operations. The solution is based on the system dynamics method. The method makes possible to interconnect technical and economic parts of the problem. The main parameter in the model is the energy consumption in the building per floor square meter and year. This parameter is influenced by a deterioration of the building structure and the components of the active elements. The investments realized with the aim to decrease the energy consumption is another influence. The example of the computer simulation of the building parameters during the life cycle is presented in the paper.

  18. Analysis of the 3 and 4 cycles with extensions in the operation of the CNLV U-1

    International Nuclear Information System (INIS)

    Montes T, J.L.; Torres A, C.; Perusquia C, R.

    1992-08-01

    The objective of the report is the comparison of the radial distributions of burned in the core among the results of the simulation of the Laguna Verde Central U-1 reactor during the operation of the cycles 1 to 4 and the data of the operation with information provided by the fuel supplier. (Author)

  19. Operational and layup cycle protection of high-pressure fossil-fired utility boilers using an organic filming amine

    Energy Technology Data Exchange (ETDEWEB)

    Verib, George J. [FirstEnergy Corp., Akron, OH (United States)

    2012-06-15

    Economic conditions have caused many fossil-fired units to either drastically cycle load or shut down during low demand periods, where previously the units had been under a constant-load operation. The most current cycle chemistry guidelines employed are excellent in protecting the steam-water cycle during constant-load operation, but they have not minimized corrosion and provided protection of unit equipment during economic reserve off periods. Alternate methods of off-line protection and transient-load operation have been explored to minimize corrosion during these periods. The FirstEnergy Corp. has been using an alternate proprietary, organic filming amine to protect units during operation and short-term non-operational periods. Explored are the initial issues of high steam cation conductivity, use of the filming amine to protect the cycle during idle production periods, and the chemical amounts needed. The proprietary chemistry has shown the ability to successfully and significantly reduce corrosion throughout the steam-water cycle during transient-load situations and during non-operational periods while maintaining the chemistry guidelines of the industry and OEMs. (orig.)

  20. Slow-Absorbing Modified Starch before and during Prolonged Cycling Increases Fat Oxidation and Gastrointestinal Distress without Changing Performance.

    Science.gov (United States)

    Baur, Daniel A; Vargas, Fernanda de C S; Bach, Christopher W; Garvey, Jordan A; Ormsbee, Michael J

    2016-06-25

    While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS) before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1) a commercially available sucrose/glucose supplement (G) 30 min before (60 g carbohydrate) and every 15 min during exercise (60 g∙h(-1)); (2) HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS); and (3) HMS 30 min before (60 g carbohydrate) and every 60 min during exercise (30 g·h(-1); Low HMS). The exercise protocol (~3 h) consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively) relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso); 20.9%; ±16.1%; likely (Low), and reduced carbohydrate oxidation (-19.2%; ±7.6%; most likely; -22.1%; ±12.9%; very likely) during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely) and Low HMS (18; ±14; likely) vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely), but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS

  1. Slow-Absorbing Modified Starch before and during Prolonged Cycling Increases Fat Oxidation and Gastrointestinal Distress without Changing Performance

    Directory of Open Access Journals (Sweden)

    Daniel A. Baur

    2016-06-01

    Full Text Available While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1 a commercially available sucrose/glucose supplement (G 30 min before (60 g carbohydrate and every 15 min during exercise (60 g∙h−1; (2 HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS; and (3 HMS 30 min before (60 g carbohydrate and every 60 min during exercise (30 g·h−1; Low HMS. The exercise protocol (~3 h consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso; 20.9%; ±16.1%; likely (Low, and reduced carbohydrate oxidation (−19.2%; ±7.6%; most likely; −22.1%; ±12.9%; very likely during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely and Low HMS (18; ±14; likely vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely, but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS

  2. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards

    Energy Technology Data Exchange (ETDEWEB)

    Guinee, J.B. [Centre of Environmental Studies, Leiden University, Leiden (Netherlands)

    2002-04-01

    In 1992 the Centre of Environmental Science (CML) at Leiden University, The Netherlands, published a Guide on Environmental Life Cycle Assessment (LCA) methodology, setting the standard for a long time. Since then LCA methodology has progressed enormously and the International Organization for Standardization (ISO) has published a series of Standards on LCA. These developments have now been incorporated into a new Handbook on LCA authored by CML in cooperation with a number of other important institutes in the area of LCA. The general aim of this Handbook on LCA is to provide a stepwise 'cookbook' with operational guidelines for conducting an LCA study step-by-step, justified by a scientific background document, based on the ISO Standards for LCA. The different ISO elements and requirements are made operational to the 'best available practice' for each step. CML is strongly involved in the development of a standard methodology to determine environmental impacts of products, i.e., LCA. This is done within international fora such as the Society for Environmental Toxicology and Chemistry (SETAC), the International Organization for Standardization (ISO), and the United Nations Environmental Programme (UNEP)

  3. Operational feedback on internal structure vibration in 54 French PWRs during 300 fuel cycles

    International Nuclear Information System (INIS)

    Trenty, A.

    1995-01-01

    EDF has acquired extensive feedback on vibration of reactor vessel internals by analysing ex-core neutron noise on its 54 pressurized water reactors during the course of over 300 fuel cycles. This feedback has been built up by processing more than 3,000 vibratory signatures acquired since the startup of its reactors. These signatures are now centralized for the whole of France in the ''SINBAD'' data base. Signature processing has enabled: distinguishing between mechanical phenomena and signature variation linked to unit operation: in particular, the impact on signature level of unit operating parameters such as initial fuel enrichment and burn-up rate was assessed; among the purely mechanical phenomena, pointing up slight changes in position of vessel internals and the first signs of structural wear; relaxation (in the hold-down spring and fuel rod assemblies) and wear on surfaces of contact between internals and reactor vessel were detected; lastly and most importantly, automatic recognition of the various types of vibratory behavior of internals. It was consequently possible to draw up user requirement specifications for automated monitoring of internals, which should soon be integrated in PSAD, a system which groups several reactor monitoring functions. (author)

  4. Field operation test of Wakamatsu PFBC combined cycle power plant; Wakamatsu PFBC jissho shiken no genkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Takanishi, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    At the Wakamatsu Coal Utilization Research Center, the verification test was conducted of atmospheric pressure fluidized bed boilers and ultra-high temperature turbines. The Wakamatsu PFBC (pressurized fluidized bed combustion) is a combined cycle power generation system combining steam turbine power generation in which the turbine is driven by steam generated from the fluidized bed boiler installed inside the pressure vessel and gas turbine power generation in which high temperature/pressure exhaust gas is used from the boiler, having a total output of 71 MW. The operation started in fiscal 1995, stopped due to damage of the tube of CTF (ceramic tube filter), and is now continuing after the repair. As a result of the test conducted in fiscal 1995, it was confirmed in the two-stage cyclone test that the diameter of ash particle and cyclone efficiency change by kind of coal and amount of limestone and that by coal kind gas turbine blades show different states of abrasion, indicating greater abrasion when there is much SiO2 in ash. As a result of the continued high load operation of CTF, ash blockade inside the tube occurred and tube damage was generated by thermal shock, etc. 5 figs., 4 tabs.

  5. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    OpenAIRE

    Joanna Kunc

    2017-01-01

    Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature...

  6. A study of operational cycle of terminal distributed power supply based on Big-data

    Science.gov (United States)

    Nie, Erbao; Liu, Zhoubin; He, Jinhong; Li, Chao

    2018-01-01

    In China, the distributed power supply industry enjoys a rapid development trend. For the users’ side of the distributed power mode of operation, there are various types. This paper, take rural as an example, mainly studies the all round life cycle operation mode of rural distributed solar power plant, including the feasibility study plan and investment suggestion of the initial construction of the rural power station, and the operation and maintenance in the middle period. China’s vast rural areas, areas per capita is large, average households have independent housing and courtyards, available building area is no problem. Compared with the urban areas, the return rate of investment is low, the investment options is rare, the collective is strong, the risk tolerance is weak and so on. Aiming at the characteristics of the rural areas in the above rural areas, three kinds of investment schemes of rural distributed photovoltaic power plants are put forward, and their concrete implementation plans are analyzed in detail. Especially the second option, for the farmers to consider the risk of investment, given their principal security, which greatly reduces the farmers into the power plant loss of funds risk. At the same time, according to the respective risk of farmers, given the corresponding investment advice. Rural income is generally low, the expected benefits of distributed photovoltaic power plant can significantly improve the income of farmers, improve the quality of life of farmers, coupled with the strong rural collective farmers, rural distributed photovoltaic power plants will mushroom, which On China’s photovoltaic construction and even the supply of clean energy is of great significance, so as to truly benefit the national energy strategy and rural construction.

  7. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  8. New burnable absorber for long-cycle low boron operation of PWRs

    International Nuclear Information System (INIS)

    Choe, Jiwon; Shin, Ho Cheol; Lee, Deokjung

    2016-01-01

    Highlights: • A burnable absorber design for advanced PWRs with a low soluble boron concentration. • The burnable absorber consists of a UO 2 – 157 Gd 2 O 3 rod with a thin layer of Zr 167 Er 2 . • Three verification cases: two kinds of fuel assemblies and an OPR-1000 core. - Abstract: This paper presents a new high performance burnable absorber (BA) design for advanced Pressurized Water Reactors (PWRs) aiming for a long-cycle operation with a low soluble boron concentration. The new BA consists of a UO 2 – 157 Gd 2 O 3 rod covered with a thin layer of Zr 167 Er 2 . A key feature of this new BA is that enriched isotopes, 157 Gd and 167 Er, are used as absorber materials. Since the high absorption cross section of 157 Gd can reduce the mass fraction of Gd 2 O 3 in UO 2 –Gd 2 O 3 , the thermal margin of fuel rods will increase with higher heat conductivity. Also, the 157 Gd transmutes into 158 Gd by neutron absorption and therefore the residual penalty at the end of cycle (EOC) will decrease. Since 167 Er has a resonance near the thermal neutron energy region, the moderator temperature coefficient (MTC) will become more negative and the control rod worth will increase. These advantages of the new BA are demonstrated with three verification cases: a 17 × 17 Westinghouse (WH) type fuel assembly, a 16 × 16 Combustion Engineering (CE) type fuel assembly, and an OPR-1000 equilibrium core.

  9. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  10. Planning of decontamination and bleaching of textiles in an industrial cycle; Programmation des operations de decontamination et de blanchissage du linge dans un cycle industriel

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, Pierre; Schipfer, Pierre [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre de Production de Plutonium de Marcoule, Service de Protection contre les Radiations (France)

    1964-10-15

    This note describes the operational planning for the decontamination and bleaching of textiles (clothes, protections, etc.) worn by personnel, in industrial-type washing machines. Various tests have been conducted with contaminated cotton samples using different cleaning products (and quantities) and various temperature cycles. The performance of the washing cycle (soaking, pre-washing, washing, rinsing) is discussed in terms of decontamination and washing efficiency, textile wear and resistance to shrinkage, whiteness, etc. The experimental washing machine is described [French] Cette etude programme les operations de decontamination et de blanchissage du linge au sein d'un cycle de traitement tel qu'il apparait dans les machines a laver industrielles a fort indice de production. Les echantillons de cotonnade, contamines au moyen de produits de fission, sont de meme nature que le tissu des vetements de protection. En matiere de decontamination les meilleurs resultats sont obtenus apres un trempage faiblement acide et un prelavage au moyen d'un sequestrant. Dans le cadre du blanchissage, seule une lessive industrielle employee dans la phase de lavage peut conferer aux tissus la luminance que requiert leur bonne presentation. Les taches persistantes sont effacees par blanchiment au cours du rincage tiede. Une analyse terminale permet de constater que l'usure des vetements est davantage liee aux conditions d'utilisation qu'aux operations de lavage et de decontamination. (auteurs)

  11. Suppression of numerical dispersion using FD modified operators; Atarashii sabunho no enzanshi wo mochiita suchi bunsan no yokusei

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, N; Geller, R [The University of Tokyo, Tokyo (Japan). Faculty of Science

    1996-05-01

    The author, et al., have developed a formal evaluation theory for errors in numerical solutions and derived on the basis of this theory the conditions that a modified error minimizing operator should satisfy. A modified operator was derived for a calculus of finite difference in the time domain making use of this error evaluation theory. In this study, a modified operator was derived for O (2, 2) in the calculus of finite difference in time, and the operator was used in the calculation for the old and new methods about 1-dimension inhomogeneous media, and the two were quantitatively compared in CPU time and calculation accuracy. The calculation used 500 space grids and 5000 time grids. With the ratio of the time grid gap and space grid gap are kept constant, both CPU time and calculation accuracy were in proportion to the square of the number of grids. It was found in view of the result that the new method, as compared with the old method, needs only approximately 1/20 of CPU time in performing calculations of the same precision and that it maintains calculation accuracy that is approximately 20 times higher in the said CPU time. 4 refs., 2 figs., 1 tab.

  12. Parallel Multi-cycle LES of an Optical Pent-roof DISI Engine Under Motored Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, Noah; Sjöberg, Magnus; Zeng, Wei; Som, Sibendu

    2017-10-15

    The use of Large-eddy Simulations (LES) has increased due to their ability to resolve the turbulent fluctuations of engine flows and capture the resulting cycle-to-cycle variability. One drawback of LES, however, is the requirement to run multiple engine cycles to obtain the necessary cycle statistics for full validation. The standard method to obtain the cycles by running a single simulation through many engine cycles sequentially can take a long time to complete. Recently, a new strategy has been proposed by our research group to reduce the amount of time necessary to simulate the many engine cycles by running individual engine cycle simulations in parallel. With modern large computing systems this has the potential to reduce the amount of time necessary for a full set of simulated engine cycles to finish by up to an order of magnitude. In this paper, the Parallel Perturbation Methodology (PPM) is used to simulate up to 35 engine cycles of an optically accessible, pent-roof Directinjection Spark-ignition (DISI) engine at two different motored engine operating conditions, one throttled and one un-throttled. Comparisons are made against corresponding sequential-cycle simulations to verify the similarity of results using either methodology. Mean results from the PPM approach are very similar to sequential-cycle results with less than 0.5% difference in pressure and a magnitude structure index (MSI) of 0.95. Differences in cycle-to-cycle variability (CCV) predictions are larger, but close to the statistical uncertainty in the measurement for the number of cycles simulated. PPM LES results were also compared against experimental data. Mean quantities such as pressure or mean velocities were typically matched to within 5- 10%. Pressure CCVs were under-predicted, mostly due to the lack of any perturbations in the pressure boundary conditions between cycles. Velocity CCVs for the simulations had the same average magnitude as experiments, but the experimental data showed

  13. [Discussion on Quality Evaluation Method of Medical Device During Life-Cycle in Operation Based on the Analytic Hierarchy Process].

    Science.gov (United States)

    Zheng, Caixian; Zheng, Kun; Shen, Yunming; Wu, Yunyun

    2016-01-01

    The content related to the quality during life-cycle in operation of medical device includes daily use, repair volume, preventive maintenance, quality control and adverse event monitoring. In view of this, the article aims at discussion on the quality evaluation method of medical devices during their life cycle in operation based on the Analytic Hierarchy Process (AHP). The presented method is proved to be effective by evaluating patient monitors as example. The method presented in can promote and guide the device quality control work, and it can provide valuable inputs to decisions about purchase of new device.

  14. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers

    International Nuclear Information System (INIS)

    Xia, Ning; Ma, Fengji; Zhao, Feng; He, Qige; Du, Jimin; Li, Sujuan; Chen, Jing; Liu, Lin

    2013-01-01

    Highlights: • Performances of p-AP redox cycling using different reductants on gold surface are compared. • Background current decreases in order of hydrazine, Na 2 SO 3 , NaBH 4 , NADH, cysteamine, and TCEP. • Chemical reaction rate with QI increases in order of NADH, TCEP, and cysteamine. • NADH, TCEP and cysteamine are suitable for p-AP redox cycling on gold electrode. -- Abstract: p-Aminophenol (p-AP) redox cycling using chemical reductants is one strategy for developing sensitive electrochemical sensors. However, most of the reported reductants are only used on indium-tin oxide (ITO) electrodes but not gold electrodes due to the high background current caused by the oxidation reaction of the reductants on the highly electrocatalytic gold electrodes. Therefore, new strategies and/or reductants are in demand for expanding the application of p-AP redox cycling on gold electrodes. In this work, we compared the performances of several reductants in p-AP redox cycling on self-assembled monolayers (SAMs)-modified gold electrodes. Among the tested reagents, nicotinamide adenine dinucleotide (NADH), tris(2-carboxyethyl)phosphine (TCEP) and cysteamine were demonstrated to be suitable for p-AP redox cycling on the alkanethiol-modified gold electrodes because of their low background current. The rate of chemical reaction between reductants and p-quinone imine (QI, the electrochemically oxidized product of p-AP) increases in the order of NADH −1 was achieved. We believe that our work will be valuable for the development of electrochemical sensors using p-AP redox cycling on gold electrodes

  15. Multicriteria optimization approach to design and operation of district heating supply system over its life cycle

    Science.gov (United States)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał

    2017-11-01

    District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.

  16. Research on transient thermal process of a friction brake during repetitive cycles of operation

    Science.gov (United States)

    Slavchev, Yanko; Dimitrov, Lubomir; Dimitrov, Yavor

    2017-12-01

    Simplified models are used in the classical engineering analyses of the friction brake heating temperature during repetitive cycles of operation to determine basically the maximum and minimum brake temperatures. The objective of the present work is to broaden and complement the possibilities for research through a model that is based on the classical scheme of the Newton's law of cooling and improves the studies by adding a disturbance function for a corresponding braking process. A general case of braking in non-periodic repetitive mode is considered, for which a piecewise function is defined to apply pulse thermal loads to the system. Cases with rectangular and triangular waveforms are presented. Periodic repetitive braking process is also studied using a periodic rectangular waveform until a steady thermal state is achieved. Different numerical methods such as the Euler's method, the classical fourth order Runge-Kutta (RK4) and the Runge-Kutta-Fehlberg 4-5 (RKF45) are used to solve the non-linear differential equation of the model. The constructed model allows during pre-engineering calculations to be determined effectively the time for reaching the steady thermal state of the brake, to be simulated actual braking modes in vehicles and material handling machines, and to be accounted for the thermal impact when performing fatigue calculations.

  17. The relative contribution of genes operating in the S-methylmethionine cycle to methionine metabolism in Arabidopsis seeds.

    Science.gov (United States)

    Cohen, Hagai; Salmon, Asaf; Tietel, Zipora; Hacham, Yael; Amir, Rachel

    2017-05-01

    Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.

  18. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  19. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  20. Automatic optimization of core loading patterns to maximize cycle energy production within operational constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine the core loading pattern which minimizes fuel cycle costs for a pressurized water reactor. Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern which maximizes core reactivity at end-of-cycle while satisfying the power peaking constraint throughout the cycle and region average discharge burnup limit. The method utilizes a two-dimensional, coarse mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern as a function of cycle burnup. First order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, and end-of-cycle burnup

  1. Study of CaCl2 as an agent that modifies the surface of activated carbon used in sorption/treatment cycles for nitrate removal

    Directory of Open Access Journals (Sweden)

    O. Zanella

    2014-03-01

    Full Text Available The efficiency of the application of a chemically-modified activated carbon surface was investigated. The purpose of this study was to examine the effect of treatment with CaCl2 solution at a concentration of 2000 mg.L-1 on the sorption of nitrate ions from aqueous solutions in successive sorption/t reatment cycles. The sorbent was initially subjected to chemical treatment with CaCl2 and subsequently to the sorption process. Nine sorption cycles were performed. The concentrations of nitrate ions in the solution were measured by UV-Vis spectrophotometry before and after sorption. The results show that treatment with CaCl2 caused a significant increase in the percentage removal for each treatment step, reaching a removal rate of 80% of nitrate in the solution after nine cycles.

  2. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle

    International Nuclear Information System (INIS)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J.

    2015-09-01

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  3. Annual cycle solar energy utilization with seasonal storage. Part 8. Study on periodic steady state of the annual cycle energy system at a practical operation; Kisetsukan chikunetsu ni yoru nenkan cycle taiyo energy riyo system ni kansuru kenkyu. 8

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Okumiya, M [Nagoya University, Nagoya (Japan)

    1997-11-25

    A study was made of the periodic steady state of the annual cycle solar energy system with seasonal heat storage at a practical operation. Cold heat in winter and warm heat in summer are stored in the seasonal storage tank, and these are each used in shift until when demand for cold/warm heat appears. Moreover, gap in quantity of cold/warm heat going in/out of the heat storage tank during a year is filled by natural energy such as solar energy, so that the system can be operated in annual cycles. Studies were conducted of the periodic unsteady term and the problem on lowering of performance during the term such as the periodic unsteady term of water temperature inside the seasonal heat storage tank and temperature of the soil around the storage tank, and the level of lowering of performance during the term, necessity of additional operation/control at the start of operation and aged deterioration of the system. Within the assumption, even if starting operation in any time of the year, the system could show the performance almost expected from the first operation year with no additional system operation and control required only at the start of operation. It is thought that the heat source selection control of heat pump largely contributes to this. 4 refs., 5 figs., 3 tabs.

  4. Attitudes to genetically modified food over time: How trust in organizations and the media cycle predict support.

    Science.gov (United States)

    Marques, Mathew D; Critchley, Christine R; Walshe, Jarrod

    2015-07-01

    This research examined public opinion toward genetically modified plants and animals for food, and how trust in organizations and media coverage explained attitudes toward these organisms. Nationally representative samples (N=8821) over 10 years showed Australians were less positive toward genetically modified animals compared to genetically modified plants for food, especially in years where media coverage was high. Structural equation modeling found that positive attitudes toward different genetically modified organisms for food were significantly associated with higher trust in scientists and regulators (e.g. governments), and with lower trust in watchdogs (e.g. environmental movement). Public trust in scientists and watchdogs was a stronger predictor of attitudes toward the use of genetically modified plants for food than animals, but only when media coverage was low. Results are discussed regarding the moral acceptability of genetically modified organisms for food, the media's role in shaping public opinion, and the role public trust in organizations has on attitudes toward genetically modified organisms. © The Author(s) 2014.

  5. Data base for a CANDU-PHW operating on a once-through, slightly enriched uranium cycle (AECL-6594)

    International Nuclear Information System (INIS)

    1979-07-01

    This report, prepared for INFCE, gives data for an extrapolated 1000 MW(e) CANDU-PHW design operating on a once-through fuel cycle with a feed fuel of slightly enriched uranium - 1.2 weight % U-235 in uranium. The effects of varying fuel enrichment, maximum channel power, and economic parameters are also discussed

  6. The effects of operating a touch screen smartphone and other common activities performed while bicycling on cycling behaviour

    NARCIS (Netherlands)

    de Waard, Dick; Lewis Evans, Ben; Jelijs, Bart; Tucha, Oliver; Brookhuis, Karel

    Although it has been shown that making phone calls or sending text messages while riding a bicycle can have a negative impact on bicyclist’s behaviour, in countries such as the Netherlands the operation of a mobile phone while cycling on a bicycle is not illegal and is actually quite common. In

  7. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact

  8. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    International Nuclear Information System (INIS)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-01-01

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  9. Apparatus and method for modifying the operation of a robotic vehicle in a real environment, to emulate the operation of the robotic vehicle operating in a mixed reality environment

    Science.gov (United States)

    Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.

    2012-05-29

    Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.

  10. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2012-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  11. A two-level strategy to realize life-cycle production optimization in an operational setting

    NARCIS (Netherlands)

    Essen, van G.M.; Hof, Van den P.M.J.; Jansen, J.D.

    2013-01-01

    We present a two-level strategy to improve robustness against uncertainty and model errors in life-cycle flooding optimization. At the upper level, a physics-based large-scale reservoir model is used to determine optimal life-cycle injection and production profiles. At the lower level these profiles

  12. Risk analysis of warehouse operation in a power plant through a Modified FMEA

    Directory of Open Access Journals (Sweden)

    Indrawati Sri

    2018-01-01

    Full Text Available Currently, electricity becomes basic needs for human’s life sustainability. Most of activities require electricity. Some power plant are demanded to be able to fulfil above necessity by distributing electricity as it required within time. Therefore, to accommodate good performance, it needs assessment on risk analysis, specifically at the warehousing division. A risk analysis is needed for assuring a good performance warehouse. A Modified FMEA method is used to analyse the risk. This method id done by identifying sources and root causes of a problem based on the value of risk priority number (RPN. The research is conducted in an Indonesian power plant, located in West Java. There are 10 types of failure modes. The result shows that the failure mode priority is inventory discrepancies. There are no difference ranking on the most impacted failure to be prioritized using FMEA and modified FMEA method.

  13. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  14. Modified Ionic Liquid-Based High-Performance Lubricants for Robotic Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a highly efficient lubrication system for robotic operations, which will withstand very low temperatures (20 K) and other rigors of outer space and...

  15. A performance analysis for MHD power cycles operating at maximum power density

    International Nuclear Information System (INIS)

    Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi

    1996-01-01

    An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)

  16. Part-Load Performance Prediction and Operation Strategy Design of Organic Rankine Cycles with a Medium Cycle Used for Recovering Waste Heat from Gaseous Fuel Engines

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    2016-07-01

    Full Text Available The Organic Rankine Cycle (ORC is regarded as a suitable way to recover waste heat from gaseous fuel internal combustion engines. As waste heat recovery systems (WHRS have always been designed based on rated working conditions, while engines often work under part-load conditions, it is quite significant to analyze the part-load performance and corresponding operation strategy of ORC systems. This paper presents a dynamic model of ORC with a medium cycle used for a large gaseous fuel engine and analyzes the effect of adjustable parameters on the system performance, giving effective control directions under various conditions. The results indicate that the intermediary fluid mass flow rate has nearly no effect on the output power and thermal efficiency of the ORC, while the mass flow rate of working fluid has a great effect on them. In order to get a better system performance under different working conditions, the system should be operated with the working fluid mass flow rate as large as possible, but with a slight degree of superheating. Then, with the control of constant superheat degree at the end of the heating process, the performance of the combined system that consists of ORC and the engine at steady state under seven typical working conditions is also analyzed. The results indicate that the energy-saving effect of WHRS becomes worse and worse as the working condition decreases. Especially at 40% working condition the WHRS nearly has no energy-saving effect anymore.

  17. EXPRESSION OF THE TRANSPORT SECTOR OPERATIONAL EFFICIENCY EVALUATION METHODOLOGY (TRENDS AT DIFFERENT STAGES OF THE ECONOMIC CYCLE

    Directory of Open Access Journals (Sweden)

    Deimena KIYAK

    2017-12-01

    Full Text Available It is important to evaluate the impact of economic fluctuations on the transport sector operational efficiency, since such an analysis is a source of economic information which contributes to the identification of the sector's potential and advantages, the establishment of the risky areas of activity, and the exploration of the opportunities to increase its effectiveness. The aim of the study was to apply mathematical evaluation methods to the exploration of the operational efficiency of the Lithuanian transport sector companies and, based on the outcomes, to validate the opportunity of predicting a potential change of the economic cycle. The operational efficiency of the Lithuanian transport sector was analysed in the context of the cyclical national economy, and not in individual economic boom or recession periods, as that allowed for more detailed evaluation of the specific activities of the sector and its impact on Lithuanian economy. To achieve the aim, three different stages of the economic cycle in Lithuania were identified, and calculations were made during them. Based on the aggregate financial data, four different economic efficiency indicators were developed that reflected the efficiency level of the entire transport sector, and the sensitivity of the transport sector to economic fluctuations was identified. The comparison of the changes in the transport sector and in Lithuanian economy made it obvious that the level of the sector's operational efficiency could be regarded as a leading indicator of the economic cycle.

  18. Influence of quantum degeneracy and regeneration on the performance of Bose-Stirling refrigeration-cycles operated in different temperature regions

    International Nuclear Information System (INIS)

    Lin Bihong; Zhang Yue; Chen Jincan

    2006-01-01

    The Stirling refrigeration cycle using an ideal Bose-gas as the working substance is called the Bose-Stirling refrigeration cycle, which is different from other thermodynamic cycles such as the Carnot cycle, Ericsson cycle, Brayton cycle, Otto cycle, Diesel cycle and Atkinson cycle working with an ideal Bose gas and may be operated across the critical temperature of Bose-Einstein condensation of the Bose system. The performance of the cycle is investigated, based on the equation of state of an ideal Bose gas. The inherent regenerative losses of the cycle are considered and the coefficient of performance and the amount of refrigeration of the cycle are calculated. The results obtained here are compared with those derived from the classical Stirling refrigeration cycle, using an ideal gas as the working substance. The influence of quantum degeneracy and inherent regenerative losses on the performance of the Bose Stirling refrigeration cycle operated in different temperature regions is discussed in detail, and consequently, general performance characteristics of the cycle are revealed

  19. Premium cost optimization of operational and maintenance of green building in Indonesia using life cycle assessment method

    Science.gov (United States)

    Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto

    2017-06-01

    Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.

  20. Scanning Tunneling Microscopy Measurements of the Full Cycle of a Heterogeneous Asymmetric Hydrogenation Reaction on Chirally Modified Pt(111)

    DEFF Research Database (Denmark)

    Demers-Carpentier, Vincent; Goubert, Guillaume; Masini, Federico

    2012-01-01

    -(1-naphthyl)ethylamine, ((R)-NEA), as the modifier. On the nonmodified surface, introduction of H2 at a background pressure of ∼1 × 10–6 mbar leads to the rapid break-up of TFAP dimer structures followed by the gradual removal of all TFAP-related images. During the latter step, some monomers display an extra...

  1. Modified Sleeve Technique in Aortic Valve-Sparing Operation for Marfan Syndrome.

    Science.gov (United States)

    Wu, Yung-Szu; Hsieh, Shih-Rong; Wang, Chung-Chi; Tsai, Chung-Lin

    2018-03-22

    We devised a simple modification of the Florida Sleeve procedure to perform aortic valve-sparing surgery. This technique is simple, quick, effective, and safe. We used this technique in operations performed on two young patients with Marfan syndrome. The initial and short-term results were satisfactory.

  2. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto

    2012-01-01

    data from different authors for downdraft, fluidized-bed gasifiers and different biomasses, showing good agreement between reported data and modeled values. In addition, it has been used to evaluate the influence of different operating parameters [equivalence ratio (ER), air preheating, steam injection...

  3. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    Science.gov (United States)

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P Lynch syndrome.

  4. KWIKPLAN: a computer program for projecting the annual requirements of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Salmon, R.; Kee, C.W.

    1977-06-01

    The computer code KWIKPLAN was written to facilitate the calculation of projected nuclear fuel cycle activities. Using given projections of power generation, the code calculates annual requirements for fuel fabrication, fuel reprocessing, uranium mining, and plutonium use and production. The code uses installed capacity projections and mass flow data for six types of reactors to calculate projected fuel cycle activities and inventories. It calculates fissile uranium and plutonium flows and inventories after allowing for an economy with limited reprocessing capacity and a backlog of unreprocessed fuel. All calculations are made on a quarterly basis; printed and punched output of the projected fuel cycle activities are made on an annual basis. Since the punched information is used in another code to determine waste inventories, the code punches a table from which the effective average burnup can be calculated for the fuel being reprocessed

  5. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  6. LMTD Design Methodology Assessment of Spiral Tube Heat Exchanger under the S-CO2 cycle operating condition

    International Nuclear Information System (INIS)

    Jung, Hwa Young; Lee, Jeong Ik; Ahn, Yoon Han

    2013-01-01

    The advantages of PCHE are compact high pressure difference endurance high temperature operation. However, PCHE is quite expensive and the resistance to the fast thermal cycling is questionable. In order to overcome this problem, the Korea Advanced Institute of Science and Technology (KAIST) research team is considering an alternative for the PCHE. Currently KAIST research team is using a Spiral Tube Heat Exchanger (STHE) of Sentry Equipment Corp. as a pre cooler in the SCO 2 PE facility. A STHE is relatively cheap but the operating pressure and temperature are acceptable for utilizing it as a pre cooler. A STHE is consisted of spiral shaped tubes (hot side i.e. S-CO 2 ) immersed in a shell (cold side i.e. water). This study is aimed at whether the logarithmic mean temperature difference (LMTD) heat exchanger design methodology is acceptable for designing the S-CO 2 cycle pre cooler. This is because the LMTD method usually assumes a constant specific heat, but the pre cooler in the S-CO 2 cycle operates at the nearest point to the critical point where a dramatic change in properties is expected. Experimentally obtained data are compared to the vendor provided technical specification based on the LMTD method. The detailed specifications provided by the vendor are listed in Table 1

  7. LMTD Design Methodology Assessment of Spiral Tube Heat Exchanger under the S-CO{sub 2} cycle operating condition

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hwa Young; Lee, Jeong Ik; Ahn, Yoon Han [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The advantages of PCHE are compact high pressure difference endurance high temperature operation. However, PCHE is quite expensive and the resistance to the fast thermal cycling is questionable. In order to overcome this problem, the Korea Advanced Institute of Science and Technology (KAIST) research team is considering an alternative for the PCHE. Currently KAIST research team is using a Spiral Tube Heat Exchanger (STHE) of Sentry Equipment Corp. as a pre cooler in the SCO{sub 2}PE facility. A STHE is relatively cheap but the operating pressure and temperature are acceptable for utilizing it as a pre cooler. A STHE is consisted of spiral shaped tubes (hot side i.e. S-CO{sub 2}) immersed in a shell (cold side i.e. water). This study is aimed at whether the logarithmic mean temperature difference (LMTD) heat exchanger design methodology is acceptable for designing the S-CO{sub 2} cycle pre cooler. This is because the LMTD method usually assumes a constant specific heat, but the pre cooler in the S-CO{sub 2} cycle operates at the nearest point to the critical point where a dramatic change in properties is expected. Experimentally obtained data are compared to the vendor provided technical specification based on the LMTD method. The detailed specifications provided by the vendor are listed in Table 1.

  8. Experimental studies of an optimal operating condition for the Bunsen process in the I-S thermochemical cycle

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; No, Hee Cheon; Kim, Young Soo; Jin, Hyung Gon; Lee, Jeong Ik; Lee, Byung Jin

    2009-01-01

    Conventional I-S cycles have critical limitations in material integrity and thermal efficiency. The HIx and sulfuric acids in high temperature and pressure cause serious material corrosions. They also carry too much water and iodine over the entire processes. To try to find a solution to these problems, KAIST proposed an optimal operating condition of Bunsen section through a parametric study of existing experimental data, and, based on it, devised a new flowsheet. When the contents of water and I 2 in the feed are controlled within the optimal band, HI concentration in HIx phase becomes strongly over-azeotropic. By simple flashing of the over-azeotropic HI solution, highly enriched HI vapor can be obtained, which leads to improved energy efficiency of the cycle. Since the cycle is operable under low pressures, the corrosivity of the operating condition can also be alleviated. In order to validate the previous experimental data and enhance the feasibility of the newly proposed flowsheet, KAIST is performing experiments. Procedure and results of early stage of experiments are introduced in this paper. (author)

  9. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  10. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    Science.gov (United States)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  11. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    These disadvantages of thorium fuel cycle were seemingly the reasons why that ... According to the data of figure 2, maximum (equilibrium) content of 233U in ..... Self-sufficient mode is related with rather big effort in the extraction of isotopes of.

  12. Detailed Life Cycle Assessment of Bounty Paper Towel Operations in the United States

    Science.gov (United States)

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and ac...

  13. International co-operation in the supply of nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The paper draws on British Nuclear Fuels' (BNFL) wide experience of international collaboration in nuclear fuel process activities to examine the pros and cons of international agreements. Initially, the factors that influence the need to co-operate, the extent of possible co-operation and the alternative types of agreement, are reviewed. Next, the benefits, problems and risks associated with each function, such as management, financial R and D, marketing and operations that could be covered within the scope of an international agreement, are examined in detail. The paper continues by calling upon specific experience obtained by BNFL in the co-operation with other organizations over several years in both major and much smaller agreements, illustrating the rationale behind the co-operation, the resolution of 'teething' troubles and the present status of these organizations. In conclusion, the paper comments upon the effectiveness of collaboration agreements and identifies several requirements for international co-operation to succeed. (author)

  14. Enhancing human performance in ship operations by modifying global design factors at the design stage

    International Nuclear Information System (INIS)

    Montewka, Jakub; Goerlandt, Floris; Innes-Jones, Gemma; Owen, Douglas; Hifi, Yasmine; Puisa, Romanas

    2017-01-01

    Usually the improvements of human performance in the course of ship design process is carried out by modifying local ergonomics, like electronic visualisation and information display systems on the bridge or in the engine control room, stair or hatch covers design. However, the effect of global design factors (GDFs), such as ship motion, whole body vibration and noise, on human performance has not been given attention before. Such knowledge would allow the improvements of human performance by effective design modification on very early stage of ship design process. Therefore, in this paper we introduce probabilistic models linking the effect of GDFs with the human performance suitable for ship design process. As a theoretical basis for modelling human performance the concept of Attention Management is utilized, which combines the theories described by Dynamic Adaptability Model, Cognitive Control Model and Malleable Attentional Resources Theory. Since the analysed field is characterised by a high degree of uncertainty, we adopt a specific modelling technique along with a validation framework that allows uncertainty treatment and helps the potential end-users to gain confidence in the models and the results that they yield. The proposed models are developed with the use Bayesian Belief Networks, which allows systematic translation of the available background knowledge into a coherent network and the uncertainty assessment and treatment. The obtained results are promising as the models are responsive to changes in the GDF nodes as expected. The models may be used as intended by naval architects and vessel designers, to facilitate risk-based ship design. - Highlights: • Models linking the effect of GDFs with the human performance are established. • Three global design factors (GDFs) are considered: ship motion, body vibration, noise. • Attention Management concept as theoretical base is modelled with Bayesian Networks. • Two models are developed that can be

  15. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit.

    Science.gov (United States)

    Guegan, Thomas; Cutando, Laura; Ayuso, Eduard; Santini, Emanuela; Fisone, Gilberto; Bosch, Fatima; Martinez, Albert; Valjent, Emmanuel; Maldonado, Rafael; Martin, Miquel

    2013-02-01

    Palatability enhances food intake by hedonic mechanisms that prevail over caloric necessities. Different studies have demonstrated the role of endogenous cannabinoids in the mesocorticolimbic system in controlling food hedonic value and consumption. We hypothesize that the endogenous cannabinoid system could also be involved in the development of food-induced behavioral alterations, such as food-seeking and binge-eating, by a mechanism that requires neuroplastic changes in the brain reward pathway. For this purpose, we evaluated the role of the CB1 cannabinoid receptor (CB1-R) in the behavioral and neuroplastic changes induced by operant training for standard, highly caloric or highly palatable isocaloric food using different genetics, viral and pharmacological approaches. Neuroplasticity was evaluated by measuring changes in dendritic spine density in neurons previously labeled with the dye DiI. Only operant training to obtain highly palatable isocaloric food induced neuroplastic changes in neurons of the nucleus accumbens shell and prefrontal cortex that were associated to changes in food-seeking behavior. These behavioral and neuroplastic modifications induced by highly palatable isocaloric food were dependent on the activity of the CB1-R. Neuroplastic changes induced by highly palatable isocaloric food are similar to those produced by some drugs of abuse and may be crucial in the alteration of food-seeking behavior leading to overweight and obesity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  16. LANDFILLS FOR NON-HAZARDOUS WASTE AND INERT WASTE AND THEIR OPERATION CYCLE IN NEW SYSTEM OF THE WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Joanna Kunc

    2017-06-01

    Full Text Available Until 2012, the chief method of disposing of municipal waste in Poland was by storing it on non-hazardous and inert waste landfills. The introduction of a new waste management system as well as new formal and legal requirements have forced changes in key documents related to landfill installations such as processing permits, landfill operation instructions and management instructions. The operation cycle has been disturbed, reducing considerably their operation time and leading to a premature discontinuation of waste receipt, closure, and rehabilitation. These processes result in many irregularities in land rehabilitation which are likely to have a significant impact on the environment. The article identifies the fundamental changes which can interrupt the landfill operation cycle, and discusses the threats to the process of rehabilitation, highlighting both administrative and technical problems discovered based on processes that have been already completed. The description has been drawn up based on the study of literature, analyses and the reports of public administration bodies as well as on own research into the number of landfills faced with this problem.

  17. STYLE, Steam Cycle Heat Balance for Turbine Blade Design in Marine Operation

    International Nuclear Information System (INIS)

    Love, J.B.; Dines, W.R.

    1970-01-01

    1 - Nature of physical problem solved: The programme carries out iterative steam cycle heat balance calculations for a wide variety of steam cycles including single reheat, live steam reheat and multistage moisture separation. Facilities are also available for including the steam-consuming auxiliaries associated with a marine installation. Though no attempt is made to carry out a detailed turbine blading design the programme is capable of automatically varying the blading efficiency from stage to stage according to local steam volume flow rate, dryness fraction and shaft speed. 2 - Method of solution: 3 - Restrictions on the complexity of the problem: Steam pressures to lie within range 0.2 to 5,000 lb/square inch abs steam temperatures to lie within range 50 to 1600 degrees F. Not more than 40 points per turbine expansion line; Not more than 10 expansion lines; Not more than 15 feed heaters. UNIVAC 1108 version received from FIAT Energia Nucleare, Torino, Italy

  18. Operating experience with Exxon nuclear advanced fuel assembly and fuel cycle designs in PWRs

    International Nuclear Information System (INIS)

    Skogen, F.B.; Killgore, M.R.; Holm, J.S.; Brown, C.A.

    1986-01-01

    Exxon Nuclear Company (ENC) has achieved a high standard of performance in its supply of fuel reloads for both BWRs and PWRs, while introducing substantial innovations aimed at realization of improved fuel cycle costs. The ENC experience with advanced design features such as the bi-metallic spacer, the dismountable upper tie plate, natural uranium axial blankets, optimized water-to-fuel designs, annular pellets, gadolinia burnable absorbers, and improved fuel management scenarios, is summarized

  19. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1.

    Science.gov (United States)

    Fu, Yanfen; Li, Yi; Lidstrom, Mary

    2017-07-01

    Methanotrophs are a group of bacteria that use methane as sole carbon and energy source. Type I methanotrophs are gamma-proteobacterial methanotrophs using the ribulose monophosphate cycle (RuMP) cycle for methane assimilation. In order to facilitate metabolic engineering in the industrially promising Type I methanotroph Methylomicrobium buryatense 5GB1, flux analysis of cellular metabolism is needed and 13 C tracer analysis is a foundational tool for such work. This biological system has a single-carbon input and a special network topology that together pose challenges to the current well-established methodology for 13 C tracer analysis using a multi-carbon input such as glucose, and to date, no 13 C tracer analysis of flux in a Type I methanotroph has been reported. In this study, we showed that by monitoring labeling patterns of several key intermediate metabolites in core metabolism, it is possible to quantitate the relative flux ratios for important branch points, such as the malate node. In addition, it is possible to assess the operation of the TCA cycle, which has been thought to be incomplete in Type I methanotrophs. Surprisingly, our analysis provides direct evidence of a complete, oxidative TCA cycle operating in M. buryatense 5GB1 using methane as sole carbon and energy substrate, contributing about 45% of the total flux for de novo malate production. Combined with mutant analysis, this method was able to identify fumA (METBUDRAFT_1453/MBURv2__60244) as the primary fumarase involved in the oxidative TCA cycle, among 2 predicted fumarases, supported by 13 C tracer analysis on both fumA and fumC single knockouts. Interrupting the oxidative TCA cycle leads to a severe growth defect, suggesting that the oxidative TCA cycle functions to not only provide precursors for de novo biomass synthesis, but also to provide reducing power to the system. This information provides new opportunities for metabolic engineering of M. buryatense for the production of

  20. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-01-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  1. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung, E-mail: cwy@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  2. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  3. An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

    Science.gov (United States)

    Doungmo Goufo, Emile Franc

    2018-02-01

    The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.

  4. Optimization of operation cycles in BWRs using neural networks; Optimizacion de ciclos de operacion en BWRs usando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Alejandro P, D., E-mail: juanjose.ortiz@inin.gob.mx [Universidad de Granada, ETS de Ingenierias, Informatica y de Telecomunicacion, C/Daniel Saucedo Aranda s/n, 18071 Granada (Spain)

    2011-11-15

    The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)

  5. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  6. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  7. Increasing the maximum daily operation time of MNSR reactor by modifying its cooling system

    International Nuclear Information System (INIS)

    Khamis, I.; Hainoun, A.; Al Halbi, W.; Al Isa, S.

    2006-08-01

    thermal-hydraulic natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The model considers detailed description of the thermal and hydraulic aspects of cooling in the core and vessel. In addition, determination of pressure drop was made through an elaborate balancing of the overall pressure drop in the core against the sum of all individual channel pressure drops employing an iterative scheme. Using this model, an accurate estimation of various timely core-averaged hydraulic parameters such as generated power, hydraulic diameters, flow cross area, ... etc. for each one of the ten-fuel circles in the core can be made. Furthermore, distribution of coolant and fuel temperatures, including maximum fuel temperature and its location in the core, can now be determined. Correlation among core-coolant average temperature, reactor power, and core-coolant inlet temperature, during both steady and transient cases, have been established and verified against experimental data. Simulating various operating condition of MNSR, good agreement is obtained for at different power levels. Various schemes of cooling have been investigated for the purpose of assessing potential benefits on the operational characteristics of the syrian MNSR reactor. A detailed thermal hydraulic model for the analysis of MNSR has been developed. The analysis shows that an auxiliary cooling system, for the reactor vessel or installed in the pool which surrounds the lower section of the reactor vessel, will significantly offset the consumption of excess reactivity due to the negative reactivity temperature coefficient. Hence, the maximum operating time of the reactor is extended. The model considers detailed description of the thermal and hydraulic aspects of cooling the core and its surrounding vessel. Natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The suggested 'micro model

  8. International co-operation in the supply of nuclear fuel cycle services

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The paper draws on B.N.F.L.'s wide experience of international collaboration in nuclear fuel process activities to examine the pros and cons of international agreements. Initially, the factors that influence the need to co-operate, the extent of possible co-operation and the alternative types of agreement are reviewed. Next, the benefits, problems and risks associated with each function, such as managmenet, financial, R and D, marketing and operations that could be covered within the scope of an international agreement, are examined in detail. The paper continues by calling upon specific experience obtained by B.N.F.L. in co-operation with other organisations over several years in operating both major and much smaller agreements illustrating the rationale behind the co-operation, the resolution of 'teething' troubles and the current status of these organisations. In conclusion, the paper comments upon the effectiveness of collaboration agreements and identifies several requirements for internation co-operation to succeed

  9. Different enzymatic antioxidative pathways operate within the sheep caruncular and intercaruncular endometrium throughout the estrous cycle and early pregnancy.

    Science.gov (United States)

    Al-Gubory, K H; Faure, P; Garrel, C

    2017-09-01

    then increased from day 16 to day 18 of pregnancy. In conclusion, different antioxidant mechanisms operate within CAR and ICAR endometrium throughout the estrous cycle and during early pregnancy. This might be related to the different but important roles of CAR and ICAR endometrial tissues for the establishment of pregnancy. Copyright © 2017. Published by Elsevier Inc.

  10. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Luís F.R.; Ribeiro, Guilherme B., E-mail: luisromano_91@hotmail.com, E-mail: gbribeiro@ieav.cta.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil). Pós-Graduação Ciências e Tecnologias Espaciais

    2017-07-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  11. Optimal temperature of operation of the cold side of a closed Brayton Cycle for space nuclear propulsion

    International Nuclear Information System (INIS)

    Romano, Luís F.R.; Ribeiro, Guilherme B.

    2017-01-01

    Generating energy in space is a tough challenge, especially because it has to be used efficiently. The optimization of the system operation has to be though up since the design phase and all the minutiae between conception, production and operation should be carefully evaluated in order to deliver a functioning device that will meet all the mission's goals. This work seeks on further describing the operation of a Closed Brayton Cycle coupled toa nuclear microreactor used to generate energy to power spacecraft's systems, focusing specially on the cold side to evaluate the temperature of operation of the cold heat pipes in order to aid the selection of proper models to numerically describe the heat pipes and radiator s thermal operation. The cycle is designed to operate with a noble gas mixture of Helium-Xenon with a molecular weight of 40g/mole, selected for its transport properties and low turbomachinery charge and it is to exchange hear directly with the cold heat pipe' evaporator through convection at the cold heat exchanger. Properties such as size and mass are relevant to be analyzed due space applications requiring a careful development of the equipment in order to fit inside the launcher as well as lowering launch costs. Merit figures comparing both second law energetic efficiency and net energy availability with the device's radiator size are used in order to represent an energetic production density for the apparatus, which is ought to be launched from earth's surface. (author)

  12. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element - plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  13. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex.

    Directory of Open Access Journals (Sweden)

    Keisha Findley

    Full Text Available Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT. The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α in which the MAT locus is unusually large (>100 kb and encodes >20 genes including homeodomain (HD and pheromone/receptor (P/R genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B locus sex-specific region is restricted (∼2 kb and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a of C. neoformans and Cryptococcus gattii. The P/R (A locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2 produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2, but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1. Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar and sexual reproduction (outcrossing versus inbreeding with

  14. Operating experience with a near-real-time inventory balance in a nuclear fuel cycle plant

    International Nuclear Information System (INIS)

    Armento, W.J.; Box, W.D.; Kitts, F.G.; Krichinsky, A.M.; Morrison, G.W.; Pike, D.H.

    1981-01-01

    The principal objective of the ORNL Integrated Safeguards Program (ISP) is to provide enhanced material accountability, improved process control, and greater security for nuclear fuel cycle facilities. With the improved instrumentation and computer interfacing currently installed, the ORNL 233 U Pilot Plant has demonstrated capability of a near-real-time liquid-volume balance in both the solvent-extraction and ion-exchange systems. Future developments should include the near-real-time mass balancing of special nuclear materials as both a static, in-tank summation and a dynamic, in-line determination. In addition, the aspects of site security and physical protection can be incorporated into the computer monitoring

  15. Nuclear fission energy: new build, operation, fuel cycle and decommissioning in the international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan [AREVA GmbH, Erlangen (Germany)

    2015-07-01

    Over 60 nuclear power reactors are in construction today and over 400 are connected to the grid. The presentation will show where. A nuclear new build project involves a team of several thousand people. Some pictures from ongoing new build projects will illustrate this. Using concrete examples from the AREVA group, the nuclear fuel cycle from uranium mines in Niger, Kazakhstan or Canada to chemical conversion, enrichment and fuel manufacturing will be explained. Also the recycling of used fuel and the fabrication of MOX fuel is addressed. The presentation closes with an overview on decommissioning and final storage projects.

  16. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  17. Operation experience of the advanced fuel assemblies at Unit 1 of Volgodonsk NPP within four fuel cycles

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kobelev, S.; Kushmanov, S.

    2006-01-01

    The first commissioning of Volgodonsk NPP Unit 1 with standard reactor WWER-1000 (project V-320) was in 2001. The reactor core, starting from the first fuel charge, was arranged completely with Advanced Fuel Assemblies (AFAs). In this way, it is possible to obtain the experience in startup and operation of the core, completely arranged with AFAs, and also to get a possibility of performing the comprehensive check for justification of newly commissioned units and justification of design solutions accepted in the design of reactor core for Taiwan NPP, Bushehr NPP and Kudankulam NPP. The first fuel charge of the Volgodonsk NPP Unit 1 is a reference and unified for Tiawan NPP (V-428), Bushehr NPP (V-446), Kudankulam NPP(V-412) with small differences caused by design features of RP V-320. The first core charge of Unit 1 of Volgodonsk NPP was arranged of 163 AFAs, comprising 61 CPS ARs and 42 BAR bundles. The subsequent fuel charges were arranged of AFAs with gadolinium oxide integrated into fuel instead of BAR. By 2005 the results of operation of the core at Unit 1 of Volgodonsk NPP during four fuel cycles showed that AFA is sufficiently reliable and serviceable. The activity of the primary coolant of the Volgodonsk NPP is at stable low level. During the whole time of the core operation of the Volgodonsk NPP Unit 1 no leaky AFAs were revealed. The modifications of the internals, made during pre-operational work, are reasonable and effective to provide for fuel mechanical stability in the course of operation. The modifications, made in AFA structure during operation of the Volgodonsk NPP Unit 1, are aimed at improving the service and operational reliability of its components. Correctness of the solutions taken is confirmed by AFAs operation experience both at the Volgodonsk NPP, and at other operating Russian NPPs

  18. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    Science.gov (United States)

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-08-12

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  19. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Roberto Madeddu

    2013-08-01

    Full Text Available Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd, which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  20. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Science.gov (United States)

    Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  1. Preliminary thermodynamic study of regenerative Otto based cycles with zero NOx emissions operating with adiabatic and polytropic expansion

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Romero Gomez, Javier; Romero Gomez, Manuel

    2016-01-01

    Highlights: • Efficient polytropic expansion based Otto cycle. • Thermal efficiency is due to the inherent regeneration. • Low temperature combustion with zero NOx emissions. - Abstract: The aim of the paper is to demonstrate that a regenerative Otto cycle with adiabatic or polytropic expansion can achieve improved performance over traditional Otto engines, even exceeding the Carnot factor. Thus, the work deals with a novel regenerative Otto based internal combustion engine which differs from the conventional Otto thermal cycles in that the process of heat conversion into mechanical work is performed obeying a polytropic path function instead of the conventional adiabatic expansion without regeneration. Design characteristics concern the fact that combustion at constant volume is carried out undergoing large air excess so that the top combustion temperature is significantly lower than in conventional Otto cycles and consequently NOx emissions are neglected. Furthermore, during the polytropic expansion based path function, heat is absorbed by being submitted to a controlled heat flow rate, to achieve the desired polytropic expansion. The analysis of the regenerative Otto based on polytropic expansion is presented and results are compared with a regenerative Otto based on the adiabatic expansion and CF. The results show that a relevant advantage of the proposed regenerative Otto with polytropic expansion over the regenerative Otto cycle with adiabatic expansion involves performance enhancement within a wide range of combustion pressures, temperatures and regeneration capacities. Thus, thermal efficiency and specific work as function of the top combustion pressure ranges are of 71.95–58.43% and 143.5–173.6 kJ/kg respectively, when combustion pressures vary between 105 kPa and 200 kPa and CF is 60.8% (lower than the thermal efficiency). The successful results involving a compact engine structure, technically and economically viable, promises a new generation

  2. Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power

    International Nuclear Information System (INIS)

    Azizipanah-Abarghooee, Rasoul; Golestaneh, Faranak; Gooi, Hoay Beng; Lin, Jeremy; Bavafa, Farhad; Terzija, Vladimir

    2016-01-01

    Highlights: • Suggesting a new UC mixing a probabilistic security and incentive demand response. • Investigating the effects of uncertainty on UC using chance-constraint programming. • Proposing an efficient spinning reserve satisfaction based on a new ED correction. • Presenting a new operational cycles way to convert binary variable to discrete one. - Abstract: We propose a probabilistic unit commitment problem with incentive-based demand response and high level of wind power. Our novel formulation provides an optimal allocation of up/down spinning reserve. A more efficient unit commitment algorithm based on operational cycles is developed. A multi-period elastic residual demand economic model based on the self- and cross-price elasticities and customers’ benefit function is used. In the proposed scheme, the probability of residual demand falling within the up/down spinning reserve imposed by n − 1 security criterion is considered as a stochastic constraint. A chance-constrained method, with a new iterative economic dispatch correction, wind power curtailment, and commitment of cheaper units, is applied to guarantee that the probability of loss of load is lower than a pre-defined risk level. The developed architecture builds upon an improved Jaya algorithm to generate feasible, robust and optimal solutions corresponding to the operational cost. The proposed framework is applied to a small test system with 10 units and also to the IEEE 118-bus system to illustrate its advantages in efficient scheduling of generation in the power systems.

  3. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  4. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  5. An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yinghua Han

    2014-01-01

    Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.

  6. To selecting the characteristics of saturated steam direct cycle NPPs for operation under variable loads

    International Nuclear Information System (INIS)

    Khrustalev, V.A.; Demidov, O.I.

    1986-01-01

    Problems for operating process optimization of NPPs with RBMK type reactors under load swings in the power system is considered. Determination technique for optimal values of such parameters as initial steam pressure and fuel enrichment for NPP different load factors is developed. Optimization of these parameters gives a 150000 rouble saving of annual expenditures per each 3200 MW of reactor heat output

  7. Core design of long life-cycle fast reactors operating without reactivity margin

    International Nuclear Information System (INIS)

    Aristova, E. N.; Baydin, D. F.; Gol'din, V. Y.; Pestryakova, G. A.; Stoynov, M. I.

    2012-01-01

    In this paper we consider a possibility of designing a fast reactor core that operates without reactivity margin for a long time. This study is based on the physical principle of fast reactor operating in a self-adjustable neutron-nuclear regime (SANNR-1) introduced by L.P. Feoktistov (1988-1993) and improved by V. Ya. Gol'din SANNR-2 (1995). The mathematical modeling of active zones of fast reactors in SANNR modes is held by authors since 1992. The numerical simulation is based on solving the neutron transport equation coupled with quasi-diffusion equations. The calculations have been performed using standard 26 energy groups. We use a hierarchy of spatial models of 1D, 1.5D, 2D, and 3D geometries. The spatial models of higher dimensionality are used for verification of results. The calculations showed that operation of the reactor in this mode increases its efficiency, safety and simplifies management. It is possible to achieve continuous work of the reactor in SANNR-2 during 7-10 years without fuel overloads by means of further optimization of the mode. Small reactivity margin is used only for the reactor start up. After first 10-15 days the reactor in SANNR-2 operates without reactivity margin. (authors)

  8. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 NSSS design

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Young Joon; Choi, Hae Yoon; Chang, Young Woo [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)] [and others

    1996-06-01

    A feasible study on the NSSS design safety assessment is performed for a longer cycle operation of Yonggang units 3 and 4. The analysis of the drift errors increased and setting point changed for safety related instrument channels due to the longer refueling interval was done to assess the impact on the operational safety performance and availability of the plant if the refueling interval was extended. In the result of LOCA analysis, even though the Peak Cladding Temperature (PCT) is slightly increased due to Pin/Box ratio decrease, the PCT has enough margin and, therefore, it was proven to be acceptable. From the perspective of return-to-power and the pre-trip fuel performance during the transient operation, an impact on the results of an SLB accident analysis were assessed. The overall trend of the longer refueling operation of 18 months is similar to the standard refuel operation of 12 months. The possibility of the return to power during SLB accident condition was estimated, the detailed analysis of the reactor core using the 3-dimensional model methodology is required to confirm the fuel integrity. 11 refs.(Author) .new.

  9. Effect of the weld thermal cycles by the modified indirect electric arc (MIEA) on the mechanical properties of the AA6061-T6 alloy

    International Nuclear Information System (INIS)

    Ambriz, R. A.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-01-01

    Results of temperature measurements during welding of 12.7 mm thick AA6061-T6 alloy plates by modified indirect electric arc (MIEA) are presented. This study describes the thermal cycles of the heat affected zone (HAZ) and also in the fusion zone. Depending upon the position of the transducers, the maximum temperatures measured in the HAZ range from 308 to 693 degree centigrade, these measurements were related with the tensile test results, and the failure zone reported previously by the authors. It was observed that, there is a decrease in the mechanical strength of the welded joints, due to the microstructural changes suffered by AA6061-T6 alloy in which formation of the βoccurs according to the TTT transformation diagram. The inherent cooling conditions of the weld pool observed for the MIEA technique (only one pass of welding), have permitted to establish the characteristics of solidification and microstructure for a specific cooling rate. (Author) 24 refs

  10. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    Science.gov (United States)

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  11. The radiological significance of transuranium radioisotopes released to the environment during operation of the LMFBR fuel cycle

    International Nuclear Information System (INIS)

    Barr, N.F.

    1976-01-01

    Estimates based on current knowledge and conservative assumptions indicate that release of transuranium elements from the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycle are likely to proaduce population dose commitments small compared to those produced by naturally occurring alpha emitters and globally dispersed transuranium radioisotopes from tests of nuclear weapons in the atmosphere. Potential health consequences of these releases to current and future generations are estimated to be very small compared to risks associated with the production of energy by fossil fuels. The estimates are subject to a number of uncertainties imposed by lack of knowledge. Some of the uncertainties are not likely to be greatly reduced until LMFBR facilities are designed and operated. Others may be significantly reduced prior to facility design and operation. The paper discusses the sensitivity of the estimates to uncertainties and approches to reducing those uncertainties that strongly influence the estimates. (author)

  12. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    Directory of Open Access Journals (Sweden)

    Betania Hernández-Ocaña

    2016-01-01

    Full Text Available This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

  13. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    Science.gov (United States)

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  14. Exergic, economic and environmental impacts of natural gas and diesel in operation of combined cycle power plants

    International Nuclear Information System (INIS)

    Mohammadi Khoshkar Vandani, Amin; Joda, Fatemeh; Bozorgmehry Boozarjomehry, Ramin

    2016-01-01

    Highlights: • Investigating the effect of natural gas and diesel on the power plant performance. • Exergy, economic and environmental evaluation of a combined cycle power plant. • Using life cycle assessment (LCA) to perform the environmental evaluation. • Optimizing the power plant in terms of exergy and economic. • Better performance of natural gas with respect to diesel. - Abstract: Combined cycle power plants (CCPPs) play an important role in electricity production throughout the world. Their energy efficiency is relatively high and their production rates of greenhouse gases are considerably low. In a country like Iran with huge oil and gas resources, most CCPP’s use natural gas as primary fuel and diesel as secondary fuel. In this study, effect of using diesel instead of natural gas for a selected power plant will be investigated in terms of exergy, economic and environmental impacts. The environmental evaluation is performed using life cycle assessment (LCA). In the second step, the operation of the plant will be optimized using exergy and economic objective functions. The results show that the exergy efficiency of the plant with natural gas as fuel is equal to 43.11%, while this efficiency with diesel will be 42.03%. Furthermore, the annual cost of plant using diesel is twice as that of plant using natural gas. Finally, diesel utilization leads to more contaminants production. Thus, environmental effects of diesel are much higher than that of natural gas. The optimization results demonstrate that in case of natural gas, exergy efficiency and annual cost of the power plant improve 2.34% and 4.99%, respectively. While these improvements for diesel are 2.36% and 1.97%.

  15. A Successful Pregnancy by Utilization of Gradually Increasing Low Dose Gonadotrophin Stimulation in a Modified Natural Cycle in Vitro Fertilization Procedure: Case Report

    Directory of Open Access Journals (Sweden)

    Serkan Kahyaoğlu

    2016-05-01

    Full Text Available The modified natural cycle in vitro fertilization (MNC-IVF treatment can be a promising method for poor responder patients especially in young patients with poor ovarian reserve. A 34-year-old primary infertile woman presented with a history of poor ovarian response and cycle cancellation following controlled ovarian hyperstimulation during an IVF-ET procedure two months ago. During MNC-IVF treatment with intracytoplasmic sperm injection (ICSI, gradually increasing doses of hMG for three days (totally 675 IU have been administered accompanied by daily 0,25 mg cetrorelix. Following ovulation triggering, one oocyte was picked up and a good quality (grade 1 embryo was transferred on day 2. A clinical pregnancy was established with ultrasonography on sixth weeks of gestation. Acceptable pregnancy rates per embryo transfer, low medication cost, relatively low risk of complications and higher patient acceptability are the main advantages of MNC-IVF treatment as a feasible treatment option especially for poor responder patients.

  16. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    Science.gov (United States)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  17. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  18. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    International Nuclear Information System (INIS)

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  19. Environmental impact assessment of a package type IFAS reactor during construction and operational phases: a life cycle approach.

    Science.gov (United States)

    Singh, Nitin Kumar; Singh, Rana Pratap; Kazmi, Absar Ahmad

    2017-05-01

    In the present study, a life cycle assessment (LCA) approach was used to analyse the environmental impacts associated with the construction and operational phases of an integrated fixed-film activated sludge (IFAS) reactor treating municipal wastewater. This study was conducted within the boundaries of a research project that aimed to investigate the implementation related challenges of a package type IFAS reactor from an environmental perspective. Along with the LCA results of the construction phase, a comparison of the LCA results of seven operational phases is also presented in this study. The results showed that among all the inputs, the use of stainless steel in the construction phase caused the highest impact on environment, followed by electricity consumption in raw materials production. The impact of the construction phase on toxicity impact indicators was found to be significant compared to all operational phases. Among the seven operational phases of this study, the dissolved oxygen phase III, having a concentration of ∼4.5 mg/L, showed the highest impact on abiotic depletion, acidification, global warming, ozone layer depletion, human toxicity, fresh water eco-toxicity, marine aquatic eco-toxicity, terrestrial eco-toxicity, and photochemical oxidation. However, better effluent quality in this phase reduced the eutrophication load on environment.

  20. Novel packaging for CW and QCW diode laser modules for operation with high power and duty cycles

    Science.gov (United States)

    Fassbender, Wilhelm; Lotz, Jens; Kissel, Heiko; Biesenbach, Jens

    2018-02-01

    Continuous wave (CW) and quasi-continuous wave (QCW) operated diode laser bars and arrays have found a wide range of industrial, medical, scientific, military and space applications with a broad variety in wavelength, pulse energy, pulse duration and beam quality. Recent applications require even higher power, duty cycles and power density. The heat loss will be dissipated by conductive cooling or liquid cooling close to the bars. We present the latest performance and reliability data of two novel high-brightness CW and QCW arrays of customized and mass-production modules, in compact and robust industry design for operation with high power and high duty cycles. All designs are based on single diode packages consisting of 10mm laser bars, soft or hard soldered between expansion matched submounts. The modular components cover a wide span of designs which differ basically in water/conduction (active/passive) cooled, single, linear (horizontal and vertical) arranged designs, as well as housed and unhoused modules. The different assembling technologies of active and passive cooled base plates affect the heat dissipation and therefore the reachable power at different QCW operating conditions, as well as the lifetime. As an example, a package consisting of 8 laser diodes, connected to a 28.8*13.5*7.0mm3 DCB (direct copper bonded) submount, passively or actively cooled is considered. This design is of particular interest for mobile applications seamless module to module building system, with an infinite number of laser bars at 1.7mm pitch. Using 940nm bars we can reach an optical output power per bar of 450W at 25°C base plate temperature with 10Hz, 1.2% duty cycle and 1.2ms pulse duration. As an additional example, micro channel coolers can be vertically stacked up to 50 diodes with a 1,15mm pitch. This design is suitable for all applications, demanding also compactness and light weight and high power density. Using near infrared bars and others, we can reach an optical

  1. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  2. Assessing and addressing increased stakeholder and operator information needs in nuclear fuel cycle facilities: two concepts

    Energy Technology Data Exchange (ETDEWEB)

    Saltiel, David H. [Sandia National Laboratories, Albuquerque (United States)

    2007-12-15

    Nuclear energy programs around the world increasingly find themselves at the nexus of potentially conflicting demands from both domestic and international stakeholders. On one side, the rapid growth in demand for electricity coupled with the goal of reducing carbon emissions calls for a significant expansion of nuclear energy. On the other, stakeholders are seeking ever greater safety, environmental, security, and nonproliferation assurances before consenting to the construction of new nuclear energy facilities. Satisfying the demand for clean energy supplies will require nuclear energy operators to find new and innovative ways to build confidence among stakeholders. This paper discusses two related concepts which can contribute to meeting the needs of key stakeholders in cost effective and efficient ways. Structured processes and tools for assessing stakeholder needs can build trust and confidence while facilitating the 'designing-in' of information collection systems for new facilities to achieve maximum efficiency and effectiveness. Integrated approaches to monitoring facilities and managing the resulting data can provide stakeholders with continued confidence while offering operators additional facility and process information to improve performance.

  3. Assessing and addressing increased stakeholder and operator information needs in nuclear fuel cycle facilities: two concepts

    International Nuclear Information System (INIS)

    Saltiel, David H.

    2007-01-01

    Nuclear energy programs around the world increasingly find themselves at the nexus of potentially conflicting demands from both domestic and international stakeholders. On one side, the rapid growth in demand for electricity coupled with the goal of reducing carbon emissions calls for a significant expansion of nuclear energy. On the other, stakeholders are seeking ever greater safety, environmental, security, and nonproliferation assurances before consenting to the construction of new nuclear energy facilities. Satisfying the demand for clean energy supplies will require nuclear energy operators to find new and innovative ways to build confidence among stakeholders. This paper discusses two related concepts which can contribute to meeting the needs of key stakeholders in cost effective and efficient ways. Structured processes and tools for assessing stakeholder needs can build trust and confidence while facilitating the 'designing-in' of information collection systems for new facilities to achieve maximum efficiency and effectiveness. Integrated approaches to monitoring facilities and managing the resulting data can provide stakeholders with continued confidence while offering operators additional facility and process information to improve performance

  4. A life cycle cost economics model for automation projects with uniformly varying operating costs. [applied to Deep Space Network and Air Force Systems Command

    Science.gov (United States)

    Remer, D. S.

    1977-01-01

    The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.

  5. Climate-based policies may increase life-cycle social costs of vehicle fleet operation

    International Nuclear Information System (INIS)

    Emery, Isaac; Mbonimpa, Eric; Thal, Alfred E.

    2017-01-01

    Sustainability guidelines and regulations in the United States often focus exclusively on carbon or petroleum reductions. Though some of these policies have resulted in substantial progress toward their goals, the effects of these efforts on other social and environmental externalities are often ignored. In this study, we examine the life-cycle air pollutant emissions for alternative fuel and vehicle purchase scenarios at a military installation near a typical urban area in the United States (U.S.). We find that scenarios which minimize petroleum use or greenhouse gas emissions do not concomitantly minimize criteria air pollutant emissions. We also employ social cost methodologies to quantify economic externalities due to climate change and health-related air pollutant impacts. Accounting for the social costs of climate change and air pollution from vehicle use reveals that criteria air pollutants may have a greater total impact than greenhouse gas emissions in locations similar to the urban area examined in this study. Use of first-generation biofuels, particularly corn grain ethanol, may reduce net petroleum use at the cost of increased total health impacts. More comprehensive policies may be needed to ensure that sustainability policies result in a net benefit to society. - Highlights: • U.S. energy and transportation policies focus on petroleum use and greenhouse gases. • Use of corn ethanol at a military base in Ohio, U.S. increases total social costs vs. gasoline. • Renewable electricity provides cost-effective climate and health protection. • DOD strategy to improve energy security may damage Americans' health. • More inclusive policies needed to protect health and climate.

  6. OMNIITOX - operational life-cycle impact assessment models and information tools for practitioners

    DEFF Research Database (Denmark)

    Molander, S; Lidholm, Peter; Schowanek, Diederik

    2004-01-01

    of the characterisation model(s) and limited input data on chemical properties, which often has resulted in the omission of toxicants from the LCIA, or at best focus on well characterised chemicals. The project addresses both problems and integrates models, as well as data, in an information system – the OMNIITOX IS....... There is also a need for clarification of the relations between the (environmental) risk assessments of toxicants and LCIA, in addition to investigating the feasibility of introducing LCA into European chemicals legislation, tasks that also were addressed in the project.......This article is the preamble to a set of articles describing initial results from an on-going European Commission funded, 5th Framework project called OMNIITOX, Operational Models aNd Information tools for Industrial applications of eco/TOXicological impact assessments. The different parts...

  7. Engineering analysis activities in support of susquehanna unit 1 startup testing and cycle 1 operations

    International Nuclear Information System (INIS)

    Miller, G.D.; Kukielka, C.A.; Olson, L.M.; Refling, J.G.; Roscioli, A.J.; Somma, S.A.

    1985-01-01

    The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations - a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems

  8. Evaluating life cycle costs of perpetual pavements in China using operational pavement management system

    Directory of Open Access Journals (Sweden)

    Saud A. Sultan

    2016-10-01

    Full Text Available Highway transportation is considered as vital factor in China’s economic growth; many high grade highways have been constructed in China during the last decades. The research and application of perpetual asphalt pavement (PP technology have been deployed in China since 2000. The semi-rigid pavement has been normally considered as typical pavement of high class highways in the design according to the Chinese experience. The objective of this research is to evaluate the performance of different Chinese perpetual pavements using operational pavement management system and to examine its suitability for use in the design and construction of more economical and durable pavements. It has been found that the use of thin asphalt layers over semi-rigid pavement foundation in PP structure will create more sustainable, economical, and durable PP structures in comparison with typical thick asphalt layers PP structures.

  9. Comparison of the APA-H (Westinghouse) calculations with the operational data for ZpNPP unit 3 cycles 16-19

    International Nuclear Information System (INIS)

    Abdullayev, A. M.; Gorbachenko, O. V.; Ignatchenko, A.I.; Maryokhin, S.V.; Zhukov, A. I.

    2007-01-01

    The computer simulation of ZpNPP Unit 3 (WWER-1000) Cycles 16-19 core depletion has been performed on the basis of the operational data. The changes in reactor heat rate, lead bank position and inlet temperature during the core operation have been taken into account. These calculations were performed by using Westinghouse APA-H (ALPHA/PHOENIX/ ANC-H) code system. The main objectives of the calculations were the comparison with operational data for core loading with TVS-M (Cycle 16) and transition core loading with TVS-A (Cycle 17-19). The calculation results were compared with the results of Critical boric acid concentration vs. Cycle Burnup measurements and Start up Physics Test measurements (at HZP, BOC, NoXe core conditions). Additionally, the comparison between the results of assemblies power calculation performed by ANC-H and BIPR-7A codes is presented (Authors)

  10. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    International Nuclear Information System (INIS)

    Douthat, D.M.; Armstrong, A.Q.

    1995-09-01

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives

  11. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    Directory of Open Access Journals (Sweden)

    Marie Izac

    Full Text Available It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  12. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    Science.gov (United States)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  13. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  14. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  15. Role of butter layer in low-cycle fatigue behavior of modified 9Cr and CrMoV dissimilar rotor welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Liu, Xia; Wang, Peng; Tang, Xinhua

    2014-01-01

    Highlights: • Modified 9Cr–CrMoV dissimilar turbine rotor was successfully welded by NG-SAW. • LCF properties of both welded joints were approximate at smaller strain amplitude. • Tempered martensite with amounts of carbides in HAZ contributed to weakest zones. • Matched BL determined LCF properties of whole joint for dissimilar welded rotor. - Abstract: The present work aims at studying the role of butter layer (BL) in low-cycle fatigue (LCF) behavior of modified 9Cr steel and CrMoV steel dissimilar welded joint. The significant difference of the chemical composition of base metals (BMs) makes it a challenge to achieve sound welded joint. Therefore, buttering was considered to obtain a transition layer between the dissimilar steels. The LCF tests of two kinds of specimens without and with butter layer were performed applying strain-controlled cyclic load with different axial strain amplitudes. The test results indicated that the number of cycles at higher strain amplitudes of welded joint without butter layer was greatly higher than that of the joint with butter layer, while the fatigue lifetime to crack initiation (2N f ) became closer to each other at low and middle strain amplitudes. The failure was in the tempered heat affected zone (HAZ) at the CrMoV side for specimens without BL, while the fracture occurred at the tempered HAZ in the BL for specimens with BL. The microstructure details of BM, BL, HAZ and weld metals (WMs) were revealed by optical microscopy (OM). It was found that the tempered martensite was major microstructure for welded joint and much more carbides were observed in tempered HAZ than other parts due to the repeated tempering. Microhardness test indicated a softest zone existing tempered HAZ of BL and also there was a softer zone in tempered HAZ at the CrMoV side due to repeated tempering during welding and post weld heat treatment (PWHT). And scanning electron microscopy (SEM) was applied to observe the fractography. It was

  16. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle

    International Nuclear Information System (INIS)

    Kim, Young Sik; Lee, Jong Jun; Kim, Tong Seop; Sohn, Jeong L.

    2011-01-01

    Research highlights: → The effect of firing syngas in a gas turbine designed for natural gas was investigated. → A full off-design analysis was performed for a wide syngas heating value range. → Restrictions on compressor surge margin and turbine metal temperature were considered. -- Abstract: We investigated the effects of firing syngas in a gas turbine designed for natural gas. Four different syngases were evaluated as fuels for a gas turbine in the integrated gasification combined cycle (IGCC). A full off-design analysis of the gas turbine was performed. Without any restrictions on gas turbine operation, as the heating value of the syngas decreases, a greater net system power output and efficiency is possible due to the increased turbine mass flow. However, the gas turbine is more vulnerable to compressor surge and the blade metal becomes more overheated. These two problems can be mitigated by reductions in two parameters: the firing temperature and the nitrogen flow to the combustor. With the restrictions on surge margin and metal temperature, the net system performance decreases compared to the cases without restrictions, especially in the surge margin control range. The net power outputs of all syngas cases converge to a similar level as the degree of integration approaches zero. The difference in net power output between unrestricted and restricted operation increases as the fuel heating value decreases. The optimal integration degree, which shows the greatest net system power output and efficiency, increases with decreasing syngas heating value.

  17. Effects of syngas type on the operation and performance of a gas turbine in integrated gasification combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Sik; Lee, Jong Jun [Graduate School, Inha University, Incheon 402-751 (Korea, Republic of); Kim, Tong Seop, E-mail: kts@inha.ac.k [Dept. of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Sohn, Jeong L. [Center for Next Generation Heat Exchangers, Busan 618-230 (Korea, Republic of)

    2011-05-15

    Research highlights: {yields} The effect of firing syngas in a gas turbine designed for natural gas was investigated. {yields} A full off-design analysis was performed for a wide syngas heating value range. {yields} Restrictions on compressor surge margin and turbine metal temperature were considered. -- Abstract: We investigated the effects of firing syngas in a gas turbine designed for natural gas. Four different syngases were evaluated as fuels for a gas turbine in the integrated gasification combined cycle (IGCC). A full off-design analysis of the gas turbine was performed. Without any restrictions on gas turbine operation, as the heating value of the syngas decreases, a greater net system power output and efficiency is possible due to the increased turbine mass flow. However, the gas turbine is more vulnerable to compressor surge and the blade metal becomes more overheated. These two problems can be mitigated by reductions in two parameters: the firing temperature and the nitrogen flow to the combustor. With the restrictions on surge margin and metal temperature, the net system performance decreases compared to the cases without restrictions, especially in the surge margin control range. The net power outputs of all syngas cases converge to a similar level as the degree of integration approaches zero. The difference in net power output between unrestricted and restricted operation increases as the fuel heating value decreases. The optimal integration degree, which shows the greatest net system power output and efficiency, increases with decreasing syngas heating value.

  18. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  19. Monitored Retrievable Storage conceptual system study: open cycle vault

    International Nuclear Information System (INIS)

    Smith, R.I.

    1983-11-01

    This report provides a modified description of the Open Cycle Vault Storage Concept which meets a specified set of requirements; an estimate of the costs of construction, operation, and decommissioning of the concepts; the costs required to expand the facility throughput and storage capability; and the life-cycle costs of the facility. 11 references, 23 figures, 35 tables

  20. Solar-driven Joule cycle reciprocating Ericsson engines for small scale applications. From improper operation to high performance

    International Nuclear Information System (INIS)

    Stanciu, Dorin; Bădescu, Viorel

    2017-01-01

    Highlights: • New dynamic model for parabolic trough collector (PTC) coupled to Ericsson engine (EE). • Design procedure of the PTC-EE system which avoid malfunction. • Variation of PTC-EE system performance during a day for different engine rotation speeds. • Strategy to switch between different rotation speeds to maximize daily output work. - Abstract: The paper focuses on a Joule cycle reciprocating Ericsson engine (JCREE) coupled with a solar parabolic trough collector (PTC). A small scale application located at mid Northern Hemisphere latitude (44°25″N) is considered. A new dynamic (time-dependent) model is developed and used to design the geometry and estimate the performance of the PTC-JCREE system under the most favorable weather conditions (i.e. summer day and clear sky). The paper brings two main contributions. First, specific constraints on the design parameters have been identified in order to avoid improper JCREE operation, such as gas under-compression in the compressor cylinder and gas over-compression and/or over-expansion in the expander cylinder. Second, increasing the work generated per day requires using a proper strategy to switch between different rotation speeds. Specific results are as follows. For the (reference) constant engine rotation speed 480 rpm, the output work per day is 39,270 kJ and the overall efficiency is 0.134. The output work decreases by increasing the rotation speed, since the operation interval during a day diminishes. A better operation strategy is to switch among three rotation speed values, namely 480, 540 and 600 rpm. In this case the output work is 40,322 kJ and the overall efficiency is 0.137. The performance improvement is quite small and the reference constant rotation speed 480 rpm may be a suitable choice, easier to use in practice. For both the constant and variable rotation speed strategies, the overall efficiency is almost constant along the effective operation time interval, which is from 8:46 to

  1. Improving the performances of gas turbines operated on natural gas in combined cycle power plants with application of mathematical models

    International Nuclear Information System (INIS)

    Dimkovski, Sasho

    2014-01-01

    The greater energy demand by today society sets a number of new challenges in the energy sector. The climate extremes impose new modes of operation of the power plants, with high flexibility in production. Combined cycle co generative power plants are the latest trend in the energy sector. Their high prevalence is due to the great efficiency and the good environmental characteristics. The main work horse in these cogeneration plants is the gas turbine, which power production and efficiency strongly depends on the external climate conditions. In warmer periods when there is increased demand for electricity, the power production from the gas turbines significantly declines. Because of the high electricity demand from the grid and reduced power production from the gas turbines at the same time, the need for application of appropriate technology for preserving the performances and power of the gas turbines arises. This master thesis explores different methods to improve the power in gas turbines by cooling the air on the compressor inlet, analyzing their applicability and effectiveness in order to choose the optimal method for power augmentation for the climatic conditions in the city Skopje. The master thesis gives detailed analysis of the weather in Skopje and the time frame in which the chosen method is applicable. At the end in the master thesis, the economic feasibility of the given method for power augmentation is clearly calculated, using a model of a power plant and calculating the resulting amount of gained energy, the amount of the initial investment, the cost for maintenance and operation of the equipment. By these calculations the period for initial return of investment is obtained. As an added benefit the positive environmental impacts of the applied technology for inlet air cooling is analyzed. (author)

  2. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  3. Effect of Female Body Mass Index on Oocyte Quantity in Fertility Treatments (IVF): Treatment Cycle Number Is a Possible Effect Modifier. A Register-Based Cohort Study

    DEFF Research Database (Denmark)

    Christensen, Mette Wulf; Ingerslev, Hans Jakob; Degn, Birte

    2016-01-01

    linear regressions analyses were performed accounting for the non-independence of ≥2 cycles in a woman. RESULTS: Stratification according to cycle number revealed a more suboptimal outcome in the first treatment- cycles than in the following cycles, suggesting a possible interaction or effect......INTRODUCTION: Overweight and obese women may require higher doses of gonadotrophin when undergoing In Vitro Fertilization Treatment (IVF). Consequently, one may expect a sub-optimal oocyte retrieval in the first treatment cycle and thus a larger compensation in gonadotrophin-dose in the following...

  4. [Effects of modified bazhen decoction in assistant with enteral nutrition on the growth hormone, the nutritional state, and the immune function in patients with gastric cancer after operation].

    Science.gov (United States)

    Wang, Hong-xing; Li, Jian-ping

    2011-10-01

    To observe the effects of modified Bazhen Decoction (BZD) in assistant with enteral nutrition (EN) on the growth hormone, the nutritional state, and the immune function in patients with gastric cancer after operation. The prospective, random, single-blinded, controlled clinical trial was adopted. 88 patients receiving gastric cancer operation were randomly assigned to the parenteral nutrition group (Group A, 27 cases), the EN group (Group B, 30 cases), and the comprehensive group (Group C, BZD in assistant with EN, 31 cases). Isocaloric and isonitrogenous parenteral nutritional support was given to patients in Group A from the operation day to the ninth day. Isocaloric and isonitrogenous EN was given to patients in Group B and C from the second day of operation till the ninth day. 100 mL BZD was nasal fed to patients in Group C during the second day to the ninth day after operation. The levels of the growth hormone, immune indices such as IgA, IgG, CD4+, CD8+, and CD4+/CD8+, etc., and nutritional indices such as serum albumin, prealbumin, transferrin, etc. were detected in the three groups one day before operation, on the 1st day after operation, and on the tenth day after operation. The levels of IgA, IgG, CD4+, and CD4+/CD8+, serum albumin, prealbumin, transferrin decreased more than before operation in the three groups, with statistical difference (Pnutrition state and the immune function.

  5. To report the obtained results in the simulation with the FCS-11 and Presto codes of the two first operation cycles of the Laguna Verde Unit 1 reactor

    International Nuclear Information System (INIS)

    Montes T, J.L.; Moran L, J.M.; Cortes C, C.C.

    1990-08-01

    The objective of this work is to establish a preliminary methodology to carry out analysis of recharges for the reactor of the Laguna Verde U-1, by means of the evaluation of the state of the reactor core in its first two operation cycles using the FCS2 and Presto-B codes. (Author)

  6. Simulation and analysis of an isolated full-bridge DC/DC boost converter operating with a modified perturb and observe maximum power point tracking algorithm

    Directory of Open Access Journals (Sweden)

    Calebe A. Matias

    2017-07-01

    Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.

  7. Application of modified version of SPPS-1 - HEXAB-2DB computer code package for operational analyses of fuel behaviour in WWER-440 reactors at Kozloduy NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kharalampieva, Ts; Stoyanova, I; Antonov, A; Simeonov, T [Kombinat Atomna Energetika, Kozloduj (Bulgaria); Petkov, P [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The modified version of SPPS-1 code called SPPS-1-HEXAB-2DB was applied for the purposes of the operational analysis and power peaking factors and reactor core critical parameters predictions of WWER-440s. The results of the calculations performed by the use of SPPS-1-HEXAB-2DB code and the corresponding parameters obtained from experiments at Kozloduy NPP WWER-440s as well as the results of fuel rod power distribution are presented. The method of operation simulation of reactor core with 349 assemblies (Unit 4) and with 313 fuel assemblies and 36 dummy fuel assemblies (Unit 1) is outlined. The modified code calculates not only fuel burnup and Pm-149 and Sm-149 concentrations distributions but also the space distribution of I-135 and Xe-135 concentrations. In this way it makes possible to perform the reactor operation simulation during the immediate periods after the reactor start-up or shut-down and to predict the critical reactor core parameters during transients. The results obtained show that SPPS-1-HEXAB-2DB code describes adequately the reactor core status. The new SPPS-1 code algorithm for estimation of assembly-wise power peaking factors distribution in reactor core is also described. The new code provides an option for checking the correctness of reactor core symmetry. The experience from the use of the modified SPPS-1-HEXAB-2DB code system confirms the provision of improved availability of operational analysis, prediction of Kozloduy NPP WWER-440s safe operations and fuel behaviour estimation. 14 tabs., 4 figs., 5 refs.

  8. 3D simulation of a core operation cycle of a BWR using Serpent; Simulacion 3D de un ciclo de operacion del nucleo de un BWR usando SERPENT

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Ch, M. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: rionchez@icloud.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This work had the main goal to develop a methodology to obtain the length of an operating cycle of the core of a BWR under different operating states using the Serpent code. The reactor core modeled in Serpent is composed of 444 fuel assemblies (120 with fresh fuels and 324 fuels from previous cycles), 109 cruciform control rods and light water as moderator and coolant. Once the core of the reactor was modeled in Serpent (Three-dimensional) without considering the cruciform control rods, a simulation was carried out with different steps of burning in the operational state with the average values of the fuel temperature (900 K), moderator temperature (600 K) and voids fraction equal to 0.4. In addition, the thermal power considered was 2017 MWt. This operational state was chosen because a previous analysis (not shown in this work) was carried out in 4 types of control cells. The first and second control cell has all of its natural uranium fuel pellets, with control rod and without control rod respectively. The third and fourth control cell types have various types of enrichment, both natural uranium and gadolinium in their fuel pellets, with control rod and without control rod. The conclusion of this previous analysis was that the behavior of the effective multiplication factor along the fuel burnout within the four control cell types was almost unaffected by the fuel temperature but was affected by the voids fraction. Thus, for this operating cycle in the operating state defined above, its length was 14,63052 GW t/Tm. In addition, at the end of this cycle, the decay heat obtained was equal to 116.71 MWt and the inventory of the most important isotopes to be considered was obtained, such as some isotopes of uranium, neptune, plutonium, americium and curio. (Author)

  9. Modifying effects of perceived adaptation to shift work on health, wellbeing, and alertness on the job among nuclear power plant operators.

    Science.gov (United States)

    Takahashi, Masaya; Tanigawa, Takeshi; Tachibana, Naoko; Mutou, Keiko; Kage, Yoshiko; Smith, Lawrence; Iso, Hiroyasu

    2005-01-01

    This study examined the relationship between perceived adaptation to shift work and shift-related problems. A total of 608 male operators at nuclear power plants completed a set of validated questionnaires including a modified version of the Standard Shiftwork Index, which covered adaptation to shift work, fit to job content, chronotypes, chronic fatigue, sleep, naps, shift work locus of control (SHLOC), psychological health, social/family life, daytime sleepiness, workload, alertness on the job, and lifestyle factors. Participants were divided into two groups according to their perceived level of adaptation to shift work. The good adaptation group showed better outcomes than the poor adaptation group in terms of fit to job content, chronic fatigue, daytime sleep before night shifts, social and family disruption, SHLOC, psychological health, and alertness during night shifts (pseffects of working shifts may be modified by perceptions of shift work adaptation.

  10. Case series of 17 modified Weil's osteotomies for Freiberg's and Köhler's II AVN, with AOFAS scoring pre- and post-operatively.

    Science.gov (United States)

    Edmondson, M C; Sherry, K R; Afolayan, J; Armitage, A R; Skyrme, A D

    2011-03-01

    Treatment for metatarsal head avascular necrosis is largely conservative. For severe or refractory cases there are various surgical options. We have performed a 'modified Weil's osteotomy' of the distal metatarsal in order to manage this problem. We present the largest case series, to our knowledge, with 17 such cases. The patients were scored pre- and post-operatively using the AOFAS Forefoot scoring system. We found that this procedure provided a mean score improvement of 36 points, with a complication rate of 5.9%. We would advocate this modified osteotomy as an effective, reliable and safe treatment option. Copyright © 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  11. A data base for PHW reactor operating on a once-through, low enriched uranium-thorium cycle

    International Nuclear Information System (INIS)

    Lungu, S.

    1984-04-01

    The study of a detailed data base for a new once-through uranium-thorium cycle using low enriched uranium (4 and 5,5% wt. U-235) and distinct UO 2 and ThO 2 fuel channels has been performed. With reference to a standard 638 MWe CANDU-type PHWR with 380 channels, evaluation of economics, fuel behaviour and safety has been performed. The Feinberg-Galanin method (code FEINGAL) has been used for calculation of axial flux distribution. All parameters have been provided by LATREP code following up the irradiation history. Economical assessment has shown that this fuel cycle is competitive with the natural uranium fuel cycle for 1979-based values of the parameters. Fuel behaviour and safety features modelling has shown that core behaviour of the uranium-thorium reactor under abnormal and accident conditions would be at least as good as that of the standard natural uranium reactor

  12. Enhancement studies on operation and control of water usage in closed cycle paper mills; Vaehaevetisen paperikoneen vesijaerjestelmaen dynamiikan tutkiminen - PMSY 01

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, I [VTT Automation, Espoo (Finland)

    1999-12-31

    The dynamics of pulp and water systems of a closed cycle paper mill was studied in the project using a detailed simulation model. The model covers the main parts of the manufacture of the body paper from the pulp containers to the rollers of a paper machine. The main adjustments of the process and parts of the automation are included in the simulation model. The first application of the model was the preliminary training of the operators of the mill. The objective of the training was to develop the process control and to teach, by the aid of the model, the operation of the new mill under different operating conditions. Valmet Datamatic XD process control system, commercially available, was used in the training for operation of the simulator, due to which the training was realistic. The same simulation model was used for analysis of the dynamics of the water consumption of the mill under different, which are normal operation, change of the quality, breaks in the machine, and the process and equipment failures. The model was also used for investigation of interfering substances in the flow networks of the mill. All the simulations were carried out before the mill start-up with the APMS software developed by VTT Automation. Dynamic simulation appeared to be an efficient method for validation of the process and automation planning of a closed cycle paper mill, as well as for training of operators. Due to proper training the start-up of the mill is easy. The methods developed in the project for water cycles and quality management of a paper machine are directly applicable for other corresponding process plants. (orig.)

  13. Enhancement studies on operation and control of water usage in closed cycle paper mills; Vaehaevetisen paperikoneen vesijaerjestelmaen dynamiikan tutkiminen - PMSY 01

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, I. [VTT Automation, Espoo (Finland)

    1998-12-31

    The dynamics of pulp and water systems of a closed cycle paper mill was studied in the project using a detailed simulation model. The model covers the main parts of the manufacture of the body paper from the pulp containers to the rollers of a paper machine. The main adjustments of the process and parts of the automation are included in the simulation model. The first application of the model was the preliminary training of the operators of the mill. The objective of the training was to develop the process control and to teach, by the aid of the model, the operation of the new mill under different operating conditions. Valmet Datamatic XD process control system, commercially available, was used in the training for operation of the simulator, due to which the training was realistic. The same simulation model was used for analysis of the dynamics of the water consumption of the mill under different, which are normal operation, change of the quality, breaks in the machine, and the process and equipment failures. The model was also used for investigation of interfering substances in the flow networks of the mill. All the simulations were carried out before the mill start-up with the APMS software developed by VTT Automation. Dynamic simulation appeared to be an efficient method for validation of the process and automation planning of a closed cycle paper mill, as well as for training of operators. Due to proper training the start-up of the mill is easy. The methods developed in the project for water cycles and quality management of a paper machine are directly applicable for other corresponding process plants. (orig.)

  14. Design of a powered elevator control system. [powered elevator system for modified C-8A aircraft for STOL operation

    Science.gov (United States)

    Glende, W. L. B.

    1974-01-01

    The design, fabrication and flight testing of a powered elevator system for the Augmentor Wing Jet STOL Research Aircraft (AWJSRA or Mod C-8A) are discussed. The system replaces a manual spring tab elevator control system that was unsatisfactory in the STOL flight regime. Pitch control in the AWJSRA is by means of a single elevator control surface. The elevator is used for both maneuver and trim control as the stabilizer is fixed. A fully powered, irreversible flight control system powered by dual hydraulic sources was designed. The existing control columns and single mechanical cable system of the AWJSRA have been retained as has been the basic elevator surface, except that the elevator spring tab is modified into a geared balance tab. The control surface is directly actuated by a dual tandem moving body actuator. Control signals are transmitted from the elevator aft quadrant to the actuator by a linkage system that includes a limited authority series servo actuator.

  15. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  16. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    OpenAIRE

    Caroline Schultealbert; Tobias Baur; Andreas Schütze; Tilman Sauerwald

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can ...

  17. Assessment of alternative fuel and powertrain transit bus options using real-world operations data: Life-cycle fuel and emissions modeling

    International Nuclear Information System (INIS)

    Xu, Yanzhi; Gbologah, Franklin E.; Lee, Dong-Yeon; Liu, Haobing; Rodgers, Michael O.; Guensler, Randall L.

    2015-01-01

    Highlights: • We present a practical fuel and emissions modeling tool for alternative fuel buses. • The model assesses well-to-wheels emissions impacts of bus fleet decisions. • Mode-based approach is used to account for duty cycles and local conditions. • A case study using real-world operations data from Atlanta, GA is presented. • Impacts of alternative bus options depend on operating and geographic features. - Abstract: Hybrid and electric powertrains and alternative fuels (e.g., compressed natural gas (CNG), biodiesel, or hydrogen) can often reduce energy consumption and emissions from transit bus operations relative to conventional diesel. However, the magnitude of these energy and emissions savings can vary significantly, due to local conditions and transit operating characteristics. This paper introduces the transit Fuel and Emissions Calculator (FEC), a mode-based life-cycle emissions modeling tool for transit bus and rail technologies that compares the performance of multiple alternative fuels and powertrains across a range of operational characteristics and conditions. The purpose of the FEC is to provide a practical, yet technically sophisticated tool for regulatory agencies and policy analysts in assessing transit fleet options. The FEC’s modal modeling approach estimates emissions as a function of engine load, which in turn is a function of transit service parameters, including duty cycle (idling and speed-acceleration profile), road grade, and passenger loading. This approach allows for customized assessments that account for local conditions. Direct emissions estimates are derived from the scaled tractive power (STP) operating mode bins and emissions factors employed in the U.S. EPA’s MOVES (MOtor Vehicle Emissions Simulator) model. Life-cycle emissions estimates are calculated using emissions factors from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model. The case study presented in this paper

  18. [Fuel Rod Consolidation Project]: The estimated total life cycle cost for the 30-year operation of prototypical consolidation demonstration equipment: Volume 4, Phase 2

    International Nuclear Information System (INIS)

    1987-01-01

    The Total Life Cycle Costs have been developed for the construction, operation and decommissioning of a single line of hot-cell-enclosed production consolidation equipment operating on spent fuel at the rate of 750 MTU/year for 30 years. The cost estimate is for a single production line that is part of an overall facility at either a Monitored Retrievable Storage or a Repository facility. This overall facility would include other capabilities and possibly other consolidation lines. However, no costs were included in the cost estimate for other portions of the plant, except that staff costs include an overhead charge that reflects the overhead support services in an overall facility

  19. A nuclear fuel cycle operator's point of view on the applicability of the new ICRP recommendations to aspects of nuclear safety

    International Nuclear Information System (INIS)

    Sheppard, G.T.; Berry, R.J.; Henry, P.

    1991-01-01

    The first section of the Paper deals with the ICRP recommendations, and makes general comments. The next two sections deal with the implications of the new recommendations on design and operation of Nuclear Fuel Cycle Facilities. The following conclusions are drawn: - The reductions in annual dose limits proposed in the new ICRP recommendations can be accommodated in the majority of modern nuclear fuel cycle facilities, and are less stringent than current design objectives. There are significant national differences between the UK and France in ability to accommodate the new ICRP recommendations on risk limitation from potential exposure situations (accidents). The French view is that it is not realistic to base the safety of industrial installations on risk limits expressed in terms of probability of deaths, while UK experience largely gained in the chemical and other industries, as well as in the nuclear industry, suggests that nuclear fuel cycle facilities will have no difficulty in demonstrating compliance with risk limits currently proposed by ICRP. It is unlikely that underground uranium mining operations, however sophisticated, will be able to operate within the new ICRP recommended dose limits

  20. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels

    Science.gov (United States)

    Neubauer, Raphael; Weinlaender, Christof; Kienzl, Norbert; Bitschnau, Brigitte; Schroettner, Hartmuth; Hochenauer, Christoph

    2018-05-01

    On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.

  1. A Preliminary Exploration of Operating Models of Second Cycle/Research Led Open Education Involving Industry Collaboration

    Science.gov (United States)

    Olsson, Ulf

    2014-01-01

    Scientists from five Swedish universities were interviewed about open second cycle education. Research groups and scientists collaborate closely with industry, and the selection of scientists for the study was made in relation to an interest in developing technology-enhanced open education, indicated by applications for funding from the Knowledge…

  2. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  3. Evaluation of an operational water cycle prediction system for the Laurentian Great Lakes and St. Lawrence River

    Science.gov (United States)

    Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara

    2017-04-01

    Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.

  4. Impact of accreditation on improvement of operational inputs after two cycles of assessments in some Ghanaian universities

    NARCIS (Netherlands)

    Dattey, Kwame; Westerheijden, Don F.; Hofman, W.H.A.

    2017-01-01

    The study assesses the influence of accreditation, after two cycles of evaluation on some selected Ghanaian universities. This was done by examining the changes that had occurred in specified indicators, mainly because of the implementation of suggestions for improvement made by the previous cycle’s

  5. A feasibility study on the longer cycle operation of Yonggwang nuclear power plants 3 and 4 (3 rd quarter report)

    Energy Technology Data Exchange (ETDEWEB)

    Zee Sung Kyun; Song, Jae Woong; Ha, Young Joon; Kim, Kyu Tae [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-04-01

    In this report, described are results of the feasibility study on applying for the 18-month cycle in Korean Standard Nuclear Power Plants (KSNPs). This report contains results of safety and economic evaluations, radiation source analysis, an effect on changing the calibration period for each component of NSSS, and review on the related regulating codes. 12 refs., 34 tabs., 28 figs. (author)

  6. Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety

    International Nuclear Information System (INIS)

    Sharifzadeh, Mahdi; Meghdari, Mojtaba; Rashtchian, Davood

    2017-01-01

    Highlights: • Integrating Solid Oxide Fuel Cells with thermal power plants enhance overall energy efficiency. • However, the high degree of process integration in hybrid power plants limits the operating window. • Multi-objective optimization was applied for integrated design and operation. • The Pareto optimal solutions demonstrated strong trade-off between energy efficiency and operational safety. - Abstract: Energy efficiency is one of the main pathways for energy security and environmental protection. In fact, the International Energy Agency asserts that without energy efficiency, 70% of targeted emission reductions are not achievable. Despite this clarity, enhancing the energy efficiency introduce significant challenge toward process operation. The reason is that the methods applied for energy-saving pose the process operation at the intersection of safety constraints. The present research aims at uncovering the trade-off between safe operation and energy efficiency; an optimization framework is developed that ensures process safety and simultaneously optimizes energy-efficiency, quantified in economic terms. The developed optimization framework is demonstrated for a solid oxide fuel cell (SOFC) power generation system. The significance of this industrial application is that SOFC power plants apply a highly degree of process integration resulting in very narrow operating windows. However, they are subject to significant uncertainties in power demand. The results demonstrate a strong trade-off between the competing objectives. It was observed that highly energy-efficient designs feature a very narrow operating window and limited flexibility. For instance, expanding the safe operating window by 100% will incur almost 47% more annualized costs. Establishing such a trade-off is essential for realizing energy-saving.

  7. A modified technique reduced operative time of laparoendoscopic rendezvous endoscopic retrograde cholangiopancreatography combined with laparoscopic cholecystectomy for concomitant gallstone and common bile ductal stone.

    Science.gov (United States)

    Liu, Wei; Wang, Qunwei; Xiao, Jing; Zhao, Liying; Huang, Jiangsheng; Tan, Zhaohui; Li, Pengfei

    2014-01-01

    Laparoendoscopic rendezvous (LERV) endoscopic retrograde cholangiopancreatography (ERCP) and laparoscopic cholecystectomy (LC+ERCP/LERV) are considered an optimal approach for concomitant gallstones and common bile duct stones. The rendezvous technique is essential for the success of procedure. We applied two different LERV techniques, traditional technique and modified technique, in 60 consecutive cases from January 2011 to November 2012. 32 cases who underwent modified technique (group 1) from February 2012 to November 2012 were retrospectively compared to 28 cases (group 2) who underwent traditional technique from January 2011 to January 2012. There was no significant difference between two groups with respect to preoperative demographic features. Although the difference was not statistically significant, the procedure was successfully performed in 31 cases (96.9%) in group 1 and 24 cases (86.2%) in group 2. The mean operative time and time of endoscopic part were 82.6 ± 19.6 min and 26.5 ± 5.99 min in group 1 which were significantly shorter than those in group 2 (118.0 ± 23.1 min and 58.7 ± 13.3 min, resp.). There was no postoperative pancreatitis and mortality in both groups. The mean hospital stay, blood loss, incidence of complications, and residual stone were of no difference in both groups. This study proved that this modified technique can effectively reduce the operative time and time of endoscopic part of LC+ERCP/LERV compared with traditional technique.

  8. A Modified Technique Reduced Operative Time of Laparoendoscopic Rendezvous Endoscopic Retrograde Cholangiopancreatography Combined with Laparoscopic Cholecystectomy for Concomitant Gallstone and Common Bile Ductal Stone

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2014-01-01

    Full Text Available Laparoendoscopic rendezvous (LERV endoscopic retrograde cholangiopancreatography (ERCP and laparoscopic cholecystectomy (LC+ERCP/LERV are considered an optimal approach for concomitant gallstones and common bile duct stones. The rendezvous technique is essential for the success of procedure. We applied two different LERV techniques, traditional technique and modified technique, in 60 consecutive cases from January 2011 to November 2012. 32 cases who underwent modified technique (group 1 from February 2012 to November 2012 were retrospectively compared to 28 cases (group 2 who underwent traditional technique from January 2011 to January 2012. There was no significant difference between two groups with respect to preoperative demographic features. Although the difference was not statistically significant, the procedure was successfully performed in 31 cases (96.9% in group 1 and 24 cases (86.2% in group 2. The mean operative time and time of endoscopic part were 82.6 ± 19.6 min and 26.5 ± 5.99 min in group 1 which were significantly shorter than those in group 2 (118.0 ± 23.1 min and 58.7 ± 13.3 min, resp.. There was no postoperative pancreatitis and mortality in both groups. The mean hospital stay, blood loss, incidence of complications, and residual stone were of no difference in both groups. This study proved that this modified technique can effectively reduce the operative time and time of endoscopic part of LC+ERCP/LERV compared with traditional technique.

  9. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump

    International Nuclear Information System (INIS)

    Dong Jiankai; Deng Shiming; Jiang Yiqiang; Xia Liang; Yao Yang

    2012-01-01

    For a space heating air source heat pump (ASHP) unit, when its outdoor coil surface temperature is below both the air dew point temperature and the freezing point of water, frost will form on its outdoor coil surface. Frosting affects its operational performance and energy efficiency. Therefore, periodic defrosting is necessary. Currently, the most widely used standard defrosting method for ASHP units is reverse cycle defrost. The energy that should have been used for space heating is used to melt frost, vaporize the melted frost off outdoor coil surface and heat ambient air during defrosting. It is therefore necessary to study the sources of heat supplies and the end-uses of the heat supplied during a reverse cycle defrost operation. In this paper, firstly, an experimental setup is described and experimental procedures are detailed. This is followed by reporting the experimental results and the evaluation of defrosting efficiency for the experimental ASHP unit. Finally, an evaluation of defrosting heat supplies and energy consumptions during a revere cycle defrost operation for the experimental ASHP unit is presented. The experimental and evaluation results indicated that the heat supply from indoor air contributed to 71.8% of the total heat supplied for defrosting and 59.4% of the supplied energy was used for melting frost. The maximum defrosting efficiency could be up to 60.1%. - Highlights: ► Heat supply and consumption during reverse cycle defrost was experimentally studied. ► Indoor air contributed to >70% of total heat supply when indoor fan was turned on. ► ∼60% of the supplied energy was used for melting frost. ► Alternate heat supply other than indoor air should be explored.

  10. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

    Science.gov (United States)

    Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay

    2018-03-01

    Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.

  11. Design study of a PWR of 1300 MWe of Angra-2 type operating in the thorium cycle

    International Nuclear Information System (INIS)

    Andrade, E.P.; Carneiro, F.A.N.; Schlosser, J.G.

    1984-01-01

    The utilization of the thorium-highly enriched uranium and of the thorium-plutonium mixed oxide fuels in an unmodified PWR is analysed. Reactor core design calculations were performed for both types of fuels considering once-through and recycle fuels. The calculations were performed with the KWU design codes FASER-3 and MEDIUM-2.2 after introduction of the thorium chain and some addition of nuclide data in FASER-3. A two-energy group scheme and a two-dimensional (XY) representation of the reactor core were utilized. No technical problem that precluded the utilization of any of the options analyzed was found. The savings in uranium ore introduced by the thorium cycle with fuel recycling ranges from 13% to 52% as compared with the usual uranium once-through cycle; the SWU savings goes from 13% to 22%. (Author) [pt

  12. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome.

    Science.gov (United States)

    Balajthy, András; Somodi, Sándor; Pethő, Zoltán; Péter, Mária; Varga, Zoltán; Szabó, Gabriella P; Paragh, György; Vígh, László; Panyi, György; Hajdu, Péter

    2016-08-01

    In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.

  13. Multi-objective optimization and exergetic-sustainability of an irreversible nano scale Braysson cycle operating with Ma

    Directory of Open Access Journals (Sweden)

    Mohammad H. Ahmadi

    2016-06-01

    Full Text Available Nano technology is developed in this decade and changes the way of life. Moreover, developing nano technology has effect on the performance of the materials and consequently improves the efficiency and robustness of them. So, nano scale thermal cycles will be probably engaged in the near future. In this paper, a nano scale irreversible Braysson cycle is studied thermodynamically for optimizing the performance of the Braysson cycle. In the aforementioned cycle an ideal Maxwell–Boltzmann gas is used as a working fluid. Furthermore, three different plans are used for optimizing with multi-objectives; though, the outputs of the abovementioned plans are assessed autonomously. Throughout the first plan, with the purpose of maximizing the ecological coefficient of performance and energy efficiency of the system, multi-objective optimization algorithms are used. Furthermore, in the second plan, two objective functions containing the ecological coefficient of performance and the dimensionless Maximum available work are maximized synchronously by utilizing multi-objective optimization approach. Finally, throughout the third plan, three objective functions involving the dimensionless Maximum available work, the ecological coefficient of performance and energy efficiency of the system are maximized synchronously by utilizing multi-objective optimization approach. The multi-objective evolutionary approach based on the non-dominated sorting genetic algorithm approach is used in this research. Making a decision is performed by three different decision makers comprising linear programming approaches for multidimensional analysis of preference and an approach for order of preference by comparison with ideal answer and Bellman–Zadeh. Lastly, analysis of error is employed to determine deviation of the outcomes gained from each plan.

  14. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  15. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  16. Operating experience with a near-real-time inventory balance in a nuclear-fuel-cycle plant

    International Nuclear Information System (INIS)

    Armento, W.J.; Box, W.D.; Kitts, F.G.; Krichinsky, A.M.; Morrison, G.W.; Pike, D.H.

    1981-01-01

    The principal objective of the ORNL Integrated Safeguards Program (ISP) is to provide enhanced material accountability, improved process control, and greater security for nuclear fuel cycle facilities. With the improved instrumentation and computer interfacing currently installed, the ORNL 233 U Pilot Plant has demonstrated capability of a near-real-time liquid-volume balance in both the solvent-extraction and ion-exchange systems. Future developments should include the near-real-time mass balancing of special nuclear materials as both a static, in-tank summation and a dynamic, in-line determination. In addition, the aspects of site security and physical protection can be incorporated into the computer monitoring

  17. AREVA Technical Days (ATD) session 2: operations of the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    These technical days organized by the Areva Group aims to explain the group activities in a technological and economic point of view, to provide an outlook of worldwide energy trends and challenges and to present each of their businesses in a synthetic manner. This second session deals with the reprocessing business, back-end financing mechanisms, technology transfer, environmental management, risk management programs, research and development contribution to waste volume reductions, issues and outlook of nuclear wastes, comparison of the open and closed cycles. (A.L.B.)

  18. Operating experience of centrifugal contactors used in a third plutonium purification cycle at the Marcoule reprocessing plant

    International Nuclear Information System (INIS)

    Coste, J.A.; Breschet, C.A.; Delafontaine, G.L.

    1991-01-01

    Multistage centrifugal contactors of the type SGN-ROBATEL LX 208 NSC are used in a third plutonium cycle at the Marcoule Reprocessing Plant, they have been smooth-running since the commissioning in 1984. The four centrifugal contactors, totalling 32 stages, are used for Extraction. Scrub and Acidic Strip, and a bank of three flat mixer-settlers is used for plutonium blocking, and soda washing of the solvent. The plutonium product, the residual activity of which is less than one microcurie per gram, is diluent washed in a bank of three flat mixer-settlers, before been concentrated in a zirconium evaporator to 200 g. 1 -1

  19. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  20. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle.

    Science.gov (United States)

    Kapoor, Amita; Matthews, Stephen G

    2008-12-01

    Prenatal stress is associated with altered behavior and hypothalamic-pituitary-adrenal (HPA) axis function postnatally. Recent studies suggest that these outcomes are dependent on the timing of the prenatal stress. The majority of these studies have been carried out in male offspring. We hypothesized that a short period of prenatal stress would result in female offspring that exhibit differences in open-field behavior and HPA axis activity, but the outcome would depend on the timing of the prenatal stress and the stage of the reproductive cycle. Pregnant guinea pigs were exposed to a strobe light during the fetal brain growth spurt [gestational d 50-52 (PS50)] or during the period of rapid brain myelination [gestational d 60-62 (PS60)]. Open-field activity was assessed in juvenile and adult female offspring. HPA axis function was tested in adult offspring. All tests in adulthood were carried out during the estrous and luteal phases of the reproductive cycle to determine the effect of stage on HPA axis programming. Tissues were collected upon completion of the study for analysis by in situ hybridization. PS60 offspring exhibited decreased activity in an open field during the estrous phase of the reproductive cycle compared with control offspring. Both PS50 and PS60 offspring exhibited a lower salivary cortisol response to a stressor, only during the estrous phase. Consistent with the behavioral and endocrine data, PS60 females exhibited lower plasma estradiol levels, reduced ovary weight, and increased glucocorticoid receptor mRNA in the paraventricular nucleus. In conclusion, we have demonstrated that there are effects of prenatal stress on behavior and HPA axis functioning in female offspring but that the outcomes are dependent on the timing of the prenatal stress together with the status of the reproductive cycle.

  1. Real-time observation of irradiated Hela-cell Modified by Fluorescent ubiquitination-based Cell Cycle Indicator Using Synchrotron X-Ray Microbeam

    International Nuclear Information System (INIS)

    Narita, A.; Noguchi, M.; Kaminaga, K.; Yokoya, A.; Kobayashi, K.; Usami, N.; Fujii, K.

    2015-01-01

    Fluorescent ubiquitination-based cell-cycle indicator (FUCCI) human cancer (HeLa) cells (red indicates G1; green, S/G2) were exposed to a synchrotron X-ray microbeam. Cells in either G1 or S/G2 were irradiated selectively according to their colour in the same microscopic field. Time-lapse micrographs of the irradiated cells were acquired for 24 h after irradiation. For fluorescent immunostaining, phosphorylated histone proteins (γ-H2AX) indicated the induction of DNA double-strand breaks. The cell cycle was arrested by irradiation at S/G2. In contrast, cells irradiated at G1 progressed to S/G2. The foci were induced in cells irradiated at both G1 and S/G2, suggesting that the G1-S (or S) checkpoint pathway does not function in HeLa cells due to the fact that the cells are functionally p53 deficient, even though X-ray microbeam irradiation significantly induces double-strand breaks. These results demonstrate that single FUCCI cell exposure and live cell imaging are powerful methods for studying the effects of radiation on the cell cycle. (authors)

  2. Operational analysis of the coupling between a multi-effect distillation unit with thermal vapor compression and a Rankine cycle power block using variable nozzle thermocompressors

    International Nuclear Information System (INIS)

    Ortega-Delgado, Bartolomé; Cornali, Matteo; Palenzuela, Patricia; Alarcón-Padilla, Diego C.

    2017-01-01

    Highlights: •Variable nozzle steam ejectors are used for operation flexibility of MED plants. •The power block breaking points have been investigated by simulations in Thermoflex. •An operational model of the MED-TVC process is developed for part load operation. •Efficiency and fresh water production are studied at nominal and partial loads. -- Abstract: In Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) plants, fixed steam ejectors are usually designed for constant motive steam pressures. When these distillation units are integrated into Concentrating Solar Power (CSP) plants, the available motive steam pressure is normally lower than the design value (due to the partial load operation of the power cycle under different solar radiation conditions), being the efficiency of the steam ejectors drastically reduced. Also, it has a negative impact on the fresh water production from the desalination plant because of a decrease in the mass flow of the motive steam. All this can be avoided by using variable nozzle steam ejectors, which can adjust the mass flow rate of steam according to the variable pressure so that they are always operating with the maximum efficiency and therefore they can maintain the freshwater production of the desalination plant near to the nominal value. This work presents a study of the coupling between CSP plants and MED-TVC units using variable nozzle steam ejectors in a wide range of operating conditions (on and off-design). For this purpose, simulations of a Rankine cycle power block in a typical commercial CSP plant have been firstly performed at different thermal loads to investigate the operational limits that allow keeping the motive steam mass flow rates constant. Then, the efficiency and fresh water production of an MED-TVC unit coupled to the different extractions available at the CSP plant have been studied in a wide range of operating conditions, covering both nominal and partial loads. To this end, an

  3. Co-operation of the CMEA member countries in the developing power reactors of various types, including some aspects of their nuclear fuel cycles

    International Nuclear Information System (INIS)

    Barbur, I.; Barchenkov, A.; Molnar, L; Panasenkov, A.; Tolpygo, V.; Hake, V.; Shcherbinin, B.

    1977-01-01

    The report gives an account of the problems of projected development of atomic power and evaluates its role in the fuel and power complex and long-range development of interconnected power systems of the CMEA member countries. The report emphasizes the importance of scientific and technical co-operation in the creation of power reactors on thermal and fast neutrons with 1000-1500 MW unit electric capacity as well as in the elaboration of nuclear plants for heating services. It notes the positive experience of the International scientific and research group of scientists of the CMEA member countries carrying out reactor-physical studies on the critical assembly and its contribution to the elaboration of power reactors. The report contains basic conclusions from the development forecast for nuclear power of the CMEA member countries up to 1990 including forecasting methodology; role of nuclear power plants in saving natural and enriched uranium for a projected period; impact of nuclear power development rates on its structure (thermal and fast reactor ratio); relation between the beginning of mass commissioning of nuclear power plants with fast reactors and the integral demand for nuclear fuel; scale of required capacities of fuel cycle services; time dependence of fuel cycle on nuclear fuel requirements. It examines the problems and lists the results of scientific and technical co-operation of the CMEA member countries in the field of fuel cycle, including the transport of spent nuclear fuel, its recovery, reprocessing and radioactive waste disposal. Particular questions of co-operation of the CMEA member countries to secure radiation safety of nuclear power plants and environmental protection are analyzed. The report notes the role of international economic associations - ''Interatomenergo'' and ''Interatominstrument'' - in the accelerated development of nuclear power on the basis of cooperation and specialization in the manufacture of equipment for nuclear power

  4. On the evaluation of feed requirements and costs analysis of preirradiated fuel cycle operations for uranium fuelled light water reactors

    International Nuclear Information System (INIS)

    El Osery, I.A.; Yasso, K.A.; Abdel Salam, A.S.

    1982-01-01

    This work is a part of an integrated scheme for nuclear power cost evaluation. The paper gives a brief description of the different operations included to get enriched UO 2 in its final form. A Material Balance Sheet is developed to estimate quantitatively the input material reguirements to each fuel operation. An improved approach for fuel cost analysis is developed. The paper includes a complete FORTRAN listing for the computer program carried out for this purpose together with description of the program input data requirements and output facilities. Illustrative numerical results are provided

  5. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC) Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    OpenAIRE

    Chen Bei; Hongguang Zhang; Fubin Yang; Songsong Song; Enhua Wang; Hao Liu; Ying Chang; Hongjin Wang; Kai Yang

    2015-01-01

    The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC) system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC...

  6. The IAEA network on environmental management and remediation (ENVIRONET) - promoting sustainable uranium production operations by taking environmental remediation under a life-cycle perspective

    International Nuclear Information System (INIS)

    Monken-Fernandes, H.

    2010-01-01

    Some of the past uranium production operations have caused extensive environmental problems. The lack of appropriate regulatory framework in addition to the fact that environmental issues were not conveniently addressed in the operations contributed to this situation. Nowadays, this situation has changed dramatically and lessons learned from the past have led to the implementation of responsible operations from both environmental and social perspectives. Involvement of different stakeholders in the decision making process turned out to be a mandatory issue in many countries. With the so called 'Renascence of Nuclear Power' new production sites will come into play. The sustainability of the uranium industry will depend on the adoption of good practices in these operations under a life-cycle perspective. The recently launched IAEA initiative - the ENVIRONET is aimed at contributing to expedite the transfer of experience amongst its members. It brings together private and state-owned companies, research institutes, and governmental organizations providing a forum for information and experience exchange. Sharing of practical experience is to be addressed by means of training courses and workshops. In addition to this long distance training and educational material will be made available. This paper will present the ENVIRONET and describe how networking can contribute to the implementation of sustainable and responsible uranium production operations worldwide. (author)

  7. Result of 'clean plant operation tactics' in Onagawa Nuclear Power Station No.1 unit during the first fuel cycle and the first maintenance outage

    International Nuclear Information System (INIS)

    Nukazuka, Hideo; Terada, Hideo; Morikawa, Yoshitake; Tomura, Susumu.

    1986-01-01

    On June 1, 1984, No.1 plant in Onagawa Nuclear Power Station started the commercial operation, and recorded the nonstop operation for 344 days. The parallel off was made on April 3, 1985, and the first regular inspection was carried out. On July 12, 1985, the regular inspection was completed, and thereafter, the second cycle operation has been smoothly continued. Special attention was paid to the measures for reducing radiation exposure, and the attainment of the clean plant was aimed at. As the measures for reducing radiation level, the strengtheining of purifying facilities, the suppression of crud generation, the adoption of low cobalt material and the strengthening of shielding were carried out. For shortening exposure time, the machinery and equipment were improved, paying attention to automation, remote operation and labor saving, and the improvement of reliability, maintainability and inspection. In addition to these design measures, in the construction, operation and regular inspection, the clean plant measures were taken. Very good results were obtained. (Kako, I.)

  8. A randomised controlled study of the post-operative analgesic efficacy of ultrasound-guided pectoral nerve block in the first 24 h after modified radical mastectomy

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2018-01-01

    Full Text Available Background and Aims: Breast cancer has become the most common cancer in women worldwide. Acute post-operative pain following mastectomy remains a challenge for the anaesthesiologist despite a range of treatment options available. The present study aimed to compare the post-operative analgesic efficacy of pectoral nerve (Pecs block performed under ultrasound with our standard practice of opioids and non-steroidal anti-inflammatory drugs for mastectomy. Methods: This randomised controlled study was conducted at a tertiary care teaching hospital in India, after obtaining ethical clearance. Fifty adult female patients posted for elective unilateral modified radical mastectomy were divided into two groups as follows: Group I (general anaesthesia only and Group II (general anaesthesia plus ultrasound-guided Pecs block, each comprising 25 patients. Post-randomisation, patients in Group I received general anaesthesia, while Group II patients received ultrasound-guided Pecs block followed by general anaesthesia after 20 min. The primary outcome was measured as patient-reported pain intensity using Visual Analogue Scale (VAS at rest. Statistical analysis was performed using Student's t-test and Mann–Whitney U-test. Data were entered into MS Excel spreadsheet and analysis was performed using the Statistical Package for the Social Sciences version 23.0. Results: VAS score was significantly lower in Group II at rest and on abduction post-operatively at all time intervals (P < 0.001. The 24-h tramadol consumption was significantly less in Group II compared to Group I (114.4 ± 4.63 mg vs. 402.88 ± 74.22, P < 0.0001. Conclusion: Pecs block provided excellent post-operative analgesia in the first 24 h.

  9. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles

    Directory of Open Access Journals (Sweden)

    Benhmidene Ali

    2011-01-01

    Full Text Available The mathematical model will be able to predict the operated condition (required tube diameters, heat input and submergence ratio….. That will result in a successful bubble pump design and hence a refrigeration unit. In the present work a one-dimensional two-fluid model of boiling mixing ammonia-water under constant heat flux is developed. The present model is used to predict the outlet liquid and vapor velocities and pumping ratio for different heat flux input to pump. The influence of operated conditions such as: ammonia fraction in inlet solution and tube diameter on the functioning of the bubble pump is presented and discussed. It was found that, the liquid velocity and pumping ratio increase with increasing heat flux, and then it decreases. Optimal heat flux depends namely on tube diameter variations. Vapour velocity increases linearly with increasing heat flux under designed conditions.

  10. AREVA Technical Days (ATD) session 4: operations of the front-end division of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2004-01-01

    These technical days organized by the Areva Group aims to explain the group activities in a technological and economic point of view, to provide an outlook of worldwide energy trends and challenges and to present each of their businesses in a synthetic manner. This fourth session deals with the strategic and financial significance of the Areva mining operations, the Areva chemistry business, the Areva enrichment business and the Areva fuel business. (A.L.B.)

  11. Cost-effectiveness performance analysis of organic Rankine cycle for low grade heat utilization coupling with operation condition

    International Nuclear Information System (INIS)

    Wang, Dongxiang; Ling, Xiang; Peng, Hao

    2013-01-01

    This paper analyzed the influence of working fluids selection and operation conditions on the cost-effectiveness performance and net power output of an ORC for low grade heat utilization. A net power output model has been proposed theoretically and compared with the theoretical data calculated from thermodynamic analysis, exhibiting excellent agreements with the theoretical data. The proposed net power output model theoretically indicates that Jacob number and the ratio of evaporating temperature and heat rejected temperature play essential roles in discriminating the net power output among various working fluids at the same operation condition. For a given condensing and evaporating temperature, it can be concluded theoretically that fluid with low Jacob number will show attractive performance in an ORC. The maximum net power output is determined by the heat source rather than working fluids with a low inlet temperature of heat source. Cost-effectiveness performance analysis reveals that the maximum net power output and the best CEP cannot be achieved at the same time and compromise must be made when choosing the most suitable organic working fluids in different ORC designs. -- Highlights: • A net power output model is proposed and compared with theoretical data. • For fixed operation condition, low Ja fluid shows attractive performance in ORC. • The heat source rather than working fluid determines ORC performance at low T hs,in • The peak W net and best CEP cannot be achieved at the same time, compromise must be made

  12. NICMOS Cycles 13 and 14 Calibration Plans

    Science.gov (United States)

    Arribas, Santiago; Bergeron, Eddie; de Jong, Roeof; Malhotra, Sangeeta; Mobasher, Bahram; Noll, Keith; Schultz, Al; Wiklind, Tommy; Xu, Chun

    2005-11-01

    This document summarizes the NICMOS Calibration Plans for Cycles 13 and 14. These plans complement the SMOV3b, the Cycle 10 (interim), and the Cycles 11 and 12 (regular) calibration programs executed after the installation of the NICMOS Cooling System (NCS).. These previous programs have shown that the instrument is very stable, which has motivated a further reduction in the frequency of the monitoring programs for Cycle 13. In addition, for Cycle 14 some of these programs were slightly modified to account for 2 Gyro HST operations. The special calibrations on Cycle 13 were focussed on a follow up of the spectroscopic recalibration initiated in Cycle 12. This program led to the discovery of a possible count rate non-linearity, which has triggered a special program for Cycle 13 and a number of subsequent tests and calibrations during Cycle 14. At the time of writing this is a very active area of research. We also briefly comment on other calibrations defined to address other specific issues like: the autoreset test, the SPAR sequences tests, and the low-frequency flat residual for NIC1. The calibration programs for the 2-Gyro campaigns are not included here, since they have been described somewhere else. Further details and updates on specific programs can be found via the NICMOS web site.

  13. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  14. Operational, control and protective system transient analyses of the closed-cycle GT-HTGR power plant

    International Nuclear Information System (INIS)

    Openshaw, F.L.; Chan, T.W.

    1980-07-01

    This paper presents a description of the analyses of the control/protective system preliminary designs for the gas turbine high-temperature gas-cooled reactor (GT-HTGR) power plant. The control system is designed to regulate reactor power, control electric load and turbine speed, control the temperature of the helium delivered to the turbines, and control thermal transients experienced by the system components. In addition, it provides the required control programming for startup, shutdown, load ramp, and other expected operations. The control system also handles conditions imposed on the system during upset and emergency conditions such as loop trip, reactor trip, or electrical load rejection

  15. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions

    International Nuclear Information System (INIS)

    Yang, Fubin; Dong, Xiaorui; Zhang, Hongguang; Wang, Zhen; Yang, Kai; Zhang, Jian; Wang, Enhua; Liu, Hao; Zhao, Guangyao

    2014-01-01

    Highlights: • Dual loop ORC system is designed to recover waste heat from a diesel engine. • R245fa is used as working fluid for the dual loop ORC system. • Waste heat characteristic under engine various operating conditions is analyzed. • Performance of the combined system under various operating conditions is studied. • The waste heat from coolant and intake air has considerable potential for recovery. - Abstract: To take full advantage of the waste heat from a diesel engine, a set of dual loop organic Rankine cycle (ORC) system is designed to recover exhaust energy, waste heat from the coolant system, and released heat from turbocharged air in the intercooler of a six-cylinder diesel engine. The dual loop ORC system consists of a high temperature loop ORC system and a low temperature loop ORC system. R245fa is selected as the working fluid for both loops. Through the engine test, based on the first and second laws of thermodynamics, the performance of the dual loop ORC system for waste heat recovery is discussed based on the analysis of its waste heat characteristics under engine various operating conditions. Subsequently, the diesel engine-dual loop ORC combined system is presented, and the effective thermal efficiency and the brake specific fuel consumption (BSFC) are chosen to evaluate the operating performances of the diesel engine-dual loop ORC combined system. The results show that, the maximum waste heat recovery efficiency (WHRE) of the dual loop ORC system can reach 5.4% under engine various operating conditions. At the engine rated condition, the dual loop ORC system achieves the largest net power output at 27.85 kW. Compared with the diesel engine, the thermal efficiency of the combined system can be increased by 13%. When the diesel engine is operating at the high load region, the BSFC can be reduced by a maximum 4%

  16. Operation characteristic and performance comparison of organic Rankine cycle (ORC) for low-grade waste heat using R245fa, R123 and their mixtures

    International Nuclear Information System (INIS)

    Feng, Yong-qiang; Hung, Tzu-Chen; He, Ya-Ling; Wang, Qian; Wang, Shuang; Li, Bing-xi; Lin, Jaw-Ren; Zhang, Wenping

    2017-01-01

    Highlights: • Experimental comparison using R123, R245fa and their mixtures has been investigated. • The basic operation parameters and the detailed operation characteristics of pure and mixture working fluids are addressed. • The mixture owns a relatively higher pump power consumption, 10–50% higher than that of R245fa and 2–47% higher than that of R123. • The highest system generating efficiency of 4.53% is obtained by 0.67R245fa/0.33R123. - Abstract: The operation characteristic and performance comparison of low-grade organic Rankine cycle (ORC) using R245fa, R123 and their mixtures have been investigated. The heat source temperature is set to be 120 °C, while the mass flow rate is controlled by adjusting the pump frequency. The basic operation parameters are first examined, while the detailed operation characteristics of pure and mixture working fluids are addressed. The system overall performance, including thermal efficiency and system generating efficiency, for pure and mixture working fluids are explored. The experimental results show that the mixtures own a relatively higher pump power consumption and enhancing the pump performance is also significant for ORC application. Whether the mixtures exhibit better thermodynamic performance than the pure working fluids depend on the operation parameters and mass fraction of mixtures. 0.67R245fa/0.33R123 owns the highest maximum net electricity output of 1.67 kW, 4.38% higher than that of R245fa and 63.73% higher than that of R123. Compared to the pure working fluids, the mixture working fluids own a better thermodynamic performance and a moderate economic performance.

  17. Operation characteristic of a R123-based organic Rankine cycle depending on working fluid mass flow rates and heat source temperatures

    International Nuclear Information System (INIS)

    Feng, Yong-Qiang; Hung, Tzu-Chen; Wu, Shang-Lun; Lin, Chih-Hung; Li, Bing-Xi; Huang, Kuo-Chen; Qin, Jiang

    2017-01-01

    Highlights: • The operation characteristic of an Organic Rankine Cycle using R123 and a scroll expander have been investigated. • The behaviors and detailed discussion for those four major components are examined. • The expander isentropic efficiency presents a slight decrease first and then a sharp increase with mass flow rate. • The maximum electrical power and system generation efficiency are 2.01 kW and 3.25%, respectively. - Abstract: The test and operation characteristic of an organic Rankine cycle using R123 and a scroll expander have been investigated. The steady-state operation characteristic is addressed with the varying working fluid mass flow rates ranging of 0.124–0.222 kg/s and heat source temperatures ranging of 383.15–413.15 K. The behaviors and detailed discussion for those four major components (pump, evaporator, expander and condenser) are examined. The experimental results show that the environmental temperature presents a higher influence on the pump behaviors. The range of pump power consumption, isentropic efficiency and back work ratio are 0.21–0.32 kW, 26.76–53.96%, and 14–32%, respectively. The expander isentropic efficiency presents a slight decrease first and then a sharp increase with mass flow rate, while a degree of superheating more than 3 K is necessary to avoid expander cavitation. The expander isentropic and generator efficiencies are in range of 69.10–85.17% and 60–73%, respectively, while the respective heat transfer coefficients for evaporator and condenser are ranging of 200–400 and 450–2000 W/m"2 K. The maximum expander shaft power and electrical power are 2.78 kW and 2.01 kW, respectively, while the maximum system generating efficiency is 3.25%. Moreover, the tested thermal efficiency presents a slight decrease trend with mass flow rate.

  18. Experience in the chemistry field from the operating cycle of Grohnde and Philippsburg II nuclear power stations

    International Nuclear Information System (INIS)

    Jacobi, G.; Ruehle, W.

    1987-01-01

    Experience from the primary section of the plants in relation to the activity pattern of corrosion products, indicates primarily that cobalt-free materials have been used throughout in Philippsburg II nuclear power station, which was no longer economically possible at Grohnde because of the advanced stages of manufacture and installation. Consequently, the activity concentration for Co-60 in Philippsburg was lower from the outset than at a comparable time at Grohnde. The second part of the paper discusses experience from the secondary section of the plants, based on the AVT (all volatile treatment) method of operation and its effect on the deposits in the steam generators. The chemical control is described and a comparison is made between the sampling points at Grohnde and Philippsburg II. (orig.) [de

  19. Comparison of In Vitro Fertilization/Intracytoplasmic Sperm Injection Cycle Outcome in Patients with and without Polycystic Ovary Syndrome: A Modified Poisson Regression Model.

    Science.gov (United States)

    Almasi-Hashiani, Amir; Mansournia, Mohammad Ali; Sepidarkish, Mahdi; Vesali, Samira; Ghaheri, Azadeh; Esmailzadeh, Arezoo; Omani-Samani, Reza

    2018-01-01

    Polycystic ovary syndrome (PCOS) is a frequent condition in reproductive age women with a prevalence rate of 5-10%. This study intends to determine the relationship between PCOS and the outcome of assisted reproductive treatment (ART) in Tehran, Iran. In this historical cohort study, we included 996 infertile women who referred to Royan Institute (Tehran, Iran) between January 2012 and December 2013. PCOS, as the main variable, and other potential confounder variables were gathered. Modified Poisson Regression was used for data analysis. Stata software, version 13 was used for all statistical analyses. Unadjusted analysis showed a significantly lower risk for failure in PCOS cases compared to cases without PCOS [risk ratio (RR): 0.79, 95% confidence intervals (CI): 0.66-0.95, P=0.014]. After adjusting for the confounder variables, there was no difference between risk of non-pregnancy in women with and without PCOS (RR: 0.87, 95% CI: 0.72-1.05, P=0.15). Significant predictors of the ART outcome included the treatment protocol type, numbers of embryos transferred (grades A and AB), numbers of injected ampules, and age. The results obtained from this model showed no difference between patients with and without PCOS according to the risk for non-pregnancy. Therefore, other factors might affect conception in PCOS patients. Copyright© by Royan Institute. All rights reserved.

  20. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  1. Co-operation of the CMEA member countries in the development of different reactor types, including certain aspects of their nuclear fuel cycle

    International Nuclear Information System (INIS)

    Panasenkov, A.; Barbur, I.; Barchenkov, A.; Molnar, L.; Tolpygo, V.; Khake, V.; Shcherbinin, B.

    1977-01-01

    The report gives an account of the problems of the projected development of atomic power and evaluates its role in the fuel and power complex and long-range development of interconnected power systems of the CMEA member countries. The report emphasizes the importance of scientific and technical co-operation in the creation of thermal and fast-neutron power reactors with 1000-1500MW(e) units, and in the elaboration of nuclear plants for heating services. The positive experience of the international scientific and research group of scientists of the CMEA member countries carrying out reactor-physics studies on critical assemblies is mentioned. The report contains basic conclusions from the forecasts for nuclear power in the CMEA member countries up to 1990, including forecasting methodology; the role of nuclear power plants in saving natural and enriched uranium for a projected period; and the impact of nuclear power development rates on its structure (thermal and fast reactor ratio). It lists the impacts of scientific and technical co-operation of the CMEA member countries on the fuel cycle, including the transport of spent nuclear fuel, its recovery, reprocessing and radioactive waste disposal. Particular effects of co-operation of the CMEA member countries on the radiation safety of nuclear power plants and environmental protection are analysed. The report notes the role of the international economic associations Interatomenergo and Interatominstrument in the accelerated development of nuclear power. (author)

  2. Radioactive waste from nuclear power plants and back end nuclear fuel cycle operations: The French approach to safety

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.; De Franco, M.

    2001-01-01

    The Centre de l'Aube Disposal Facility (Centre de Stockage de l'Aube) is designed to receive a wide variety of waste produced by nuclear power plants, reprocessing, decommissioning, as well as the industry, hospitals and armed forces. Such a variety of wastes incur highly different risks which must be grasped in the safety analysis of the Centre. This article attempts to show how a number of safety analysis tools are used to meet the highly varied needs of the waste producers and guarantee safe disposal. They involve functional analysis, risk analysis and safety calculations. The paper shows that the most important acceptance criteria for the first containment barrier, namely the waste package, are containment, durability, activity limitation and biological shielding. And a method is proposed to determine some of these criteria from safety scenarios (scenarios of accidents in operation, intrusion in the post-institutional control phase). Over the years, however, the waste producers have asked the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA) to accept new types of waste not initially anticipated in the design criteria, and the safety analysis must imagine new scenarios and develop new acceptance criteria. The paper gives the example of sealed sources, closure heads of NPP vessels, racks for fuel elements, contaminated manipulators, irradiating waste, etc, which incur specific risks. In fact, some of this waste represent a source of unusual irradiation, a risk of further contamination in an accidental situation, or simply increase the likelihood of occurrence of certain scenarios, such as retrieval in the post-institutional control phase. The safety analysis must adapt and imagine specific scenarios to judge the acceptability of such waste, and must identify the acceptance criteria commensurate with the risks. The paper offers examples of research, some of it still under way at ANDRA. (author)

  3. SU-E-T-14: A Feasibility Study of Using Modified AP Proton Beam for Post-Operative Pancreatic Cancer Therapy

    International Nuclear Information System (INIS)

    Ding, X; Witztum, A; Kenton, O; Younan, F; Dormer, J; Kremmel, E; Lin, H; Liu, H; Tang, S; Both, S; Kassaee, A; Avery, S

    2014-01-01

    Purpose: Due to the unpredictability of bowel gas movement, the PA beam direction is always favored for robust proton therapy in post-operative pancreatic cancer treatment. We investigate the feasibility of replacing PA beam with a modified AP beam to take the bowel gas uncertainty into account. Methods: Nine post-operative pancreatic cancer patients treated with proton therapy (5040cGy, 28 fractions) in our institution were randomly selected. The original plan uses PA and lateral direction passive-scattering proton beams. Beam weighting is about 1:1. All patients received weekly verification CTs to assess the daily variations(total 17 verification CTs). The PA direction beam was replaced by two other groups of AP direction beam. Group AP: takes 3.5% range uncertainty into account. Group APmod: compensates the bowel gas uncertainty by expanding the proximal margin to 2cm more. The 2cm margin was acquired from the average bowel diameter in from 100 adult abdominal CT scans near pancreatic region (+/- 5cm superiorly and inferiorly). Dose Volume Histograms(DVHs) of the verification CTs were acquired for robustness study. Results: Without the lateral beam, Group APmod is as robust as Group PA. In Group AP, more than 10% of iCTV D98/D95 were reduced by 4–8%. LT kidney and Liver dose robustness are not affected by the AP/PA beam direction. There is 10% of chance that RT kidney and cord will be hit by AP proton beam due to the bowel gas. Compared to Group PA, APmod plan reduced the dose to kidneys and cord max significantly, while there is no statistical significant increase in bowel mean dose. Conclusion: APmod proton beam for the target coverage could be as robust as the PA direction without sacrificing too much of bowel dose. When the AP direction beam has to be selected, a 2cm proximal margin should be considered

  4. Comparison of predicted and measured fission product behaviour in the Fort St. Vrain HTGR during the first three cycles of operation

    International Nuclear Information System (INIS)

    Hanson, D.L.; Jovanovic, V.; Burnette, R.D.

    1985-01-01

    The 330 MW(e) Fort St. Vrain (M) High Temperature Gas-Cooled Reactor (HTGR) is fueled with (Th,U)C 2 /ThC 2 TRISO-coated fuel particles contained in prismatic graphite fuel elements. Fission product release from the reactor core has been monitored during the first three cycles of operation. In order to assess the validity of the design methods used to predict fission product source terms for HTGRs, fission product release from the reactor core has been predicted by the reference design methods and compared with reactor surveillance measurements and with the results of postirradiation examination (PIE) of spent FSV fuel elements. Overall, the predictive methods have been shown to be conservative: the predicted fission gas release at the end of Cycle 3 is about five times higher than observed. The dominant source of fission gas release is as-manufactured, heavy-metal contamination; in-service failure of the coated fuel particles appears to be negligible, which is consistent with the PIE of spent fuel elements removed during the first two refuelings. The predicted releases of fission metals are insignificant compared to the release and subsequent decay of their gaseous precursors, which is consistent with plateout probe measurements. (author)

  5. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon:nitrogen ratio and the cycle time.

    Science.gov (United States)

    Mees, Juliana Bortoli Rodrigues; Gomes, Simone Damasceno; Hasan, Salah Din Mahmud; Gomes, Benedito Martins; Boas, Márcio Antonio Vilas

    2014-01-01

    The effects of cycle time (CT) (8, 12 and 16h) and C/N ratio (3, 6 and 9) on nitrogen removal efficiencies in a bench top sequencing batch reactor treating slaughterhouse wastewater were investigated under different operating conditions: in condition 1, the reaction comprises an aerobic/anoxic phase and in condition II, the reaction comprises anoxic I/aerobic/anoxic II phases (with pre-denitrification). The greatest percentages of nitrogen removal were obtained in the CT range from 12 to 16 h and C/N ratios from 3 to 6, with mean efficiency values of 80.76% and 85.57% in condition I and 90.99% and 91.09% in condition II. Although condition II gave a higher removal of total inorganic nitrogen (NH4+ - N + NO2- - N + NO3- - N) than condition I, only condition I showed statistically significant and predictive regression for all the steps of nitrogen removal.

  6. Decolorization of Acid Orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: Optimization of operational parameters.

    Science.gov (United States)

    Jung, Kyung-Won; Park, Dae-Seon; Hwang, Min-Jin; Ahn, Kyu-Hong

    2015-09-01

    In this study, the decolorization of Acid Orange 7 (AO-7) with intensified performance was obtained using hydrodynamic cavitation (HC) combined with an electric field (graphite electrodes). As a preliminary step, various HC systems were compared in terms of decolorization, and, among them, the electric field-assisted modified orifice plate HC (EFM-HC) system exhibited perfect decolorization performance within 40 min of reaction time. Interestingly, when H2O2 was injected into the EFM-HC system as an additional oxidant, the reactor performance gradually decreased as the dosing ratio increased; thus, the remaining experiments were performed without H2O2. Subsequently, an optimization process was conducted using response surface methodology with a Box-Behnken design. The inlet pressure, initial pH, applied voltage, and reaction time were chosen as operational key factors, while decolorization was selected as the response variable. The overall performance revealed that the selected parameters were either slightly interdependent, or had significant interactive effects on the decolorization. In the verification test, complete decolorization was observed under statistically optimized conditions. This study suggests that EFM-HC is a useful method for pretreatment of dye wastewater with positive economic and commercial benefits. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature

    International Nuclear Information System (INIS)

    Phattharasupakun, Nutthaphon; Wutthiprom, Juthaporn; Suktha, Phansiri; Iamprasertkun, Pawin; Chanlek, Narong; Shepherd, Celine; Hadzifejzovic, Emina; Moloney, Mark G.; Foord, John S.; Sawangphruk, Montree

    2017-01-01

    Although functionalized carbon-based materials have been widely used as the supercapacitor electrodes, the optimum contents of the functional groups, the charge storage mechanisms, and the effects of electrolytes and operating temperature have not yet been clearly investigated. In this work, carboxylate-modified hollow carbon nanospheres (c-HCN) with different functional group contents synthesized by an oxidation process of carbon nanospheres with nitric acid were coated on flexible carbon fibre paper and used as the supercapacitor electrodes. An as-fabricated supercapacitor of the c-HCN with a finely tuned 6.2 atomic % of oxygen of the oxygen-containing groups in an ionic liquid electrolyte exhibits a specific capacitance of 390 F g"−"1, a specific energy of 115 Wh kg"−"1, and a maximum specific power of 13548 W kg"−"1 at 70 °C. The charge storage mechanism investigated is based on the chemical adsorption of the ionic liquid electrolyte on the c-HCN electrode. This process is highly reversible leading to high capacity retention. The supercapacitor in this work may be practically used in many high energy and power applications.

  8. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    International Nuclear Information System (INIS)

    Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K

    2015-01-01

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST

  9. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    Science.gov (United States)

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  10. Analysis of the 3 and 4 cycles with extensions in the operation of the CNLV U-1; Analisis de los ciclos 3 y 4 con extensiones en la operacion de la CNLV U-1

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Torres A, C.; Perusquia C, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-08-15

    The objective of the report is the comparison of the radial distributions of burned in the core among the results of the simulation of the Laguna Verde Central U-1 reactor during the operation of the cycles 1 to 4 and the data of the operation with information provided by the fuel supplier. (Author)

  11. Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

    Directory of Open Access Journals (Sweden)

    Florian Chavagnat

    2018-04-01

    Full Text Available The Firebrick Resistance-Heated Energy Storage (FIRES concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa. The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions. Keywords: Firebrick Resistance-Heated Energy Storage, Nuclear Power Plant, Revenue Estimate, Storage System

  12. Development of four-year fuel cycle based on the advanced fuel assembly with uranium-gadolinium fuel and its implementation to the operating WWER-440 units

    International Nuclear Information System (INIS)

    Lunin, G.; Novikov, A.; Pavlov, V.; Pavlovichev, P.; Filimonov, P.

    2000-01-01

    Over the past few years in Russia the investigations aimed at the increase of the reliability, safety and efficiency of operation of the WWER-1000 reactors as well as of its competitiveness in the world market were carried out. In the frame of these investigations the four-year fuel cycle, based on advanced fuel assemblies with zirconium alloy spacer grids and guide tubes and with fuel pellet having a reduced diameter of the central hole (1,5 mm), has been developed. For the compensation of a part of excess reactivity, Gd 2 O 3 integrated burnable absorbers are used. CPS absorbing rods contain a combine absorber (B 4 C + Dy 2 O 3 *TiO 2 ). A part of depleted fuel is located on the core periphery. The algorithms controlling the reactor power and power distribution have been updated. For checking of the solutions adopted and for verification of code package developed at the RRC 'Kurchatov Institute' the wide-scale experimental operation of advanced FA and its individual components is carried out. (Authors)

  13. Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC Waste Heat Recovery System for Diesel Engines under Various Operating Conditions

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-04-01

    Full Text Available This study analyzed the variation law of engine exhaust energy under various operating conditions to improve the thermal efficiency and fuel economy of diesel engines. An organic Rankine cycle (ORC waste heat recovery system with internal heat exchanger (IHE was designed to recover waste heat from the diesel engine exhaust. The zeotropic mixture R416A was used as the working fluid for the ORC. Three evaluation indexes were presented as follows: waste heat recovery efficiency (WHRE, engine thermal efficiency increasing ratio (ETEIR, and output energy density of working fluid (OEDWF. In terms of various operating conditions of the diesel engine, this study investigated the variation tendencies of the running performances of the ORC waste heat recovery system and the effects of the degree of superheat on the running performance of the ORC waste heat recovery system through theoretical calculations. The research findings showed that the net power output, WHRE, and ETEIR of the ORC waste heat recovery system reach their maxima when the degree of superheat is 40 K, engine speed is 2200 r/min, and engine torque is 1200 N·m. OEDWF gradually increases with the increase in the degree of superheat, which indicates that the required mass flow rate of R416A decreases for a certain net power output, thereby significantly decreasing the risk of environmental pollution.

  14. Role and Successes of Trilateral Liaison Frameworks (IAEA-SSACs/RSACs- Nuclear Fuel Cycle Facility Operators) in Monitoring the Quality of the Operator's Measurement and Accounting Systems

    International Nuclear Information System (INIS)

    Norman, C.; Zhao, K.; Christophe, P.; Binner, R.; Iso, S.

    2015-01-01

    Two of the three generic objectives of safeguards under a comprehensive safeguards agreement (CSA) are to detect any undeclared production or processing of nuclear material in declared facilities and locations outside facilities (LOFs) and to detect any diversion of declared nuclear material at facilities and LOFs. The effectiveness and efficiency of the IAEA in reaching these objectives strongly relies on the quality of the State or regional system of accounting for and control of nuclear material (SSAC/RSAC) which in turn depends on the nuclear fuel cycle facility operators' capabilities to establish accurate and precise estimates of the inventories and flow of nuclear material. To monitor the performance of the State's nuclear fuel cycle facilities' accounting and measurement systems in a collaborative way, the IAEA initiated yearly trilateral liaison meetings with relevant State or regional authorities and bulk handling facilities' operators to review material balance evaluation results for the elapsed material balance period and their trends over the facility lifetime. During these meetings, trends of concern are examined and the IAEA proposes remedial actions, drawing on its expertise and experience of observations in similar facilities. Pilot trilateral meetings held in Japan over the past years demonstrate the benefits of this collaborative framework. Biases in material balance variables are identified, their causes determined and a set of recommendations is drawn to implement remedial actions before they become a safeguards concern. In the margins of these meetings, workshops are also organised to foster exchanges in the fields of measurement and analytical methods as well as statistical methodologies used to determine their uncertainties and assess the sensitivity of material balances to these uncertainties. In the context of its strategy to enhance cooperation with States, reinforce mutual trust and pursue further efficiencies though

  15. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Science.gov (United States)

    Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani

    2017-03-01

    In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  16. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Abdellaoui Ezzaalouni Yathreb

    2017-03-01

    Full Text Available In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  17. Impact of Different Driving Cycles and Operating Conditions on CO2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Claudio Cubito

    2017-10-01

    Full Text Available Although Hybrid Electric Vehicles (HEVs represent one of the key technologies to reduce CO2 emissions, their effective potential in real world driving conditions strongly depends on the performance of their Energy Management System (EMS and on its capability to maximize the efficiency of the powertrain in real life as well as during Type Approval (TA tests. Attempting to close the gap between TA and real world CO2 emissions, the European Commission has decided to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP, replacing the previous procedure based on the New European Driving Cycle (NEDC. The aim of this work is the analysis of the impact of different driving cycles and operating conditions on CO2 emissions and on energy management strategies of a Euro-6 HEV through the limited number of information available from the chassis dyno tests. The vehicle was tested considering different initial battery State of Charge (SOC, ranging from 40% to 65%, and engine coolant temperatures, from −7 °C to 70 °C. The change of test conditions from NEDC to WLTP was shown to lead to a significant reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life, even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology to reduce CO2 emissions.

  18. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: a hypothesis.

    Science.gov (United States)

    Misra, Jitendra B

    2014-02-15

    Photorespiration is generally considered to be an essentially dissipative process, although it performs some protective and essential functions. A theoretical appraisal indicates that the loss of freshly assimilated CO2 due to photorespiration in well-watered plants may not be as high as generally believed. Even under moderately adverse conditions, these losses may not exceed 10%. The photorespiratory metabolism of the source leaves of well-watered and well-nourished crop plants ought to be different from that of other leaves because the fluxes of the export of both carbohydrates and organic N-transport compounds in source leaves is quite high. With a heuristic approach that involved the dovetailing of certain metabolic steps with the photorespiratory cycle (PR-cycle), a novel network is proposed to operate in the source-leaves of well-watered and well-nourished plants. This network allows for the diversion of metabolites from their cyclic-routes in sizeable quantities. With the removal of considerable quantities of glycine and serine from the cyclic route, the number of RuBP oxygenation events would be several times those of the formation of hydroxypyruvate. Thus, to an extreme extent, photorespiratory metabolism would become open-ended and involve much less futile recycling of glycine and serine. Conversion of glyoxylate to glycine has been proposed to be a crucial step in the determination of the relative rates of the futile (cyclic) and anabolic (open-ended) routes. Thus, in the source leaves of well-watered and well-nourished plants, the importance of the cyclic route is limited to the salvaging of photorespiratory intermediates for the regeneration of RuBP. The proposed network is resilient enough to coordinate the rates of the assimilation of carbon and nitrogen in accordance with the moisture and N-fertility statuses of the soil. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. A modified pH-cycling model to evaluate fluoride effect on enamel demineralization Modelo de ciclagens de pH para avaliar o efeito do fluoreto na desmineralização do esmalte

    Directory of Open Access Journals (Sweden)

    Rosane Maria Orth Argenta

    2003-09-01

    Full Text Available Since in vitro pH-cycling models are widely used to study dental caries, they should allow evaluations of fluoride effect on early stages of caries development. Therefore, acid etching on enamel surface must be avoided, enabling surface microhardness (SMH analysis. In the present study, the pH-cycling model originally described by Featherstone et al.9 (1986 was modified to preserve the enamel surface and to produce early carious lesions that could be evaluated using SMH and cross-sectional microhardness (CSMH measurements. In order to validate this modified model, a dose-response evaluation with fluoride was made. Human enamel blocks with known SMH were submitted to such regimen with the following treatments: distilled deionized water (DDW; control and solutions containing 70, 140 and 280 ppm F. Data from %SMH change and deltaZ (mineral loss showed a statistically significant negative correlation between F concentration in treatment solutions and mineral loss. In conclusion, the modified pH-cycling model allowed the evaluation of changes on the outermost enamel layer during caries development, and a dose-response effect of fluoride reducing enamel demineralization was observed.Considerando que os modelos de ciclagens de pH são amplamente usados para estudar a cárie dental, eles deveriam possibilitar a avaliação do efeito do fluoreto nos estágios iniciais do desenvolvimento da cárie. Desse modo, o ataque ácido erosivo na superfície do esmalte deve ser evitado, possibilitando a análise da microdureza de superfície (MDS. No presente estudo, o modelo de ciclagens de pH descrito por Featherstone et al.9 (1986 foi modificado para preservar a superfície do esmalte e para produzir lesões iniciais que pudessem ser avaliadas usando MDS e microdureza do esmalte seccionado longitudinalmente. Para validar esse modelo modificado, uma avaliação dose-resposta a fluoreto foi feita. Blocos de esmalte dental humano de MDS conhecida foram submetidos a

  20. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  1. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  2. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    Directory of Open Access Journals (Sweden)

    Caroline Schultealbert

    2018-03-01

    Full Text Available Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR. For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude for four different reducing gases (CO, H2, ammonia and benzene using randomized gas exposures.

  3. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    Science.gov (United States)

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  4. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    Science.gov (United States)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  5. Evaluación de la eficiencia energética de vehículos pesados en el ciclo // Evaluation of the heavy duty trucks energy efficiency in the modified drive cycle.

    Directory of Open Access Journals (Sweden)

    Ramón Pérez-Gálvez

    2010-01-01

    Full Text Available ResumenEn este trabajo, se presenta la reformulación de un ciclo teórico que consta de los elementosbásicos de un ciclo de viaje real con condiciones prefijadas de movimiento y operación. En lamodificación se tomaron en cuenta los siguientes elementos: frecuencia de rotación mínima enmovimiento estable; eficiencia de la transmisión variable con la velocidad, la carga y la marchaconectada; un nuevo criterio de frecuencia de rotación del motor para el cambio de marchas; elfrenado con el motor embragado y; nuevas expresiones de cuantificación del consumo decombustible. Obteniéndose nuevos modelos matemáticos para la determinación de los indicadoresdel consumo de combustible de vehículos pesados de transmisión mecánica. Se presenta además,un indicador “Coeficiente de Efectividad del Trabajo del Automóvil” (CETA que describe laeficiencia energética durante el periodo de impulso, expresada a través del grado deaprovechamiento de la energía del automóvil para llevar hasta determinada velocidad la masa de lacarga útil.Palabras claves: ciclo de viaje, consumo de combustible, evaluación vehicular, modelos matemáticos._________________________________________________________________AbstractIn this paper, the new formulation of a theoretical drive cycle is presented. It is integrated by stagesof a real drive cycle with the prefix settings of movement and operation. In the cycle modificationthe following approaches are taken account: minimal rotation frequency in stable movement; thetransmission efficiency is variable with the speed, the weight, and the gear ratio; a new rotationfrequency for gear shifting; a motor braking stage and; a group of new equations for the fuelconsumption. New mathematical models were obtained for the fuel consumption indicators of theheavy duty trucks with manual transmission. Furthermore, the indicator Automobile WorkEffectiveness Coefficient is presented. It describes the energy efficiency in the

  6. IMPACT OF A REVISED {sup 25}Mg(p, {gamma}){sup 26}Al REACTION RATE ON THE OPERATION OF THE Mg-Al CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Straniero, O.; Cristallo, S. [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Imbriani, G.; DiLeva, A.; Limata, B. [INFN Sezione di Napoli, Napoli (Italy); Strieder, F. [Institut fuer Experimentalphysik, Ruhr-Universitaet Bochum, Bochum (Germany); Bemmerer, D. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400 (Germany); Broggini, C.; Caciolli, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Corvisiero, P.; Costantini, H.; Lemut, A. [Universita di Genova and INFN Sezione di Genova, Genova (Italy); Formicola, A.; Gustavino, C.; Junker, M. [INFN, Laboratori Nazionali del Gran Sasso (LNGS), Assergi (AQ) (Italy); Elekes, Z.; Fueloep, Zs.; Gyuerky, Gy. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Gervino, G. [Dipartimento di Fisica Universita di Torino and INFN Sezione di Torino, Torino (Italy); Guglielmetti, A., E-mail: straniero@oa-teramo.inaf.it [Universita degli Studi di Milano and INFN, Sezione di Milano (Italy); and others

    2013-02-15

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the {sup 25}Mg(p, {gamma}){sup 26}Al reaction affect the production of radioactive {sup 26}Al{sup gs} as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the {sup 25}Mg(p, {gamma}){sup 26}Al{sup gs} and the {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of {sup 26}Al {sup m} production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger {sup 25}Mg(p, {gamma}){sup 26}Al {sup m} rate, the estimated production of {sup 26}Al{sup gs} in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic {sup 26}Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of {sup 26}Al/{sup 27}Al, i.e., >10{sup -2}, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  7. Development of tools to manage the operational monitoring and pre-design of the NPP-LV cycle; Desarrollo de herramientas para administrar el seguimiento operativo y el pre-diseno del ciclo de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Arredondo S, C.; Hernandez M, J. L.; Montes T, J. L.; Castillo M, A.; Ortiz S, J. J., E-mail: raul.perusquia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    This paper presents the development of tools to facilitate the management so much, the operational monitoring of boiling water reactors (BWR) of the nuclear power plant of Laguna Verde (NPP-LV) through independent codes, and how to carry out the static calculations corresponding to process of optimized pre-design of the reference cycle next to current cycle. The progress and preliminary results obtained with the program SACal, developed at Instituto Nacional de Investigaciones Nucleares (ININ), central tool to achieve provide a management platform of the operational monitoring and pre-design of NPP-LV cycle are also described. The reached preliminary advances directed to get an Analysis center and automated design of fuel assembly cells are also presented, which together with centers or similar modules related with the fuel reloads form the key part to meet the targets set for the realization of a Management Platform of Nuclear Fuel of the NPP-LV. (Author)

  8. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  9. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  10. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance

    International Nuclear Information System (INIS)

    Almutairi, Abdulrahman; Pilidis, Pericles; Al-Mutawa, Nawaf; Al-Weshahi, Mohammed

    2016-01-01

    Highlights: • Develop a comprehensive model for a very advanced cogeneration plant using real data. • Evaluate ME-TVC-MED unit using the latest thermodynamic properties of seawater. • Evaluate the desalination unit contribution to the overall efficiency. • Evaluate the stage exergetic efficiency in the ME-TVC-MED unit. • Numerous possibilities have been suggested to improve the proposed system. - Abstract: A comprehensive model of cogeneration plant for electrical power and water desalination has been developed based on energetic and exergetic analyses using real operational data. The power side is a combined cycle power plant (CCPP), while the desalination side is a multi-effect thermal vapour compression plant coupled with a conventional multi-effect plant (ME-TVC-MED). IPSEpro software was utilized to model the process, which shows good agreement with the manufacturer's data and published research. The thermodynamic properties of saline water were obtained from the latest published data in the literature. The performance of the cogeneration plant was examined for different ambient temperatures, pressure ratios, loads, feed water temperatures, number of effects and entrainment ratios. The results show that gas turbine engines produce the highest level of useful work in the system at around 34% of the total fuel input. At the same time, they constitute a major source of irreversibility, which accounts for 84% of the total exergy destruction in the plant, while the lowest source of irreversibility is in the steam turbine of 3.3% due to the type of working fluid and reheating system. In the ME-TVC-MED desalination unit, the highest source of irreversibilities occurs in the effects and in the thermo-compressor. The first two effects in the ME-TVC parallel section were responsible for about 40.6% of the total effect exergy destruction, which constitutes the highest value among all the effects. Operating the system at full load while reducing ambient

  11. Design principles of a conditional futile cycle exploited for regulation.

    Science.gov (United States)

    Tolla, Dean A; Kiley, Patricia J; Lomnitz, Jason G; Savageau, Michael A

    2015-07-01

    In this report, we characterize the design principles of futile cycling in providing rapid adaptation by regulatory proteins that act as environmental sensors. In contrast to the energetically wasteful futile cycles that are avoided in metabolic pathways, here we describe a conditional futile cycle exploited for a regulatory benefit. The FNR (fumarate and nitrate reduction) cycle in Escherichia coli operates under two regimes - a strictly futile cycle in the presence of O2 and as a pathway under anoxic conditions. The computational results presented here use FNR as a model system and provide evidence that cycling of this transcription factor and its labile sensory cofactor between active and inactive states affords rapid signaling and adaptation. We modify a previously developed mechanistic model to examine a family of FNR models each with different cycling speeds but mathematically constrained to be otherwise equivalent, and we identify a trade-off between energy expenditure and response time that can be tuned by evolution to optimize cycling rate of the FNR system for a particular ecological context. Simulations mimicking experiments with proposed double mutant strains offer suggestions for experimentally testing our predictions and identifying potential fitness effects. Our approach provides a computational framework for analyzing other conditional futile cycles, which when placed in their larger biological context may be found to confer advantages to the organism.

  12. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  13. Treatment of carcinoma of uterine cervix stage III by adriamycin, bleomycin and cisplatinum, neoadjuvant, modified radical hysterectomy and adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Valle, J.C. do; Ribeiro, C.W.; Rezende, Magda C.; Figueiredo, E.; Chu, C.

    1987-01-01

    Forty-eight patients with untreated carcinoma of the cervix stage III A and IIIB, were submitted to 3 to 5 cycles of a combination of adriamycin (ADR), bleomycin (BLEO) and cisplatinum (CDDP), followed by modified radical hysterectomy and adjuvant chemotherapy, 6 cycles, of the same association. The surgical aspect is emphasized and the operative sequence is described. A comparative evaluation between the treatment presented and the radiotherapy is done. The survical rate is studied. (M.A.C.) [pt

  14. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  15. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  16. Comprehensive Evaluation for Operating Efficiency of Electricity Retail Companies Based on the Improved TOPSIS Method and LSSVM Optimized by Modified Ant Colony Algorithm from the View of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2018-03-01

    Full Text Available The electricity market of China is currently in the process of a new institutional reform. Diversified electricity retail entities are gradually being established with the opening of the marketing electricity side. In the face of a complex market environment and fierce competition, the operating efficiency can directly reflect the current market position and development of electricity retail companies. TOPSIS method can make full use of the information of original data, calculate the distance between evaluated objects and the ideal solutions and get the relative proximity, which is generally used in the overall department and comprehensive evaluation of the benefits. Least squares support vector machine (LSSVM, with high convergence precision, helps save the training time of algorithm by solving linear equations and is used to predict the comprehensive evaluation value. Considering the ultimate goal of sustainable development, a comprehensive evaluation model on operating efficiency of electricity retail companies based on the improved TOPSIS method and LSSVM optimized by modified ant colony algorithm is proposed in this paper. Firstly, from the view of sustainable development, an operating efficiency evaluation indicator system is constructed. Secondly, the entropy weight method is applied to empower the indicators objectively. After that, based on the improved TOPSIS method, the reverse problem in the evaluation process is eliminated. According to the relative proximity between the evaluated objects and the absolute ideal solutions, the scores of comprehensive evaluation for operating efficiency can then be ranked. Finally, the LSSVM optimized by modified ant colony algorithm is introduced to realize the simplified expert scoring process and fast calculation in the comprehensive evaluation process, and its improved learning and generalization ability can be used in the comprehensive evaluation of similar projects. The example analysis proves

  17. AREVA Technical Days (ATD) session 2: operations of the back-end of the nuclear fuel cycle; AREVA Technical Days (ATD) session 2: les activites du pole Aval du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    These technical days organized by the Areva Group aims to explain the group activities in a technological and economic point of view, to provide an outlook of worldwide energy trends and challenges and to present each of their businesses in a synthetic manner. This second session deals with the reprocessing business, back-end financing mechanisms, technology transfer, environmental management, risk management programs, research and development contribution to waste volume reductions, issues and outlook of nuclear wastes, comparison of the open and closed cycles. (A.L.B.)

  18. The impact on post-operative shoulder function of intraoperative nerve monitoring of cranial nerve XI during modified radical neck dissection.

    Science.gov (United States)

    Lanišnik, Boštjan; Žitnik, Lidija; Levart, Primož; Žargi, Miha; Rodi, Zoran

    2016-12-01

    Intraoperative monitoring of the cranial nerve XI (CN XI) may decrease shoulder disability following modified radical neck dissection. Prospective study was designed comparing results of Constant Shoulder Score (CSS), Shoulder Pain and Disability Index (SPADI) and EMG score of the trapezius muscle (mT) before and after surgery. One side of the neck was monitored during surgery with intraoperative nerve monitor. EMG scores of the mT 6 months postoperatively were statistically better on monitored as compared to the non-monitored side of the neck (p = 0.041), while the differences of the CSS and SPADI were not statistically significant. Patients with better EMG scores of the mT at 6 weeks recuperated better and with smaller decrease of the CSS. Intraoperative monitoring is beneficial at the beginning of the surgeon's learning curve and in the process of familiarizing with anatomical variation of the CN XI.

  19. Planning/Budgeting/Evaluation Manual. An Operation Manual for Staff Members Concerning the Implementation of the Planning/Budgeting/Evaluation Cycle Within the Missouri State Department of Education.

    Science.gov (United States)

    Missouri State Dept. of Education, Jefferson City.

    This manual identifies and systematizes the sequence of events necessary for the State Department of Education to effectively plan, implement, and evaluate its varied programs. The report (1) describes the cycle, (2) outlines the flow of events, (3) delineates offices responsible for each event, and (4) discusses overlapping phases of event cycles…

  20. Development of fuel cycles with new fuel with 8.9 mm external diameter for VVER-440. Preliminary assessment of operating efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinskiy, Alexey [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    Since the introduction of VVERs-440, their fuel assemblies are subject to ongoing improvements. Until now, the basic structural parameters of fuel, such as rod diameter of 9.1 mm, have never changed. This paper focuses on computational estimates of basic neutronic parameters of the fuel cycle that involves assemblies consisting of fuel rods with diameter reduced to 8.9 mm.

  1. Modified SEAGULL

    Science.gov (United States)

    Salas, M. D.; Kuehn, M. S.

    1994-01-01

    Original version of program incorporated into program SRGULL (LEW-15093) for use on National Aero-Space Plane project, its duty being to model forebody, inlet, and nozzle portions of vehicle. However, real-gas chemistry effects in hypersonic flow fields limited accuracy of that version, because it assumed perfect-gas properties. As a result, SEAGULL modified according to real-gas equilibrium-chemistry methodology. This program analyzes two-dimensional, hypersonic flows of real gases. Modified version of SEAGULL maintains as much of original program as possible, and retains ability to execute original perfect-gas version.

  2. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    Science.gov (United States)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  3. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Science.gov (United States)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  4. IFR fuel cycle

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation

  5. Simulation of Cycle-to-Cycle Variation in Dual-Fuel Engines

    KAUST Repository

    Jaasim, Mohammed; Pasunurthi, Shyamsundar; Jupudi, Ravichandra S.; Gubba, Sreenivasa Rao; Primus, Roy; Klingbeil, Adam; Wijeyakulasuriya, Sameera; Im, Hong G.

    2017-01-01

    Standard practices of internal combustion (IC) engine experiments are to conduct the measurements of quantities averaged over a large number of cycles. Depending on the operating conditions, the cycle-to-cycle variation (CCV) of quantities

  6. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  7. Comparison of the post-operative analgesic effect of paravertebral block, pectoral nerve block and local infiltration in patients undergoing modified radical mastectomy: A randomised double-blind trial

    Directory of Open Access Journals (Sweden)

    Kartik Syal

    2017-01-01

    Full Text Available Background and Aims: Paravertebral block, pectoral nerve (Pecs block and wound infiltration are three modalities for post-operative analgesia following breast surgery. This study compares the analgesic efficacy of these techniques for post-operative analgesia. Methods: Sixty-five patients with American Society of Anesthesiologists' physical status 1 or 2 undergoing modified radical mastectomy with axillary dissection were recruited for the study. All patients received 21 mL 0.5% bupivacaine with adrenaline in the technique which was performed at the end of the surgery prior to extubation. Patients in Group 1 (local anaesthetic [LA], n = 22 received infiltration at the incision site after surgery, Group 2 patients (paravertebral block [PVB], n = 22 received ultrasound-guided ipsilateral paravertebral block while Group 3 patients [PECT] (n = 21 received ultrasound-guided ipsilateral Pecs blocks I and II. Patients were evaluated for pain scores at 0, 2, 4, 6, 12 and 24 h, duration of post-operative analgesia and rescue analgesic doses required. Non-normally distributed data were analysed using the Kruskal-Wallis test and Analysis of variance for normal distribution. Results: The post-operative visual analogue scale scores were lower in PVB group compared with others at 0, 2, 4, 12 and 24 h (P < 0.05. Mean duration of analgesia was significantly prolonged in PVB group (P < 0.001 with lesser rescue analgesic consumption up to 24 h. Conclusion: Ultrasound-guided paravertebral block reduces post-operative pain scores, prolongs the duration of analgesia and decreases demands for rescue analgesics in the first 24 h of post-operative period compared to ultrasound-guided Pecs block and local infiltration block.

  8. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 1. Summary: alternatives for the back of the LWR fuel cycle types and properties of LWR fuel cycle wastes projections of waste quantities; selected glossary

    International Nuclear Information System (INIS)

    1976-05-01

    Volume I of the five-volume report contains executive and technical summaries of the entire report, background information of the LWR fuel cycle alternatives, descriptions of waste types, and projections of waste quantities. Overview characterizations of alternative LWR fuel cycle modes are also included

  9. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  10. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-04-15

    Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air-fuel ratios at constant engine speed of 1500 rpm and P-{theta} diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are 'maximum rate of pressure rise' and 'COV of indicated mean effective pressure (IMEP)'. (author)

  11. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  12. Technical and economic feasibility for the application of micronized coal as a replacement for No. 2 oil for start-up and low-load operation at Illinois Power Havana No. 6 Cycling Unit

    International Nuclear Information System (INIS)

    Rosenberger, F.; Guilfoyle, C.J.; Parker, W.O. Jr.

    1991-01-01

    Uncertainty regarding oil availability and long-term price stability make it difficult for a utility to predict annual ignition costs for a cycling unit. Illinois Power Company, Sargent and Lundy Engineering and Micro-fuel Corporation have produced a detailed feasibility study on the application of micronized coal as a replacement fuel for start-up and low-load operation for Havana No. 6. This unit is a B and W opposed-fired boiler which is rated at 410 MWe (summer net). This paper presents technical and economic analysis, including the uncertainties of the application of this technology

  13. EDF-R and D's concept for using 2D drawings as an EAM/EOM solution to create, modify and visualize operation data - First prototype developed using Ventyx EAM/EOM solutions

    International Nuclear Information System (INIS)

    Dionis, Francois; Gex, Patrick

    2010-01-01

    Over the years, electronic technology has played a very important role in the area of plant maintenance and operation. Enterprise Asset Management (EAM) and Enterprise Operation Management (EOM) have been developed and enhanced to improve plant personnel efficiency, productivity and safety. At the same time, CAD technology has been commonly used in plant maintenance and operation processes mostly in the area of design. In nuclear power plants, 2D CAD drawings (P and ID, electrical, mechanical, etc.) have long been used to represent not only the future plant configuration but also the 'as built' plant configuration. Over the last few years the opportunity to combine the two technologies (EAM/EOM and CAD) has emerge. The question regarding the benefits of displaying and/or updating EAM/EOM data such as clearances/Tagout/lockout, alignment checklist, radiation areas, scaffolding, chemical risks,..in a graphical format using 2D or 3D CAD drawings has often been asked. This is why EDF R and D and Ventyx have collaborated in developing a prototype that allows plant personnel to graphically display, create, and modify alignment procedures and clearances using an EAM (Asset Suite) and EOM (eSOMS) software. This paper describes some of the methodology as well as the tools used to develop such a prototype. (authors)

  14. Predictive digital peak current mode controller for DC-DC converters capable of operating over the full 0-100% duty cycle range

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    ) and discontinuous conduction mode (DCM) and supports high switching frequencies even with low cost A/D converters. The proposed controller is implemented in a Field Programmable Gate Array (FPGA) to control a 450 W buck converter and the experimental results verify the controller's capability to operate in the full...

  15. Group cross sections in the resolved resonance region calculated for a CANDU-PHW reactor operating on closed thorium-uranium and thorium-plutonium-uranium fuel cycles

    International Nuclear Information System (INIS)

    Hamel, D.; Wilkin, G.B.

    1979-09-01

    Group cross sections in the resolved resonance region are commonly computed for each nuclide independently of other resonance nuclides present in the fuel mixture. While this technique is usually entirely adequate for uranium fuel cycles, it is necessary to establish its legitimacy for closed thorium fuel cycles topped with fissile uranium or plutonium by analysis of a number of representative cases. At the same time cross sections originating from WIMS (Winfrith Improved Multigroup Scheme) calculations are compared with values computed in this study. In this context, particular attention is paid to the adequacy of the lower boundary for the WIMS resonance treatment. All calculations are based on heavy nuclide cross sections from the ENDF/B-IV data compilaton (Evaluated Nuclear Data File). Appreciable interaction effects have been determined for all nuclides except for 232 Th. In most cases, these are due to the strong 232 Th resonance doublet at 21.8 eV and 23.5 eV but some effects also result from resonances of 234 U (5.19 eV, 48.75 eV), 236 U (5.45 eV), 242 Pu (2.67 eV) and others. The influence of mutual interaction on the infinite lattice multiplicaton factor is very small in comparison to the effects of self-shielding. WIMS cross sections do not always compare well with the values computed in the study, but discrepancies are in most cases related to the different sources of data. Interaction effects are not explicitly taken into account in WIMS. Several nuclides ( 233 Pa, 233 U, 240 Pu, 242 Pu) show appreciable self-shielding below the WIMS resonance region and are therefore not treated adequately. The impact of these discrepancies on the multiplication factor is relatively small, however, because of error cancellation. (author)

  16. Interfacial Modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ina; French, Roger H.

    2018-03-19

    Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification of the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.

  17. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  18. Thermodynamic analysis of a simple Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Javanshir, Alireza; Sarunac, Nenad

    2017-01-01

    Thermodynamic performance (thermal efficiency and net power output) of a simple subcritical and supercritical Organic Rankine Cycle (ORC) was analyzed over a range of operating conditions for a number of working fluids to determine the effect of operating parameters on cycle performance and select the best working fluid. The results show that for an ORC operating with a dry working fluid, thermal efficiency decreases with an increase in the turbine inlet temperature (TIT) due to the convergence of the isobaric lines with temperature. The results also show that efficiency of an ORC operating with isentropic working fluids is higher compared to the dry and wet fluids, and working fluids with higher specific heat capacity provide higher cycle net power output. New expressions for thermal efficiency of a subcritical and supercritical simple ORC are proposed. For a subcritical ORC without the superheat, thermal efficiency is expressed as a function of the Figure of Merit (FOM), while for the superheated subcritical ORC thermal efficiency is given in terms of the modified Jacob number. For the supercritical ORC, thermal efficiency is expressed as a function of dimensionless temperature. - Highlights: • Analyzing thermodynamic performance of ORC over a range of operating conditions. • Selecting the best working fluid suitable for a simple ORC. • Proposing new expressions for thermal efficiency of a simple ORC.

  19. The heat engine cycle, the heat removal cycle, and ergonomics of the control room displays

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1986-01-01

    This paper discusses and illustrates the ergonomics of an integrated display, which will allow operators to monitor the heat engine cycle during normal operation of the plant, and the heat removal cycle during emergency operation of the plant. A computer-based iconic display is discussed as an overview to monitor these cycles. Specific emphasis is placed upon the process variables and process functions within each cycle, and the action of control systems and engineered safeguard systems within each cycle. This paper contains examples of display formats for the heat engine cycle and the heat removal cycle in a pressurized water reactor

  20. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  1. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  2. Margin benefit assessment of the YGN 3 cycle 1 fxy error files for COLSS and CPC overall uncertainty analyses

    International Nuclear Information System (INIS)

    Yoon, Rae Young; In, Wang Kee; Auh, Geun Sun; Kim, Hee Cheol; Lee, Sang Keun

    1994-01-01

    Margin benefits are quantitatively assessed for the Yonggwang Unit 3 (YGN 3) Cycle 1 planar radial peaking factor (Fxy) error files for each time-in-life, i.e., BOC, IOC, MOC and EOC. The generic Fxy error file (FXYMEQO) is presently used for Yonggwang Unit 3 Cycle 1 COLSS (Core Operating Limit Supervisory System) and CPC (Core Protection Calculator) Overall Uncertainty Analyses (OUA). However, because this file is more conservative than the plant/cycle specific Fxy error files, COLSS and CPC thermal margins (DNB-OPM) for the generic Fxy error file are less than those of the plant/cycle specific Fxy error file. Therefore, the YGN 3 Cycle 1 Fxy error files were generated and analyzed by the modified codes for Yonggwang Plants. The YGN 3 Cycle 1 Fxy error files gave the increased thermal margin by about 1% for COLSS and CPC, respectively

  3. Advanced maintenance strategies for power plant operators - introducing inter-plant life cycle management. ZES research focus 'condition-based maintenance in power engineering'

    Energy Technology Data Exchange (ETDEWEB)

    Graeber, U.

    2003-07-01

    The optimisation of maintenance activities observed in recent years can be attributed above all to the use and continuing development of testing and diagnostic techniques, to the increased level of system and component automation and to more efficient work organisation. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. The risks connected to reliability, availability and safety need to be analysed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realised. The systematic application of condition-based maintenance and the introduction of structured life cycle management are essential prerequisites. Within the framework of its ''Condition-Based Maintenance in Power Engineering'' research focus, the Energy Research Centre (ZES) has set up a specialist network in which experts from various institutes belonging to the Faculty of Mechanical Engineering and the Faculty of Informatic, Electrical Engineering and Information Technology can develop interdisciplinary solutions for advanced maintenance strategies. The ZES offers the industry a platform for cooperating on current issues relating to the supply of energy and supports the movement towards sustainable improvements to competitiveness through research and consulting activities. It applies professional project and quality management procedures to ensure that contracts covering interdisciplinary topics and projects are handled in a coherent manner. (orig.)

  4. Advanced maintenance strategies for power plant operators - introducing inter-plant life cycle management. ZES research focus 'condition-based maintenance in power engineering'

    International Nuclear Information System (INIS)

    Graeber, U.

    2003-01-01

    The optimisation of maintenance activities observed in recent years can be attributed above all to the use and continuing development of testing and diagnostic techniques, to the increased level of system and component automation and to more efficient work organisation. Despite the considerable success of these efforts, the potential for further cost reductions is still far from exhausted. The risks connected to reliability, availability and safety need to be analysed in greater detail in order to ensure the sustainability of the savings already achieved as well as those yet to be realised. The systematic application of condition-based maintenance and the introduction of structured life cycle management are essential prerequisites. Within the framework of its ''Condition-Based Maintenance in Power Engineering'' research focus, the Energy Research Centre (ZES) has set up a specialist network in which experts from various institutes belonging to the Faculty of Mechanical Engineering and the Faculty of Informatic, Electrical Engineering and Information Technology can develop interdisciplinary solutions for advanced maintenance strategies. The ZES offers the industry a platform for cooperating on current issues relating to the supply of energy and supports the movement towards sustainable improvements to competitiveness through research and consulting activities. It applies professional project and quality management procedures to ensure that contracts covering interdisciplinary topics and projects are handled in a coherent manner. (orig.)

  5. Conceptual design of a quasi-homogeneous pressurized heavy water reactor to be operated in the closed Th-U233 fuel cycle

    International Nuclear Information System (INIS)

    1979-06-01

    This paper deals with the heavy water reactor, which, from the neutron economy point of view, offers advantages over the light water reactor. Its capability to be fuelled with natural uranium has also been considered a desirable nuclear option by various countries with sufficient domestic uranium resources not wishing to be dependent on the import of enrichment and other fuel cycle services which, in addition, would draw on the foreign exchange reserves. Pressurized heavy water reactors have been designed and built according to two somewhat different versions. While the Canadian CANDU-PHWR concept uses pressure tubes in a nearly unpressurized moderator tank (calandria), the German development line takes advantage of the established and well proven LWR technology, and, thus, uses a pressure vessel design where coolant channels and the surrounding moderator are held at equal pressure. This pressure vessel type heavy water reactor which has been built on a commercial demonstration plant level at ATUCHA in Argentina is described in a companion paper where also a conceptual design for a 685 MWsub(e) PHWR is discussed

  6. Safety aspects of the IFR pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs

  7. KOMPOSISI KIMIA DAN KRISTALINITAS TEPUNG PISANG TERMODIFIKASI SECARA FERMENTASI SPONTAN DAN SIKLUS PEMANASAN BERTEKANAN-PENDINGINAN (Chemical Composition and Crystallinity of Modified Banana Flour by Spontaneous Fermentation and Autoclaving-Cooling Cycle

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2014-07-01

    (39,13 – 42,68% bk dibandingkan dengan yang satu siklus (29,34 – 35,93% bk. Proses pemanasan bertekananpendinginan menurunkan kristalinitas tepung pisang dari 18,74-20,08% menjadi 6,98-9,52%. Difraksi sinar X menunjukkan granula pati pisang adalah granula tipe C yang merupakan campuran dari granula tipe A dan tipe B. Kata kunci: Tepung pisang termodifikasi, fermentasi spontan, autoclaving-cooling cycles

  8. Effect of welding thermal cycles on the structure and properties of simulated heat-affected zone areas in X10CrMoVNb9-1 (T91) steel at a state after 100,000 h of operation

    Energy Technology Data Exchange (ETDEWEB)

    Łomozik, Mirosław, E-mail: miroslaw.lomozik@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland); Hernas, Adam, E-mail: adam.hernas@polsl.pl [Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 40-019 Katowice, Krasińskiego 8 str. (Poland); Zeman, Marian L., E-mail: marian.zeman@is.gliwice.pl [Instytut Spawalnictwa, Testing of Materials Weldability and Welded Constructions Department, 44-100 Gliwice, Bł. Czesława 16-18 (Poland)

    2015-06-18

    The article presents results of structural tests (light, scanning electron and scanning transmission electron microscopy) of X10CrMoVNb9-1 (T91) creep-resisting steel after approximately 100,000 h of operation. It was ascertained that the parent metal of T91 steel is characterized by the microstructure of tempered martensite with M{sub 23}C{sub 6} carbide precipitates and few dispersive precipitates of MX-type niobium and vanadium carbonitrides. The most inconvenient change in T91 steel precipitate morphology due to long-term operation is the appearance of the Laves Fe{sub 2}Mo phase which along with M{sub 23}C{sub 6} carbide particles forms elongated blocks and conglomerates on grain boundaries. The article also presents results of tests related to the effect of simulated welding thermal cycles on selected properties of X10CrMoVNb9-1 (T91) grade steel at a state after approximately 100,000 h of operation. The tests involved the determination of the chemical composition of the steel tested as well as impact tests, hardness measurements and microscopic metallographic examination (based on light microscopy) of simulated heat-affected zone (HAZ) areas for a cooling time (t{sub 8/5}) restricted within a range between 3 s and 120 s, with and without heat treatment. The tests revealed that, among other results, hardness values of simulated HAZ areas in X10CrMoVNb9-1 (T91) steel do not guarantee cold crack safety of the steel at the state without additional heat treatment. It was also observed that simulated welding thermal cycles of cooling times t{sub 8/5}=3, 12, 60 and 120 s do not significantly affect the toughness and hardness of simulated HAZ areas of the steel tested.

  9. Fuel cycle services

    International Nuclear Information System (INIS)

    Gruber, Gerhard J.

    1990-01-01

    TRIGA reactor operators are increasingly concerned about the back end of their Fuel Cycle due to a new environmental policy in the USA. The question how to close the Fuel Cycle will have to be answered by all operators sooner or later. Reprocessing of the TRIGA fuel elements is not available. Only long term storage and final disposal can be considered. But for such a storage or disposal a special treatment of the fuel elements and of course a final depository is necessary. NUKEM plans to undertake efforts to assist the TRIGA operators in this area. For that reason we need to know your special needs for today and tomorrow - so that potential processors can consider whether to offer these services on the market. (orig.)

  10. Life cycle management in product development

    DEFF Research Database (Denmark)

    Skelton, Kristen; Pattis, Anna

    2013-01-01

    The integration of Life Cycle Thinking (LCT) and Life Cycle Management (LCM) into business operations poses great challenges, as it requires a wider range of environmental responsibility often extending beyond a company's immediate control. Simultaneously, it offers many opportunities...

  11. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  12. 24-month fuel cycles

    International Nuclear Information System (INIS)

    Rosenstein, R.G.; Sipes, D.E.; Beall, R.H.; Donovan, E.J.

    1986-01-01

    Twenty-four month reload cycles can potentially lessen total power generation costs. While 24-month cores increase purchased fuel costs, the longer cycles reduce the number of refueling outages and thus enhance plant availability; men-rem exposure to site personnel and other costs associated with reload core design and licensing are also reduced. At dual unit sites an operational advantage can be realized by refueling each plant alternately on a 1-year offset basis. This results in a single outage per site per year which can be scheduled for off-peak periods or when replacement power costs are low

  13. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    Science.gov (United States)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  14. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease.

    Science.gov (United States)

    De Las Heras, Javier; Aldámiz-Echevarría, Luis; Martínez-Chantar, María-Luz; Delgado, Teresa C

    2017-04-01

    Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.

  15. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  16. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  17. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  18. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil; Thu, Kyaw; Kim, Yong-deuk; Ng, Kim Choon

    2015-01-01

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient

  19. Optimum gas turbine cycle for combined cycle power plant

    International Nuclear Information System (INIS)

    Polyzakis, A.L.; Koroneos, C.; Xydis, G.

    2008-01-01

    The gas turbine based power plant is characterized by its relatively low capital cost compared with the steam power plant. It has environmental advantages and short construction lead time. However, conventional industrial engines have lower efficiencies, especially at part load. One of the technologies adopted nowadays for efficiency improvement is the 'combined cycle'. The combined cycle technology is now well established and offers superior efficiency to any of the competing gas turbine based systems that are likely to be available in the medium term for large scale power generation applications. This paper has as objective the optimization of a combined cycle power plant describing and comparing four different gas turbine cycles: simple cycle, intercooled cycle, reheated cycle and intercooled and reheated cycle. The proposed combined cycle plant would produce 300 MW of power (200 MW from the gas turbine and 100 MW from the steam turbine). The results showed that the reheated gas turbine is the most desirable overall, mainly because of its high turbine exhaust gas temperature and resulting high thermal efficiency of the bottoming steam cycle. The optimal gas turbine (GT) cycle will lead to a more efficient combined cycle power plant (CCPP), and this will result in great savings. The initial approach adopted is to investigate independently the four theoretically possible configurations of the gas plant. On the basis of combining these with a single pressure Rankine cycle, the optimum gas scheme is found. Once the gas turbine is selected, the next step is to investigate the impact of the steam cycle design and parameters on the overall performance of the plant, in order to choose the combined cycle offering the best fit with the objectives of the work as depicted above. Each alterative cycle was studied, aiming to find the best option from the standpoint of overall efficiency, installation and operational costs, maintainability and reliability for a combined power

  20. Hanaro operation

    International Nuclear Information System (INIS)

    Lee, Ji Bok; Jeon, Byung Jin; Kwack, Byung Ho

    1997-01-01

    HANARO was configurated its first operating core in 1995. Long term operation test was conducted up to 3-1 cycle during 1996, in order to investigate the reactor characteristics due to fuel depletion and additional fuel loading. Now HANARO has accumulated 168.4 days of total operation time and 2,687.5 MWD of total thermal output. Reactor analysis, producing operation datum and its validation with test, periodic inspection and maintenance of the facility are continuously conducted for safe operation of the HANARO. Conducted the verification tests for installed utilization facilities, and successfully performed the radiation emergency drill. The shutdown report of TRIGA Mark II and III was submitted to MOST, and decommissioning will be started from 1997. (author). 70 tabs., 50 figs., 27 refs

  1. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  2. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  3. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J.J.

    2012-01-01

    compressor conditions are calculated to approach surge such that the need for a surge control system for each compressor is identified. Thus, it is demonstrated that the S-CO 2 cycle can operate in the initial decay heat removal mode even with autonomous reactor control. Because external power is not needed to drive the compressors, the results show that the S-CO 2 cycle can be used for initial decay heat removal for a lengthy interval in time in the absence of any off-site electrical power. The turbine provides sufficient power to drive the compressors. Combined with autonomous reactor control, this represents a significant safety advantage of the S-CO 2 cycle by maintaining removal of the reactor power until the core decay heat falls to levels well below those for which the passive decay heat removal system is designed. The new control strategy is an alternative to a split-shaft layout involving separate power and compressor turbines which had previously been identified as a promising approach enabling heat removal from a SFR at low power levels. The current results indicate that the split-shaft configuration does not provide any significant benefits for the S-CO 2 cycle over the current single-shaft layout with shaft speed control. It has been demonstrated that when connected to the grid the single-shaft cycle can effectively follow the load over the entire range. No compressor speed variation is needed while power is delivered to the grid. When the system is disconnected from the grid, the shaft speed can be changed as effectively as it would be with the split-shaft arrangement. In the split-shaft configuration, zero generator power means disconnection of the power turbine, such that the resulting system will be almost identical to the single-shaft arrangement. Without this advantage of the split-shaft configuration, the economic benefits of the single-shaft arrangement, provided by just one turbine and lower losses at the design point, are more important to the overall

  4. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr–1Mo steel under low cycle fatigue in lead–bismuth eutectic at 160–450 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pmarmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling; Verlinden, Bert; Wevers, Martine [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2016-01-15

    Low cycle fatigue properties of a 9Cr–1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead–bismuth eutectic (LBE) environment and in vacuum at 160–450 °C. The results show a clear fatigue endurance “trough” in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160–450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  5. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    Science.gov (United States)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  6. Effect of the weld thermal cycles by the modified indirect electric arc (MIEA) on the mechanical properties of the AA6061-T6 alloy; Efecto de los ciclo termicos de soldadura por arco electrico indirecto modificado (AEIM) en las propiedades mecanicas de la aleacion AA6061-T6

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, R. A.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-07-01

    Results of temperature measurements during welding of 12.7 mm thick AA6061-T6 alloy plates by modified indirect electric arc (MIEA) are presented. This study describes the thermal cycles of the heat affected zone (HAZ) and also in the fusion zone. Depending upon the position of the transducers, the maximum temperatures measured in the HAZ range from 308 to 693 degree centigrade, these measurements were related with the tensile test results, and the failure zone reported previously by the authors. It was observed that, there is a decrease in the mechanical strength of the welded joints, due to the microstructural changes suffered by AA6061-T6 alloy in which formation of the {beta}occurs according to the TTT transformation diagram. The inherent cooling conditions of the weld pool observed for the MIEA technique (only one pass of welding), have permitted to establish the characteristics of solidification and microstructure for a specific cooling rate. (Author) 24 refs.

  7. Port Radium start to finish life cycle: a case study on Canada's historic radium/uranium mine, initial operation and closure, concerns of the aboriginal Dene people, subsequent assessments, remediation - 59332

    International Nuclear Information System (INIS)

    Wiatzka, Gerd; Brown, Steve

    2012-01-01

    Document available in abstract form only. Full text of publication follows: This paper provides a life study cycle case study on the historic Port Radium mine. In addition to the history of operations, it discusses the unique and successful approach used to identify the key issues and concerns associated with the former radium, uranium and silver mining property and the program activities undertaken to define the remedial issues and options that ultimately lead to the development of a preferred remedial plan. The Port Radium Mine site, situated approximately 275 km north of Yellowknife on the east shore of Great Bear Lake, Northwest Territories, was operated almost continuously between 1932 and 1982, initially for recovery of radium and uranium and subsequently for recovery of silver. Tailings production equalled an estimated 900, 000 tons from uranium ore processing and 800, 000 tons from silver processing operations. While the site was decommissioned at mine closure, site investigations were undertaken to address concerns expressed by residents of the community of Deline about residual contamination at the site and exposure of Deline residents as traditional land users and to identify residual environmental and safety issues based on current closure standards. Assessment of past radiation exposures of worker based on past practices associated with ore handling and concentrate shipping were also addressed. The paper provides insights into the approach and activities undertaken over a seven (7) year period that ultimately concluded with the final decommissioning of the site in 2007 and post remedial actions being carried out under the long term care and maintenance program. (authors)

  8. Mole sieve cycle optimization

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, P. [Petro-Canada Oil and Gas, Inc., Calgary, AB (Canada)

    2004-07-01

    Maturing gas basins and declining reservoirs have prompted the search for energy and cost reduction initiatives to maintain operation sustainability. This paper discusses the development of an algorithm to improve the efficiency of the Brazeau mole sieve dehydration system. Details of the operating unit and an outline of the system were provided, as well as an operator interface. The main objectives of the research were to reduce the number of corresponding regeneration cycles; reduce annual energy requirements; and extend the life of the dessicant. Reductions were anticipated at 35 per cent, leading towards fuel savings of $45,000 a year, and carbon dioxide reductions of 670 tonnes a year. However, significant barriers were also noted, including operations, maintenance and equipment replacement issues. Equations of state were used to estimate vapor pressure or water content in gases. Approximate water content was measured with gas flow rate. The resulting algorithm was implemented using a basic best fit curve generated for one variable with a correction factor applied as a second variable. Data books were provided to present water content of hydrocarbon gas, with implementation procedures. Benefits of the new system included longer service life and reduced chemical and outside service costs, and reduced lost production during sieve changes. Additional benefits included enhanced distributed computing system (DCS) interfaces within plant operations; extension of the adsorption cycle via the functionality of the algorithm; and the fact that during a plant upset, the algorithm froze cycle sequencing and eliminated the possibility of switching the beds and repeating regeneration. The improved system resulted in savings of $87,000. tabs, figs.

  9. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  10. WWER-1000 fuel cycles: current situation and outlook

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.; Spirkin, E.; Shcherenko, A.

    2013-01-01

    Usage mode of nuclear fuel in WWER type reactor has been changed significantly till the moment of the first WWER-1000 commissioning. There are a lot of improvements, having an impact on the fuel cycle, have been implemented for units with WWER-1000. FA design and its constructional materials, FA fuel weight, burnable poison, usage mode of units and etc have been modified. As the result of development it has been designed a modern FA with rigid skeleton. As a whole it allows to use more efficient configurations of the core, to extend range of fuel cycle lengths and to provide good flexibility in the operation. In recent years there were in progress works on increasing FA uranium capacity. As the result there were developed two designs of the fuel rod: 1) the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively and 2) the fuel column height of 3530 mm, the fuel pellet diameter of 7.8 mm without the central hole. Such fuel rods have operating experience as a part of different FA designs. Positive operating experience was a base of new FA (TVS-4) development with the fuel column height of 3680 mm and the fuel pellet diameter of 7.8 mm without the central hole. The paper presents the overview of WWER-1000, AES-2006 and WWER-TOI fuel cycles based on FAs with fuel rod designs described above. There are demonstrated fuel cycle possibilities and its technical and economic characteristics. There are discussed problems of further fuel cycle improvements (fuel enrichment increase above 5 %, use of erbium as alternative burnable poison) and their impact on neutronics characteristics. (authors)

  11. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  12. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  13. Cycle 22

    International Nuclear Information System (INIS)

    Kappernman, J.G.; Albertson, V.D.

    1991-01-01

    This paper reports that for many electric utility systems, Solar Cycle 22 has been the first introduction to the phenomena of Geomagnetic Disturbances and the disrupting and damaging effects that they can have upon modern power systems. For all intents and purposes, Power Industry awareness of Cycle 22 started with a bang during the Great Geomagnetic Storm of March 13, 1989. This storm caused a blackout to the entire Province of Quebec, permanently damaged a large nuclear plant GSU transformer in New Jersey, and created enough havoc across the entire North American power grid to create the plausible threat of a massive power system blackout. The flurry of activity and investigation that followed has led many engineers to realize that their power systems are indeed vulnerable to this phenomena and if anything are becoming ever more vulnerable as the system grows to meet future requirements. As a result some organizations such as Hydro Quebec, PSE and G, and the PJM Pool now implement strategic measures as a remedial response to detection of geomagnetic storm conditions. Many more companies pay particularly close attention to storm forecasts and alerts, and the industry in general has accelerated research and monitoring activities through their own means of in concert with the Electric Power Research Institute (EPRI)

  14. Fuel cycle oriented approach

    International Nuclear Information System (INIS)

    Petit, A.

    1987-01-01

    The term fuel cycle oriented approach is currently used to designate two quite different things: the attempt to consider all or part of a national fuel cycle as one material balance area (MBA) or to consider individual MBAs existing in a state while designing a unique safeguards approach for each and applying the principle of nondiscrimination to fuel cycles as a whole, rather than to individual facilities. The merits of such an approach are acceptability by the industry and comparison with the contemplated establishment of long-term criteria. The following points concern the acceptability by the industry: (1) The main interest of the industry is to keep an open international market and therefore, to have effective and efficient safeguards. (2) The main concerns of the industry regarding international safeguards are economic burden, intrusiveness, and discrimination. Answers to these legitimate concerns, which retain the benefits of a fuel cycle oriented approach, are needed. More specifically, the problem of reimbursing the operator the costs that he has incurred for the safeguards must be considered

  15. Riding the cycle

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G. [Canadian Association of Petroleum Producers, Calgary, AB (Canada)

    2001-07-01

    The current state of the Canadian oil and natural gas industry is reviewed as part of a discussion of economic cycles focusing in particular on the most recent cycle and the impact it has had on the industry. The review of the state of the industry includes discussion of production, exports, commodity prices, the stimulating effect of price increases on the number of oil and natural gas wells drilled, drilling rig operating days. Also discussed are the effect of foreign exchange rates, capital spending, industry financial performance in terms of return on capital employed, the impact of oil and gas prices on Alberta provincial revenues, estimates of Canada's ultimate crude oil and natural gas resources potential, pipelines and pipeline proposals for northern gas, and projection of crude oil and natural gas production in Canada to 2010.

  16. Riding the cycle

    International Nuclear Information System (INIS)

    Webster, G.

    2001-01-01

    The current state of the Canadian oil and natural gas industry is reviewed as part of a discussion of economic cycles focusing in particular on the most recent cycle and the impact it has had on the industry. The review of the state of the industry includes discussion of production, exports, commodity prices, the stimulating effect of price increases on the number of oil and natural gas wells drilled, drilling rig operating days. Also discussed are the effect of foreign exchange rates, capital spending, industry financial performance in terms of return on capital employed, the impact of oil and gas prices on Alberta provincial revenues, estimates of Canada's ultimate crude oil and natural gas resources potential, pipelines and pipeline proposals for northern gas, and projection of crude oil and natural gas production in Canada to 2010

  17. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  18. Carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, J; Halbritter, G; Neumann-Hauf, G

    1982-05-01

    This report contains a review of literature on the subjects of the carbon cycle, the increase of the atmospheric CO/sub 2/ concentration and the possible impacts of an increased CO/sub 2/ concentration on the climate. In addition to this survey, the report discusses the questions that are still open and the resulting research needs. During the last twenty years a continual increase of the atmospheric carbon dioxide concentration by about 1-2 ppm per years has been observed. In 1958 the concentration was 315 ppm and this increased to 336 ppm in 1978. A rough estimate shows that the increase of the atmospheric carbon dioxide concentration is about half of the amount of carbon dioxide added to the atmosphere by the combustion of fossil fuels. Two possible sinks for the CO/sub 2/ released into the atmosphere are known: the ocean and the biota. The role of the biota is, however, unclear, since it can act both as a sink and as a source. Most models of the carbon cycle are one-dimensional and cannot be used for accurate predictions. Calculations with climate models have shown that an increased atmospheric CO/sub 2/ concentration leads to a warming of the earth's surface and lower atmosphere. Calculations show that a doubling of the atmospheric CO/sub 2/-concentration would lead to a net heating of the lower atmosphere and earth's surface by a global average of about 4 W m/sup -2/. Greater uncertainties arise in estimating the change in surface temperature resulting from this change in heating rate. It is estimated that the global average annual surface temperature would change between 1.5 and 4.5 K. There are, however, latitudinal and seasonal variations of the impact of increased CO/sub 2/ concentration. Other meteorological variables (e.g. precipitation, wind speed etc.) would also be changed. It appears that the impacts of the other products of fossil fuel combustion are unlikely to counteract the impacts of CO/sub 2/ on the climate.

  19. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  20. Your Menstrual Cycle

    Science.gov (United States)

    ... your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... that take place over the weeks in your cycle. Want to know what happens on each day ...

  1. Operations and maintenance philosophy

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    1999-01-01

    This Operations and Maintenance (O and M) Philosophy document is intended to establish a future O and M vision, with an increased focus on minimizing worker exposure, ensuring uninterrupted retrieval operations, and minimizing operation life-cycle cost. It is intended that this document would incorporate O and M lessons learned into on-going and future project upgrades

  2. Cycle 7 outage experience

    International Nuclear Information System (INIS)

    Gadeken, A.D.

    1986-03-01

    The scheduled 58-day refueling outage in preparation for the seventh operating cycle of the Fast Flux Test Facility (FFTF) was successfully completed three days ahead of schedule. The planning and execution of the outage was greatly aided by Project/2 automated scheduling capabilities. For example, the use of ''maintenance windows'' and resource loading capabilities was particularly effective. The value of the planning process was demonstrated by the smooth transition into the outage phase after an early shutdown and set the stage for our best outage to date

  3. New route for synthesis of electrocatalytic Ni(OH)2 modified ...

    Indian Academy of Sciences (India)

    Administrator

    potential cycling of modified electrode with the above complex in alkali. (2) By thermal ... Chemically modified electrodes; nickel hydroxide; borohydride oxidation; electrocatalysis. 1. ..... Au, Pt and Ag substrates including bimetallic alloys (Bin.

  4. Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Jeong, Yong Hoon

    2013-01-01

    Highlights: • Supercritical CO 2 -based gas mixture Brayton cycles were investigated for a SFR. • The critical point of CO 2 is the lowest cycle operating limit of the S-CO 2 cycles. • Mixing additives with CO 2 changes the CO 2 critical point. • CO 2 –Xe and CO 2 –Kr cycles achieve higher cycle efficiencies than the S-CO 2 cycles. • CO 2 –H 2 S and CO 2 –cyclohexane cycles perform better at higher heat sink temperatures. -- Abstract: The supercritical carbon dioxide Brayton cycle (S-CO 2 cycle) has attracted much attention as an alternative to the Rankine cycle for sodium-cooled fast reactors (SFRs). The higher cycle efficiency of the S-CO 2 cycle results from the considerably decreased compressor work because the compressor behaves as a pump in the proximity of the CO 2 vapor–liquid critical point. In order to fully utilize this feature, the main compressor inlet condition should be controlled to be close to the critical point of CO 2 . This indicates that the critical point of CO 2 is a constraint on the minimum cycle condition for S-CO 2 cycles. Modifying the CO 2 critical point by mixing additive gases could be considered as a method of enhancing the performance and broadening the applicability of the S-CO 2 cycle. Due to the drastic fluctuations of the thermo-physical properties of fluids near the critical point, an in-house cycle analysis code using the NIST REFPROP database was implemented. Several gases were selected as potential additives considering their thermal stability and chemical interaction with sodium in the temperature range of interest and the availability of the mixture property database: xenon, krypton, hydrogen sulfide, and cyclohexane. The performances of the optimized CO 2 -containing binary mixture cycles with simple recuperated and recompression layouts were compared with the reference S-CO 2 , CO 2 –Ar, CO 2 –N 2 , and CO 2 –O 2 cycles. For the decreased critical temperatures, the CO 2 –Xe and CO 2

  5. To report the obtained results in the simulation with the FCS-11 and Presto codes of the two first operation cycles of the Laguna Verde Unit 1 reactor; Reportar los resultados obtenidos en la simulacion con los codigos FCS-11 y PRESTO de los dos primeros ciclos de operacion del reactor Laguna Verde Unidad 1

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Moran L, J.M.; Cortes C, C.C

    1990-08-15

    The objective of this work is to establish a preliminary methodology to carry out analysis of recharges for the reactor of the Laguna Verde U-1, by means of the evaluation of the state of the reactor core in its first two operation cycles using the FCS2 and Presto-B codes. (Author)

  6. Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

    CERN Multimedia

    1969-01-01

    Around the laboratories: Dubna: Physics results and progress on bubble chamber techniques; Stanford (SLAC): Operation of a very rapid cycling bubble chamber; Daresbury: Photographs of visitors to the Laboratory; Argonne: Charge exchange injection tests into the ZGS in preparation for a proposed Booster

  7. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  8. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  9. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  10. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO 2 cycle) as a working fluid can be an alternative approach. The S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO 2 . The direction and range of the CO 2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO 2 was mixed with N 2 , O 2 , He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO 2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating

  11. Rotary Stirling-Cycle Engine And Generator

    Science.gov (United States)

    Chandler, Joseph A.

    1990-01-01

    Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.

  12. Understanding the petrochemical cycle: Part 1

    International Nuclear Information System (INIS)

    Sedriks, W.

    1994-01-01

    Fitness in the hydrocarbon processing industry (HPI) arena involves understanding and coping with business cycles: supply and demand. This becomes increasingly more important as the industry globalizes and matures. Competitive-edge thinking needs to look hard at the forces that influence business cycles. Recognition of potential pitfalls is very important when considering: future capacity expansion, mergers and acquisitions, market departure, plant closure, potential product substitution, etc. Understanding pricing mechanisms and the workings of hockey-stick profitability profiles help HPI operators endure cycle downturns and prepare plants to maximize profits for the next upswing. The paper discusses characteristic trends, cycles in the hydrocarbon processing industry, current conditions, and mitigating cycle effects

  13. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring