WorldWideScience

Sample records for modifying macromolecules stoichiometric

  1. Controlled doping by self-assembled dendrimer-like macromolecules

    Science.gov (United States)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  2. Two modified versions of the speciation code PHREEQE for modelling macromolecule-proton/cation interaction

    International Nuclear Information System (INIS)

    Falck, W.E.

    1991-01-01

    There is a growing need to consider the influence of organic macromolecules on the speciation of ions in natural waters. It is recognized that a simple discrete ligand approach to the binding of protons/cations to organic macromolecules is not appropriate to represent heterogeneities of binding site distributions. A more realistic approach has been incorporated into the speciation code PHREEQE which retains the discrete ligand approach but modifies the binding intensities using an electrostatic (surface complexation) model. To allow for different conformations of natural organic material two alternative concepts have been incorporated: it is assumed that (a) the organic molecules form rigid, impenetrable spheres, and (b) the organic molecules form flat surfaces. The former concept will be more appropriate for molecules in the smaller size range, while the latter will be more representative for larger size molecules or organic surface coatings. The theoretical concept is discussed and the relevant changes to the standard PHREEQE code are explained. The modified codes are called PHREEQEO-RS and PHREEQEO-FS for the rigid-sphere and flat-surface models respectively. Improved output facilities for data transfer to other computers, e.g. the Macintosh, are introduced. Examples where the model is tested against literature data are shown and practical problems are discussed. Appendices contain listings of the modified subroutines GAMMA and PTOT, an example input file and an example command procedure to run the codes on VAX computers

  3. Nanostructure-Enabled and Macromolecule-Grafted Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Madeline Small

    2018-05-01

    Full Text Available Advances in nanotechnology and nanomaterials have enabled the development of functional biomaterials with surface properties that reduce the rate of the device rejection in injectable and implantable biomaterials. In addition, the surface of biomaterials can be functionalized with macromolecules for stimuli-responsive purposes to improve the efficacy and effectiveness in drug release applications. Furthermore, macromolecule-grafted surfaces exhibit a hierarchical nanostructure that mimics nanotextured surfaces for the promotion of cellular responses in tissue engineering. Owing to these unique properties, this review focuses on the grafting of macromolecules on the surfaces of various biomaterials (e.g., films, fibers, hydrogels, and etc. to create nanostructure-enabled and macromolecule-grafted surfaces for biomedical applications, such as thrombosis prevention and wound healing. The macromolecule-modified surfaces can be treated as a functional device that either passively inhibits adverse effects from injectable and implantable devices or actively delivers biological agents that are locally based on proper stimulation. In this review, several methods are discussed to enable the surface of biomaterials to be used for further grafting of macromolecules. In addition, we review surface-modified films (coatings and fibers with respect to several biomedical applications. Our review provides a scientific update on the current achievements and future trends of nanostructure-enabled and macromolecule-grafted surfaces in biomedical applications.

  4. Polyacid macromolecule primers

    Science.gov (United States)

    Sugama, Toshifumi.

    1989-12-26

    Hydrophilic polyacids are described, such as macromolecules of polyitaconic acid and polyacrylic acid, where such macromolecules have molecular weights >50,000 as primers between a polymeric top coating, such as polyurethane, and an oxidized aluminum or aluminum alloy. A near monolayer of primer is used in polymeric adhesive/oxidized aluminum adhered joint systems in 0.05% primer concentration to give superior results in standard peel tests. 2 figs.

  5. Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems

    Science.gov (United States)

    Wijaya, Emmy C.; Separovic, Frances; Drummond, Calum J.; Greaves, Tamar L.

    2018-05-01

    There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926-25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data

  6. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery.

    Science.gov (United States)

    Pele, Laetitia C; Haas, Carolin T; Hewitt, Rachel E; Robertson, Jack; Skepper, Jeremy; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Faria, Nuno; Chappell, Helen; Powell, Jonathan J

    2017-02-01

    Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Physiologically-based PK/PD modelling of therapeutic macromolecules.

    Science.gov (United States)

    Thygesen, Peter; Macheras, Panos; Van Peer, Achiel

    2009-12-01

    Therapeutic proteins are a diverse class of drugs consisting of naturally occurring or modified proteins, and due to their size and physico-chemical properties, they can pose challenges for the pharmacokinetic and pharmacodynamic studies. Physiologically-based pharmacokinetics (PBPK) modelling has been effective for early in silico prediction of pharmacokinetic properties of new drugs. The aim of the present workshop was to discuss the feasibility of PBPK modelling of macromolecules. The classical PBPK approach was discussed with a presentation of the successful example of PBPK modelling of cyclosporine A. PBPK model was performed with transport of the cyclosporine across cell membranes, affinity to plasma proteins and active membrane transporters included to describe drug transport between physiological compartments. For macromolecules, complex PBPK modelling or permeability-limited and/or target-mediated distribution was discussed. It was generally agreed that PBPK modelling was feasible and desirable. The role of the lymphatic system should be considered when absorption after extravascular administration is modelled. Target-mediated drug disposition was regarded as an important feature for generation of PK models. Complex PK-models may not be necessary when a limited number of organs are affected. More mechanistic PK/PD models will be relevant when adverse events/toxicity are included in the PK/PD modelling.

  8. Diagram of state of stiff amphiphilic macromolecules

    NARCIS (Netherlands)

    Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2007-01-01

    We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of

  9. Molecular Imprinting of Macromolecules for Sensor Applications.

    Science.gov (United States)

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  10. Noise reduction methods for nucleic acid and macromolecule sequencing

    Science.gov (United States)

    Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander

    2018-05-08

    Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.

  11. Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.

    Science.gov (United States)

    Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C

    2017-06-05

    Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.

  12. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. System for determining sizes of biological macromolecules

    International Nuclear Information System (INIS)

    Nelson, R.M.; Danby, P.C.

    1987-01-01

    An electrophoresis system for determining the sizes of radiolabelled biological macromolecules is described. It comprises a cell containing an electrophoresis gel and having at least one lane, a voltage source connected across the gel for effecting the movement of macromolecules in the lane, a detector fixed relative to the moving molecules for generating electrical pulses responsive to signals emitted by the radiolabelled molecules; a pulse processor for counting the pulse rate, and a computational device for comparing the pulse rate to a predetermined value. (author)

  14. Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo

    Directory of Open Access Journals (Sweden)

    Baik L. Seong

    2011-03-01

    Full Text Available The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.

  15. Modelisation of the concentration of macromolecules moving in a Newtonian fluid

    International Nuclear Information System (INIS)

    Hijazi, A.; Zoaeter, M.; Khater, A.; Aussere, D.

    1998-01-01

    Author.This article presents a modelisation of the distribution of a diluted solution of macromolecules submitted to a simple flow in the neighborhood of a non-absorbing solid surface. These macromolecules (length L, negligible diameter) are submitted to two kinds of forces: rotational and translational with brownian and hydrodynamic origins. The evolution of orientation of these molecules in terms of time has been studied, given Einstein equation =D with D coefficient of translation and rotation. By taking as parameters the orientation θ of the macromolecules with respect to an horizontal axis and Z the distance between these macromolecules and the surface, a statistical study has led to determine the distribution. For that reason, the brownian movement considered is supposed to follow a rule of random probability

  16. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories

    Science.gov (United States)

    Chen, Ruirui; Senbayram, Mehmet; Blagodatsky, Sergey; Dittert, Klaus; Lin, Xiangui; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4-sucrose or C4-maize straw to C3-soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects - microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K-strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β-glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r-strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K- and r-strategists were beneficial for priming effects, with an increasing contribution of K-selected species under N limitation. Thus, the priming phenomenon described in 'microbial N mining' theory can be ascribed to K-strategists. In contrast, 'stoichiometric decomposition' theory, that is, accelerated OM

  17. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  18. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  19. Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition

    International Nuclear Information System (INIS)

    Glagolev, Mikhail K.; Vasilevskaya, Valentina V.; Khokhlov, Alexei R.

    2016-01-01

    Impact of mixture composition on self-organization in concentrated solutions of stiff helical and flexible macromolecules was studied by means of molecular dynamics simulation. The macromolecules were composed of identical amphiphilic monomer units but a fraction f of macromolecules had stiff helical backbones and the remaining chains were flexible. In poor solvents the compacted flexible macromolecules coexist with bundles or filament clusters from few intertwined stiff helical macromolecules. The increase of relative content f of helical macromolecules leads to increase of the length of helical clusters, to alignment of clusters with each other, and then to liquid-crystalline-like ordering along a single direction. The formation of filament clusters causes segregation of helical and flexible macromolecules and the alignment of the filaments induces effective liquid-like ordering of flexible macromolecules. A visual analysis and calculation of order parameter relaying the anisotropy of diffraction allow concluding that transition from disordered to liquid-crystalline state proceeds sharply at relatively low content of stiff components.

  20. Synthesis and Evaluation of ABO3 Perovskites (A=La and B=Mn, Co with Stoichiometric and Over-stoichiometric Ratios of B/A for Catalytic Oxidation of Trichloroethylene

    Directory of Open Access Journals (Sweden)

    Razieh Alagheband

    2018-01-01

    Full Text Available In this contribution, perovskite catalysts (ABO3 were probed that site A and site B were occupied by lanthanum and transition metals of manganese or cobalt, respectively, with stoichiometric ratios as well as 20 % over-stoichiometric ratios of B/A. The perovskite samples were synthesized using a gel-combustion method and characterized by BET, XRD, SEM and O2-TPD analyses. After mounting in a fixed bed reactor, the catalysts were examined in atmospheric pressure conditions at different temperatures for oxidation of 1000 ppm trichloroethylene in the air. Evaluation of over-stoichiometric catalysts activity showed that the increased ratio of B/A in the catalysts compared to the stoichiometric one led to BET surface area, oxygen mobility, and consequently catalytic performance improvement. The lanthanum manganite perovskite with 20 % excess manganese yielded the best catalytic performance among the probed perovskites. Copyright © 2018 BCREC Group. All rights reserved Received: 28th April 2017; Revised: 31st July 2017; Accepted: 4th August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Alagheband, R., Maghsoodi, S., Kootenaei, A.S., Kianmanesh, H. (2018. Synthesis and Evaluation of ABO3 Perovskites (A=La and B=Mn, Co with Stoichiometric and Over-stoichiometric Ratios of B/A for Catalytic Oxidation of Trichloroethylene. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 47-56 (doi:10.9767/bcrec.13.1.1188.47-56

  1. High efficiency stoichiometric internal combustion engine system

    Science.gov (United States)

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  2. Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells

    Science.gov (United States)

    2016-07-01

    HIGHLY RESOLVED SUB-TERAHERTZ VIBRATIONAL SPECTROSCOPY OF BIOLOGICAL MACROMOLECULES AND BACTERIA CELLS ECBC...SUBTITLE Highly Resolved Sub-Terahertz Vibrational Spectroscopy of Biological Macromolecules and Bacteria Cells 5a. CONTRACT NUMBER W911SR-14-P...22 4.3 Bacteria THz Study

  3. An Overview of Biological Macromolecule Crystallization

    Directory of Open Access Journals (Sweden)

    Irene Russo Krauss

    2013-05-01

    Full Text Available The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.

  4. Complex formation ions calcium with macromolecules pectin

    International Nuclear Information System (INIS)

    Khalikova, M.D.; Avloev, Kh.Kh.; Muhiddinov, Z.K.

    2005-01-01

    In clause the mechanism of sorption of ions of calcium by macromolecules of pectin is opened. Is shown, that the linkage of ions of calcium descends on acid bunches of pectin, and process carries cooperative character

  5. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  6. First-principles study of hydrogen storage in non-stoichiometric TiCx

    International Nuclear Information System (INIS)

    Ding, Haimin; Fan, Xiaoliang; Li, Chunyan; Liu, Xiangfa; Jiang, Dong; Wang, Chunyang

    2013-01-01

    Highlights: ► The absorption of hydrogen in non-stoichiometric TiC x is thermally favorable. ► As many as four hydrogen atoms can be trapped by a carbon vacancy. ► The diffusion of hydrogen in TiC x is difficult, especially in TiC x with high x. - Abstract: In this work, the first principles calculation has been performed to study the hydrogen storage in non-stoichiometric TiC x . It is found that hydrogen absorption in stoichiometric TiC is energetically unfavorable, while it is favorable in non-stoichiometric TiC x . This indicates that the existence of carbon vacancies is essential for hydrogenation storage in TiC x . At the same time, multiple hydrogen occupancy of the vacancy has been confirmed and it is calculated that as many as four hydrogen atoms can be trapped by a carbon vacancy. These absorbed hydrogen atoms tend to uniformly distribute around the vacancy. However, it is also found that the diffusion of hydrogen atoms in TiC x is difficult, especially in TiC x with high x.

  7. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol

    International Nuclear Information System (INIS)

    Gao Baojiao; Jiang Pengfei; An Fuqiang; Zhao Shuying; Ge Zhen

    2005-01-01

    The adsorption isotherm of polyethyleneimine (PEI) on diatomite was studied using UV spectrophotometry, the surface of diatomite was modified with polyethyleneimine by using impregnation method, and the trapping behavior of the modified diatomite for phenol was investigated by using 4-aminoantipyrine (4-AAP) spectrophotometric method. The experiment results show that negatively charged diatomite particles have very strong absorption effect for cationic macromolecule PEI, the adsorption isotherm fits in Freundlich equation. The character that there is a maximum value after intitial sharp increase of adsorption capacity on the adsorption curve indicates that there is strong affinity between diatomite particles and polyethyleneimine macromolecules, and it attributes to the strong electrostatic interaction. After modification with PEI, the electric property of diatomite particle surface changes essentially, and the isoelectric point of diatomite particles moves from pH 2.0 to 10.5. In acidic solution, phenol exists as molecular state, and the modified diatomite particles adsorb phenol through hydrogen bond interaction. However, the hydrogen bond interaction between nitrogen atoms on PEI chains and phenol is weaker because of high degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is lower. In basic solution, phenol exists as negative benzene-oxygen ion, and the modified diatomite particles adsorb phenol through electrostatic interaction. However, the electrostatic interaction between PEI and negative benzene-oxygen ion is very weak because of low degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is much lower. The modified diatomite particles produce very strong trapping effect for phenol in neutral aqueous solution via the cooperating of strong electrostatic interaction and hydrogen bond interaction, and the saturated adsorption capacity can attain to 92 mg g -1

  8. Development for equipment of the milk macromolecules content detection

    Science.gov (United States)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  9. Single molecule optical measurements of orientation and rotations of biological macromolecules

    OpenAIRE

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-01-01

    The subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measuring their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here...

  10. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG

    Science.gov (United States)

    Leibfarth, Frank A.; Johnson, Jeremiah A.; Jamison, Timothy F.

    2015-01-01

    We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure–property studies, and advanced applications in biotechnology and materials science. PMID:26269573

  11. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

    Directory of Open Access Journals (Sweden)

    Jing Kang

    2010-01-01

    Full Text Available H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine (PAH. The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules.

  12. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  13. Raman analysis of non stoichiometric Ni1-δO

    Science.gov (United States)

    Dubey, Paras; Choudhary, K. K.; Kaurav, Netram

    2018-04-01

    Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.

  14. An investigation of the shedding of macromolecules from the Ehrlich mouse ascites tumor cell

    International Nuclear Information System (INIS)

    Edwards, E.H.

    1984-01-01

    The spontaneous release, or shedding, of cell surface components into the extracellular medium may be important in the determination of several features of the cancer cell phenotype. The release of macromolecules from the Erhlich mouse ascites tumor cell was studied under a variety of experimental conditions to elucidate the origin and the underlying mechanisms of release. The extrinsic macromolecules are a diverse group with apparent molecular weights ranging from 13,500 to 400,000 daltons. External labeling of the cell surface with tritiated 4,4'-diisothiocyano-1,2-diphenylethane-2,2-disulfonic acid ([ 3 H]H 2 DIDS) reveals a slow loss of labeled components at 4 degrees C, while at 21 degrees C and 37 degrees C an initial rapid loss is followed by a slower release. In vitro metabolic labeling with [1- 14 C]-D-glucosamine hydrochloride, D-[2- 3 H]-mannose and various [ 3 H]-L-amino acids results in the appearance of labeled macromolecules in the medium suggesting tumor, not mouse, origin. These data suggest that the extrinsic macromolecules originate from the cell surface. Macromolecules are shed by a temperature and pH sensitive process. These results suggest that a limited proteolytic digestion, or sublethal autolysis, of the cell surface may occur in this system. The macromolecules shed by the Ehrlich cell originate from the surface and are probably released by sublethal autolysis, direct secretion and a passive process

  15. Universal aspects of macromolecules in polymer blends, solutions, and supercritical mixtures

    International Nuclear Information System (INIS)

    Melnichenko, Y.B.; Wignall, G.D.; Schwahn, D.

    2002-01-01

    We demonstrate that macromolecules in miscible polymer blends may behave as good, Θ, and poor polymeric solvents for each other. We construct a conceptual phase diagram, delineating the range of validity of the random-phase approximation, outside of which polymers contract or expand beyond their unperturbed dimensions, contrary to common assumptions. Remarkably, the correlation length for polymer blends, solutions, and supercritical mixtures collapses onto a master curve, reflecting universal behavior for macromolecules in polymeric and small-molecule Θ solvents

  16. The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Oostveen, van W.H.M.; Voragen, A.G.J.; Gruppen, H.

    2007-01-01

    Lignans in flaxseed are known to be part of a macromolecule in which they are connected through the linker-molecule hydroxy-methyl-glutaric acid (HMGA). In this study, the lignan macromolecule was extracted from flaxseed hulls and degraded to its monomeric constituents by complete saponification.

  17. The radiation chemistry of macromolecules

    CERN Document Server

    1973-01-01

    The Radiation Chemistry of Macromolecules, Volume II is a collection of papers that discusses radiation chemistry of specific systems. Part 1 deals with radiation chemistry of substituted vinyl polymers, particularly polypropylene (PP) as its structure is intermediate between polyethylene and polyisobutylene. This part also discusses polypropylene oxide (PPOx) for it can be prepared in the atactic, isotactic, and optically active forms. One paper focuses on the fundamental chemical processes and the changes in physical properties that give rise to many different applications of polystyrene. An

  18. Classification of the ejection mechanisms of charged macromolecules from liquid droplets.

    Science.gov (United States)

    Consta, Styliani; Malevanets, Anatoly

    2013-01-28

    The relation between the charge state of a macromolecule and its ejection mechanism from droplets is one of the important questions in electrospray ionization methods. In this article, effects of solvent-solute interaction on the manifestation of the charge induced instability in a droplet are examined. We studied the instabilities in a prototype system of a droplet comprised of charged poly(ethylene glycol) and methanol, acetonitrile, and water solvents. We observed instances of three, previously only conjectured, [S. Consta, J. Phys. Chem. B 114, 5263 (2010)] mechanisms of macroion ejection. The mechanism of ejection of charged macroion in methanol is reminiscent of "pearl" model in polymer physics. In acetonitrile droplets, the instability manifests through formation of solvent spines around the solvated macroion. In water, we find that the macroion is ejected from the droplet through contiguous extrusion of a part of the chain. The difference in the morphology of the instabilities is attributed to the interplay between forces arising from the macroion solvation energy and the surface energy of the droplet interface. For the contiguous extrusion of a charged macromolecule from a droplet, we demonstrate that the proposed mechanism leads to ejection of the macromolecule from droplets with sizes well below the Rayleigh limit. The ejected macromolecule may hold charge significantly higher than that suggested by prevailing theories. The simulations reveal new mechanisms of macroion evaporation that differ from conventional charge residue model and ion evaporation mechanisms.

  19. Adsorption of charged macromolecules at a gold electrode

    NARCIS (Netherlands)

    Kleijn, J.M.; Barten, D.; Cohen Stuart, M.A.

    2004-01-01

    Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP +), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a

  20. Characterization of biological macromolecules by electrophoresis and neutron activation

    International Nuclear Information System (INIS)

    Stone, S.F.; Hancock, D.; Zeisler, R.

    1987-01-01

    A procedure combining polyacrylamide gel electrophoresis (PAGE) with INAA and autoradiography was developed to study biological macromolecules and their associated trace elements. Results from the application of this method to several metalloproteins are presented. (author)

  1. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  2. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    Science.gov (United States)

    Laskin, Julia [Richland, WA; Wang, Peng [Billerica, MA

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  3. Organized monolayers of biological macromolecules on Au(111) surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Nielsen, Jens Ulrik

    2002-01-01

    Single-crystal electrochemistry and scanning tunneling microscopy directly in aqueous electrolyte solution (in situ STM) are established in physical electrochemistry but new in studies of adsorption and interfacial electrochemistry of biological macromolecules. These high-resolution techniques ha...

  4. Macromolecule biosynthesis assay and fluorescence spectroscopy methods to explore antimicrobial peptide mode(s) of action

    DEFF Research Database (Denmark)

    Jana, Bimal; Baker, Kristin Renee; Guardabassi, Luca

    2017-01-01

    the biosynthesis rate of macromolecules (e.g., DNA, RNA, protein, and cell wall) and the cytoplasmic membrane proton motive force (PMF) energy can help to unravel the diverse modes of action of AMPs. Here, we present an overview of macromolecule biosynthesis rate measurement and fluorescence spectroscopy methods...

  5. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain l-fucosylation.

    Science.gov (United States)

    Naumenko, Olesya I; Zheng, Han; Xiong, Yanwen; Senchenkova, Sof'ya N; Wang, Hong; Shashkov, Alexander S; Li, Qun; Wang, Jianping; Knirel, Yuriy A

    2018-05-22

    An O-polysaccharide was isolated from the lipopolysaccharide of Escherichia albertii O2 and studied by chemical methods and 1D and 2D 1 H and 13 C NMR spectroscopy. The following structure of the O-polysaccharide was established: . The O-polysaccharide is characterized by masked regularity owing to a non-stoichiometric O-acetylation of an l-fucose residue in the main chain and a non-stoichiometric side-chain l-fucosylation of a β-GlcNAc residue. A regular linear polysaccharide was obtained by sequential Smith degradation and alkaline O-deacetylation of the O-polysaccharide. The content of the O-antigen gene cluster of E. albertii O2 was found to be essentially consistent with the O-polysaccharide structure established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Probing nanoparticle-macromolecule interaction and resultant structure by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aswal, V.K.

    2013-01-01

    Nanoparticles display unique and distinct characteristics from those of their constituent atoms and bulk materials which are being employed in numerous applications in the fields of medicine, electronics, optics, communications, energy, environment etc. Many of these applications require adjoining of nanoparticles with macromolecules such as proteins, polymers and surfactants to obtain functional objects. For example, nanoparticle-protein complexes are of great importance in controlling enzymatic behavior, targeted drug delivery and developing biocompatible materials. The nanoparticles interfaced with polymers are shown to be useful in developing protein sensor arrays. Interaction of surfactants with nanoparticles is utilized extensively for technical and industrial applications associated with colloidal stability, detergency and design of nanostructured functional interfaces. The interaction of two components, nanoparticles and macromolecule, strongly depends on the characteristics of both the nanoparticles (size, shape, surface roughness, charge density etc.) and macromolecules (type, charge, shape and solution conditions etc.) used. The interaction of macromolecule on nanoparticle surface is a cumulative effect of a number of forces such as electrostatic force, covalent bonding, hydrogen bonding, non-polar interaction, hydrophobic interactions etc. These interactions depending on the system conditions can lead to various structures. Small-angle neutron scattering (SANS) with the possibility to vary contrast is an ideal technique to study such multi-component systems. In this talk, some of our results of SANS from the complexes of nanoparticle-protein and nanoparticle surfactant systems will be discussed. (author)

  7. A general method to study equilibrium partitioning of macromolecules

    DEFF Research Database (Denmark)

    The distribution of macromolecules between a confined microscopic solution and a macroscopic bulk solution plays an important role in understanding separation processes such as Size Exclusion Chromatography (SEC). In this study, we have developed an efficient computational algorithm for obtaining...

  8. Water-resistance of macromolecules adsorbed on CH3NH3PbI3 surfaces: A first-principles study

    Science.gov (United States)

    Chen, Po-Tuan; Yung, Tung-Yuan; Liu, Ting-Yu; Sher, Chin-Wei; Hayashi, Michitoshi

    2017-10-01

    Encapsulation within resin films is a promising approach for isolating perovskite materials from water. To gain fundamental insight into these systems, we performed first-principles calculations of macromolecule (polymerized siloxane; epoxy cured by phthalic anhydride; graphene sheet) coatings for the waterproofing of methylammonium lead iodide perovskite (MAPbI3) surfaces. Our calculations reveal that alternating attractive/resistant functional groups on the siloxane- or epoxy-modified MAPbI3 surfaces hinder the water diffusion process. Moreover, we examined a no-defect graphene sheet for its ability to isolate MAPbI3 from water molecules. The hydrophobicity of the graphene resulted in water molecules forming clusters, rather than dispersing, upon the sheet.

  9. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    Science.gov (United States)

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  10. Single molecule optical measurements of orientation and rotations of biological macromolecules.

    Science.gov (United States)

    Shroder, Deborah Y; Lippert, Lisa G; Goldman, Yale E

    2016-11-22

    Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.

  11. Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects.

    Science.gov (United States)

    Sponton, Osvaldo E; Perez, Adrián A; Carrara, Carlos R; Santiago, Liliana G

    2016-11-15

    Stoichiometric, kinetic and thermodynamic aspects of complex formation between heat-induced aggregates of ovalbumin (ovalbumin nanoparticles, OVAn) and linoleic acid (LA) were evaluated. Extrinsic fluorescence data were fitted to modified Scatchard model yielding the following results: n: 49±2 LA molecules bound per OVA monomer unit and Ka: 9.80±2.53×10(5)M. Kinetic and thermodynamic properties were analyzed by turbidity measurements at different LA/OVA monomer molar ratios (21.5-172) and temperatures (20-40°C). An adsorption approach was used and a pseudo-second-order kinetics was found for LA-OVAn complex formation. This adsorption process took place within 1h. Thermodynamic parameters indicated that LA adsorption on OVAn was a spontaneous, endothermic and entropically-driven process, highlighting the hydrophobic nature of the LA and OVAn interaction. Finally, Atomic Force Microscopy imaging revealed that both OVAn and LA-OVAn complexes have a roughly rounded form with size lower than 100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The fingerprint of Te-rich and stoichiometric Bi2Te3 nanowires by Raman spectroscopy

    Science.gov (United States)

    Rodríguez-Fernández, Carlos; Manzano, Cristina V.; Romero, Aldo H.; Martín, Jaime; Martín-González, Marisol; Morais de Lima, Mauricio, Jr.; Cantarero, Andrés

    2016-02-01

    We unambiguously show that the signature of Te-rich bismuth telluride is the appearance of three new peaks in the Raman spectra of Bi2Te3, located at 88, 117 and 137 cm-1. For this purpose, we have grown stoichiometric Bi2Te3 nanowires as well as Te-rich nanowires. The absence of these peaks in stoichiometric nanowires, even in those with the smallest diameter, shows that they are not related to confinement effects or the lack of inversion symmetry, as stated in the literature, but to the existence of Te clusters. These Te clusters have been found in non-stoichiometric samples by high resolution electron microscopy, while they are absent in stoichiometric samples. The Raman spectra of the latter corresponds to the one for bulk Bi2Te3. The intensity of these Raman peaks are clearly correlated to the Te content. In order to ensure statistically meaningful results, we have investigated several regions from every sample.

  13. Study of structural differences between stoichiometric and congruent lithium niobate

    CERN Document Server

    Kling, A; Correia, J G; Da Silva, M F A; Diéguez, E; Agulló-López, F; Soares, J C

    1996-01-01

    The structural differences between stoichiometric and congruent (lithium deficient) lithium niobate single crystals were studied by RBS- and NRA-channeling as well as perturbed angular correlation (PAC) measurements. The d-PAC111Cd-PAC investigations point out that a second Li site can be detected in congruent material, while only one is present in stoichiometric. Channeling studies of different axes and the comparison of the results with computer simulations corroborated former indications that this additional lattice site can be attributed to the formation of ilmenite type stacking faults. A comparative study of the energy dependence of the dechanneling showed that a remarkable disorder is also present in the Nb sublattice of the congruent crystals and that these defects have a point-like character.

  14. Friction of N-bead macromolecules in solution: Effects of the bead-solvent interaction

    International Nuclear Information System (INIS)

    Uvarov, Alexander; Fritzsche, Stephan

    2006-01-01

    The role of the bead-solvent interaction has been studied for its influence on the dynamics of an N-bead macromolecule which is immersed into a solution. Using a Fokker-Planck equation for the phase-space distribution function of the macromolecule, we show that all the effects of the solution can be treated entirely in terms of the friction tensors which are assigned to each pair of interacting beads in the chain. For the high-density as well as for the critical solvent, the properties of these tensors are discussed in detail and are calculated by using several (realistic) choices of the bead-solvent potential. From the friction tensors, moreover, an expression for the center-of-mass friction coefficient of a (N-bead) chain macromolecule is derived. Numerical data for this coefficient for 'truncated' Lennard-Jones bead-solvent potential are compared with results from molecular dynamic simulations and from the phenomenological theoretical data as found in the literature

  15. Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets

    Institute of Scientific and Technical Information of China (English)

    Liang Kou; Hongkun He; Chao Gao

    2010-01-01

    A facile 'click chemistry' approach to functionalize 2D macromolecules of graphene oxide nanosheets with poly(ethylene glycol) of different molecular weights,polystyrene,palmitic acid and various amino acids was presented.FTIR,TGA,Raman spectroscopy,XPS,XRD,TEM,AFM and SEM were utilized to characterize the products.High degree of functionalization was achieved on the flat surfaces of graphene oxide,affording polymer-grafted 2D brushes and amino acids-immobilized nanosheets,which show improved solubility in organic solvents.The click chemistry strategy reported herein provides a facile and general method for functionalization of graphene oxide with macromolecules and desired biomolecules.

  16. A structural self-regulation of functioning macromolecules

    International Nuclear Information System (INIS)

    Khristoforov, L.N.

    1998-01-01

    An approach to describing the functional structural changes of macromolecules processing the flows of low-mass agents is formulated. The latter appear as a source of a discrete noise whose defining parameters depend on structural variables. We derive a forward evolution equation and then, by adiabatic elimination, effective Fokker-Planck's equation for the structural modes. Within the dichotomous case, we discuss noise-induced nonequilibrium phase transitions reflecting the regulatory role of the structural subsystem

  17. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides.

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M; Högberg, Björn

    2013-07-01

    Single-stranded oligonucleotides are important as research tools, as diagnostic probes, in gene therapy and in DNA nanotechnology. Oligonucleotides are typically produced via solid-phase synthesis, using polymer chemistries that are limited relative to what biological systems produce. The number of errors in synthetic DNA increases with oligonucleotide length, and the resulting diversity of sequences can be a problem. Here we present the 'monoclonal stoichiometric' (MOSIC) method for enzyme-mediated production of DNA oligonucleotides. We amplified oligonucleotides from clonal templates derived from single bacterial colonies and then digested cutter hairpins in the products, which released pools of oligonucleotides with precisely controlled relative stoichiometric ratios. We prepared 14-378-nucleotide MOSIC oligonucleotides either by in vitro rolling-circle amplification or by amplification of phagemid DNA in Escherichia coli. Analyses of the formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides.

  18. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    Science.gov (United States)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  19. Optical excitation of carbon nanotubes drives stoichiometric reaction with diazonium salts

    Science.gov (United States)

    Powell, Lyndsey; Piao, Yanmei; Wang, Yuhuang; YuHuang Wang Research Group Team

    Covalent chemistry is known to lack the precision required to tailor the physical properties of carbon nanostructures. Here we show that, for the first time, light can be used to drive a typically inefficient reaction with single-walled carbon nanotubes in a more stoichiometric fashion. Specifically, our experimental results suggest that light can enhance the reaction rate of diazonium salt with carbon nanotubes by as much as 35-fold, making possible stoichiometric control of the covalent bonding of a functional group to the sp2 carbon lattice. This light-controlled reaction paves the way for the possibility of highly selective and precise chemistry on single-walled carbon nanotubes and other graphitic nanostructures.

  20. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  1. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    Science.gov (United States)

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Interactions between adsorbed macromolecules : measurements on emulsions and liquid films

    NARCIS (Netherlands)

    Vliet, van T.

    1977-01-01

    The aim of this study was to gain more insight into the factors, determining the inter- and intramolecular interactions between adsorbed macromolecules. To that end several experimental and theoretical approaches were followed, using well-defined systems. It was shown that these

  3. Basal-body-associated macromolecules: a continuing debate.

    Science.gov (United States)

    Pierre Mignot, J; Brugerolle, G; Didier, P; Bornens, M

    1993-07-01

    Controversy over the possibility that centrioles/basal bodies contain nucleic acids has overshadowed results demonstrating other macromolecules in the lumen of these organelles. Glycogen particles, which are known to be present within the lumen of the centriole/basal body of sperm cells, have now been found in basal bodies of protists belonging to three different groups. Here, we extend the debate on a role for RNA in basal body/centriole function and speculate on the origin and the function of centriolar glycogen.

  4. Interactions between macromolecule-bound antioxidants and Trolox during liposome autoxidation

    DEFF Research Database (Denmark)

    Celik, Ecem Evrim; Amigo Rubio, Jose Manuel; Andersen, Mogens Larsen

    2017-01-01

    The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively and Tr...... of logistic function was successfully used for modelling the oxidation curve of liposomes. Principal component analysis revealed two separate phases of liposome autoxidation.......The interactions between free and macromolecule-bound antioxidants were investigated in order to evaluate their combined effects on the antioxidant environment. Dietary fiber (DF), protein and lipid-bound antioxidants, obtained from whole wheat, soybean and olive oil products, respectively...... of the simple addition effects of Trolox and bound antioxidants with measured values on lipid oxidation revealed synergetic interactions for DF and refined olive oil-bound antioxidants, and antagonistic interactions for protein and extra virgin olive oil-bound antioxidants with Trolox. A generalized version...

  5. Is the macromolecule signal tissue-specific in healthy human brain? A (1)H MRS study at 7 Tesla in the occipital lobe.

    Science.gov (United States)

    Schaller, Benoît; Xin, Lijing; Gruetter, Rolf

    2014-10-01

    The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB occipital lobe at 7T in healthy human brain. Copyright © 2013 Wiley Periodicals, Inc.

  6. Tunable Tensor Voting Improves Grouping of Membrane-Bound Macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2009-04-15

    Membrane-bound macromolecules are responsible for structural support and mediation of cell-cell adhesion in tissues. Quantitative analysis of these macromolecules provides morphological indices for damage or loss of tissue, for example as a result of exogenous stimuli. From an optical point of view, a membrane signal may have nonuniform intensity around the cell boundary, be punctate or diffused, and may even be perceptual at certain locations along the boundary. In this paper, a method for the detection and grouping of punctate, diffuse curvilinear signals is proposed. Our work builds upon the tensor voting and the iterative voting frameworks to propose an efficient method to detect and refine perceptually interesting curvilinear structures in images. The novelty of our method lies on the idea of iteratively tuning the tensor voting fields, which allows the concentration of the votes only over areas of interest. We validate the utility of our system with synthetic and annotated real data. The effectiveness of the tunable tensor voting is demonstrated on complex phenotypic signals that are representative of membrane-bound macromolecular structures.

  7. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  8. On the stability of sub-stoichiometric uranium oxides

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1986-12-01

    The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.

  9. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  10. JAIL: a structure-based interface library for macromolecules.

    Science.gov (United States)

    Günther, Stefan; von Eichborn, Joachim; May, Patrick; Preissner, Robert

    2009-01-01

    The increasing number of solved macromolecules provides a solid number of 3D interfaces, if all types of molecular contacts are being considered. JAIL annotates three different kinds of macromolecular interfaces, those between interacting protein domains, interfaces of different protein chains and interfaces between proteins and nucleic acids. This results in a total number of about 184,000 database entries. All the interfaces can easily be identified by a detailed search form or by a hierarchical tree that describes the protein domain architectures classified by the SCOP database. Visual inspection of the interfaces is possible via an interactive protein viewer. Furthermore, large scale analyses are supported by an implemented sequential and by a structural clustering. Similar interfaces as well as non-redundant interfaces can be easily picked out. Additionally, the sequential conservation of binding sites was also included in the database and is retrievable via Jmol. A comprehensive download section allows the composition of representative data sets with user defined parameters. The huge data set in combination with various search options allow a comprehensive view on all interfaces between macromolecules included in the Protein Data Bank (PDB). The download of the data sets supports numerous further investigations in macromolecular recognition. JAIL is publicly available at http://bioinformatics.charite.de/jail.

  11. Understanding Stoichiometric Controls in Nutrient Processing Along the River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Gonzalez-Pinzon, R.; Van Horn, D. J.; Covino, T. P.

    2016-12-01

    Eutrophication is the second most common cause of water impairment across the U.S. Nutrient retention in streams is controlled by physical and biochemical processes, including biomass availability and stoichiometric limitations. Decoupling the interactions between hydrology, nutrient supply and biogeochemical processes remains challenging for the scientific community due to lack of mechanistic understanding. Consequently, more knowledge regarding optimal controls for nutrient retention is needed to implement better management and restoration practices. We conducted column experiments to investigate how stoichiometric limitations influence nutrient spiraling in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (which spans eight stream orders), in New Mexico, USA. In each stream order we incubated six columns packed with different sediments (i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (>2mm) and native sediments) from each site for three months. We performed two laboratory tracer experiments using columns of each substrate under identical flow conditions. In the first experiment we added a short-term pulse of reactive and conservative tracers (i.e. NaNO3 and NaBr). In the second experiment we added a short-term pulse of NaBr and nutrients following Redfield's ratio (106C:16N:1P). We estimated uptake kinetics using the Tracer Additions for Spiraling Curve Characterization (TASCC) method and evaluated how ideal stoichiometric conditions controlled efficient nutrient retention along fluvial networks. Our results suggest that biological uptake of nitrate is limited by nitrogen in headwater streams and by phosphorus and carbon in larger stream orders.

  12. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    Science.gov (United States)

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  13. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production

    Czech Academy of Sciences Publication Activity Database

    Kamarainen, J.; Knoop, H.; Stanford, N.; Guerrero, F.; Akhtar, M. K.; Aro, E. M.; Steuer, Ralf; Jones, P. R.

    2012-01-01

    Roč. 162, č. 1 (2012), s. 67-74 ISSN 0168-1656 Institutional support: RVO:67179843 Keywords : Cyanobacteria * Hydrocarbon * Fuel * Toxicity * Stoichiometric potential Subject RIV: EH - Ecology, Behaviour Impact factor: 3.183, year: 2012

  14. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  15. Random laser action in stoichiometric Nd3Ga5O12 garnet crystal powder

    International Nuclear Information System (INIS)

    Iparraguirre, I; Azkargorta, J; Barredo-Zuriarrain, M; Balda, R; Fernández, J; Kamada, K; Yoshikawa, A; Rodríguez-Mendoza, U R; Lavín, V

    2016-01-01

    This work explores the room temperature infrared random laser (RL) performance of Nd 3+ ions in a new stoichiometric Nd 3 Ga 5 O 12 crystal powder. The time-resolved measurements show that the RL pulse is able to follow the subnanosecond oscillations of the pump pulse profile. The pump threshold energy and the absolute stimulated emission energy have been measured using a method developed by the authors. The laser slope efficiency is the highest compared to other Nd 3+ stoichiometric RL crystals. (letter)

  16. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  17. Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm.

    Directory of Open Access Journals (Sweden)

    Ronald Hancock

    Full Text Available Cell nuclei are commonly isolated and studied in media which include millimolar concentrations of cations, which conserve the nuclear volume by screening the negative charges on chromatin and maintaining its compaction. However, two factors question if these ionic conditions correctly reproduce the environment of nuclei in vivo: the small-scale motion and conformation of chromatin in vivo are not reproduced in isolated nuclei, and experiments and theory suggest that small ions in the cytoplasm are not free in the soluble phase but are predominantly bound to macromolecules. We studied the possible role in maintaining the structure and functions of nuclei in vivo of a further but frequently overlooked property of the cytoplasm, the crowding or osmotic effects caused by diffusible macromolecules whose concentration, measured in several studies, is in the range of 130 mg/ml. Nuclei which conserved their volume in the cell and their ultrastructure seen by electron microscopy were released from K562 cells in media containing the inert polymer 70 kDa Ficoll (50% w/v or 70 kDa dextran (35% w/v to replace the diffusible cytoplasmic molecules which were dispersed on cell lysis with digitonin, with 100 microM K-Hepes buffer as the only source of ions. Immunofluorescence labelling and experiments using cells expressing GFP-fusion proteins showed that internal compartments (nucleoli, PML and coiled bodies, foci of RNA polymerase II were conserved in these nuclei, and nascent RNA transcripts could be elongated. Our observations are consistent with the hypothesis that crowding by diffusible cytoplasmic macromolecules is a crucial but overlooked factor which supports the nucleus in vivo by equilibrating the opposing osmotic pressure cause by the high concentration of macromolecules in the nucleus, and suggest that crowded media provide more physiological conditions to study nuclear structure and functions. They may also help to resolve the long-standing paradox

  18. Cobinding of bilirubin and laurate to human serum albumin: spectroscopic characterization of stoichiometric complexes

    DEFF Research Database (Denmark)

    Honoré, B; Sato, H; Brodersen, R

    1988-01-01

    Light absorption and CD spectra of bound bilirubin and albumin fluorescence spectra have been recorded from mixtures containing albumin, A, bilirubin, B, and laurate, L, in Tris-NaCl buffer at pH 8.2, 25 degrees C. Concentrations of the corresponding stoichiometric complexes, ABiLj, for i = 0....../3 and j = 0/3, have been calculated from previously determined stoichiometric cobinding constants (H. Sato et al. (1988) Arch. Biochem. Biophys. 260, 811-821). Spectral data of the complexes have finally been found by iterative computer fitting using the principle of several acceptable solutions (R...

  19. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  20. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects

    DEFF Research Database (Denmark)

    Arngrim, Nanna Bjørkbom; Simonsen, L; Holst, J J

    2013-01-01

    The aim of this study was to investigate subcutaneous adipose tissue lymphatic drainage (ATLD) of macromolecules in lean and obese subjects and, furthermore, to evaluate whether ATLD may change in parallel with adipose tissue blood flow. Lean and obese male subjects were studied before and after ...... online publication, 3 July 2012; doi:10.1038/ijo.2012.98....

  1. Application of Symmetry Adapted Function Method for Three-Dimensional Reconstruction of Octahedral Biological Macromolecules

    Directory of Open Access Journals (Sweden)

    Songjun Zeng

    2010-01-01

    Full Text Available A method for three-dimensional (3D reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N =0.1,0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.

  2. Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos

    International Nuclear Information System (INIS)

    Gazzano, Elena; Foresti, Elisabetta; Lesci, Isidoro Giorgio; Tomatis, Maura; Riganti, Chiara; Fubini, Bice; Roveri, Norberto; Ghigo, Dario

    2005-01-01

    The carcinogenic potency of asbestos, including chrysotile, is well established. Several physico-chemical features of the fibers appear implied, such as fibrous habit, size, crystallinity, morphology, and surface active metal ions, where free radical generation may take place. In contrast to other asbestos forms, iron is not a stoichiometric component of chrysotile, but is only present together with other extraneous ions as a magnesium- and silicon-replacing contaminant. To determine the role played by contaminating ions and morphological features of the fibers, a stoichiometric chrysotile with constant structure and morphology was synthesized in hydrothermal conditions. Free radical generation and the effects of these fibers on human lung epithelial A549 cells have been compared to that elicited by a well known toxic natural chrysotile (UICC A, from Rhodesia). After a 24-h incubation, the natural, but not the synthetic, form exerted a cytotoxic effect, detected as leakage of lactate dehydrogenase. Homolytic rupture of a C-H bond and lipoperoxidation in A549 cells took place in the presence of the natural, but not of the synthetic, chrysotile. Antioxidant systems were also affected differently. The pentose phosphate pathway and its regulatory enzyme glucose 6-phosphate dehydrogenase were markedly inhibited only by the natural specimen, which also caused a depletion of intracellular reduced glutathione in A549 cells. These results suggest that metal ions, fiber size and state of the surface play a crucial role in the oxidative stress caused by chrysotile asbestos. Stoichiometric synthetic fibers may thus be proposed as a reference standard (negative control) for toxicological studies

  3. Reducing the stoichiometric excess of HF in the hydrofluorination of UO2

    International Nuclear Information System (INIS)

    Zhao Jun; Qiu Lufu; Zhong Xing; Xu Heqing

    1989-11-01

    In a fluidized bed, UO 2 obtained from the decomposition-reduction of AUC (Ammonium Uranyl Carbonate) was fed to absorb HF remaining in the exhaust gas of UF 4 production process. In the case of 60% conversion of UO 2 and the reaction temperature in the region of 300 deg C, HF remaining in the exhaust gas in absorbing fluidized bed was less than 7 ∼ 8% (w/w), i.e. apparent stoichiometric excess of HF had reduced to 0% more or less. Hence, with the high hydrofluorination reactivity of UO 2 obtained from the decomposition-reduction of AUC, it is possible to reduce evidently the stoichiometric excess of HF in the hydrofluorination process by two fluidized beds in series in which solids move against the gas flow

  4. Spatial and temporal variations in bacterial macromolecule labeling with [methyl-3H]thymidine in a hypertrophic lake

    International Nuclear Information System (INIS)

    Robarts, R.D.; Wicks, R.J.; Sephton, L.M.

    1986-01-01

    The incorporation of [methyl- 3 H]thymidine into three macromolecular fractions, designated as DNA, RNA, and protein, by bacteria from Hartbeespoort Dam, South Africa, was measured over 1 year by acid-base hydrolysis procedures. Samples were collected at 10 m, which was at least 5 m beneath the euphotic zone. On four occasions, samples were concurrently collected at the surface. Approximately 80% of the label was incorporated into bacterial DNA in surface samples. At 10 m, total incorporation of label into bacterial macromolecules was correlated to bacterial utilization of glucose. The labeling of DNA, which ranged between 0 and 78% of total macromolecule incorporation, was inversely related to glucose uptake, total thymidine incorporation, and euphotic zone algal production. With decreased DNA labeling, increasing proportions of label were found in the RNA fraction and proteins. Enzymatic digestion followed by chromatographic separation of macromolecule fragments indicated that DNA and proteins were labeled while RNA was not. The RNA fraction may represent labeled lipids or other macromolecules or both. The data demonstrated a close coupling between phytoplankton production and heterotrophic bacterial activity in this hypertrophic lake but also confirmed the need for the routine extraction and purification of DNA during [methyl- 3 H]thymidine studies of aquatic bacterial production

  5. Elastic properties of sub-stoichiometric nitrogen ion implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sarmanova, M.F., E-mail: marina.sarmanova@iom-leipzig.de [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Karl, H. [University Augsburg, Institute of Physics, D-86135 Augsburg (Germany); Mändl, S.; Hirsch, D. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Mayr, S.G.; Rauschenbach, B. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); University Leipzig, Institute for Experimental Physics II, D-04103 Leipzig (Germany)

    2015-04-15

    Elastic properties of sub-stoichiometric nitrogen implanted silicon were measured with nanometer-resolution using contact resonance atomic force microscopy (CR-AFM) as function of ion fluence and post-annealing conditions. The determined range of indentation moduli was between 100 and 180 GPa depending on the annealing duration and nitrogen content. The high indentation moduli can be explained by formation of Si–N bonds, as verified by X-ray photoelectron spectroscopy.

  6. Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.

    Directory of Open Access Journals (Sweden)

    Zahra Mohri

    Full Text Available Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.

  7. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.

    Science.gov (United States)

    Bujalowski, Wlodzimierz; Jezewska, Maria J

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Low leakage stoichiometric SrTiO{sub 3} dielectric for advanced metal-insulator-metal capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, Mihaela; Kaczer, Ben; Redolfi, Augusto; Elshocht, Sven van; Jurczak, Malgorzata [imec Belgium, Leuven (Belgium); Afanas' ev, Valeri V. [Department of Physics and Astronomy, KU Leuven (Belgium); Sereni, Gabriele [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); Larcher, Luca [DISMI, Universita degli Studi di Modena e Reggio Emilia, (Italy); MDLab, Saint Christophe (Italy)

    2016-05-15

    Metal-insulator-metal capacitors (MIMCAP) with stoichiometric SrTiO{sub 3} dielectric were deposited stacking two strontium titanate (STO) layers, followed by intermixing the grain determining Sr-rich STO seed layer, with the Ti-rich STO top layer. The resulted stoichiometric SrTiO{sub 3} would have a structure with less defects as demonstrated by internal photoemission experiments. Consequently, the leakage current density is lower compared to Sr-rich STO which allow further equivalent oxide thickness downscaling. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Linking stoichiometric homeostasis of microorganisms with soil phosphorus dynamics in wetlands subjected to microcosm warming.

    Directory of Open Access Journals (Sweden)

    Hang Wang

    Full Text Available Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P biogeochemical cycling coupled with carbon (C dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m(-2 d(-1 in the control and 0.07 to 61.26 mg m(-2 d(-1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001 relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C and flow of

  10. Novel tendencies in developing small-angle neutron scattering methods for studying the structure of biological macromolecules

    International Nuclear Information System (INIS)

    Serdyuk, I.

    1995-01-01

    In recent 20 years thermal neutron scattering has been acknowledged an important instrument for structural studies in molecular biology. The methods of neutron diffraction of high resolution, which are not discussed in this paper, have already permitted to obtain a detailed representation of the course of proteolytic reactions and have arisen a number of new problems connected with the localization of water molecules and the H-D exchange. The methods of low resolution widely used due to a relative simplicity of the experiment have been successfully applied for both solving structural problems per se and investigating the changes in the structure when macromolecules perform their biological functions. The most promising are novel experimental approaches: the triple isotopic substitution method and the method of spin dynamic polarization. These methods ensure solving structural problems at a higher resolution than the dimensions of the macromolecules studied. Installation of new experimental instruments makes neutron measurements more accessible, and development of direct methods for interpretation of experimental data using the apparatus of spherical harmonics opens new possibilities for small-angle neutron scattering making it a necessary element for interpretation of diffraction data of monocrystals of intricate biological macromolecules. The paper presents a brief account of the tendencies in theoretical development and practical use of small-angle scattering for studying biological macromolecules. Special attention is given to the studies carried out in the Laboratory of Neutron Physics on a unique pulse IBR-2 reactor. (author) 14 refs

  11. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    Science.gov (United States)

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reactivity of non-stoichiometric black alumina; Reactivite des alumines noires non stoechiometriques

    Energy Technology Data Exchange (ETDEWEB)

    Arghiropoulos, B; Elston, J; Hilaire, P; Juillet, F; Teichner, S J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; [Lyon-1 Univ., 69 (France)

    1960-07-01

    Oxides such as alumina, when divided or poorly crystallized, show enhanced physico-chemical properties with respect to those of non-divided crystals of the same solids. A stoichiometric difference may even be produced in the alumina, which brings about a new modification of its properties. However its characteristics of hydrogen chemisorption or of catalytic activity in ethylene hydrogenation do not appear to depend on the stoichiometric difference. (author) [French] Les oxydes, comme l'alumine, divises ou mal cristallises, presentent des proprietes physico-chimiques exaltees par rapport a celles des memes solides en cristaux non divises. Un ecart a la stoechiometrie peut meme etre produit dans l'alumine, ce qui entraine une nouvelle modification de ses proprietes. Toutefois ses caracteristiques de chimisorption d'hydrogene ou d'activite catalytique d'hydrogenation d'ethylene ne semblent pas dependre de l'ecart a la stoechiometrie. (auteur)

  13. Formation and characterization of calcium orthophosphates in the presence of two different acidic macromolecules

    Science.gov (United States)

    Pelin, Irina M.; Maier, Vasilica; Suflet, Dana M.; Popescu, Irina; Darie-Nita, Raluca N.; Aflori, Magdalena; Butnaru, Maria

    2017-10-01

    The synthetic nanocrystalline calcium orthophosphates have a notable bioactivity due to the chemical similarity with biological apatite from calcified tissues. In mineralized tissues, the highly ordered structures come from organized assemblies of biomacromolecules and inorganic nanoparticles. One of the purposes of this work was to study the effect of two types of acidic macromolecules: atelocollagen and phosphorylated curdlan onto calcium orthophosphates formation after 30 days of maturation at 2 ± 2 °C. The resulted samples after a long aging time, either calcium orthophosphates or composites, were first investigated by FT-IR spectroscopy and X-ray diffractometry and the results indicated that precipitated hydroxyapatite with low crystallinity was obtained when the synthesis was performed in the presence of phosphorylated curdlan. The macromolecules influenced the morphology of the particles as shown by scanning and transmission electron microscopy. The presence of macromolecules as demonstrated by thermal investigation also influenced the rheological properties of the samples. The second purpose of the work was to evaluate the cytotoxicity of the samples using the MTT assay, and the results revealed very good cells viability. The preliminary results are encouraging regarding the use of these materials for further tests in order to develop injectable bone substitutes.

  14. Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target

    Science.gov (United States)

    Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.

    2015-01-01

    For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.

  15. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state {alpha}-cyclodextrin-based inclusion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Feng, Tao [School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Xueming [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Jin, Zhengyu, E-mail: jinlab2008@yahoo.com [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Tian, Yaoqi, E-mail: yqtian@jiangnan.edu.cn [The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We develop a TGA method for the measurement of the stoichiometric ratio. Black-Right-Pointing-Pointer A series of formulas are deduced to calculate the stoichiometric ratio. Black-Right-Pointing-Pointer Four {alpha}-CD-based inclusion complexes were successfully prepared. Black-Right-Pointing-Pointer The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest-{alpha}-cyclodextrin (Guest-{alpha}-CD) inclusion complexes (4-cresol-{alpha}-CD, benzyl alcohol-{alpha}-CD, ferrocene-{alpha}-CD and decanoic acid-{alpha}-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the {alpha}-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of {alpha}-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline {alpha}-CD-based inclusion complexes with smaller and shorter chain guests.

  16. A thermogravimetric analysis (TGA) method developed for estimating the stoichiometric ratio of solid-state α-cyclodextrin-based inclusion complexes

    International Nuclear Information System (INIS)

    Bai, Yuxiang; Wang, Jinpeng; Bashari, Mohanad; Hu, Xiuting; Feng, Tao; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2012-01-01

    Highlights: ► We develop a TGA method for the measurement of the stoichiometric ratio. ► A series of formulas are deduced to calculate the stoichiometric ratio. ► Four α-CD-based inclusion complexes were successfully prepared. ► The developed method is applicable. - Abstract: An approach mainly based on thermogravimetric analysis (TGA) was developed to evaluate the stoichiometric ratio (SR, guest to host) of the guest–α-cyclodextrin (Guest-α-CD) inclusion complexes (4-cresol-α-CD, benzyl alcohol-α-CD, ferrocene-α-CD and decanoic acid-α-CD). The present data obtained from Fourier transform-infrared (FT-IR) spectroscopy showed that all the α-CD-based inclusion complexes were successfully prepared in a solid-state form. The stoichiometric ratios of α-CD to the relative guests (4-cresol, benzyl alcohol, ferrocene and decanoic acid) determined by the developed method were 1:1, 1:2, 2:1 and 1:2, respectively. These SR data were well demonstrated by the previously reported X-ray diffraction (XRD) method and the NMR confirmatory experiments, except the SR of decanoic acid with a larger size and longer chain was not consistent. It is, therefore, suggested that the TGA-based method is applicable to follow the stoichiometric ratio of the polycrystalline α-CD-based inclusion complexes with smaller and shorter chain guests.

  17. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  18. A novel method for stoichiometric reduction of (U{sub 3}O{sub 8},PuO{sub 2}) and its controlled oxidation using microwave

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gitendars@barctara.gov.in [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Kumar, Pradeep [Integrated Fuel Fabrication Facility, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aher, S.; Purohit, P.; Khot, P.M. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Prakash, Amrit [Radio-Metallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Das, D.K.; Behere, P.G.; Afzal, Mohd [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India)

    2016-10-15

    We report a process for stoichiometric reduction of U{sub 3}O{sub 8} and (U{sub 3}O{sub 8},PuO{sub 2}) mixed oxide powders using an indigenously developed 2.4 GHz microwave processing system. The process parameters were optimized by interpreting reduction kinetic curves at a temperature which is 150 °C lower than the conventional reduction. The process improved the sinterability of the powder which was evaluated in terms of average particle size, BET specific surface area and bulk density. A quick method for controlled oxidation of the reduced powder to incorporate a controlled amount of hyper-stoichiometry was demonstrated by modifying the same reduction process. The percent reduction was measured experimentally using O:(U + Pu) ratio. The X-ray diffraction analysis confirmed the various phases present. The process is novel considering shorter processing cycle, lower temperature processing, improved powder properties, energy efficiency and cost effectiveness. - Highlights: • A process for stoichiometric reduction of (U{sub 3}O{sub 8},PuO{sub 2}) was demonstrated using 2.4 GHz microwave. • A simple and quick method for obtaining controlled hyper-stoichiometry in the reduced powder was successfully demonstrated. • The process is novel relative to conventional methods in terms of time and energy economy and sinter-activity.

  19. 40 CFR 1065.362 - Non-stoichiometric raw exhaust FID O2 interference verification.

    Science.gov (United States)

    2010-07-01

    ...-stoichiometric mode of combustion (e.g., compression-ignition, lean-burn), verify the amount of FID O2 interference upon initial installation and after major maintenance. (b) Measurement principles. Changes in O2...

  20. Free diffusion of translation of macromolecules in solution with the rayleigh interferometer; Diffusion libre de translation des macromolecules en solution, par interferometrie de rayleigh

    Energy Technology Data Exchange (ETDEWEB)

    Leger, J J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this study is to develop a rapid and accurate measurement, with the Rayleigh interferometer, of the free diffusion coefficient of translation of macromolecules in solution. After having explained the choice of a diffusion cell with laminar lateral flow, and explained the principle of the Rayleigh interferometer, a semi-automatic technique of free diffusion are then introduced. Solutions are proposed for systems composed of two or three components, such as biopolymers. The paper ends by drafting the possible treatment of recorded experimental data by means of electronic computer. (author) [French] Cette etude a ete entreprise pour mettre au point une methode precise et rapide de mesure, par interferometre de Rayleigh, du coefficient de diffusion libre de translation des macromolecules en solution. Apres avoir justifie le choix d'une cellule de diffusion a ecoulement laminaire lateral et explique le principe de l'interferometre de Rayleigh, l'auteur decrit une technique semi-automatique d'enregistrement des cliches d'interference. Il introduit ensuite les equations differentielles de diffusion libre et propose des solutions pour les systemes a deux et trois composants applicables aux biopolymeres. L'article se termine par une esquisse concernant le traitement des donnees experimentales enregistrees au moyen du calcul electronique. (auteur)

  1. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    Science.gov (United States)

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  2. Determination of the stoichiometric rate in UO2 samples

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Sassine, Andre; Bustillos, Jose Oscar Vega

    2000-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. Gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by X-ray diffraction data to identify the uranium oxide phase changes. (author)

  3. Study of non stoichiometric uranium dioxide samples (UO2)

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Bustillos, Jose O.V.

    1999-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by x-ray diffraction data to identify the uranium oxide phase changes. (author)

  4. A powder neutron diffraction study of stoichiometric silver beta alumina at 4.2 K

    International Nuclear Information System (INIS)

    Newsam, J.M.; Tofield, B.C.

    1980-10-01

    The low-temperature structure of stoichiometric silver beta alumina, AgAl 11 O 17 , is described for the first time. A powder neutron diffraction study at 4.2 K reveals that there is a single three-fold silver location of unit occupancy in each mirror plane. The silver site lies between the mid-oxygen and Beevers-Ross positions where the Ag-O contact distances can be minimised. The Ag-O interactions, in particular the cooperative movement of the spacer oxygens, are responsible for the superlattice which has been described previously. The Beevers-Ross, anti-Beevers-Ross and interstitial aluminium sites are vacant and the c-axis constant is expanded relative to the non-stoichiometric parent. (author)

  5. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott; Lee, Bok Jik; Shepherd, Joseph E.

    2016-01-01

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane

  6. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  7. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  8. Stoichiometric determination of nitrate fate in agricultural ecosystems during rainfall events.

    Science.gov (United States)

    Xu, Zuxin; Wang, Yiyao; Li, Huaizheng

    2015-01-01

    Ecologists have found a close relationship between the concentrations of nitrate (NO3-) and dissolved organic carbon (DOC) in ecosystems. However, it is difficult to determine the NO3- fate exactly because of the low coefficient in the constructed relationship. In the present paper, a negative power-function equation (r(2) = 0.87) was developed by using 411 NO3- data points and DOC:NO3- ratios from several agricultural ecosystems during different rainfall events. Our analysis of the stoichiometric method reveals several observations. First, the NO3- concentration demonstrated the largest changes when the DOC:NO3- ratio increased from 1 to 10. Second, the biodegradability of DOC was an important factor in controlling the NO3- concentration of agricultural ecosystems. Third, sediment was important not only as a denitrification site, but also as a major source of DOC for the overlying water. Fourth, a high DOC concentration was able to maintain a low NO3- concentration in the groundwater. In conclusion, this new stoichiometric method can be used for the accurate estimation and analysis of NO3- concentrations in ecosystems.

  9. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Implications of molecular heterogeneity for the cooperativity of biological macromolecules.

    Science.gov (United States)

    Solomatin, Sergey V; Greenfeld, Max; Herschlag, Daniel

    2011-06-01

    Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, through simulations and single-molecule FRET (smFRET) experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.

  11. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery

    International Nuclear Information System (INIS)

    Lapp, J.; Davidson, J.H.; Lipiński, W.

    2012-01-01

    Improvements in the effectiveness of solid phase heat recovery and in the thermodynamic properties of metal oxides are the most important paths to achieving unprecedented thermal efficiencies of 10% and higher in non-stoichiometric solar redox reactors. In this paper, the impact of solid and gas phase heat recovery on the efficiency of a non-stoichiometric cerium dioxide-based H 2 O/CO 2 splitting cycle realized in a solar-driven reactor are evaluated in a parametric thermodynamic analysis. Application of solid phase heat recovery to the cycling metal oxide allows for lower reduction zone operating temperatures, simplifying reactor design. An optimum temperature for metal oxide reduction results from two competing phenomena as the reduction temperature is increased: increasing re-radiation losses from the reactor aperture and decreasing heat loss due to imperfect solid phase heat recovery. Additionally, solid phase heat recovery increases the efficiency gains made possible by gas phase heat recovery. -- Highlights: ► Both solid and gas phase heat recovery are essential to achieve high thermal efficiency in non-stoichiometric ceria-based solar redox reactors. ► Solid phase heat recovery allows for lower reduction temperatures and increases the gains made possible by gas phase heat recovery. ► The optimum reduction temperature increases with increasing concentration ratio and decreasing solid phase heat recovery effectiveness. ► Even moderate levels of heat recovery dramatically improve reactor efficiency from 3.5% to 16%.

  12. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Jung, Won-Kyo

    2015-01-01

    Wound healing is a complex biological process that depends on the wound condition, the patient's health, and the physicochemical support given through external materials. The development of bioactive molecules and engineered tissue substitutes to provide physiochemical support to enhance the wound healing process plays a key role in advancing wound-care management. Thus, identification of ideal molecules in wound treatment is still in progress. The discovery of natural products that contain ideal molecules for skin tissue regeneration has been greatly advanced by exploration of the marine bioenvironment. Consequently, tremendously diverse marine organisms have become a great source of numerous biological macromolecules that can be used to develop tissue-engineered substitutes with wound healing properties. This review summarizes the wound healing process, the properties of macromolecules from marine organisms, and the involvement of these molecules in skin tissue regeneration applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2017-01-01

    Full Text Available Diet polyphenols—primarily categorized into flavonoids (e.g., flavonols, flavones, flavan-3-ols, anthocyanidins, flavanones, and isoflavones and nonflavonoids (with major subclasses of stilbenes and phenolic acids—are reported to have health-promoting effects, such as antioxidant, antiinflammatory, anticarcinoma, antimicrobial, antiviral, and cardioprotective properties. However, their applications in functional foods or medicine are limited because of their inefficient systemic delivery and poor oral bioavailability. Epigallocatechin-3-gallate, curcumin, and resveratrol are the well-known representatives of the bioactive diet polyphenols but with poor bioavailability. Food macromolecule based nanoparticles have been fabricated using reassembled proteins, crosslinked polysaccharides, protein–polysaccharide conjugates (complexes, as well as emulsified lipid via safe procedures that could be applied in food. The human gastrointestinal digestion tract is the first place where the food grade macromolecule nanoparticles exert their effects on improving the bioavailability of diet polyphenols, via enhancing their solubility, preventing their degradation in the intestinal environment, elevating the permeation in small intestine, and even increasing their contents in the bloodstream. We contend that the stability and structure behaviors of nanocarriers in the gastrointestinal tract environment and the effects of nanoencapsulation on the metabolism of polyphenols warrant more focused attention in further studies.

  14. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  15. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules.

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-01-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes-often drugs or pollutants-that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  16. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Directory of Open Access Journals (Sweden)

    Marco Marazzi

    2018-04-01

    Full Text Available Bio-macromolecules as DNA, lipid membranes and (polypeptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes—often drugs or pollutants—that can (photosensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photosensitizers. Namely, absorption, emission and electronic circular dichroism (CD spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i to enhance absorption in the red and infra-red windows and (ii to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/molecular mechanics (QM/MM methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  17. Steady-State Linear and Non-linear Optical Spectroscopy of Organic Chromophores and Bio-macromolecules

    Science.gov (United States)

    Marazzi, Marco; Gattuso, Hugo; Monari, Antonio; Assfeld, Xavier

    2018-04-01

    Bio-macromolecules as DNA, lipid membranes and (poly)peptides are essential compounds at the core of biological systems. The development of techniques and methodologies for their characterization is therefore necessary and of utmost interest, even though difficulties can be experienced due to their intrinsic complex nature. Among these methods, spectroscopies, relying on optical properties are especially important to determine their macromolecular structures and behaviors, as well as the possible interactions and reactivity with external dyes – often drugs or pollutants – that can (photo)sensitize the bio-macromolecule leading to eventual chemical modifications, thus damages. In this review, we will focus on the theoretical simulation of electronic spectroscopies of bio-macromolecules, considering their secondary structure and including their interaction with different kind of (photo)sensitizers. Namely, absorption, emission and electronic circular dichroism (CD) spectra are calculated and compared with the available experimental data. Non-linear properties will be also taken into account by two-photon absorption, a highly promising technique (i) to enhance absorption in the red and infra-red windows and (ii) to enhance spatial resolution. Methodologically, the implications of using implicit and explicit solvent, coupled to quantum and thermal samplings of the phase space, will be addressed. Especially, hybrid quantum mechanics/ molecular mechanics (QM/MM) methods are explored for a comparison with solely QM methods, in order to address the necessity to consider an accurate description of environmental effects on spectroscopic properties of biological systems.

  18. Comparing a Dynamic Fed-Batch and a Continuous Steady-State Simulation of Ethanol Fermentation in a Distillery to a Stoichiometric Conversion Simulation

    Directory of Open Access Journals (Sweden)

    G.C. Fonseca

    Full Text Available Abstract An autonomous sugarcane bioethanol plant was simulated in EMSO software, an equation oriented process simulator. Three types of fermentation units were simulated: a six parallel fed-batch reactor system, a set of four CSTR in steady state and one consisting of a single stoichiometric reactor. Stoichiometric models are less accurate than kinetic-based fermentation models used for fed-batch and continuous fermenter simulations, since they do not account for inhibition effects and depend on a known conversion rate of reactant to be specified instead. On the other hand, stoichiometric models are faster and simpler to converge. In this study it was found that the conversion rates of sugar for the fermentation systems analyzedwere predictable from information on the composition of the juice stream. Those rates were used in the stoichiometric model, which accurately reproduced the results from both the fed-batch and the continuous fermenter system.

  19. Functionalization of epoxy esters with alcohols as stoichiometric reagents.

    Science.gov (United States)

    Pavlović, Dona; Modec, Barbara; Dolenc, Darko

    2015-01-01

    Glycidyl esters, frequently employed as reactive groups on polymeric supports, were functionalized with alcohols as stoichiometric reagents, yielding β-alkoxyalcohols. Among the solvents studied, best results were obtained in ethers in the presence of a strong proton acid as a catalyst. Alcohols include simple alkanols, diols, protected polyols, 3-butyn-1-ol 3-hydroxypropanenitrile and cholesterol. This protocol represents a convenient way for introduction of various functionalities onto epoxy-functionalized polymers. Under the reaction conditions, some side reactions take place, mostly due to the reactive ester group and water present in the reaction mixture.

  20. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  1. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  2. Macromolecule exchange in Cuscuta-host plant interactions.

    Science.gov (United States)

    Kim, Gunjune; Westwood, James H

    2015-08-01

    Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Spectral, stoichiometric ratio, physicochemical, polarity and photostability studies of newly synthesized chalcone dye in organized media

    International Nuclear Information System (INIS)

    Marwani, Hadi M.; Asiri, Abdullah M.; Khan, Salman A.

    2013-01-01

    The main focus of this study was to investigate spectroscopic properties, stoichiometric ratios, physicochemical parameters, polarity and photostability behaviors of newly synthesized chalcone dye in organized media. The chalcone dye, 1-(2,5-Dimethyl-thiophen-3-yl)-3-(9-etnyl-9H-carbazol-3-yl)-propenone (DTEP), was prepared by the reaction of carbazole aldehyde with 3-acetyl-2,5-dimethythiophene. Data obtained from FT-IR, 1 H-–NMR, 13 C-NMR and elemental analysis were consistent with chemical structure of newly prepared DTEP. Increases in fluorescence intensities of DTEP with cetyltrimethyl ammonium bromide (CTAB) were observed. In comparison of fluorescence intensities for DTEP with CTAB, reductions in fluorescence intensities for DTEP with sodium dodecyl sulfate (SDS) were noticed under the same experimental and instrumental conditions. Additionally, Benesi–Hildebrand method was applied to determine stoichiometric ratios and association constants of DTEP with CTAB and SDS. Stern–Volmer plot was used in order to further confirm the stoichiometric ratio and association constant of DTEP with SDS. Physicochemical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment and fluorescence quantum yield of DTEP were also determined. Fluorescence polarity study displayed that DTEP was sensitive to the polarity of the microenvironment provided by different solvents. Finally, fluorescence steady-state measurements revealed that DTEP has high photostability against photobleaching. -- Highlights: ► Mechanistic understanding of molecular structure of newly synthesized chalcone dye. ► Exploring spectral behaviors and physicochemical parameters of chalcone dye. ► Determination of stoichiometric ratios and association constants of chalcone dye. ► Determination of fluorescence quantum yield in different solvents. ► High photostability against photobleaching of chalcone dye was observed

  4. Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4: A neutron diffraction study

    Science.gov (United States)

    Gurieva, Galina; Valle Rios, Laura Elisa; Franz, Alexandra; Whitfield, Pamela; Schorr, Susan

    2018-04-01

    This work is an experimental study of intrinsic point defects in off-stoichiometric kesterite type CZTSe by means of neutron powder diffraction. We revealed the existence of copper vacancies (VCu), various cation anti site defects (CuZn, ZnCu, ZnSn, SnZn, and CuZn), as well as interstitials (Cui, Zni) in a wide range of off-stoichiometric polycrystalline powder samples synthesized by the solid state reaction. The results show that the point defects present in off-stoichiometric CZTSe agree with the off-stoichiometry type model, assuming certain cation substitutions accounting for charge balance. In addition to the known off-stoichiometry types A-H, new types (I-L) have been introduced. For the very first time, a correlation between the chemical composition of the CZTSe kesterite type phase and the occurring intrinsic point defects is presented. In addition to the off-stoichiometry type specific defects, the Cu/Zn disorder is always present in the CZTSe phase. In Cu-poor/Zn-rich CZTSe, a composition considered as the one that delivers the best photovoltaic performance, mainly copper vacancies, ZnCu and ZnSn anti sites are present. Also, this compositional region shows the lowest degree of Cu/Zn disorder.

  5. The stability of the extended model of hypothalamic-pituitary-adrenal axis examined by stoichiometric network analysis

    Science.gov (United States)

    Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.

    2011-12-01

    Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.

  6. Rotational Diffusion of Macromolecules and Nanoparticles Modeled as Non-Overlapping Bead Arrays in an Effective Medium

    Directory of Open Access Journals (Sweden)

    Umar Twahir

    2011-05-01

    Full Text Available In this work, the retarding influence of a gel on the rotational motion of a macromolecule is investigated within the framework of the Effective Medium (EM model. This is an extension of an earlier study that considered the effect of a gel on the translational motion of a macromolecule [Allison, S. et al. J. Phys. Chem. B 2008, 112, 5858-5866]. The macromolecule is modeled as an array of non-overlapping spherical beads with no restriction placed on their size or configuration. Specific applications include the rotational motion of right circular cylinders and wormlike chains modeled as strings of identical touching beads. The procedure is then used to examine the electric birefringence decay of a 622 base pair DNA fragment in an agarose gel. At low gel concentration (M £ 0.010 gm/mL, good agreement between theory and experiment is achieved if the persistence length of DNA is taken to be 65 nm and the gel fiber radius of agarose is taken to be 2.5 nm. At higher gel concentrations, the EM model substantially underestimates the rotational relaxation time of DNA and this can be attributed to the onset of direct interactions that become significant when the effective particle size becomes comparable to the mean gel fiber spacing.

  7. LNA-modified oligonucleotides mediate specific inhibition of microRNA function

    DEFF Research Database (Denmark)

    Ørom, Ulf Andersson; Kauppinen, Sakari; Lund, Anders H

    2006-01-01

    microRNAs are short, endogenous non-coding RNAs that act as post-transcriptional modulators of gene expression. Important functions for microRNAs have been found in the regulation of development, cellular proliferation and differentiation, while perturbed miRNA expression patterns have been...... observed in many human cancers. Here we present a method for specific inhibition of miRNA function through interaction with LNA-modified antisense oligonucleotides and report the specificity of this application. We show that LNA-modified oligonucleotides can inhibit exogenously introduced miRNAs with high...... specificity using a heterologous reporter assay, and furthermore demonstrate their ability to inhibit an endogenous miRNA in Drosophila melanogaster cells, leading to up-regulation of the cognate target protein. The method shows stoichiometric and reliable inhibition of the targeted miRNA and can thus...

  8. Rigidity of Glasses and Macromolecules

    Science.gov (United States)

    Thorpe, M. F.

    1998-03-01

    The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.

  9. Trophic and stoichiometric consequences of nutrification for the intertidal tropical zoanthid Zoanthus sociatus.

    Science.gov (United States)

    Leal, Miguel C; Rocha, Rui J M; Anaya-Rojas, Jaime M; Cruz, Igor C S; Ferrier-Pagès, Christine

    2017-06-15

    Zoanthids are conspicuous and abundant members of intertidal environments, where they are exposed to large environmental fluctuations and subject to increasing loads of anthropogenic nutrients. Here we assess the trophic ecology and stoichiometric consequences of nutrient loading for symbiotic zoanthids inhabiting different intertidal habitats. More specifically, we analysed the stable isotope signature (δ 13 C and δ 15 N), elemental composition (C, N and P) and stoichiometry (C:N, C:P, N:P) of Zoanthus sociatus differently exposed to nutrification. Results suggest that autotrophy is the main feeding mode of zoanthids and that the effect water nutrient content differently affects the elemental phenotype of zoanthids depending on tidal habitat. Additionally, habitat effects on Z. sociatus P-related stoichiometric traits highlight functional differences likely associated with variation in Symbiodinium density. These findings provide an innovative approach to assess how cnidarian-dinoflagellate symbioses response to ecosystem changes in environmentally dynamic reef flats, particularly nutrient loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assessment of environmentally friendly fuel emissions from in-use vehicle exhaust: low-blend iso-stoichiometric GEM mixture as example.

    Science.gov (United States)

    Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel

    2017-05-01

    Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend

  11. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach.

    Science.gov (United States)

    Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-09-22

    The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.

  12. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal; Lardhi, Sheikha F.; Ziani, Ahmed; Harb, Moussab; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin

  13. Nasal Absorption of Macromolecules from Powder Formulations and Effects of Sodium Carboxymethyl Cellulose on Their Absorption.

    Directory of Open Access Journals (Sweden)

    Akiko Tanaka

    Full Text Available The nasal absorption of macromolecules from powder formulations and the effect of sodium carboxymethyl cellulose (CMC-Na as a pharmaceutical excipient on their absorption were studied. Model macromolecules were fluorescein isothiocyanate-labeled dextran (average molecular weight of 4.4kDa, FD4 and insulin. The plasma concentration of FD4 after application of the powder containing 50% starch (control was higher than that after application of the solution, and the absorption from 50% starch powder was enhanced by the substitution of starch with CMC-Na. The fractional absorption of FD4 after administration of the CMC-Na powder formulation was 30% and 40% higher than that after administration from the solution and the starch powder, respectively. The nasal absorption of insulin from the powder and the effect of CMC-Na were similar with those of FD4. The effective absorption of FD4 and insulin after application of powder with CMC-Na could be due to the increase in the nasal residence of FD4 and insulin. No damage in the nasal mucosa or dysfunction of the mucociliary clearance was observed after application of the drug powder and CMC-Na. The present findings indicate that nasal delivery of powder formulations with the addition of CMC-Na as an excipient is a promising approach for improving the nasal absorption of macromolecules.

  14. Calculation of X-ray scattering curves and electron distance distribution functions of biological macromolecules in solution using the PROTEIN DATA BANK

    International Nuclear Information System (INIS)

    Mueller, J.J.; Friedrichowicz, E.; Nothnagel, A.; Wunderlich, T.; Ziehlsdorf, E.; Damaschun, G.

    1983-01-01

    The wide angle X-ray scattering curve, the electron distance distribution function and the solvent excluded volume of a macromolecule in solution are calculated from the atomic coordinates contained in the PROTEIN DATA BANK. The structures and the projections of the excluded volumes are depicted using molecule graphic routines. The described computer programs are used to determine the three-dimensional structure of macromolecules in solution from wide angle X-ray scattering data. (author)

  15. The role of the Mg2+ ions in Cr3+ spectroscopy for near-stoichiometric LiNbO3 crystals

    International Nuclear Information System (INIS)

    Han, T P J; Jaque, F; Bermudez, V; Dieguez, E

    2003-01-01

    The optical spectroscopy of Cr 3+ ions doped into near-stoichiometric LiNbO 3 crystals, pure and co-doped with MgO, has been investigated. In the near-stoichiometric LiNbO 3 :Cr(0.2 mol%):Mg(2 mol%) crystal, the optical spectra resemble those previously observed for congruent LiNbO 3 :Cr:MgO samples when the total MgO content exceeds the 4.6 mol% threshold. The coexistence of two types of Cr 3+ centre ([Cr] Li and [Cr] Nb ) characterized the optical and luminescence spectra of this sample. The concentration equilibrium between the two types of centre is strongly displaced towards the [Cr 3+ ] Nb centre, permitting us to obtain with accuracy the parameters of the broad bands. The R-line associated with the [Cr] Nb centre is only observable in the low-temperature emission spectrum. The Fano anti-resonance lines present have been observed to be more pronounced for the near-stoichiometric samples than for congruent ones

  16. A stochastic finite element model for the dynamics of globular macromolecules

    Science.gov (United States)

    Oliver, Robin C.; Read, Daniel J.; Harlen, Oliver G.; Harris, Sarah A.

    2013-04-01

    We describe a novel coarse-grained simulation method for modelling the dynamics of globular macromolecules, such as proteins. The macromolecule is treated as a continuum that is subject to thermal fluctuations. The model includes a non-linear treatment of elasticity and viscosity with thermal noise that is solved using finite element analysis. We have validated the method by demonstrating that the model provides average kinetic and potential energies that are in agreement with the classical equipartition theorem and that the nodal velocities have the correct Gaussian distribution. In addition, we have performed Fourier analysis on the simulation trajectories obtained for a series of linear beams to confirm that the correct average energies are present in the first two Fourier bending modes and that the probability distribution of the amplitudes of the first two Fourier modes match the theoretical results. We demonstrate spatial convergence of the model by showing that the anisotropy of the inertia tensor for a cubic mesh converges as a function of the mesh resolution. We have then used the new modelling method to simulate the thermal fluctuations of a representative protein over 500 ns timescales. Using reasonable parameters for the material properties, we have demonstrated that the overall deformation of the biomolecule is consistent with the results obtained for proteins in general from atomistic molecular dynamics simulations.

  17. Grasshoppers regulate N:p stoichiometric homeostasis by changing phosphorus contents in their frass.

    Science.gov (United States)

    Zhang, Zijia; Elser, James J; Cease, Arianne J; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.

  18. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes.

    Science.gov (United States)

    Naddafi, Rahmat; Eklöv, Peter; Pettersson, Kurt

    2009-01-01

    Elemental imbalances of carbon (C): nitrogen (N): phosphorus (P) ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a successful invader tackles ecological barriers in novel ecosystems. We examined the C:P and N:P ratios and the condition factor of a successful invader in lakes, the zebra mussel (Dreissena polymorpha), collected from two Swedish lakes. Concurrently, we analyzed the elemental composition of the food (seston) and tissue of the mussels in which nutrient composition of food and mussels varied over time. Zebra mussel condition factor was weakly related to the their own tissue N:P and C:P ratios, although the relation with the later ratio was not significant. Smaller mussels had relatively lower tissue N:P ratio and higher condition factor. There was no difference in C:P and N:P ratios between seston and mussels' tissues. Our results indicated that the variation in nutrient stoichiometry of zebra mussels can be explained by food quality and quantity. Our study suggests that fitness of invasive zebra mussels is not constrained by nutrient stoichiometry which is likely to be important for their proliferation in novel ecosystems. The lack of imbalance in C:P and N:P ratios between seston and mussels along with high tissue C:P ratio of the mussel allow them to tolerate potential P limitation and maintain high growth rate. Moreover, zebra mussels are able to change their tissue C:P and N:P ratios in response to the variation in elemental composition of their food. This can also help them to bypass potential nutrient stoichiometric constraints. Our finding is an important step towards understanding the mechanisms contributing to the success of exotic species from stoichiometric principles.

  19. Stoichiometric constraints do not limit successful invaders: zebra mussels in Swedish lakes.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Elemental imbalances of carbon (C: nitrogen (N: phosphorus (P ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a successful invader tackles ecological barriers in novel ecosystems.We examined the C:P and N:P ratios and the condition factor of a successful invader in lakes, the zebra mussel (Dreissena polymorpha, collected from two Swedish lakes. Concurrently, we analyzed the elemental composition of the food (seston and tissue of the mussels in which nutrient composition of food and mussels varied over time. Zebra mussel condition factor was weakly related to the their own tissue N:P and C:P ratios, although the relation with the later ratio was not significant. Smaller mussels had relatively lower tissue N:P ratio and higher condition factor. There was no difference in C:P and N:P ratios between seston and mussels' tissues. Our results indicated that the variation in nutrient stoichiometry of zebra mussels can be explained by food quality and quantity.Our study suggests that fitness of invasive zebra mussels is not constrained by nutrient stoichiometry which is likely to be important for their proliferation in novel ecosystems. The lack of imbalance in C:P and N:P ratios between seston and mussels along with high tissue C:P ratio of the mussel allow them to tolerate potential P limitation and maintain high growth rate. Moreover, zebra mussels are able to change their tissue C:P and N:P ratios in response to the variation in elemental composition of their food. This can also help them to bypass potential nutrient stoichiometric constraints. Our finding is an important step towards understanding the mechanisms contributing to the success of exotic species from stoichiometric principles.

  20. Optimization of combustion chamber geometry for stoichiometric diesel combustion using a micro genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Wook

    2010-11-15

    This paper describes the optimization of combustion chamber geometry and engine operating conditions for stoichiometric diesel combustion, targeting lower gross indicated specific fuel consumption. The KIVA code, coupled with a micro genetic algorithm population of nine for each generation was used. The optimization variables were composed of ten variables related to the combustion chamber geometry and engine operating conditions. In addition, an auto mesh generator was developed for generating various kinds of combustion chambers, such as open-crater, re-entrant, deep, and shallow types. In addition, the computational models were validated against the experimental results for a stoichiometric process in terms of the combustion pressure history and emissions. Through the preset optimization, a 35% improvement in the gross indicated that specific fuel consumption was achieved. In addition, the optimization results showed that the optimum engine operating conditions employed a premixed charge compression ignition combustion regime with early injection and a narrow spray included angle. Furthermore, a higher boost pressure was used to prevent fuel film formation. (author)

  1. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.

    Science.gov (United States)

    Aspelund, Aleksanteri; Antila, Salli; Proulx, Steven T; Karlsen, Tine Veronica; Karaman, Sinem; Detmar, Michael; Wiig, Helge; Alitalo, Kari

    2015-06-29

    The central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear. Here we report the surprising finding of a lymphatic vessel network in the dura mater of the mouse brain. We show that dural lymphatic vessels absorb CSF from the adjacent subarachnoid space and brain interstitial fluid (ISF) via the glymphatic system. Dural lymphatic vessels transport fluid into deep cervical LNs (dcLNs) via foramina at the base of the skull. In a transgenic mouse model expressing a VEGF-C/D trap and displaying complete aplasia of the dural lymphatic vessels, macromolecule clearance from the brain was attenuated and transport from the subarachnoid space into dcLNs was abrogated. Surprisingly, brain ISF pressure and water content were unaffected. Overall, these findings indicate that the mechanism of CSF flow into the dcLNs is directly via an adjacent dural lymphatic network, which may be important for the clearance of macromolecules from the brain. Importantly, these results call for a reexamination of the role of the lymphatic system in CNS physiology and disease. © 2015 Aspelund et al.

  2. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning

    Science.gov (United States)

    Yohannes, Indra; Kolditz, Daniel; Langner, Oliver; Kalender, Willi A.

    2012-03-01

    Tissue- and water-equivalent materials (TEMs) are widely used in quality assurance and calibration procedures, both in radiodiagnostics and radiotherapy. In radiotherapy, particularly, the TEMs are often used for computed tomography (CT) number calibration in treatment planning systems. However, currently available TEMs may not be very accurate in the determination of the calibration curves due to their limitation in mimicking radiation characteristics of the corresponding real tissues in both low- and high-energy ranges. Therefore, we are proposing a new formulation of TEMs using a stoichiometric analysis method to obtain TEMs for the calibration purposes. We combined the stoichiometric calibration and the basic data method to compose base materials to develop TEMs matching standard real tissues from ICRU Report 44 and 46. First, the CT numbers of six materials with known elemental compositions were measured to get constants for the stoichiometric calibration. The results of the stoichiometric calibration were used together with the basic data method to formulate new TEMs. These new TEMs were scanned to validate their CT numbers. The electron density and the stopping power calibration curves were also generated. The absolute differences of the measured CT numbers of the new TEMs were less than 4 HU for the soft tissues and less than 22 HU for the bone compared to the ICRU real tissues. Furthermore, the calculated relative electron density and electron and proton stopping powers of the new TEMs differed by less than 2% from the corresponding ICRU real tissues. The new TEMs which were formulated using the proposed technique increase the simplicity of the calibration process and preserve the accuracy of the stoichiometric calibration simultaneously.

  3. Coercivity enhancement in HDDR near-stoichiometric ternary Nd–Fe–B powders

    International Nuclear Information System (INIS)

    Wan, Fangming; Han, Jingzhi; Zhang, Yinfeng; Wang, Changsheng; Liu, Shunquan; Yang, Jinbo; Yang, Yingchang; Sun, Aizhi; Yang, Fuqiang; Song, Renbo

    2014-01-01

    Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. The coercivity of the powders was improved from 208.6 to 980.1 kA/m by the subsequent diffusion treatment using the Pr–Cu alloy. For comparison, Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 alloy, in which Pr and Cu elements were directly added into the original Nd–Fe–B alloy, was also treated by the same HDDR process and the coercivity was only 557.3 kA/m. Microstructural investigations showed that a large area of (Nd, Pr)-rich phases concentrated at triangle regions in the HDDR Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 powders, while the (Nd, Pr)-rich phases distributed uniformly in the diffusion treated powders. The uniform grain boundary layer can pin the motion of domain wall more effectively, resulting in a higher coercivity in diffusion treated HDDR Nd–Fe–B powders. - Highlights: • Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. • The coercivity of the powders was improved from 2.62 to 12.31 kOe by the diffusion of Pr–Cu alloy. • The uniform grain boundary layer leads to a higher coercivity in diffusion treated powders

  4. Numerical and experimental study of the distribution of charged species in a flat stoichiometric premixed CH4/O2/Ar flame

    KAUST Repository

    Han, Jie

    2015-03-30

    In this paper, an existing ion reaction mechanism is used to compute the distribution of charged species in a at stoichiometric premixed CH4/O2/Ar flame stabilized on top of a McKenna burner. The ion reaction rates and charged species thermodynamic data are updated according to the most recent data. A modified version of the detailed ARAMCO 1.3 reaction mechanism is used to describe the chemistry of neutral species. Because of the important role of CH in the chemi-ionization process, its prediction is improved based on the available measured data. The ability of the ion reaction mechanism to predict the distribution of positive ions is assessed by comparing to the experimental measurements performed in our group. The calculated results are qualitatively consistent with the experimental data, even though there exist quantitative differences that need to be addressed in future work.

  5. Numerical and experimental study of the distribution of charged species in a flat stoichiometric premixed CH4/O2/Ar flame

    KAUST Repository

    Han, Jie; Alquaity, Awad B. S.; Belhi, Memdouh; Farroq, Aamir; Sarathy, Mani; Bisetti, Fabrizio

    2015-01-01

    In this paper, an existing ion reaction mechanism is used to compute the distribution of charged species in a at stoichiometric premixed CH4/O2/Ar flame stabilized on top of a McKenna burner. The ion reaction rates and charged species thermodynamic data are updated according to the most recent data. A modified version of the detailed ARAMCO 1.3 reaction mechanism is used to describe the chemistry of neutral species. Because of the important role of CH in the chemi-ionization process, its prediction is improved based on the available measured data. The ability of the ion reaction mechanism to predict the distribution of positive ions is assessed by comparing to the experimental measurements performed in our group. The calculated results are qualitatively consistent with the experimental data, even though there exist quantitative differences that need to be addressed in future work.

  6. Stoichiometric iodination and purification of porcine insulin with chloramine T for radioimmunoassay

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Giannella Neto, D.; Wajchenberg, B.L.

    1986-01-01

    Stoichiometric iodination and purification of porcine insulin was performed to the general method of Hunter and Greenwood (classical chloramine T) with modifications recommended by Roth (chloramine T is added in limiting amounts in multiple small additions). Satisfactory specific activity of the labeled hormone was obtained and the characteristics of the radioimmunoassay, based on the competition of the 125-I labeled porcine and cold insulin for specific antibody were studied. (Author) [pt

  7. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside

  8. Stoichiometric analysis of Y-Ba-Cu-O superconductors using deuterons

    International Nuclear Information System (INIS)

    Tang, S.M.; Ong, T.H.; Tan, M.G.; Loh, K.K.; Sow, C.H.; Yuan, B.; Orlic, I.

    1993-01-01

    In principle, deuteron irradiation can be used for a complete stoichiometric analysis of Y-Ba-Cu-O superconductors. The contents of all the four chemical constituents can be determined by simultaneous detection of the 0.871 MeV prompt gamma rays from the 16 O(d, pγ) 17 O * reaction and of the characteristic X-rays produced by DIXE (deuteron induced X-ray emission). In this paper we present the approach taken and the results obtained in exploring the applicability of this technique for accurate quantitative determinations of the chemical constituents of bulk Y-Ba-Cu-O superconductors. (orig.)

  9. A screening-corrected additivity rule for the calculation of electron scattering from macro-molecules

    International Nuclear Information System (INIS)

    Blanco, F; Garcia, G

    2009-01-01

    A simplified form of the well-known screening-corrected additivity rule procedure for the calculation of electron-molecule cross sections is proposed for the treatment of some very large macro-molecules. While the comparison of the standard and simplified treatments for a DNA dodecamer reveals very similar results, the new treatment presents some important advantages for large molecules.

  10. Defining chemical expansion: the choice of units for the stoichiometric expansion coefficient

    DEFF Research Database (Denmark)

    Marrocchelli, Dario; Chatzichristodoulou, Christodoulos; Bishop, Sean R.

    2014-01-01

    Chemical expansion refers to the spatial dilation of a material that occurs upon changes in its composition. When this dilation is caused by a gradual, iso-structural increase in the lattice parameter with composition, it is related to the composition change by the stoichiometric expansion coeffi...... are provided for changes in oxygen content in fluorite, perovskite, and Ruddlesden-Popper (K2NiF4) phase materials used in solid oxide fuel cells....

  11. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films

    Science.gov (United States)

    Yang, J. K.; Liang, B.; Zhao, M. J.; Gao, Y.; Zhang, F. C.; Zhao, H. L.

    2015-10-01

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~ 300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10-4 Ω•cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  12. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    Science.gov (United States)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  13. Chemical species of iodine in some seaweeds. Pt. 2. Iodine-bound biological macromolecules

    International Nuclear Information System (INIS)

    Xiaolin Hou; Chifang Chai; Xiaojun Yan

    2000-01-01

    The distribution of iodine in various biological macromolecules in Sargassum kjellmanianum was studied using neutron activation analysis combined with chemical and biochemical separation techniques. The results indicate that iodine is mainly bound with protein, part of iodine with pigment and polyphenol, and little with polysaccharides, such as algin, fucoidan and cellulose. This result is significant for the mechanism of enriching iodine of algae and utilization of alga iodine. (author)

  14. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  15. Increased Plasma Colloid Osmotic Pressure Facilitates the Uptake of Therapeutic Macromolecules in a Xenograft Tumor Model

    Directory of Open Access Journals (Sweden)

    Matthias Hofmann

    2009-08-01

    Full Text Available Elevated tumor interstitial fluid pressure (TIFP is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic pressure (COP pulls water from tumor interstitium lowering the TIFP. Concentrated human serum albumin: (20% HSA, used as an agent to enhance COP, reduced the TIFP time-dependently from 8 to 2 mm Hg in human tumor xenograft models bearing A431 epidermoid vulva carcinomas. To evaluate whether this reduction facilitates the uptake of macromolecules, the intratumoral distribution of fluorescently conjugated dextrans (2.5 mg/ml and cetuximab (2.0 mg/ml was probed using novel time domain nearinfrared fluorescence imaging. This method permitted discrimination and semiquantification of tumor-accumulated conjugate from background and unspecific probe fluorescence. The coadministration of 20% HSA together with either dextrans or cetuximab was found to lower the TIFP significantly and increase the concentration of the substances within the tumor tissue in comparison to control tumors. Furthermore, combined administration of 20%HSA plus cetuximab reduced the tumor growth significantly in comparison to standard cetuximab treatment. These data demonstrate that increased COP lowers the TIFP within hours and increases the uptake of therapeutic macromolecules into the tumor interstitium leading to reduced tumor growth. This model represents a novel approach to facilitate the delivery of therapeutics into tumor tissue, particularly monoclonal antibodies.

  16. Comparing a Dynamic Fed-Batch and a Continuous Steady-State Simulation of Ethanol Fermentation in a Distillery to a Stoichiometric Conversion Simulation

    OpenAIRE

    Fonseca, G.C.; Costa, C.B.B.; Cruz, A.J.G.

    2017-01-01

    Abstract An autonomous sugarcane bioethanol plant was simulated in EMSO software, an equation oriented process simulator. Three types of fermentation units were simulated: a six parallel fed-batch reactor system, a set of four CSTR in steady state and one consisting of a single stoichiometric reactor. Stoichiometric models are less accurate than kinetic-based fermentation models used for fed-batch and continuous fermenter simulations, since they do not account for inhibition effects and depen...

  17. A new multidimensional stoichiometric classification of compounds: moving beyond the van Krevelen diagram.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Bianchi, T. S.; Tolic, N.; Jansson, C.; Paša-Tolić, L.

    2017-12-01

    The role of nutrients in organisms, especially primary producers, has been a topic of special interest in ecosystem research for understanding the ecosystem structure and function. The majority of macro-elements in organisms, such as C, H, O, N and P, do not act as single elements but are components of organic compounds (lipids, peptides, carbohydrates, etc), which are more directly related to the physiology of organisms and thus to the ecosystem function. However, accurately deciphering the overall content of the main compound classes (lipids, proteins, carbohydrates,…) in organisms is still a major challenge. van Krevelen (vK) diagrams have been widely used as an estimation of the main compound categories present in environmental samples based on O:C vs H:C molecular ratios, but a stoichiometric classification based exclusively on O:C and H:C ratios is feeble. Different compound classes show large O:C and H:C ratio overlapping and other heteroatoms, such as N and P, should be considered to robustly distinguish the different classes. We propose a new compound classification for biological/environmental samples based on the C:H:O:N:P stoichiometric ratios of thousands of molecular formulas of characterized compounds from 6 different main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). This new multidimensional stoichiometric compound constraints classification (MSCC) can be applied to data obtained with high resolution mass spectrometry (HRMS), allowing an accurate overview of the relative abundances of the main compound categories present in organismal samples. The MSCC has been optimized for plants, but it could be also applied to different organisms and serve as a strong starting point to further investigate other environmental complex matrices (soils, aerosols, etc). The proposed MSCC advances environmental research, especially eco-metabolomics, ecophysiology and ecological

  18. Stoichiometric Constraints Do Not Limit Successful Invaders: Zebra Mussels in Swedish Lakes

    OpenAIRE

    Naddafi, Rahmat; Ekl?v, Peter; Pettersson, Kurt

    2009-01-01

    Background Elemental imbalances of carbon (C): nitrogen (N): phosphorus (P) ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a successful invader tackles ecological barriers in novel ecosystems. Methodology/Principal Findings We examined the C?P and N?P ratios and the con...

  19. Properties of nonvolatile and antibacterial bioboard produced from bamboo macromolecules by hot pressing

    Directory of Open Access Journals (Sweden)

    Shengbo Ge

    2018-03-01

    Full Text Available Employing the antibacterial property of industrial bamboo vinegar (IBV and the photocatalytic degradation of TiO2, bamboo macromolecules were pretreated and processed into nonvolatile and antibacterial bio board (NVABB. The NVABB was then analyzed by conducting Fourier-transform infrared spectroscopy, thermogravimetric analysis and differential thermal analysis. Results show that NVABB samples had average density of 0.96 g/cm3, which is appropriate for application. In terms of physical and mechanical properties, the best NVABB sample obtained from IBV, TiO2 and bamboo had an IBV pretreatment time of 10 min, 2% TiO2 and 1% bamboo charcoal. Fourier-transform infrared spectroscopy demonstrated that optimum conditions for hot pressing were a temperature of 170 °C, duration of 15 min and the addition of IBV and TiO2. Thermogravimetric analysis/differential thermal analysis curves suggest that the thermal degradation of NVABB was less than that of bamboo and that hot pressing obviously increased the thermal stability of HDBB samples. Analysis of the antimicrobial effect revealed that IBV pretreatment improves the antibacterial property of NVABB. Keywords: Industrial bamboo vinegar, Nonvolatile and antibacterial bio board, Bamboo macromolecules, Fourier-transform infrared spectroscopy, Thermogravimetric analysis/differential thermal analysis

  20. Applications of the quasi-elastic light scattering to the study of dynamic properties of charged macro-molecules

    International Nuclear Information System (INIS)

    Gouesin-Menez, Renee

    1979-01-01

    The object of this research thesis is to study the modifications of dynamic properties of a macromolecule under the influence of variations of its medium, by using a frequency analysis of the spectrum of light scattered by a solution of particles. Thus, an important part of this thesis addresses the study and development of the scattering method and of its analysis by 'photon pulses', and the development and adjustment of an electrophoretic device to study light scattering by molecules submitted to an electric field. Then, hydrodynamic characteristics of some macromolecules have been measured with or without electric field. The studied molecular systems have been: calibrated spheres of latex polystyrene, a globular protein (bovine serum albumin), a polysaccharide (under the form of a rigid short stick), a flexible linear polyelectrolyte (polymethacrylate), and two DNA samples

  1. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  2. Physicochemical Study of Irradiated polypropylene/Organo :Modified Montmorillonite Composites by Using Electron Beam Irradiation Technique

    International Nuclear Information System (INIS)

    Hassan, M.S.

    2008-01-01

    Polypropylene/ Organo modified montmorillonite composites (PP/ OMMT) were prepared by melt blending with a twin screw extruder. The thermal properties by thermo gravimetric analysis (TGA), the dispersion of OMMT of macromolecules by X-ray diffraction (XRD), mechanical properties and the morphology by scanning electron microscopy (SEM) were investigated. The effect of electron beam irradiation on these properties was also studied. The results showed an intercalation between the silicate layers and the PP polymer matrix. The (PP/ OMMT) composites exhibit higher thermal stability and lower mechanical properties than pure polypropylene

  3. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  4. Growth, defect structure, and THz application of stoichiometric lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege M. út 29-33 (Hungary); Pálfalvi, L.; Unferdorben, M. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Hebling, J. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); MTA-PTE High Field Terahertz Research Group, 7624 Pécs (Hungary)

    2015-12-15

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO{sub 3} (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li{sub 2}O–Nb{sub 2}O{sub 5}–X{sub 2}O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K{sub 2}O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm{sup −1} at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are

  5. Simple and effective procedure for conformational search of macromolecules. Application to Met- and Leu-Enkephalin

    Energy Technology Data Exchange (ETDEWEB)

    Meirovitch, H.; Meirovitch, E. (Florida State Univ., Tallahassee, FL (United States)); Michel, A.G. (Institut de Recherches Serrier, Suresnes (France)); Vasquez, M. (Protein Design Lab., Mountain View, CA (United States))

    1994-06-23

    A simple and efficient method for searching the conformational space of macromolecules is presented. With this method an initial set of relatively low-energy structures is generated, and their energies are further minimized with a procedure that enables escaping from local energy minima. Illustrative calculations are described for Met- and Leu-enkephalin. 37 refs., 1 tab.

  6. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal

    2015-10-27

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2−xTi2O7−1.5x structure with an x value of ∼0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin–orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

  7. Application of a data reconciliation method to the stoichiometric analysis of Fibrobacter succinogenes growth.

    Science.gov (United States)

    Guiavarch, Erell; Pons, Agnes; Creuly, Catherine; Dussap, Claude-Gilles

    2008-12-01

    Fibrobacter succinogenes S85, a strictly anaerobic Gram-negative bacterium, was grown in continuous culture in a bioreactor at different dilution rates (0.02 to 0.092 h(-1)) on a fully synthetic culture medium with glucose as carbon source. Glucose and ammonium sulfate consumption, as well as biomass, succinate, acetate, formate, and carbohydrate production were regularly measured. The relevant biomass elemental compositions were established for each dilution rate. Robustness of the experimental information was checked by C and N mass balances estimation, which were satisfactory. A detailed overall stoichiometry analysis of the process, including all substrates and products of the culture, was proposed. Online and off-line parameters measured during the culture brought a large number of data which were weighted by their respective variance associated to the measured value. The material balance resulted in an overdetermined linear system of equations made of weighted relationships including experimental data, elemental balances (C, H, O, N, S, Na), and an additional constraint. The mass balances involved in stoichiometric equations were solved using data reconciliation and linear algebra methods to take into account error measurements. This methodology allowed to establish the overall stoichiometric equation for each dilution rate studied.

  8. Free diffusion of translation of macromolecules in solution with the rayleigh interferometer

    International Nuclear Information System (INIS)

    Leger, J.J.

    1969-01-01

    The aim of this study is to develop a rapid and accurate measurement, with the Rayleigh interferometer, of the free diffusion coefficient of translation of macromolecules in solution. After having explained the choice of a diffusion cell with laminar lateral flow, and explained the principle of the Rayleigh interferometer, a semi-automatic technique of free diffusion are then introduced. Solutions are proposed for systems composed of two or three components, such as biopolymers. The paper ends by drafting the possible treatment of recorded experimental data by means of electronic computer. (author) [fr

  9. Macromolecules in Flatland

    Science.gov (United States)

    Prasad, Ashok

    This thesis is on statistical mechanics of semiflexible polymers, and diffusion and fluid mechanics in lipid membranes. In chapter two the worm-like chain model of DNA under an applied force in two dimensions is solved analytically in terms of an expansion in Mathieu functions. An analytical expression for the force-extension relation for long polymers is computed in terms of Mathieu characteristic functions. The nematic order parameter and average extension of the polymer stretched by a strong nematic field are also derived. In chapter three the force-extension relations for short semiflexible polymers or long polymers under large forces are calculated analytically using the generating functional formalism of field theory. It is shown that boundary conditions like axis-clamping affect the force extension curves. This formalism is also applied to a charged polymer under the influence of an electric field, and analytical formulae for the force-extension relation are obtained. In chapter four the results of an experiment on the collapse of actin molecule into racquet-like structures due to the depletion interaction are reported, and the strength of the attractive interaction between actin filaments is measured. In chapter five a theoretical model of polymer diffusion in supported membranes is constructed. The velocity fields of inclusions in lipid membranes are analyzed and it is found that inclusions create domains of entrained lipids of a characteristic size. The diffusion constant of a self-avoiding polymer in the membrane is calculated and it is shown that by altering the hydrodynamic length scale which sets the size of the entrained domains, the diffusive properties of the polymer changes in character from uncorrelated Rouse-like behavior to a solid disk-like behavior. The implications for the diffusion of macromolecules in plasma membranes are discussed. In chapter six the drift of a moving object in a lipid membrane is studied. The drift is a measure of the

  10. Stoichiometric transfer of material in the infrared pulsed laser deposition of yttrium doped Bi-2212 films

    International Nuclear Information System (INIS)

    De Vero, Jeffrey C.; Blanca, Glaiza Rose S.; Vitug, Jaziel R.; Garcia, Wilson O.; Sarmago, Roland V.

    2011-01-01

    Highlights: → This work describes the stoichiometric transfer of Y-doped Bi-2212 during IR-PLD. → As-deposited films show spheroidal morphology with similar composition as the target. Relatively flat and highly c-axis oriented films were obtained after heat treatment. → IR-PLD can be a viable technique in growing other high Tc superconducting materials. - Abstract: Films of Y-doped Bi-2212 were successfully grown on MgO (1 0 0) substrates by infrared pulsed laser deposition (IR-PLD). With post-heat treatments, smooth and highly c-axis oriented films were obtained. The average compositions of the films have the same stoichiometry as the target. Y content is also preserved on the grown films at all doping levels. The electrical properties of the grown Y-doped Bi-2212 films exhibit the expected electrical properties of the bulk Y-doped Bi-2212. This is attributed to the stoichiometric transfer of material by IR-PLD.

  11. A study of tumour growth based on stoichiometric principles: a continuous model and its discrete analogue.

    Science.gov (United States)

    Saleem, M; Agrawal, Tanuja; Anees, Afzal

    2014-01-01

    In this paper, we consider a continuous mathematically tractable model and its discrete analogue for the tumour growth. The model formulation is based on stoichiometric principles considering tumour-immune cell interactions in potassium (K (+))-limited environment. Our both continuous and discrete models illustrate 'cancer immunoediting' as a dynamic process having all three phases namely elimination, equilibrium and escape. The stoichiometric principles introduced into the model allow us to study its dynamics with the variation in the total potassium in the surrounding of the tumour region. It is found that an increase in the total potassium may help the patient fight the disease for a longer period of time. This result seems to be in line with the protective role of the potassium against the risk of pancreatic cancer as has been reported by Bravi et al. [Dietary intake of selected micronutrients and risk of pancreatic cancer: An Italian case-control study, Ann. Oncol. 22 (2011), pp. 202-206].

  12. Sintering of B4C powder obtained by a modified carbo-thermal reaction

    International Nuclear Information System (INIS)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L.

    2005-01-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B 4 C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B 2 O 3 ) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B 2 O 2 . Thus, a modified carbo-thermal reaction is applied with an excess B 2 O 3 to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B 2 O 3 excess synthesized at 1700 deg. C/15 min. (authors)

  13. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    International Nuclear Information System (INIS)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-01-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  14. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  15. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao [Department of Chemistry, University of Houston, Houston, TX 77204 (United States); Wu, Chao [Electronic Structure Lab, Center of Microscopic Theory and Simulation, Frontier Institute of Science and Technology, Xian Jiaotong University, Xian 710054 (China); Malinin, Sergey V. [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernyak, Vladimir Y., E-mail: chernyak@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202 (United States)

    2016-12-20

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized “particle in a box” problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  16. Precipitation of stoichiometric hydroxyapatite by a continuous method

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Morales, J.; Boix, T.; Fraile, J.; Rodriguez-Clemente, R. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Torrent-Burgues, J. [UPC, Barcelona (Spain). Dept. d' Enginyeria Quimica

    2001-07-01

    In this paper we present the precipitation of hydroxyapatite (HA), Ca{sub 5}(OH)(PO{sub 4}){sub 3}, from highly concentrated CaCl{sub 2} and K{sub 2}HPO{sub 4} solutions, carried out by a continuous method in a MSMPR reactor. The procedure consists of adding the reagents in a ratio Ca to P equal to 1.67, maintaining a temperature of 85 C, inert N{sub 2} atmosphere inside the reactor, and monitoring and adjusting automatically the pH by means of a pH-stat system (pH = 9.0 {+-} 0.1). Under these conditions HA with a Ca to P ratio equal or close to the stoichiometric composition (Ca/P=1.667), with a high yield (up to 99%) and a high production rate (up to 1.17 g/l.min) is obtained at steady state. The CSD, morphology, crystallinity of the precipitates and impurities present fit the requirement for its biomedical applications. (orig.)

  17. Synthesis and evaluation of macromolecule-bound derivatives of a peptidyl-1-beta-D-arabinofuranosylcytosine prodrug.

    Science.gov (United States)

    Balajthy, Zoltan

    2008-04-01

    Macromolecule-bound Val-Leu-Lys-ara-C (1) prodrugs were synthesized with spacers (-HN-(CH(2))(x)-CO-; x =1,3,5) between the dextran carrier (T-70) and 1, in order to achieve a sustained-release drug delivery system dextran-NH-(CH(2))(x:1,3,5)-CO-Val-Leu-Lys-ara-C (5, 6 and 7). The conjugation increased the stability of 1 in aqueous buffer solutions by three times (t((1/2)) 53.0 h, pH 7.4). The length of spacer also regulated the rate of hydrolysis of the prodrugs in serum. The shortest spacer (-HN-(CH(2))-CO-, (2)) in 5 provided the best protection of 1 against the hydrolyzing ability of proteinase- alpha(2)-macroglobulin complexes, increasing its half-life approximately 30-fold. The conjugation procedure resulted in a growth arrest ability for macromolecular-bound prodrugs 5, 6 and 7 against L1210 with IC(50) of 0.01 microM in vitro, which is significantly lower than that of other ara-C-macromolecule conjugates. 5 and 6 arrested cell growth in a broader range of concentration, between 1 x 10(-5)-1.0 microM, than ara-C could.

  18. Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites

    International Nuclear Information System (INIS)

    Ashrafi, Behnam; Johnston, Andrew; Martinez-Rubi, Yadienka; Kingston, Christopher T; Simard, Benoit; Khoun, Lolei; Yourdkhani, Mostafa; Hubert, Pascal

    2013-01-01

    Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4′-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively. (paper)

  19. Conference on chemical evolution and the origin of life: Self-organization of the macromolecules of life

    International Nuclear Information System (INIS)

    1993-10-01

    The formation of biomolecules was a necessary step in the evolution of life on earth. This interdisciplinary conference emphasized the role of replication in processes of self-organization of biological macromolecules. The present document contains abstracts of the 26 contributions to the conference on chemical evolution. The individual contributions have been indexed separately for the database

  20. Calculation of electron spectra of stoichiometric and nitrogen-deficient zirconium nitrides

    International Nuclear Information System (INIS)

    Ivashchenko, V.I.; Lisenko, A.A.; Zhurakovskij, E.A.; Bekenev, V.L.

    1984-01-01

    English structure using the method of associated plane waves - linear combinations of atom orbitals - coherent potential (APW-LCAO-CP) are given. The calculation results for ZrN electron spectrum indicate availability of a Zr-N binding and a Zr-N antibonding bands. The Fermi level lies in the antibonding metal band. While deffecting from the stoichiometric content the Fermi level simultaneously with filling the metal band shifts towards the Variation of the main kinetic parameters with increasing defectiveness in nitrogen is explained by increasing the number of antibonding collectivized electrons. Application of the combined method of APW-LCAO-CP gives a rather realistic picture of interatomic interaction in ZrNsub(x)

  1. Visualization of three pathways for macromolecule transport across cultured endothelium and their modification by flow.

    Science.gov (United States)

    Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D

    2017-11-01

    Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular

  2. Sintering of B{sub 4}C powder obtained by a modified carbo-thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, R.M.; Kazumi, M.H.; Goncalves, D.P.; Melo, F.C.L. [Centro Tecnico Aeroespacial (CTA) - Instituto de Aeronautica e Espaco, Praca Marechal Eduardo Gomes, 50 Campus do CTA - Vila das Acacias, 12228-904 Sao Jose dos Campos-SP (Brazil)

    2005-07-01

    Boron carbide is one of the hardest materials and a highly refractory material that is of great interest for structural, electronic and nuclear applications. B{sub 4}C is commercially manufactured by the carbo-thermal reduction of a mixture of boron oxide (B{sub 2}O{sub 3}) in an batch electric arc furnace process. However the carbo-thermal reaction on the stoichiometric starting composition results an excess carbon residue because of the boron loss in the form of B{sub 2}O{sub 2}. Thus, a modified carbo-thermal reaction is applied with an excess B{sub 2}O{sub 3} to compensate the loss and to obtain stoichiometric powders. The aim of this work is to study the sinterability of this powder with the lower carbon residue acting as sintering additive. Pressureless sintering in the temperatures of 1900 deg. C/30 min and 2100 deg. C/30 min in argon atmosphere were applied. The synthesized powders were analysed by XRD and SEM. Density of 94% of theoretical density was achieved for sample prepared with the powder obtained with 50% B{sub 2}O{sub 3} excess synthesized at 1700 deg. C/15 min. (authors)

  3. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    Science.gov (United States)

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces.

  4. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    Science.gov (United States)

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  5. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    Science.gov (United States)

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  6. Conformational Effects in Non-Stoichiometric Complexes of Two Hyperbranched Molecules with a Linear Polyelectrolyte

    Directory of Open Access Journals (Sweden)

    Alexey Lyulin

    2012-01-01

    Full Text Available We report results from Brownian dynamics computer simulations of systems comprised by two terminally charged hyperbranched molecules preferentially branched in the periphery, with an oppositely charged linear chain of varying length. Comparison of the findings from the present study to stoichiometric counterparts and to analogous dendrimer-based complexes, reveal that the presence of the second hyperbranched molecule incurs significant changes in the conformational characteristics of both components of the complex. Instead of step-like changes in the average size and shape of the hyperbranched component that were noted in the previously studied stoichiometric systems, a rather smooth change is observed upon increase of the length of the linear component. In addition, a markedly different behavior is also noticed in the conformational characteristics of the linear chain when compared to that in similar dendrimer-based systems. The above findings are consistent with the higher degree of deformability of the peripherally branched molecules which allow appropriate rearrangements in shape in order to accommodate the favorable Coulombic interactions between the two components of the complex. This behavior offers new insight towards the design of more efficient hyperbranched-based systems which can take advantage of the multifunctionality and the structural properties of the highly branched polymer components.

  7. A mathematical model for filtration and macromolecule transport across capillary walls.

    Science.gov (United States)

    Facchini, L; Bellin, A; Toro, E F

    2014-07-01

    Metabolic substrates, such as oxygen and glucose, are rapidly delivered to the cells of large organisms through filtration across microvessels walls. Modelling this important process is complicated by the strong coupling between flow and transport equations, which are linked through the osmotic pressure induced by the colloidal plasma proteins. The microvessel wall is a composite media with the internal glycocalyx layer exerting a strong sieving effect on macromolecules, with respect to the external layer composed by the endothelial cells. The physiological structure of the microvessel is represented as the superimposition of two membranes with different properties; the inner membrane represents the glycocalyx, while the outer membrane represents the surrounding endothelial cells. Application of the mass conservation principle and thermodynamic considerations lead to a model composed of two coupled second-order ordinary differential equations for the hydrostatic and osmotic pressures, one, expressing volumetric mass conservation and the other, which is non-linear in the unknown osmotic pressure, expressing macromolecules mass conservation. Despite the complexity of the system, the assumption that the properties of the layers are piece-wise constant allows us to obtain analytical solutions for the two pressures. This solution is in agreement with experimental observations, which contrary to common belief, show that flow reversal cannot occur in steady-state conditions unless the hydrostatic pressure in the lumen drops below physiologically plausible values. The observed variations of the volumetric flux and the solute mass flux in case of a significant reduction of the hydrostatic pressure at the lumen are in qualitative agreement with observed variations during detailed experiments reported in the literature. On the other hand, homogenising the microvessel wall into a single-layer membrane with equivalent properties leads to a very different distribution of

  8. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    Science.gov (United States)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  9. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    Science.gov (United States)

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  10. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    DEFF Research Database (Denmark)

    Schou, Jørgen; Ganskukh, Mungunshagai; Ettlinger, Rebecca Bolt

    2018-01-01

    The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2......, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films...... of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature....

  11. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    International Nuclear Information System (INIS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-01-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO 3 sensible oxide. Nonstoichiometric BaSrTiFeO 3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO 3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO 3 pseudo-cubic phase and Ba 4 Ti 12 O 27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO 3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz. (paper)

  12. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. II. Relationships between chemical model and partition function algorithm.

    Science.gov (United States)

    Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L

    1990-05-01

    The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a

  13. Estimating absolute configurational entropies of macromolecules: the minimally coupled subspace approach.

    Directory of Open Access Journals (Sweden)

    Ulf Hensen

    Full Text Available We develop a general minimally coupled subspace approach (MCSA to compute absolute entropies of macromolecules, such as proteins, from computer generated canonical ensembles. Our approach overcomes limitations of current estimates such as the quasi-harmonic approximation which neglects non-linear and higher-order correlations as well as multi-minima characteristics of protein energy landscapes. Here, Full Correlation Analysis, adaptive kernel density estimation, and mutual information expansions are combined and high accuracy is demonstrated for a number of test systems ranging from alkanes to a 14 residue peptide. We further computed the configurational entropy for the full 67-residue cofactor of the TATA box binding protein illustrating that MCSA yields improved results also for large macromolecular systems.

  14. Synthesis and biological incorporatin of icons into macromolecules for NMR study

    International Nuclear Information System (INIS)

    Grant, D.M.

    1976-02-01

    Work has proceeded successfully to synthesize novel 13 C-labeled materials for incorporation into macromolecules. Gram quantities of C-4 labeled uracil have been synthesized and incorporated, by means of a mutant bacterial strain into t-RNA. The t-RNA has been isolated, purified, and carbon-13 T 1 studies have begun. A modern, well equipped biochemistry laboratory has become functional during the present contract period. Good progress has been made on nonenzymatic reactions of pyridoxal-5'-phosphate with selected amino actions. This effort has successfully elucidated many reaction intermediates and products. In addition, 13 C containing haptens have been synthesized and screening tests have now begun on rabbits to verify the specificity of antibodies for two haptens

  15. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  16. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Kast, C E; Guggi, D

    2003-12-05

    Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.

  17. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  18. Sensitivity enhancement in NMR of macromolecules by application of optimal control theory

    International Nuclear Information System (INIS)

    Frueh, Dominique P.; Ito, Takuhiro; Li, J.-S.; Wagner, Gerhard; Glaser, Steffen J.; Khaneja, Navin

    2005-01-01

    NMR of macromolecules is limited by large transverse relaxation rates. In practice, this results in low efficiency of coherence transfer steps in multidimensional NMR experiments, leading to poor sensitivity and long acquisition times. The efficiency of coherence transfer can be maximized by design of relaxation optimized pulse sequences using tools from optimal control theory. In this paper, we demonstrate that this approach can be adopted for studies of large biological systems, such as the 800 kDa chaperone GroEL. For this system, the 1 H- 15 N coherence transfer module presented here yields an average sensitivity enhancement of 20-25% for cross-correlated relaxation induced polarization transfer (CRIPT) experiments

  19. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  20. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  1. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  2. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances-Results from Analytical Stoichiometric Models.

    Science.gov (United States)

    Manzoni, Stefano

    2017-01-01

    Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space-expressing litter remaining N as a function of remaining C-rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.

  3. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

    Science.gov (United States)

    Manzoni, Stefano

    2017-01-01

    Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space—expressing litter remaining N as a function of remaining C—rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients. PMID:28491054

  4. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

    Directory of Open Access Journals (Sweden)

    Stefano Manzoni

    2017-04-01

    Full Text Available Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE. Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C and nitrogen (N dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space—expressing litter remaining N as a function of remaining C—rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.

  5. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  6. One-step synthesis of single phase micro-sized BaFe12O19 hexaplates via a modified hydrothermal approach

    International Nuclear Information System (INIS)

    Cao, Liangliang; Zeng, Yanwei; Ding, Chuan; Li, Rongjie; Li, Chuanming; Zhang, Chengzhe

    2016-01-01

    Single phase BaFe 12 O 19 ferrite identified by X-ray diffraction and Raman spectroscopy has been successfully synthesized using Fe(NO 3 ) 3 ·9H 2 O and Ba(NO 3 ) 2 as starting materials and NaOH as a precipitant via a modified one-step hydrothermal approach which involves the elimination of carbonate radicals from reaction system based on the stoichiometric ratio of [Ba 2+ ]/[Fe 3+ ]. Hydrothermal products under various synthetic conditions were studied, including different addition amounts of Ba(NO 3 ) 2 in the modified operation, reaction temperatures and times, and hydroxyl concentrations. The BaFe 12 O 19 particles featuring an excellent hexagonal plates shape can be hydrothermally synthesized with the aid of polyethylene glycol. It has been found that the presence of α-Fe 2 O 3 in a traditional hydrothermal process is motivated by the deviation from the desired [Ba 2+ ]/[Fe 3+ ] ratio caused by the negligent precipitation of Ba 2+ ions to BaCO 3 . An investigation on the preferred hydrothermal product through thermodynamic calculation shows that the reduction in Gibbs free energy for the exclusive formation of BaFe 12 O 19 with 1 mol of Fe 3+ ions at 220 °C is approximately 32 kJ higher than that for the complete transformation to α-Fe 2 O 3 with an equal consumption quantity of Fe 3+ ions. - Highlights: • Pure BaFe 12 O 19 was hydrothermally synthesized based on the stoichiometric ratio. • A modified operation was employed to eliminate self-invited carbonate ions. • BaFe 12 O 19 particles feature an excellent micro-sized hexaplates shape. • BaFe 12 O 19 was thermodynamically confirmed to be preferred result instead of α-Fe 2 O 3 .

  7. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(methacrylic acid

    Directory of Open Access Journals (Sweden)

    Vinokurova Ludmila G

    2001-08-01

    Full Text Available Abstract Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(methacrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides.

  8. Stoichiometric estimates of the biochemical conversion efficiencies in tsetse metabolism

    Directory of Open Access Journals (Sweden)

    Custer Adrian V

    2005-08-01

    Full Text Available Abstract Background The time varying flows of biomass and energy in tsetse (Glossina can be examined through the construction of a dynamic mass-energy budget specific to these flies but such a budget depends on efficiencies of metabolic conversion which are unknown. These efficiencies of conversion determine the overall yields when food or storage tissue is converted into body tissue or into metabolic energy. A biochemical approach to the estimation of these efficiencies uses stoichiometry and a simplified description of tsetse metabolism to derive estimates of the yields, for a given amount of each substrate, of conversion product, by-products, and exchanged gases. This biochemical approach improves on estimates obtained through calorimetry because the stoichiometric calculations explicitly include the inefficiencies and costs of the reactions of conversion. However, the biochemical approach still overestimates the actual conversion efficiency because the approach ignores all the biological inefficiencies and costs such as the inefficiencies of leaky membranes and the costs of molecular transport, enzyme production, and cell growth. Results This paper presents estimates of the net amounts of ATP, fat, or protein obtained by tsetse from a starting milligram of blood, and provides estimates of the net amounts of ATP formed from the catabolism of a milligram of fat along two separate pathways, one used for resting metabolism and one for flight. These estimates are derived from stoichiometric calculations constructed based on a detailed quantification of the composition of food and body tissue and on a description of the major metabolic pathways in tsetse simplified to single reaction sequences between substrates and products. The estimates include the expected amounts of uric acid formed, oxygen required, and carbon dioxide released during each conversion. The calculated estimates of uric acid egestion and of oxygen use compare favorably to

  9. N-hydroxysuccinimide-hippuran ester: application for radiolabeling of macromolecules

    International Nuclear Information System (INIS)

    Chervu, L.R.; Chun, S.B.; Bhargava, K.K.

    1987-01-01

    A method for synthesis of N-hydroxysuccinimide ester of radioactive orthoiodohippurric acid (OIH-OSU) is developed in order to label macromolecules including antibodies. The OIH-OSU is prepared in 87% yield by reacting molar equivalents of o-iodohippuric acid, N:N-di-succinimidyl carbonate and pyridine in DMF overnight. The active labeled ester is obtained using high specific activity OIH in a similar synthetic protocol. Conjugation of OIH-OSU to human serum albumin is effected by incubating the reactants for half an hour at room temperature followed by purification of the labeled protein on a Sephadex G-100 column with activity yield of 44.3%. Organ distribution for the labeled albumin preparation and the commercial iodinated human serum albumin (RISA) in mice and rats is similar. As expected urinary excretion of radioactivity for the labeled preparation is greater than that of RISA reflecting the rapid urinary clearance of the OIH moiety released into the bloodstream. Hippuran labeling method offers a mild and rapid protocol for radioiodine labeling of proteins and antibodies for application in diagnostic nuclear medicine procedures

  10. Rate Measurements of the Hydrolysis of Complex Organic Macromolecules in Cold Aqueous Solutions: Implications for Prebiotic Chemistry on the Early Earth and Titan

    Science.gov (United States)

    Neish, C. D.; Somogyi, Á.; Imanaka, H .; Lunine, J. I.; Smith, M. A.

    2008-04-01

    Organic macromolecules (``complex tholins'') were synthesized from a 0.95 N2 / 0.05 CH4 atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of ~60 +/- 10 kJ mol-1. These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials-a necessary step toward the formation of biological molecules-is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.

  11. Long charged macromolecule in an entropic trap with rough surfaces.

    Science.gov (United States)

    Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun

    2012-11-01

    The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.

  12. The role of the Mg sup 2 sup + ions in Cr sup 3 sup + spectroscopy for near-stoichiometric LiNbO sub 3 crystals

    CERN Document Server

    Han, T P J; Bermudez, V; Diéguez, E

    2003-01-01

    The optical spectroscopy of Cr sup 3 sup + ions doped into near-stoichiometric LiNbO sub 3 crystals, pure and co-doped with MgO, has been investigated. In the near-stoichiometric LiNbO sub 3 :Cr(0.2 mol%):Mg(2 mol%) crystal, the optical spectra resemble those previously observed for congruent LiNbO sub 3 :Cr:MgO samples when the total MgO content exceeds the 4.6 mol% threshold. The coexistence of two types of Cr sup 3 sup + centre ([Cr] sub L sub i and [Cr] sub N sub b) characterized the optical and luminescence spectra of this sample. The concentration equilibrium between the two types of centre is strongly displaced towards the [Cr sup 3 sup + ] sub N sub b centre, permitting us to obtain with accuracy the parameters of the broad bands. The R-line associated with the [Cr] sub N sub b centre is only observable in the low-temperature emission spectrum. The Fano anti-resonance lines present have been observed to be more pronounced for the near-stoichiometric samples than for congruent ones.

  13. Preparation of cauliflower-like shaped Ba0.6Sr0.4TiO3 powders by modified oxalate co-precipitation method

    International Nuclear Information System (INIS)

    Li Mingli; Xu Mingxia

    2009-01-01

    The quantitative barium-strontium titanyl oxalate (Ba 0.6 Sr 0.4 TiO(C 2 O 4 ) 2 .4H 2 O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H 2 TiO(C 2 O 4 ) 2 , HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba 0.6 Sr 0.4 TiO 3 , BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG

  14. NATO Advanced Research Workshop on Nuclear Magnetic Resonance of Paramagnetic Macromolecules

    CERN Document Server

    1995-01-01

    Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.

  15. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Sun [Division of Undeclared Majors, Chosun University, Gwangju 501-759 (Korea, Republic of); Yoon, Doo-Soo; Sohn, Jun Youn [Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744 (Korea, Republic of); Park, Jeong-Sook, E-mail: eicosa@cnu.ac.kr [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Choi, Jin-Seok, E-mail: c34281@gmail.com [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of)

    2017-03-01

    To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24 h. Cellular uptake was studied at time intervals of 0.5, 1, and 2 h in MCF-7 cells, and cell growth inhibition study was performed for 24 h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0 ± 100.6 nm (PTX-NC), 302.0 ± 152.0 nm (Tf-PTX-NC) and 339 ± 180.6 nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24 h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition. - Highlights: • Surface modified PTX-NCs with HA and Tf are successfully prepared by adsorption method. • Enhanced cellular uptake of modified PTX-NCs compared to unmodified PTX-NC • Improved

  16. Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelling

    International Nuclear Information System (INIS)

    Xing, Lei; Cai, Qiong; Xu, Chenxi; Liu, Chunbo; Scott, Keith; Yan, Yongsheng

    2016-01-01

    A two dimensional, along the channel, non-isothermal, two-phase flow, anode partial flooding model was developed to investigate the effects of relative humidity, stoichiometric flow ratio and channel length, as well as their interactive influence, on the performance of a PEM (proton exchange membrane) fuel cell. Liquid water formation and transport at the anode due to the condensation of supersaturated anode gas initiated by hydrogen consumption was considered. The model considered the heat source/sink in terms of electrochemical reaction, Joule heating and latent heat due to water phase-transfer. The non-uniform temperature distributions inside the MEA (membrane electrode assembly) and channels at various stoichiometric flow ratios were demonstrated. The Peclet number was used to evaluate the contributions of advection and diffusion on liquid water and heat transport. Results indicated that higher anode relative humidity is required to the improved cell performance. As the decrease in the anode relative humidity and increase in channel length, the optimal cathode relative humidity was increased. The initial increase in stoichiometric flow ratio improved the limiting current densities. However, the further increases led to limited contributions. The Peclet number indicated that the liquid water transport through the electrode was mainly determined by the capillary diffusion mechanism. - Highlights: • Interactive effects of RH, stoichiometric flow ratio, channel length are studied. • Fully humidified anode is required to maintain the good cell performance. • Optimal RH_c is 30–40% for channel length of 1–10 cm at high current density. • Effect of stoichiometric flow ratio is more significant for longer channels. • Both liquid water and heat transport are diffusion dominated rather than advection.

  17. CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome

    Directory of Open Access Journals (Sweden)

    Shelly Rozen

    2015-10-01

    Full Text Available The highly conserved COP9 signalosome (CSN complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs, the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein. We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.

  18. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    Science.gov (United States)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  19. Synthesis of macromolecules by the epithelial surfaces of Schistosoma mansoni: an autoradiographic study

    International Nuclear Information System (INIS)

    Wilson, R.A.; Barnes, P.E.

    1979-01-01

    The use of tritiated leucine as a marker for protein synthesis and of tritiated glucosamine as a marker for polysaccharide/glycoprotein synthesis, is described. Adult worms were pulse-labelled by incubation in medium containing the substrate. Labelled worms were then incubated in chase medium, without labelled substrate, for varying lengths of time before fixation. The distribution of label which had been incorporated into macromolecules in the worm tissues, was examined by light and electron microscope autoradiography. The results suggest that the bulk of worm secretions have a rapid turnover with a half-life of a few hours. Against this background of rapid mass secretion, a slower process of membrane turnover would be difficult to detect and quantitatively small. (author)

  20. Positron annihilation lifetime spectroscopy of macromolecules

    International Nuclear Information System (INIS)

    Simon, G.

    1996-01-01

    Positron annihilation lifetime spectroscopy (PALS) is a technique which makes use of the anti- particle of the electron, the positron (e + ), first predicted by Dirac in 1931. This talk will concentrate on the use of PALS as a technique in characterising macromolecules. PALS has been used by various groups to evaluate many properties that one associates with free volume such as physical ageing, gas permeability, the glass transition, uptake of a solvent, crystallinity, crosslinking, molecular mobility. One area of much interest has been the use of this technique in looking at miscibility of polymer blends. In miscible blends, the interactions of the different polymers may be expected to lead to a negative free volume of mixing because of the strong attraction between the different chains. This may influence the free volume properties. Conversely, if a material is partially miscible or totally immiscible, this should influence both the size and total content of free volume. This should be related to other properties such as mechanical properties and molecular mobility, such as measured by dielectric relaxation spectroscopy. Variations on this involve copolymerization of crosslinked materials or linear thermoplastics (the ultimate 'molecular' miscibility) and this will also be discussed. Multiphase systems such as water uptake in polymers can vary polymer properties by filling molecular voids, as well as disturbing chain conformations and, in the case of polar polymers, associating with the polymer chains. The effect of polymer molecular structure on free volume - particularly in rigid polymer chains such as substituted poly(phenylenes) and liquid crystalline polymers will also be presented. Indeed, the unusual packing which arises from such anisotropic molecules leads to unusual behaviours both of the homolpolymers and subsequent liquid crystal polymer - liquid crystal polymer blends

  1. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  2. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules.

    Science.gov (United States)

    Miyaguchi, Katsuyuki

    2014-10-01

    Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  3. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Doeswijk, T.G.; Voragen, A.G.J.; Gruppen, H.

    2009-01-01

    Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly

  4. Epoxy-Based Shape-Memory Actuators Obtained via Dual-Curing of Off-Stoichiometric “Thiol–Epoxy” Mixtures

    Directory of Open Access Journals (Sweden)

    Alberto Belmonte

    2017-03-01

    Full Text Available In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric “thiol–epoxy” systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing process, and successfully fixed through the second curing process. The samples were programmed into a flat temporary-shape and the recovery-process was analyzed in unconstrained, partially-constrained and fully-constrained conditions using a dynamic mechanical analyzer (DMA. Different “thiol–epoxy” systems and off-stoichiometric ratios were used to analyze the effect of the network structure on the actuation performance. The results evidenced the possibility to take advantage of the flexural recovery as a potential actuator, the operation of which can be modulated by changing the network structure and properties of the material. Under unconstrained-recovery conditions, faster and narrower recovery-processes (an average speed up to 80%/min are attained by using materials with homogeneous network structure, while in partially- or fully-constrained conditions, a higher crosslinking density and the presence of crosslinks of higher functionality lead to a higher amount of energy released during the recovery-process, thus, increasing the work or the force released. Finally, an easy approach for the prediction of the work released by the shape-memory actuator has been proposed.

  5. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  6. Variations in eco-enzymatic stoichiometric and microbial characteristics in paddy soil as affected by long-term integrated organic-inorganic fertilization

    Science.gov (United States)

    Lin, Sen; Wang, Shaoxian; Si, Yuanli; Yang, Wenhao; Zhu, Shaowei

    2017-01-01

    To investigate the effects of different nutrient management regimes on the soil chemical, eco-enzymatic stoichiometric and microbial characteristics, soil samples were collected from a 30-year, long-term field experiment with six plots growing rice. The results showed that as integrated fertilization increased, so did the concentrations of soil total or available nutrients and microbial biomass carbon (MBC). Our results also found enhanced soil basal respiration and cumulative carbon mineralization compared to chemical fertilization alone at the same nutrient doses. The activities of soil protease (Pro), β-glucosidase (βG), N-acetyl-glucosaminidase (NAG) and acid phosphatase (AP) from the integrated fertilization treatments were significantly higher than those of the treatments without organic manure, so did the activities of soil leucyl aminopeptidase (LAP) and urease (Ure) from the treatment with organic manure in addition to farmer practise fertilization (NPKM2). The stoichiometric ratios, expressed as lnβG/ln(NAG+LAP)/lnPro/lnUre/lnAP, ranged from 1:0.94:1.04:0.67:1.01 to 1:0.98:1.10:0.78:1.25, indicating that the acquisition of C, N and P changed consistently and synchronously under different nutrient management strategies. Integrated fertilization was more beneficial to the acquisition and utilization of soil organic carbon compared to low-molecular-weight organic nitrogen. We concluded that protease and urease should be considered in eco-enzymatic stoichiometric assessments for the hydrolysis of proteins, amino acids, carbohydrates and phosphomonoesters in soil, and integrated fertilization with chemical fertilizers and organic manure should be recommended as a preferable nutrient management system for intensive rice cultivation. PMID:29253000

  7. Distribution volumes of macromolecules in human ovarian and endometrial cancers--effects of extracellular matrix structure.

    Science.gov (United States)

    Haslene-Hox, Hanne; Oveland, Eystein; Woie, Kathrine; Salvesen, Helga B; Tenstad, Olav; Wiig, Helge

    2015-01-01

    Elements of the extracellular matrix (ECM), notably collagen and glucosaminoglycans, will restrict part of the space available for soluble macromolecules simply because the molecules cannot occupy the same space. This phenomenon may influence macromolecular drug uptake. To study the influence of steric and charge effects of the ECM on the distribution volumes of macromolecules in human healthy and malignant gynecologic tissues we used as probes 15 abundant plasma proteins quantified by high-resolution mass spectrometry. The available distribution volume (VA) of albumin was increased in ovarian carcinoma compared with healthy ovarian tissue. Furthermore, VA of plasma proteins between 40 and 190 kDa decreased with size for endometrial carcinoma and healthy ovarian tissue, but was independent of molecular weight for the ovarian carcinomas. An effect of charge on distribution volume was only found in healthy ovaries, which had lower hydration and high collagen content, indicating that a condensed interstitium increases the influence of negative charges. A number of earlier suggested biomarker candidates were detected in increased amounts in malignant tissue, e.g., stathmin and spindlin-1, showing that interstitial fluid, even when unfractionated, can be a valuable source for tissue-specific proteins. We demonstrate that the distribution of abundant plasma proteins in the interstitium can be elucidated by mass spectrometry methods and depends markedly on hydration and ECM structure. Our data can be used in modeling of drug uptake, and give indications on ECM components to be targeted to increase the uptake of macromolecular substances. Copyright © 2015 the American Physiological Society.

  8. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study.

    Science.gov (United States)

    Rowland, L M; Krause, B W; Wijtenburg, S A; McMahon, R P; Chiappelli, J; Nugent, K L; Nisonger, S J; Korenic, S A; Kochunov, P; Hong, L E

    2016-02-01

    Gamma-butyric acid (GABA) dysfunction has been implicated in the pathophysiology of schizophrenia and its cognitive deficits. Proton magnetic resonance spectroscopy (MRS) was used to test the hypothesis that older participants with schizophrenia have lower anterior cingulate GABA levels compared with older control participants. One-hundred forty-five participants completed this study. For detection of GABA, spectra were acquired from the medial frontal/anterior cingulate cortex using a macromolecule-suppressed MEGA-PRESS sequence. Patients were evaluated for psychopathology and all participants completed neuropsychological tests of working memory, processing speed and functional capacity. GABA levels were significantly lower in the older participants with schizophrenia (n=31) compared with the older control (n=37) group (P=0.003) but not between the younger control (n=40) and schizophrenia (n=29) groups (P=0.994). Age strongly predicted GABA levels in the schizophrenia group accounting for 42% of the variance, but the effect of age was less in the control group accounting for 5.7% of the variance. GABA levels were specifically related to working memory but not processing speed performance, functional capacity, or positive or negative symptom severity. This is the largest MRS study of GABA in schizophrenia and the first to examine GABA without macromolecule contamination, a potentially significant issue in previous studies. GABA levels more rapidly declined with advancing age in the schizophrenia compared with the control group. Interventions targeted at halting the decline or increasing GABA levels may improve functional outcomes and quality of life as patients with schizophrenia age.

  9. Investigating genotype-phenotype relationships in Saccharomyces cerevisiae metabolic network through stoichiometric modeling

    DEFF Research Database (Denmark)

    Brochado, Ana Rita

    processes. Metabolism is an extensively studied and characterised subcellular system, for which several modeling approaches have been proposed over the last 20 years. Nowadays, stoichiometric modeling of metabolism is done at the genome scale and it has diverse applications, many of them for helping....... This chapter aims at providing the reader with relevant state-of-the-art information concerning Systems Biology, Genome-Scale Metabolic Modeling and Metabolic Engineering. Particular attention is given to the yeast Saccharomyces cerevisiae, the eukaryotic model organism used thought the thesis.......A holistic view of the cell is fundamental for gaining insights into genotype to phenotype relationships. Systems Biology is a discipline within Biology, which uses such holistic approach by focusing on the development and application of tools for studying the structure and dynamics of cellular...

  10. Composition and properties tailoring in Mg.sup.2+./sup. codoped non-stoichiometric LuAG:Ce,Mg scintillation ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1689-1694 ISSN 0955-2219 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : non-stoichiometric ceramic s * LuAG:Ce * Mg scintillator * Mg 2+ codopant * antisite defects * afterglow Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  11. Electronic method for autofluorography of macromolecules on two-d matrices

    International Nuclear Information System (INIS)

    Case, A.L.; Davidson, J.B.

    1983-01-01

    A method for detecting, localizing, and quantifying macromolecules contained in a two-dimensional matrix is provided which employs a television-based position sensitive detection system. A molecule-containing matrix may be produced by conventional means to produce spots of light at the molecule locations which are detected by the television system. The matrix , such as a gel matrix, is exposed to an electronic camera system including an image-intensifier and secondary electron conduction camera capable of light integrating times of many minutes. A light image stored in the form of a charge image on the camera tube target is scanned by conventional television techniques, digitized, and stored in a digital memory. Intensity of any point on the image may be determined from the number at the memory address of the point. The entire image may be displayed on a television monitor for inspection and photographing or individual spots may be analyzed through selected readout of the memory locations. Compared to conventional film exposure methods, the exposure time may be reduced 100-1000 times

  12. Stoichiometric implications of a biphasic life cycle.

    Science.gov (United States)

    Tiegs, Scott D; Berven, Keith A; Carmack, Douglas J; Capps, Krista A

    2016-03-01

    Animals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development. Per-capita rates of nitrogen (N) and phosphorus (P) excretion varied widely during larval ontogeny, followed unimodal patterns, and peaked midway through development (Taylor-Kollros stages XV and XII, respectively). Larval mass did not increase steadily during development but peaked at stage XVII and declined until the termination of the experiment at stage XXII. Mass-specific N and P excretion rates of the larvae decreased exponentially during development. When coupled with population-biomass estimates, population-level excretion rates were greatest at stages VIII-X. Percent carbon (C), N, and C:N of body tissue showed weak trends across major life stages; body P and C:P, however, increased sixfold during development from egg to adult. Our results demonstrate that intraspecific ontogenic changes in nutrient contents of excretion and body tissues can be significant, and that N and P are not always excreted proportionally throughout life cycles. These results highlight the dynamic roles that species play in ecosystems, and how the morphological and physiological changes that accompany ontogeny can influence ecosystem-level processes.

  13. A Study of Biomolecules as Growth Modifiers of Calcium Oxalate Crystals

    Science.gov (United States)

    Kwak, Junha John

    Crystallization processes are ubiquitous in nature, science, and technology. Controlling crystal growth is pivotal in many industries as material properties and functions can be tailored by tuning crystal habits (e.g. size, shape, phase). In biomineralization, organisms exert excellent control over bottom-up synthesis and assembly of inorganic-organic structures (e.g. bones, teeth, exoskeletons). This is made possible by growth modifiers that range from small molecules to macromolecules, such as proteins. Molecular recognition of the mineral phase allows proteins to function as nucleation templates, matrices, and growth inhibitors or promoters. We are interested in taking a biomimetic approach to control crystallization via biomolecular growth modifiers. We investigated calcium oxalate monohydrate (COM), found in plants and kidney stones, as a model system of crystallization. We studied the effects of four common proteins on COM crystallization: bovine serum albumin (BSA), transferrin, lactoferrin, and lysozyme. Through kinetic studies of COM crystallization, we classified BSA and lysozyme as COM growth inhibitor and promoter respectively. Their inhibition and promotion effects were also evident in the macroscopic crystal habit. Through adsorption and microscopy experiments, we showed that BSA exhibits binding specificity for the apical surfaces of macroscopic COM crystals. Lysozyme, on the other, functions via a non-binding mechanism at the surface to accelerate the growth of the apical surfaces. We also synthesized and studied peptides derived from the protein primary sequences to identify putative domains responsible for these inhibition and promotion effects. Collectively, our study of physiologically relevant biomolecules suggests potential roles of COM modifiers in pathological crystallization and helps to develop guidelines for rational design of biomolecular growth modifiers for applications in crystal engineering.

  14. Determination of the stoichiometric ratio uranium dioxide samples

    International Nuclear Information System (INIS)

    Moura, Sergio Carvalho

    1999-01-01

    The determination of the O/U stoichiometric ratio in uranium dioxide is an important parameter in order to qualify nuclear fuels. The excess oxygen in the crystallographic structure can cause changes in the physico-chemical properties of this compound such as variation of the thermal conductivity alterations, fuel plasticity and others, affecting the efficiency of this material when it is utilized as nuclear fuel in the reactor core. The purpose of this work is to evaluate methods for the determination of uranium oxide samples from two different production processes, using gravimetric, voltammetric and X-ray diffraction techniques. After the evaluation of these techniques, the main aspect of this work is to define a reliable methodology in order to characterize the behavior of uranium oxide. The methodology used in this work consisted of two different steps: utilization of gravimetric and volumetric methods in order to determine the ratio in uranium dioxide samples; utilization of X-ray diffraction technique in order to determine the lattice parameters using patterns and application of the Rietveld method during refining of the structural data. As a result of the experimental part of this work it was found that the X-ray diffraction analysis performs better and detects the presence of more phases than gravimetric and voltammetric techniques, not sensitive enough in this detection. (author)

  15. On some derived compounds of fluorides of Cerium III or IV: defined compounds and non stoichiometric phases

    International Nuclear Information System (INIS)

    Besse, Jean-Pierre

    1968-01-01

    This research study addresses the study of rare earth fluorides. It reports the preparation and study of new fluoro-cerates (IV) in order to complete the set of already known compounds (ammonium fluoro-cerate, and alkaline earth compounds), the study of binary CeF 3 binary systems, monovalent and divalent fluorides, and CeF 3 -NF 2 -N'F ternary systems, and the study of non stoichiometric phases in CeF 3 oxides, sulphides and selenides [fr

  16. Electrochemical performance of DVB-modified SiOC and SiCN polymer-derived negative electrodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Guanwei; Kaspar, Jan; Reinold, Lukas Mirko; Graczyk-Zajac, Magdalena; Riedel, Ralf

    2013-01-01

    Highlights: • Polymer-derived SiCN and SiOC ceramics are studied as anode for Li-ion batteries. • Ceramic precursors are modified in order to increase the carbon content. • Ceramic matrix stabilizes free carbon phase. • Stabilizing role is lost once the amount of carbon exceeds a threshold value. -- Abstract: Chemical modification of commercially available polyorganosilazane (HTT1800) and polyorganosiloxane (Polyramic RD-684a) with divinylbenzene (DVB) is accomplished via hydrosilylation reaction. The incorporation of DVB leads to an increase of the free carbon amount after pyrolysis within the corresponding SiCN and SiOC ceramics. The modification is carried out with lower, equal and higher stoichiometric ratios of the Si-H to C=C groups present in the Si-based polymer and DVB. FTIR results indicate a complete consumption of the Si-H bonds in the case of the stoichiometric amount of DVB and polymer RD-684a, while for HTT1800 neither the stoichiometric ratio nor DVB excess leads to a complete consumption of the Si-H groups. For both SiCN and SiOC ceramics the carbon content is found to increase with the amount of DVB. However, the most significant increase in free carbon content is registered for SiCN samples, namely of ca. 40%. The carbon content changed from 9.9 wt.% in the pure HTT1800-derived material up to 49.3 wt.% for the SiCN ceramic obtained with the highest amount of DVB addition. Accordingly, Li-ion storage and therefore charge storage capacity are simultaneously increased, for the first cycle from 136 to 574 mAh g −1 , while columbic efficiency is raised by 10% up to 60.4%

  17. A statistical model of macromolecules dynamics for Fluorescence Correlation Spectroscopy data analysis

    Directory of Open Access Journals (Sweden)

    Dmitri Koroliouk

    2016-08-01

    Full Text Available In this paper, we propose a new mathematical model to describe the mechanisms of biological macromolecules interactions. Our model consists of a discrete stationary random sequence given by a solution of difference stochastic equation, characterized by a drift predictive component and by a diffusion term. The relative statistical estimations are very simple and effective, promising to be a good tool for the mathematical description of collective biological reactions. This paper presents the mathematical model and its verification on a simulated data set, obtained on the basis of the well-known Stokes-Einsteinmodel. In particular, we considered several mix of particles of different diffusion coefficient, respectively: D1=10 mm2/sec and D2=100 mm2/sec. The parameters evaluated by this new mathematical model on simulated data show good estimation accuracy, in comparison with the prior parameters used in the simulations. Furthermore, when analyzing the data for the mix of particles with different diffusion coefficient, the proposed model parameters  (regression and  (square variance of the stochastic component have a good discriminative ability for the molar fraction determination.  In this paper, we propose a new mathematical model to describe the mechanisms of biological macromolecules interactions. Our model consists of a discrete stationary random sequence given by a solution of difference stochastic equation, characterized by a drift predictive component and by a diffusion term. The relative statistical estimations are very simple and effective, promising to be a good tool for mathematical description of collective biological reactions. This paper presents the mathematical model and its verification on simulated data set, obtained on the basis of the well-known Stokes-Einsteinmodel. In particular we considered several mix of particles of different diffusion coefficient, respectively: D1=10 mm2/sec and D2=100 mm2/sec. The parameters

  18. Effect of vitamin A deficiency on permeability of the small intestinal mucosa for macromolecules in adult rats

    International Nuclear Information System (INIS)

    Gmoshinskii, I.V.; Khvylya, S.I.; Kon', I.Ya.

    1987-01-01

    The authors study the effect of experimental vitamin A deficiency on absorption of macromolecules of hen's ovalbumin in the intestine. An electron-microscopic study of permeability of small intestine enterocytes for particles of colloidal lanthanum hydroxide La(OH) 3 was carried out at the same time. The concentration of unsplit hen's ovalbumin in the blood of the rats used in the experiment was determined by competitive radioimmunoassay. Samples of serum were incubated with indicator doses of 125 I-OA. Radioactivity of the precipitates was measured

  19. Enhanced hexose fermentation by Saccharomyces cerevisiae through integration of stoichiometric modeling and genetic screening.

    Science.gov (United States)

    Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su

    2015-01-20

    In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments

    Science.gov (United States)

    Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

  1. Preparation, definition and stabilisation of an inorganic sol by an organic macromolecule: case of an aluminium hydroxide colloid; Preparation, definition et stabilisation par une macromolecule organique d'un sol mineral: cas d'un colloide d'hydroxyde d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Hurbin-Faucon, A [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-07-01

    An attempt has been made in this work to define an aluminium colloid which is resistant as a high ionic force and to analyse, in the case of this system, the possibilities. and the limits of certain techniques used in the physical chemistry of colloids. The aluminium colloid is obtained by peptization of an aluminium hydroxide precipitate. The physical characterisation of the micelle is effected using the light scattering method which makes it possible to define the colloid from the point of view of size and shape. An interesting characteristic, arising from the low refractive index of the colloid studied, has led us to use not only the general MIE methods but also the methods normally used in macro-molecular chemistry; these latter involve fewer hypotheses and thus make it possible to carry out a more complete analysis of the sol. Since the aluminium hydroxide colloid is sensitive to a high ionic force, we have begun to study the possibility of making it more stable by means of a macromolecule: gelatin. After characterizing this macromolecule by means of potentiometric and light scattering measurements, we have shown the existence of a chemical interaction which occurs when aluminium hydroxide is brought into contact with gelatin; this interaction leads to the production of an inorganic-organic entity which is stable when the ionic force increases. We have established some of the characteristics of the complex thus formed, in particular the pH range of the solution necessary for its formation, its stability. in the presence of electrolytes and some hypotheses concerning its size and shape, Finally we have tried to define the influence of. the molecular weight and the respective dimensions of each constituent on the formation of the complex and thus on the stabilization. (author) [French] Dans cette etude nous avons essaye de definir un colloide d'aluminium resistant a une force ionique elevee et tente, a propos de ce systeme, d'analyser les possibilites et les

  2. Microvillus-Specific Protein Tyrosine Phosphatase SAP-1 Plays a Role in Regulating the Intestinal Paracellular Transport of Macromolecules.

    Science.gov (United States)

    Mori, Shingo; Kamei, Noriyasu; Murata, Yoji; Takayama, Kozo; Matozaki, Takashi; Takeda-Morishita, Mariko

    2017-09-01

    The stomach cancer-associated protein tyrosine phosphatase 1 (SAP-1) is a receptor-type protein tyrosine phosphatase that is specifically expressed on the apical membrane of the intestinal epithelium. SAP-1 is known to maintain the balance of phosphorylation of proteins together with protein kinases; however, its biological function and impact on pharmacokinetics in the intestine remain unclear. The present study, therefore, aimed at clarifying the relationship between SAP-1 and the intestinal absorption behaviors of typical transporter substrates and macromolecules. The endogenous levels of glucose and total cholesterol in the blood were similar between wild-type and SAP-1-deficient mice (Sap1 -/- ), suggesting no contribution of SAP-1 to biogenic influx. Moreover, in vitro transport study with everted ileal sacs demonstrated that there was no difference in the absorption of breast cancer resistance protein, P-glycoprotein, and peptide transporter substrates between both mice. However, absorptive clearance of macromolecular model dextrans (FD-4 and FD-10) in Sap1 -/- mice was significantly higher than that in wild-type mice, and this was confirmed by the trend of increased FD-4 absorption from colonic loops of Sap1 -/- mice. Therefore, the results of this study suggest the partial contribution of SAP-1 to the regulated transport of hydrophilic macromolecules through paracellular tight junctions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Synthesis of naturally-derived macromolecules through simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    Paweł Chmielarz

    2017-11-01

    Full Text Available The flavonoid-based macroinitiator was received for the first time by the transesterification reaction of quercetin with 2-bromoisobutyryl bromide. In accordance with the “grafting from” strategy, a naturally-occurring star-like polymer with a polar 3,3',4',5,6-pentahydroxyflavone core and hydrophobic poly(tert-butyl acrylate (PtBA side arms was synthesized via a simplified electrochemically mediated ATRP (seATRP, utilizing only 78 ppm by weight (wt of a catalytic CuII complex. To demonstrate the possibility of temporal control, seATRP was carried out utilizing a multiple-step potential electrolysis. The rate of the polymerizations was well-controlled by applying optimal potential values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer arms. This appears to be the first report using on-demand seATRP for the synthesis of QC-(PtBA-Br5 pseudo-star polymers. The naturally-derived macromolecules showed narrow MWDs (Đ = 1.08–1.11. 1H NMR spectral results confirm the formation of quercetin-based polymers. These new flavonoid-based polymer materials may find applications as antifouling coatings and drug delivery systems.

  4. Role of endothelial permeability hotspots and endothelial mitosis in determining age-related patterns of macromolecule uptake by the rabbit aortic wall near branch points.

    Science.gov (United States)

    Chooi, K Yean; Comerford, Andrew; Cremers, Stephanie J; Weinberg, Peter D

    2016-07-01

    Transport of macromolecules between plasma and the arterial wall plays a key role in atherogenesis. Scattered hotspots of elevated endothelial permeability to macromolecules occur in the aorta; a fraction of them are associated with dividing cells. Hotspots occur particularly frequently downstream of branch points, where lesions develop in young rabbits and children. However, the pattern of lesions varies with age, and can be explained by similar variation in the pattern of macromolecule uptake. We investigated whether patterns of hotspots and mitosis also change with age. Evans' Blue dye-labeled albumin was injected intravenously into immature or mature rabbits and its subsequent distribution in the aortic wall around intercostal branch ostia examined by confocal microscopy and automated image analysis. Mitosis was detected by immunofluorescence after adding 5-bromo-2-deoxiuridine to drinking water. Hotspots were most frequent downstream of branches in immature rabbits, but a novel distribution was observed in mature rabbits. Neither pattern was explained by mitosis. Hotspot uptake correlated spatially with the much greater non-hotspot uptake (p hotspots were considered. The pattern of hotspots changes with age. The data are consistent with there being a continuum of local permeabilities rather than two distinct mechanisms. The distribution of the dye, which binds to elastin and collagen, was similar to that of non-binding tracers and to lesions apart from a paucity at the lateral margins of branches that can be explained by lower levels of fibrous proteins in those regions. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Monitoring of atomic metastable state lifetimes by the laser-enhanced ionization technique--A new method for probing local stoichiometric combustive conditions

    International Nuclear Information System (INIS)

    Ljungberg, Peter; Malmsten, Yvonne; Axner, Ove

    1995-01-01

    The lifetimes of atomic metastable states in an acetylene/air flame have been investigated using the laser-enhanced ionization technique. The lifetimes were found to be several orders of magnitude less than the natural ones, which clearly shows that they are fully determined by the surrounding environment. The lifetime of a specific state has been investigated as a function of flame conditions. It was found that the lifetime is strongly dependent on the local flame composition, with a distinct maximum for stoichiometric conditions. For fuel-lean local conditions, the excess of O2 acts as an effective quencher of the metastable state, while for fuel-rich conditions the quenching is dominated by unburned fuel components. An acetylene/air flame has been probed both as a function of height in the flame, as well as a function of fuel/air composition fed to the burner. The experiments show clearly for which heights and fuel/air compositions that lean, stoichiometric or rich conditions prevail. This makes a monitoring of metastable state lifetimes a useful technique for combustion analysis

  6. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  7. Stoichiometric and X-ray diffraction analysis on the γ2→eta' transformation in a dispersant phase silver amalgam

    International Nuclear Information System (INIS)

    Jensen, S.J.; Joergensen, K.D.

    1981-01-01

    Phase composition of an amalgam prepared from a two-particle alloy was determined over a 2-year period by X-ray diffraction. The γ 2 -content decreased from 3.6% to 0.3%, and eta' increased from 3.9% to 10.0%. These alterations in phase content agreed with stoichiometric calculations performed on the basis of the solid state reaction: γ 2 +Ag/Cu→eta'+γ 1 . (author)

  8. A Biology Laboratory Exercise Using Macromolecule Assays to Distinguish Four Types of Milk

    Directory of Open Access Journals (Sweden)

    Charlotte W. Pratt

    2011-03-01

    Full Text Available One of the drawbacks of cookbook-style laboratory exercises for General Biology courses is that students are not challenged to develop skills in scientific reasoning, such as formulating hypotheses and designing and carrying out experiments. Several traditional laboratory curricula include exercises involving semi-quantitative colorimetric assays to detect proteins (biuret test, reducing sugars (Benedict’s test, starch (Lugol’s test, and lipids (Sudan red test in a variety of easily prepared solutions (glucose, albumin, glycine, etc. and familiar food items (lemon juice, cornstarch, egg white, etc.. An extension of this lab exercise was developed to allow students to use their knowledge of the macromolecule assays to design an experiment to distinguish four types of “milk”: whole milk, skim milk, cream, and soy milk (rice milk or almond milk could also be included.

  9. Load-release of small and macromolecules from elastomers with reversible gyroid mesoporosity

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Ndoni, Sokol

    2012-01-01

    . However, in the gel state in the presence of a good solvent the swollen matrix did show a nanoporous structure originated from the gyroid block copolymer precursor. Nanopores can be opened or closed depending on the presence or absence of a solvent. Macromolecules like PEG of different molecular weights......A collapsed elastomeric matrix of lightly cross-linked 1,2-polybutadiene (1,2-PB) was prepared from a self-assembled 1,2-polybutadiene-b- polydimethylsiloxane (1,2-PB-b-PDMS) of gyroid morphology after the removal of the PDMS block. No mesoporosity could be observed in the material in the dry state...... or small molecules like the surfactant SDS were loaded into the opened nanoporous matrix in the presence of a solvent and remained trapped. The loaded molecules could be released again in the presence of a solvent. The load and release of the molecules in deuterated form were monitored by in situ time...

  10. Improved data visualization techniques for analyzing macromolecule structural changes.

    Science.gov (United States)

    Kim, Jae Hyun; Iyer, Vidyashankara; Joshi, Sangeeta B; Volkin, David B; Middaugh, C Russell

    2012-10-01

    The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique. Copyright © 2012 The Protein Society.

  11. Unsolved problems of crystallization and melting of flexible macromolecules

    International Nuclear Information System (INIS)

    Wunderlich, B.

    1992-01-01

    The thermodynamics, kinetics, and computer simulations of crystallization and melting is discussed. The thermodynamics is shown to be well understood, although for many specific crystals not enough details for full description are available. Experiments on the crystallization kinetics of poly(ethylene) and poly(oxyethylene) in the presence of crystal nuclei as a function of molecular mass revealed that with increasing mass, the crystallization behavior deviates increasingly from that of small, rigid molecules. Instead of showing a continuously changing, linear crystallization rate with temperature through the equilibrium melting temperature, T m 0 , these flexible macromolecules show a region of practically zero crystallization rate between T m 0 and about (T m 0 - 15) K, creating a temperature region of metastability in the melt that cannot be broken by nucleation with pregrown crystals. Molecular Nucleation was proposed as a cooperative process to be of overriding importance for the description of polymer crystallization, and to be at the center of segregation of molecules of lower molecular mass by growing crystal fronts. Initial efforts to model sufficiently large crystals using Monte Carlo and molecular dynamics methods are presented. Some of the short-time intermediates in the melting, crystallization, and annealing processes seem to have little similarity to commonly assumed models of crystallization and melting and are presented as discussion topics

  12. Synthesis of highly non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with tunable bandgaps

    Energy Technology Data Exchange (ETDEWEB)

    Hamanaka, Yasushi, E-mail: hamanaka@nitech.ac.jp; Oyaizu, Wataru; Kawase, Masanari [Nagoya Institute of Technology, Department of Materials Science and Engineering (Japan); Kuzuya, Toshihiro [Muroran Institute of Technology, College of Design and Manufacturing Technology (Japan)

    2017-01-15

    Non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with average diameters of 4–15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu{sub 2}ZnSnS{sub 4} nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (V{sub Cu}), antisite with Zn replacing Cu (Zn{sub Cu}), and/or defect cluster of V{sub Cu} and Zn{sub Cu}. The bandgap energy of Cu{sub 2}ZnSnS{sub 4} nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu{sub 2}ZnSnS{sub 4} nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of V{sub Cu} and Zn{sub Cu} on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe{sub 2}, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe{sub 2}, the top of the valence band is composed of a Cu 3d orbital in Cu{sub 2}ZnSnS{sub 4}.

  13. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  14. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    Science.gov (United States)

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))macromolecules recalcitrance in soil.

  15. c-axis compression twinning in an off-stoichiometric compound Ti3Al with the D019 structure

    International Nuclear Information System (INIS)

    Kishida, K.; Takahama, Y.; Inui, H.

    2005-01-01

    The characteristics of the c-axis compression twin in single crystals of a D0 19 compound Ti 3 Al with off-stoichiometric composition (Ti-36.5at.%Al) have been studied by trace analysis and transmission electron microscopy. Deformation twinning is operative only at high temperatures above 1000deg. C. All observed deformation twins are assigned to be of the type II and the twinning elements are determined as: K 1 :'{2-bar 121-bar 0-bar 3}', K 2 :{202-bar 1-bar }, η 1 : , η 2 :' ', s=0.346

  16. Stoichiometric control in Bi4Ti3O12 synthesis by novel hybrid solid state reaction

    DEFF Research Database (Denmark)

    Gadea, C.; Phatharapeetranun, N.; Ksapabutr, B.

    2018-01-01

    The synthesis of bismuth titanate Bi4Ti3O12 (BiT) is performed via a novel solid state reaction. The reaction is designed to control the stoichiometric content of the highly volatile element, i.e. Bi. The chemical route consists in trapping bismuth oxide colloids in a stabilized titanium based sol...

  17. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H2O].

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Tian, Yang; Liu, Jiawei; Shen, Jiwei; Bai, Quan

    2018-01-01

    A stoichiometric displacement model for retention (SDM-R) of small solutes and proteins based on hydrophilic interaction chromatography (HILIC) was presented. A linear equation that related the logarithm of the capacity factor of the solute to the logarithm of the concentration of water in the mobile phase was derived. The stoichiometric displacement parameters, Z (the number of water molecules required to displace a solute from ligands) and lgI (containing a number of constants that relate to the affinity of solute to the ligands) could be obtained from the slope and the intercept of the linear plots of lgk' vs. lg[H 2 O]. The retention behaviors and retention mechanism of 15 kinds of small solutes and 6 kinds of proteins on 5 kinds HILIC columns with different ligands were investigated with SDM-R in typical range of water concentration in mobile phase. A good linear relationship between lgk' and lg[H 2 O] demonstrated that the most rational retention mechanism of solute in HILIC was a stoichiometric displacement process between solute and solvent molecules with water as displacing agents, which was not only valid for small solutes, but also could be used to explain the retention mechanism of biopolymers in HILIC. Comparing with the partition and adsorption models in HILIC, SDM-R was superior to them. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Preparation of cauliflower-like shaped Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} powders by modified oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingli [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)], E-mail: lml@tju.edu.cn; Xu Mingxia [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2009-04-17

    The quantitative barium-strontium titanyl oxalate (Ba{sub 0.6}Sr{sub 0.4}TiO(C{sub 2}O{sub 4}){sub 2}.4H{sub 2}O, BSTO) precursor powders were prepared by the modified oxalate co-preparation method. It was based on the cation-exchange reaction between the stoichiometric solutions of oxalotitanic acid (H{sub 2}TiO(C{sub 2}O{sub 4}){sub 2}, HTO) and barium + strontium nitrate solution containing stoichiometric quantities of Ba and Sr ions. The pyrolysis of BSTO at 800 deg. C/4 h in air produced the homogeneous cauliflower-like shaped barium-strontium titanate (Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}, BST) powders. The effect of polyethylene glycol (PEG) on morphology of BSTO and BST powders was also investigated. The characterization studies were carried on the as-dried BSTO and calcined BST powders by various physicochemical techniques, IR, X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The BSTO and BST powders obtained by aforementioned technique without PEG were homogeneous with spherical shape. The particles grew into spindle shape with the effect of PEG.

  19. Atomistic simulations of diffusion mechanisms in off-stoichiometric Al-rich Ni3Al

    International Nuclear Information System (INIS)

    Duan, Jinsong

    2007-01-01

    This paper presents dynamics simulation results of diffusion in off-stoichiometric Al-rich Ni 3 Al (Ni 73 Al 27 ) at temperature ranging from 1300 to 1550 K. The interatomic forces are described by the Finnis-Sinclair type N-body potentials. Particular attention is devoted to the effect of the extra 2% of Al atoms sitting on the Ni sublattice as antisite point defects (Al Ni ) on diffusion. Simulation results show that Ni atoms mainly diffuse through the Ni sublattice at the temperatures investigated. Al atoms diffuse via both the intrasublattice and antistructure bridge (ASB) mechanisms. The contribution to Al diffusion from the ASB mechanism decreases at the lower temperature (T Ni ) enhances both Al and Ni diffusion in Ni 73 Al 27 . The Ni-Al coupled diffusion effect is observed and understood at the atomic level for the first time

  20. Paleovegetation changes recorded by n-alkyl lipids bound in macromolecules of plant fossils and kerogens from the Cretaceous sediments in Japan

    Science.gov (United States)

    Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.

    2014-12-01

    Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was

  1. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules

    International Nuclear Information System (INIS)

    Diegoli, Sara; Manciulea, Adriana L.; Begum, Shakiela; Jones, Ian P.; Lead, Jamie R.; Preece, Jon A.

    2008-01-01

    The increasing exploitation of nanomaterials into many consumer and other products is raising concerns as these nanomaterials are likely to be released into the environment. Due to our lack of knowledge about the environmental chemistry, transport and ecotoxicology of nanomaterials, it is of paramount importance to study how natural aquatic colloids can interact with manufactured gold nanoparticles as these interactions will determine their environmental fate and behaviour. In this context, our work aims to quantify the effect of naturally occurring riverine macromolecules - International Humic Substances Society (IHSS) Suwannee River Humic Acid Standard (SRHA) - on citrate- and acrylate-stabilized gold nanoparticles. The influence of SRHA on the stability of the gold colloids was studied as a function of pH by UV-visible absorption spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). At high ionic strengths (0.1 M), extensive and rapid aggregation occurred, while more subtle effects were observed at lower ionic strength values. Evidence was found that SRHA enhances particle stability at extreme pH values (ionic strength < 0.01 M) by substituting and/or over-coating the original stabilizer on the gold nanoparticle surface, thus affecting surface charge and chemistry. These findings have important implications for the fate and behaviour of nanoparticles in the environment and their ecotoxicity

  2. Molar mass, radius of gyration and second virial coefficient from new static light scattering equations for dilute solutions: application to 21 (macro)molecules.

    Science.gov (United States)

    Illien, Bertrand; Ying, Ruifeng

    2009-05-11

    New static light scattering (SLS) equations for dilute binary solutions are derived. Contrarily to the usual SLS equations [Carr-Zimm (CZ)], the new equations have no need for the experimental absolute Rayleigh ratio of a reference liquid and solely rely on the ratio of scattered intensities of solutions and solvent. The new equations, which are based on polarizability equations, take into account the usual refractive index increment partial differential n/partial differential rho(2) complemented by the solvent specific polarizability and a term proportional to the slope of the solution density rho versus the solute mass concentration rho(2) (density increment). Then all the equations are applied to 21 (macro)molecules with a wide range of molar mass (0.2equations clearly achieve a better agreement with supplier M values. For macromolecules (M>500 kg mol(-1)), for which the scattered intensity is no longer independent of the scattering angle, the new equations give the same value of the radius of gyration as the CZ equation and consistent values of the second virial coefficient.

  3. The mechanism of the modified Ullmann reaction

    NARCIS (Netherlands)

    Sperotto, Elena; Klink, Gerard P.M. van; Koten, Gerard van; Vries, Johannes G. de

    2010-01-01

    The copper-mediated aromatic nucleophilic substitution reactions developed by Fritz Ullmann and Irma Goldberg required stoichiometric amounts of copper and very high reaction temperatures. Recently, it was found that addition of relatively cheap ligands (diamines, aminoalcohols, diketones, diols)

  4. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  5. Nonvolatile two-step, two-color holography with continuous-wave lights for both congruent and near-stoichiometric LiNbO3:Fe

    International Nuclear Information System (INIS)

    Shen Yan; Zhang Guoquan; Fu Bo; Xu Qingjun; Xu Jingjun

    2004-01-01

    We have studied theoretically the steady-state nonvolatile two-step, two-color holographic recording performance for both the congruent and the near-stoichiometric LiNbO 3 :Fe based on the two-center model (the deep-trap and the shallow-trap centers are Fe 2+ /Fe 3+ and Nb Li 4+ /Nb Li 5+ , respectively). The results show that the direct electron exchange between the Fe 2+ /Fe 3+ centers and the Nb Li 4+ /Nb Li 5+ centers due to the tunneling effect dominates the charge-transfer process during the nonvolatile two-step, two-color holography and determines the two-step, two-color holography performance in LiNbO 3 :Fe. We have further studied the effects of the crystal stoichiometry on the performance of the two-step, two-color holography. It is shown that, as far as the total space-charge field is considered, the nonvolatile two-step, two-color holography performance in the near-stoichiometric LiNbO 3 :Fe is much better than that in the congruent LiNbO 3 :Fe within the intensity range reachable by the continuous-wave lights

  6. Molecular simulation of methane adsorption characteristics on coal macromolecule

    Science.gov (United States)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  7. Initial stages of oxidation of near-stoichiometric titanium carbide at low oxygen pressures

    International Nuclear Information System (INIS)

    Shabalin, I.L.; Vishnyakov, V.M.; Bull, D.J.; Keens, S.G.; Yamshchikov, L.F.; Shabalin, L.I.

    2009-01-01

    A novel approach to the oxidation mechanism of near-stoichiometric TiC is presented. It is confirmed by consideration of solid-state chemical kinetics model and electron microscopy observations in parallel. At low oxygen pressures and moderate temperatures the initial step of the process is connected with the dissolution of oxygen and subsequent decomposition of oxygen-oversaturated oxycarbide, which ultimately results in the nucleation of oxide phase, in particular anatase, belike stabilised by residual carbon. An anatase-rutile transformation is concurrent with deeper carbon burn-off in the oxide scale, which sinters at higher temperatures. This mechanism shifts the process to a gas diffusion regime, governed by the scale permeability, but determined by solid-state diffusion that is reflected in the kinetics, as further temperature increase is accompanied by a decrease of the oxidation rate, so in general the process is characterised by the negative value of apparent activation energy

  8. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  9. A new stoichiometric miniaturization strategy for screening of industrial microbial strains: application to cellulase hyper-producing Trichoderma reesei strains

    Directory of Open Access Journals (Sweden)

    Jourdier Etienne

    2012-05-01

    Full Text Available Abstract Background During bioprocess development, secondary screening is a key step at the boundary between laboratory and industrial conditions. To ensure an effective high-throughput screening, miniaturized laboratory conditions must mimic industrial conditions, especially for oxygen transfer, feeding capacity and pH stabilization. Results A feeding strategy has been applied to develop a simple screening procedure, in which a stoichiometric study is combined with a standard miniaturization procedure. Actually, the knowledge of all nutriments and base or acid requirements leads to a great simplification of pH stabilization issue of miniaturized fed-batch cultures. Applied to cellulase production by Trichoderma reesei, this strategy resulted in a stoichiometric mixed feed of carbon and nitrogen sources. While keeping the pH between shake flask and stirred bioreactor comparable, the developed shake flask protocol reproduced the strain behaviour under stirred bioreactor conditions. Compared to a an already existing miniaturized shake flasks protocol, the cellulase concentration was increased 5-fold, reaching about 10 g L-1. Applied to the secondary screening of several clones, the newly developed protocol succeeded in selecting a clone with a high industrial potential. Conclusions The understanding of a bioprocess stoichiometry contributed to define a simpler and more effective miniaturization. The suggested strategy can potentially be applied to other fed-batch processes, for the screening of either strain collections or experimental conditions.

  10. Conformations of polyelectrolyte macromolecules with different charge density in solutions of different ionic strengths

    International Nuclear Information System (INIS)

    Dommes, O A; Okatova, O V; Pavlov, G M

    2016-01-01

    Studies of charged polymer chains are interesting in both fundamental and applied aspects. Especially, polyelectrolytes attract huge attention of researchers due to their ability to form interpolymer complexes with synthetic and biopolymers. The study was carried out on the fractions of hydrophilic copolymers of N-methyl-N-vinyl acetamide and N-methyl-N-vinyl amine hydrochloride of different degrees of polymerization and of different charge density using methods of molecular hydrodynamics. Hydrodynamic and conformational characteristics as well as molar masses of isolated molecules were estimated. In addition, the intrinsic viscosity of fractions was studied at the extreme ionic strengths - in distilled water (∼10 -6 M) and in 6M NaCl. Scaling relations for intrinsic viscosity, sedimentation and translational diffusion coefficients with molar mass were obtained. Conformational behavior of macromolecules with different linear charge density was compared. (paper)

  11. Electric double layer and electrokinetic potential of pectic macromolecules in sugar beet

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2008-01-01

    Full Text Available Electrokinetic potential is an important property of colloidal particles and, regarding the fact that it is a well defined and easily measurable property, it is considered to be a permanent characteristic of a particular colloidal system. In fact, it is a measure of electrokinetic charge that surrounds the colloidal particle in a solution and is in direct proportion with the mobility of particles in an electric field. Gouy-Chapman-Stern-Graham's model of electric double layer was adopted and it was proven experimentally that the addition of Cu++ ions to sugar beet pectin caused a reduction in the negative electrokinetic potential proportional to the increase of Cu++ concentration. Higher Cu++ concentrations increased the proportion of cation specific adsorption (Cu++ and H+ with regard to electrostatic Coulombic forces. Consequently, there is a shift in the shear plane between the fixed and diffuse layers directed towards the diffuse layer, i.e. towards its compression and decrease in the electrokinetic potential or even charge inversion of pectin macromolecules.

  12. Model of the thermodynamic properties and structure of the non-stoichiometric plutonium and cerium oxides

    International Nuclear Information System (INIS)

    Manes, L.; Mari, C.; Ray, I.

    1979-01-01

    The tetrahedral defect consisting of one oxygen vacancy bonded to two reduced cations - is an important concept, which, as shown in the present work, can explain both the thermodynamic properties and the structures of the phases of the PuO 2 -x and CeO 2 -x systems. Based on this concept a statistical thermodynamic model has been developed and this model is described along with some preliminary calculations. A relatively good agreement with experimental thermodynamic data was obtained in this calculation. Using the exclusion principle, defect complexes each containing one tetrahedral defect are derived and it is shown that a systematic packing of these gives a good description both of the non-stoichiometric and the ordered phases observed for these oxide systems. (orig.) [de

  13. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    Science.gov (United States)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  14. Tailoring phase change materials: Stoichiometrical trends in the Ge-Sb-Te system

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Michael; Wamwangi, Daniel; Wuttig, Matthias [I. Physikalisches Institut 1A, RWTH Aachen, 52056 Aachen (Germany)

    2007-07-01

    Phase change materials are widely used as the active layer in rewritable optical media. This layer can be reversibly switched with a laser beam between an amorphous and crystalline state. As there is a pronounced optical contrast between these two phases, this provides the possibility to write, read and erase data. The speed of this method is limited by the speed of crystallization, as crystallization is the slower process. One possibility to make this process faster is to change the composition of this active layer. Thus it is very interesting to investigate how the process of crystallization is affected by a variation of stoichiometry. Although phase change materials technology is already used, there is little knowledge of the phase change process itself. Today the usability of phase change materials is still identified by try and error methods. We will show stoichiometrical trends of different properties relevant for data storage, e.g. the crystallisation temperature, which governs the room temperature stability of the amorphous phase and thus is a measure for the data retention time.

  15. Kinematics and thermodynamics of non-stoichiometric oxidation phase transitions in spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-01-01

    At low temperatures ( 2 lattice to a U 4 O 9 lattice but with an oxygen-to-uranium (O/U) ratio of ∼2.4. Also, the weight gain time response has a plateau as the O/U approaches 2.4. Part of this response results from a geometrical dependency as a U 4 O 9 oxidation front propagates into grain volumes Of UO 2 It may also be indicative of a metastable, non-stoichiometric U 4 O 9 phase whose existence may inhibit the transition kinetics to the next expected phase Of U 3 O 8 . To gain a mechanistic understanding and to plan future oxidation tests, lattice kinematic and thermodynamic models are developed for lattice deformations and energetics of lattice phase changes (UO 2 → U 4 O 9 → U 3 0 7 → U 3 O 8) that include zeroth order influences on oxidation kinetics due to interstitial oxygen atoms and vacancies plus interstitial and substitutional actinides and fission decay products in spent fuel

  16. Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Science.gov (United States)

    Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.

    2011-01-01

    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.

  17. Magnetism and transport studies in off-stoichiometric metallic perovskite compounds GdPd{sub 3}B{sub x} (x=0.25, 0.50 and 0.75)

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Abhishek, E-mail: abhishek.phy@gmail.co [S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mazumdar, Chandan, E-mail: chandan.mazumdar@saha.ac.i [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Ranganathan, R. [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2010-12-15

    We report the magnetic and transport properties of the off-stoichiometric metallic perovskite like compounds GdPd{sub 3}B{sub x} (x=0.25, 0.50 and 0.75). Our results show that doping with boron in the lattice of parent binary-compound GdPd{sub 3} leads to lattice expansion. Which in turn manifests in contrasting magnetic and transport behaviors of the doped compounds in comparison with the undoped GdPd{sub 3}. An attempt has been made to compare and correlate the results of magnetic and transport measurements of GdPd{sub 3}B{sub x} with that of stoichiometric compositions GdPd{sub 3}B{sub x}C{sub 1-x}. The comparative study of GdPd{sub 3}B{sub x} and GdPd{sub 3}B{sub x}C{sub 1-x} confirms that there is a strong correlations between the structural, magnetic and transport properties of these compounds.

  18. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  19. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  20. A Mo-anode-based in-house source for small-angle X-ray scattering measurements of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Bruetzel, Linda K.; Fischer, Stefan; Salditt, Annalena; Sedlak, Steffen M.; Nickel, Bert; Lipfert, Jan, E-mail: Jan.Lipfert@lmu.de [Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience, Ludwig-Maximilians-University Munich, Amalienstr. 54, 80799 Munich, Germany and Geschwister-Scholl Platz 1, 80539 Munich (Germany)

    2016-02-15

    We demonstrate the use of a molybdenum-anode-based in-house small-angle X-ray scattering (SAXS) setup to study biological macromolecules in solution. Our system consists of a microfocus X-ray tube delivering a highly collimated flux of 2.5 × 10{sup 6} photons/s at a beam size of 1.2 × 1.2 mm{sup 2} at the collimation path exit and a maximum beam divergence of 0.16 mrad. The resulting observable scattering vectors q are in the range of 0.38 Å{sup −1} down to 0.009 Å{sup −1} in SAXS configuration and of 0.26 Å{sup −1} up to 5.7 Å{sup −1} in wide-angle X-ray scattering (WAXS) mode. To determine the capabilities of the instrument, we collected SAXS data on weakly scattering biological macromolecules including proteins and a nucleic acid sample with molecular weights varying from ∼12 to 69 kDa and concentrations of 1.5–24 mg/ml. The measured scattering data display a high signal-to-noise ratio up to q-values of ∼0.2 Å{sup −1} allowing for an accurate structural characterization of the samples. Moreover, the in-house source data are of sufficient quality to perform ab initio 3D structure reconstructions that are in excellent agreement with the available crystallographic structures. In addition, measurements for the detergent decyl-maltoside show that the setup can be used to determine the size, shape, and interactions (as characterized by the second virial coefficient) of detergent micelles. This demonstrates that the use of a Mo-anode based in-house source is sufficient to determine basic geometric parameters and 3D shapes of biomolecules and presents a viable alternative to valuable beam time at third generation synchrotron sources.

  1. Hard magnetic off-stoichiometric (Fe,Sb){sub 2+x}Hf{sub 1-x} intermetallic phase

    Energy Technology Data Exchange (ETDEWEB)

    Goll, D.; Gross, T.; Loeffler, R.; Pflanz, U.; Vogel, T.; Kopp, A.; Grubesa, T.; Schneider, G. [Aalen University, Materials Research Institute (Germany)

    2017-09-15

    By high-throughput screening the ternary Fe-Hf-Sb system, off-stoichiometric (Fe,Sb){sub 2+x}Hf{sub 1-x} with a composition of Fe60.0-Hf26.5-Sb13.5 with high potential as hard magnetic phase is discovered. By quantitative domain structure analysis, promising intrinsic properties of J{sub s} ∝ 1 T, K{sub 1} ∝ 1.5 MJ m{sup -3} are found at room temperature. By magnetometry, bulk intrinsic properties of J{sub s} ∝ 0.7 T, K{sub 1} ∝ 1.4 MJ m{sup -3} are found. Alloying elements like Co or Mn turns out to be an effective adjusting screw on the crystal structure and ferromagnetic behavior. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Consequences of Stoichiometric Error on Nuclear DNA Content Evaluation in Coffea liberica var. dewevrei using DAPI and Propidium Iodide

    OpenAIRE

    NOIROT, MICHEL; BARRE, PHILIPPE; LOUARN, JACQUES; DUPERRAY, CHRISTOPHE; HAMON, SERGE

    2002-01-01

    The genome size of coffee trees (Coffea sp.) was assessed using flow cytometry. Nuclear DNA was stained with two dyes [4′,6‐diamino‐2‐phenylindole dihydrochloride hydrate (DAPI) and propidium iodide (PI)]. Fluorescence in coffee tree nuclei (C‐PI or C‐DAPI) was compared with that of the standard, petunia (P‐PI or P‐DAPI). If there is no stoichiometric error, then the ratio between fluorescence of the target nuclei and that of the standard nuclei (R‐PI or R‐DAPI) is expected to be proportional...

  3. Higher-order quasi-phase matched second harmonic generation in periodically poled MgO-doped stoichiometric LiTaO3

    International Nuclear Information System (INIS)

    Yu, Nan Ei; Kurimura, Sunao; Kitamura, Kenji

    2005-01-01

    A periodically poled device was investigated by using fourth-order quasi-phase-matched (QPM) second harmonic generation (SHG) in MgO-doped stoichiometric lithium tantalate (LiTaO 3 ). The effective nonlinear coefficient was found be 2.4 pm/V by using fourth-order QPM SHG at the fundamental wavelength of 1064 nm. For first-order QPM SHG, the effective value of d 33 could be 9.2 pm/V. Using the sensitive higher-order QPM SHG method, we investigated the relationship between the domain duty ratio and the conversion efficiency.

  4. Effect of α-tocopherol, butylated-hydroxytoluene and hydroxy-anisole on the activation and binding of aflatoxin B1 to macromolecules

    International Nuclear Information System (INIS)

    Ch'ih, J.J.; Biedrzycka, D.; Devlin, T.M.

    1987-01-01

    The anti-oxidants, α-tocopherol(TPA), butylated-hydroxy-toluene(BHT) and hydroxyanisole(BHA) inhibit the carcinogenic and toxic effects of a variety of chemical compounds, their effect on aflatoxin B 1 (AFB 1 ) activation and binding was examined utilizing rat liver microsomes and cells. With a NADPH generating system, oxygen, microsomes, [ 3 H]-AFB 1 , 2.2 pmoles/h/mg protein was activated and bound to macromolecules. In hepatocytes, 3.4 and 1.4 pmoles of AFB 1 per 10 6 cells were taken up and bound to macromolecules, whereas the nucleic acid fraction contained 0.19 pmoles of bound AFB 1 . Moderate decreases of AFB 1 activation and binding were observed when TPA was present in both cell-free and hepatocytes systems. Only in hepatocytes, BHT inhibited the AFB 1 uptake and binding to nucleic acids. BHA, however, inhibited microsomal activation of AFB 1 by 73%; maximum inhibition was reached at 1 mM. AFB 1 uptake, and binding to nucleic acids were inhibited by 65% and 79% by BHA. GSH-transferase activity of cells treated with these agents was not altered. The effect of BHA at various concentrations on AFB activation was compared with cytochrome P-450 inhibitors; the ED 50 of SKF 525A, BHA and metyrapone was 9 uM, 80 uM and 380 uM respectively. The data suggest that TPA, BHA and BHT exert their effect by different mechanisms

  5. Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules.

    Science.gov (United States)

    Vallat, Brinda; Webb, Benjamin; Westbrook, John D; Sali, Andrej; Berman, Helen M

    2018-04-09

    Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Antioxidant, antimicrobial, cell viability and enzymatic inhibitory of antioxidant polymers as biological macromolecules.

    Science.gov (United States)

    Hashemi Gahruie, Hadi; Niakousari, Mehrdad

    2017-11-01

    Polymeric antioxidants such as Catechinaldehyde Polycondensates, Catechin-acelaldehydepolycondensates, Flavonoid-grafted chitosan fibers, Ferulate hydrogel, Dextran ferulate hydrogel, Starch-quercetin conjugate, Gallic acid- and Caffeic acid-functionalized chitosan, Gallic acid - chitosan conjugate, Poly(rutin), Gallic acid grafted chitosan, Dextran-Catechin Conjugate belong to biological macromolecules. These kinds of compounds have stronger antioxidant potential and pharmacokinetic activities, as compared to similar low molecular weight preservatives. Most of these compounds sources are either antioxidants with low molecules polymerization, or polymers conjugation such as synthetic or natural preservatives. Additives are well known as being an important ingredient of food products due to their strong preservative potential. Many researchers and industries attempt to find synthesize materials with the same antioxidant potential and higher stability than the similar compounds with low molecular weight. Recently, macromolecular antioxidants have received wide attention as food additives and dietary supplements in functional foods. It seems that the main usage of these compounds is in the food packaging industry. Most of these compounds have strong antioxidant, antimicrobial, cell viability and enzymatic inhibitory properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-01-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby...... serving as a point of reference for the dielectric spectroscopy. It was found that the hydrophobic modification increased the dosage of barium needed to obtain complete coagulation, whereas the dosage required to initiate coagulation was lowered. The coagulation of the polymer samples caused...... the relaxation time of the measured dielectric dispersion to increase, and this parameter was found to be a good indicator of the formation of polymer aggregates. The magnitude of the dielectric dispersion decreased as a function of barium dosage, but when coagulation was initiated an increase was observed...

  8. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.

    Science.gov (United States)

    Hong, Chao; Xie, Yan; Yao, Yashu; Li, Guowen; Yuan, Xiurong; Shen, Hongyi

    2015-01-01

    To develop a streamlined strategy for pharmaceutical cocrystal preparation without knowledge of the stoichiometric ratio by preparing and characterizing the cocrystals of myricetin (MYR) with four cocrystal coformers (CCF). An approach based on the phase solubility diagram (PSD) was used for MYR cocrystals preparation and the solid-state properties were characterized by differential scanning calorimetry (DSC), fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The ternary phase diagram (TPD) was constructed by combining the PSD and nuclear magnetic resonance (NMR) data. After that, the TPD was verified by traditional methods. The dissolution of MYR in the four cocrystals and pure MYR within three different media were also evaluated. A simple research method for MYR cocrystal preparation was obtained as follows: first, the PSD of MYR and CCF was constructed and analyzed; second, by transforming the curve in the PSD to a TPD, a region of pure cocrystals formation was exhibited, and then MYR cocrystals were prepared and identified by DSC, FT-IR, PXRD, and SEM; third, with the composition of the prepared cocrystal from NMR, the TPD of the MYR-CCF-Solvent system was constructed. The powder dissolution data showed that the solubility and dissolution rate of MYR was significantly enhanced by the cocrystals. A novel strategy for pharmaceutical cocrystals preparation without knowledge of the stoichiometric ratio based on the TPD was established and MYR cocrystals were successfully prepared. The present study provides a systematic approach for pharmaceutical cocrystal generation, which benefits the development and application of cocrystal technology in drug delivery.

  9. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Science.gov (United States)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  10. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  11. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules.

    Science.gov (United States)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-05-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.

  12. From the Cover: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies

    Science.gov (United States)

    McAllister, Devin V.; Wang, Ping M.; Davis, Shawn P.; Park, Jung-Hwan; Canatella, Paul J.; Allen, Mark G.; Prausnitz, Mark R.

    2003-11-01

    Arrays of micrometer-scale needles could be used to deliver drugs, proteins, and particles across skin in a minimally invasive manner. We therefore developed microfabrication techniques for silicon, metal, and biodegradable polymer microneedle arrays having solid and hollow bores with tapered and beveled tips and feature sizes from 1 to 1,000 μm. When solid microneedles were used, skin permeability was increased in vitro by orders of magnitude for macromolecules and particles up to 50 nm in radius. Intracellular delivery of molecules into viable cells was also achieved with high efficiency. Hollow microneedles permitted flow of microliter quantities into skin in vivo, including microinjection of insulin to reduce blood glucose levels in diabetic rats. transdermal drug delivery | skin | microelectromechanical systems | solid microneedle | hollow needle injection

  13. Creatine, Glutamine plus Glutamate, and Macromolecules Are Decreased in the Central White Matter of Premature Neonates around Term.

    Directory of Open Access Journals (Sweden)

    Meriam Koob

    Full Text Available Preterm birth represents a high risk of neurodevelopmental disabilities when associated with white-matter damage. Recent studies have reported cognitive deficits in children born preterm without brain injury on MRI at term-equivalent age. Understanding the microstructural and metabolic underpinnings of these deficits is essential for their early detection. Here, we used diffusion-weighted imaging and single-voxel 1H magnetic resonance spectroscopy (MRS to compare brain maturation at term-equivalent age in premature neonates with no evidence of white matter injury on conventional MRI except diffuse excessive high-signal intensity, and normal term neonates. Thirty-two infants, 16 term neonates (mean post-conceptional age at scan: 39.8±1 weeks and 16 premature neonates (mean gestational age at birth: 29.1±2 weeks, mean post-conceptional age at scan: 39.2±1 weeks were investigated. The MRI/MRS protocol performed at 1.5T involved diffusion-weighted MRI and localized 1H-MRS with the Point RESolved Spectroscopy (PRESS sequence. Preterm neonates showed significantly higher ADC values in the temporal white matter (P<0.05, the occipital white matter (P<0.005 and the thalamus (P<0.05. The proton spectrum of the centrum semiovale was characterized by significantly lower taurine/H2O and macromolecules/H2O ratios (P<0.05 at a TE of 30 ms, and reduced (creatine+phosphocreatine/H2O and (glutamine+glutamate/H2O ratios (P<0.05 at a TE of 135 ms in the preterm neonates than in full-term neonates. Our findings indicate that premature neonates with normal conventional MRI present a delay in brain maturation affecting the white matter and the thalamus. Their brain metabolic profile is characterized by lower levels of creatine, glutamine plus glutamate, and macromolecules in the centrum semiovale, a finding suggesting altered energy metabolism and protein synthesis.

  14. Preparation, definition and stabilisation of an inorganic sol by an organic macromolecule: case of an aluminium hydroxide colloid

    International Nuclear Information System (INIS)

    Hurbin-Faucon, A.

    1966-01-01

    An attempt has been made in this work to define an aluminium colloid which is resistant as a high ionic force and to analyse, in the case of this system, the possibilities. and the limits of certain techniques used in the physical chemistry of colloids. The aluminium colloid is obtained by peptization of an aluminium hydroxide precipitate. The physical characterisation of the micelle is effected using the light scattering method which makes it possible to define the colloid from the point of view of size and shape. An interesting characteristic, arising from the low refractive index of the colloid studied, has led us to use not only the general MIE methods but also the methods normally used in macro-molecular chemistry; these latter involve fewer hypotheses and thus make it possible to carry out a more complete analysis of the sol. Since the aluminium hydroxide colloid is sensitive to a high ionic force, we have begun to study the possibility of making it more stable by means of a macromolecule: gelatin. After characterizing this macromolecule by means of potentiometric and light scattering measurements, we have shown the existence of a chemical interaction which occurs when aluminium hydroxide is brought into contact with gelatin; this interaction leads to the production of an inorganic-organic entity which is stable when the ionic force increases. We have established some of the characteristics of the complex thus formed, in particular the pH range of the solution necessary for its formation, its stability. in the presence of electrolytes and some hypotheses concerning its size and shape, Finally we have tried to define the influence of. the molecular weight and the respective dimensions of each constituent on the formation of the complex and thus on the stabilization. (author) [fr

  15. The preparation of benzyl esters using stoichiometric niobium (V) chloride versus niobium grafted SiO2 catalyst: A comparison study

    OpenAIRE

    Sandro L. Barbosa; Camila D. Lima; Melina A.R. Almeida; Larissa S. Mourão; Myrlene Ottone; David L. Nelson; Stanlei I. Klein; Lucas D. Zanatta; Giuliano C. Clososki; Franco J. Caires; Eduardo J. Nassar; Gabriela R. Hurtado

    2018-01-01

    Two solvent free methods of a one-to-one alcohol/acid mol ratio synthesis of benzyl esters of the formic, acetic, benzoic, salicylic, nicotinic, and oxalic acids are described. The stoichiometric reactions used 1.5 mol ratio solid NbCl5 as the reagent and required from two to three hours for completion at room temperature; for the catalytic processes, NbCl5 was grafted directly, at room temperature, onto a silica gel of specific area of 507 m2g−1, produced from construction sand and sodium ca...

  16. Impact of cation stoichiometry on the early stage of growth of SrTiO{sub 3} deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chencheng, E-mail: c.xu@fz-juelich.de; Moors, Marco; Dittmann, Regina

    2015-12-30

    Highlights: • Stoichiometry dependence of SrTiO{sub 3} sub-monolayer growth monitored by RHEED/AFM. • Reduced surface diffusion of non-stoichiometric SrTiO{sub 3} was detected. • A modified step density model correlates surface diffusion and RHEED minimum. - Abstract: By performing in situ growth studies during pulsed laser deposition, we observed a strong reduction of the surface diffusion coefficients for slightly non-stoichiometric SrTiO{sub 3}. Both, stoichiometric and non-stoichiometric thin films exhibit 2D layer by layer growth. However, in the non-stoichiometric case the 2D island coalescence is significantly delayed, which goes along with a shift of the reflection high electron energy diffraction (RHEED) minimum. We could explain this shift of the RHEED minimum by developing a model for the step density evolution taking into account finite surface diffusion.

  17. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  18. Shifts in the Physiology and Stoichiometric Needs of Soil Microbial Communities from Subarctic Soils in Response to Warming: Icelandic Geothermal Gradients as a Model.

    Science.gov (United States)

    Marañón-Jiménez, S.; Soong, J.; Leblans, N. I. W.; Sigurdsson, B. D.; Peñuelas, J.; Richter, A.; Asensio, D.; Fransen, E.; Janssens, I. A.

    2017-12-01

    Large amounts of CO2 can be released to the atmosphere from a faster mineralization of soil organic matter at warmer temperatures, thus inducing climate change feedbacks. Specifically, soils at high northern latitudes store more than half of the global surface soil carbon and are particularly vulnerable to temperature-driven C losses, since they warm more rapidly. Alterations to the temperature sensitivity, physiological functioning and stoichiometric constrains of soil microorganisms in response to rising temperatures can play a key role in these soil carbon (C) losses. We present results of several incubation experiments using soils from geothermal soil temperature gradients in Iceland that have undergone a range of warming intensities for seven years, encompassing the full range of IPCC warming scenarios for the northern region. Soil microbes from warmed soils did not show changes in their temperature sensitivity at the physiological level. On the contrary, seven years of chronic soil warming provoked a permanent increase of microbial metabolic quotients (i.e., respiration per unit of biomass), and a subsequent reduction in the C retained in biomass as substrate became limiting. After the initial depletion of labile soil C, increasing energy demands for metabolic maintenance and resource acquisition at higher temperatures may have triggered permanent functional changes or community shifts towards increasing respiratory costs of soil decomposers. Pointing to this, microbial communities showed a strong C limitation even at ambient soil temperatures, obscuring any metabolic response to nitrogen and phosphorous additions. The tight C:N stoichiometric constrains of soil microbial communities and the strong C limitation for microbial biomass may lead to a reduced capacity of microbial N retention, explaining the equivalent soil C and N losses found in response to soil warming. These results highlight the need to incorporate potential changes in microbial physiological

  19. Conformation-independent structural comparison of macromolecules with ProSMART

    International Nuclear Information System (INIS)

    Nicholls, Robert A.; Fischer, Marcus; McNicholas, Stuart; Murshudov, Garib N.

    2014-01-01

    The Procrustes Structural Matching Alignment and Restraints Tool (ProSMART) has been developed to allow local comparative structural analyses independent of the global conformations and sequence homology of the compared macromolecules. This allows quick and intuitive visualization of the conservation of backbone and side-chain conformations, providing complementary information to existing methods. The identification and exploration of (dis)similarities between macromolecular structures can help to gain biological insight, for instance when visualizing or quantifying the response of a protein to ligand binding. Obtaining a residue alignment between compared structures is often a prerequisite for such comparative analysis. If the conformational change of the protein is dramatic, conventional alignment methods may struggle to provide an intuitive solution for straightforward analysis. To make such analyses more accessible, the Procrustes Structural Matching Alignment and Restraints Tool (ProSMART) has been developed, which achieves a conformation-independent structural alignment, as well as providing such additional functionalities as the generation of restraints for use in the refinement of macromolecular models. Sensible comparison of protein (or DNA/RNA) structures in the presence of conformational changes is achieved by enforcing neither chain nor domain rigidity. The visualization of results is facilitated by popular molecular-graphics software such as CCP4mg and PyMOL, providing intuitive feedback regarding structural conservation and subtle dissimilarities between close homologues that can otherwise be hard to identify. Automatically generated colour schemes corresponding to various residue-based scores are provided, which allow the assessment of the conservation of backbone and side-chain conformations relative to the local coordinate frame. Structural comparison tools such as ProSMART can help to break the complexity that accompanies the constantly growing

  20. Conformation-independent structural comparison of macromolecules with ProSMART

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, Robert A., E-mail: nicholls@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Fischer, Marcus [University of California San Francisco, San Francisco, CA 94158 (United States); McNicholas, Stuart [University of York, Heslington, York YO10 5DD (United Kingdom); Murshudov, Garib N. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom)

    2014-09-01

    The Procrustes Structural Matching Alignment and Restraints Tool (ProSMART) has been developed to allow local comparative structural analyses independent of the global conformations and sequence homology of the compared macromolecules. This allows quick and intuitive visualization of the conservation of backbone and side-chain conformations, providing complementary information to existing methods. The identification and exploration of (dis)similarities between macromolecular structures can help to gain biological insight, for instance when visualizing or quantifying the response of a protein to ligand binding. Obtaining a residue alignment between compared structures is often a prerequisite for such comparative analysis. If the conformational change of the protein is dramatic, conventional alignment methods may struggle to provide an intuitive solution for straightforward analysis. To make such analyses more accessible, the Procrustes Structural Matching Alignment and Restraints Tool (ProSMART) has been developed, which achieves a conformation-independent structural alignment, as well as providing such additional functionalities as the generation of restraints for use in the refinement of macromolecular models. Sensible comparison of protein (or DNA/RNA) structures in the presence of conformational changes is achieved by enforcing neither chain nor domain rigidity. The visualization of results is facilitated by popular molecular-graphics software such as CCP4mg and PyMOL, providing intuitive feedback regarding structural conservation and subtle dissimilarities between close homologues that can otherwise be hard to identify. Automatically generated colour schemes corresponding to various residue-based scores are provided, which allow the assessment of the conservation of backbone and side-chain conformations relative to the local coordinate frame. Structural comparison tools such as ProSMART can help to break the complexity that accompanies the constantly growing

  1. Needle-free delivery of macromolecules through the skin using controllable jet injectors.

    Science.gov (United States)

    Hogan, Nora C; Taberner, Andrew J; Jones, Lynette A; Hunter, Ian W

    2015-01-01

    Transdermal delivery of drugs has a number of advantages in comparison to other routes of administration. The mechanical properties of skin, however, impose a barrier to administration and so most compounds are administered using hypodermic needles and syringes. In order to overcome some of the issues associated with the use of needles, a variety of non-needle devices based on jet injection technology has been developed. Jet injection has been used primarily for vaccine administration but has also been used to deliver macromolecules such as hormones, monoclonal antibodies and nucleic acids. A critical component in the more recent success of jet injection technology has been the active control of pressure applied to the drug during the time course of injection. Jet injection systems that are electronically controllable and reversible offer significant advantages over conventional injection systems. These devices can consistently create the high pressures and jet speeds necessary to penetrate tissue and then transition smoothly to a lower jet speed for delivery of the remainder of the desired dose. It seems likely that in the future this work will result in smart drug delivery systems incorporated into personal medical devices and medical robots for in-home disease management and healthcare.

  2. New beamline dedicated to solution scattering from biological macromolecules at the ESRF

    International Nuclear Information System (INIS)

    Pernot, P; Theveneau, P; Giraud, T; Fernandes, R Nogueira; Nurizzo, D; Spruce, D; Surr, J; McSweeney, S; Round, A; Felisaz, F; Foedinger, L; Gobbo, A; Huet, J; Villard, C; Cipriani, F

    2010-01-01

    The new bio-SAXS beamline (ID14-3 at the ESRF, Grenoble, France) is dedicated exclusively to small-angle scattering experiments of biological macromolecules in solution and has been in user operation since November 2008. Originally a protein crystallography beamline, ID14-3 was refurbished, still as a part of the ESRF Structural Biology group, with the main aim to provide a facility with 'quick and easy' access to satisfy rapidly growing demands from crystallographers, biochemists and structural biologists. The beamline allows manual and automatic sample loading/unloading, data collection, processing (conversion of a 2D image to a normalized 1D X-ray scattering profile) and analysis. The users obtain on-line standard data concerning the size (radius of gyration, maximum dimension and volume) and molecular weight of samples which allow on-the fly ab-inito shape reconstruction in order to provide feedback enabling the data collection strategies to be optimized. Automation of sample loading is incorporated on the beamline using a device constructed in collaboration between the EMBL (Grenoble and Hamburg outstations) and the ESRF. Semi/automated data analysis is implemented following the model of the SAXS facility at X33, EMBL Hamburg. This paper describes the bio-SAXS beamline and set-up characteristics together with the examples of user data obtained.

  3. Assessment of the imprinting efficiency of an imide with a "stoichiometric" pyridine-based functional monomer in precipitation polymerisation.

    Science.gov (United States)

    Lim, K Fremielle; Hall, Andrew J; Lettieri, Stefania; Holdsworth, Clovia I

    2018-03-01

    The efficiency of the stoichiometric non-covalent imprinting of the imide 2,3,5-tri-O-acetyluridine (TAU) with 2,6-bis(acrylamido)pyridine (BAAPy) as functional monomer due to their strong donor-acceptor-donor/acceptor-donor-acceptor (DAD/ADA) hydrogen bond array interaction has been evaluated by bulk imprinting. This study is the first to investigate the imprinting and template rebinding efficiencies of the TAU/BAAPy molecularly imprinted polymeric (MIP) system prepared by precipitation polymerisation. We found that the stoichiometric 1:1 T:FM ratio has not been maintained in precipitation polymerisation and an optimal TAU:BAAPy ratio of 1:2.5 was obtained in acetonitrile without agitation affording an affinity constant (1.7 × 10 4 M -1 ) and a binding capacity (3.69 μmol/g) higher than its bulk counterpart. Molecular modelling, NMR studies, and selectivity assays against analogues uridine and 2,3,5-tri-O-acetyl cytidine (TAC) indicate that, aside from the DAD/ADA hydrogen bond interaction, BAAPy also interacts with the acetyl groups of TAU. Template incorporation and rebinding in precipitation MIPs are favoured by a moderate initiator concentration, ie, initiator:total monomer (I:TM) ratio of 1:131, while low I:TM ratio (ie, 1:200) drastically reduced template incorporation and binding capacity. Vigorous agitation by stirring showed higher template incorporation but significantly lower template rebinding compared to that prepared without agitation. While the imprinting efficiencies for the best performing bulk and precipitation TAU MIPs generated in this study were moderate, 41% and 60%, respectively, their rebinding capacities were only between 3 and 4% of the incorporated template. We also present quantitative nuclear magnetic resonance spectroscopy as an efficient method for MIP characterisation. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Food web architecture and basal resources interact to determine biomass and stoichiometric cascades along a benthic food web.

    Directory of Open Access Journals (Sweden)

    Rafael D Guariento

    Full Text Available Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé - RJ to evaluate the individual and interactive effects of resource availability (nutrients and light and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry.

  5. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood-brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki

    2017-05-10

    Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes

    International Nuclear Information System (INIS)

    Olejnik, Piotr; Pawłowska, Aleksandra; Pałys, Barbara

    2013-01-01

    Orientation of the enzyme macromolecule on the electrode surface is crucially important for the efficiency of the electron transport between the active site and electrode surface. The orientation can be controlled by affecting the surface charge and the pH of the buffer solution. In this contribution we study laccase physically adsorbed on gold surface modified by mercapto-ethanol, lipid and variously charged diazonium salts. Polarization Modulated Infrared Reflection Absorption Spectroscopy (PMIRRAS) enables the molecular orientation study of the protein molecule by comparison of the amide I to amide II band intensity ratios assuming that the protein secondary structure does not change. We observe significant differences in the intensity ratios depending on the kind of support and the enzyme deposition. The comparison of infrared spectra and cyclic voltammetry responses of variously prepared laccase layers reveals that the parallel orientation of beta-sheet moieties results in high enzyme activity

  7. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    International Nuclear Information System (INIS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-01-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO 2 implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10 16 cm −2 (Ti + ) and 1 × 10 17 cm −2 (O + ) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10 15 cm −2 (Ti + ) and 1 × 10 16 cm −2 (O + ). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO 2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  8. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  9. Generation of Stoichiometric Ethylene and Isotopic Derivatives and Application in Transition Metal-Catalyzed Vinylation and Enyne Metathesis

    DEFF Research Database (Denmark)

    Min, Geanna; Bjerglund, Klaus Meier; Kramer, Søren

    2013-01-01

    Ethylene is one of the most important building blocks in industry for the production of polymers and commodity chemicals. 13C- and D-isotope-labeled ethylenes are also valuable reagents with applications ranging from polymer-structure determination, reaction-mechanism elucidation to the preparation...... of more complex isotopically labeled compounds. However, these isotopic derivatives are expensive, and are flammable gases, which are difficult to handle. We have developed a method for the controlled generation of ethylene and its isotopic variants including, for the first time, fully isotopically...... labeled ethylene, from simple alkene precursors by using Ru catalysis. Applying a two-chamber reactor allows both the synthesis of ethylene and its immediate consumption in a chemical transformation permitting reactions to be performed with only stoichiometric amounts of this two carbon olefin...

  10. Macromolecule simulation and CH4 adsorption mechanism of coal vitrinite

    Science.gov (United States)

    Yu, Song; Yan-ming, Zhu; Wu, Li

    2017-02-01

    The microscopic mechanism of interactions between CH4 and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, 13C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH4 is conducted. A saturated state is reached after absorbing 17 CH4s per coal vitrinite molecule. CH4 is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top graphene. However, the energy of the most preferential location is much lower than that of graphite/graphene. CH4 is more easily absorbed on the surface of vitrinite. Adsorbability varies considerably at different adsorption locations and sites on the surface of vitrinite. Crystal parameter of vitrinite is a = b = c = 15.8 Å and majority of its micropores are blow 15.8 Å, indicating that the vitrinite have the optimum adsorption aperture. It can explain its higher observed adsorption capacities for CH4 compared with graphite/graphene.

  11. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  12. Sub-stoichiometric isotope dilution analysis method for the determination of iodine in common salts using iodine-131 tracer

    International Nuclear Information System (INIS)

    Singh, Vivek; Garg, A.N.

    1994-01-01

    A sub-stoichiometric isotope dilution analysis (SIDA) method was developed for the determination of iodine in different brands of common salts. An aqueous salt solution containing 131 I tracer and NaI as carrier is oxidized by tartaric acid and KIO 3 and the liberated iodine is extracted with CCl 4 . To the extract an aqueous solution of AgNO 3 is added in substoichiometric amount to obtain a colloidal solution of AgI. On adding sodium thiosulfate solution, the NaI so formed passes into aqueous solution, which is then counted. Several different brands of salt were analysed. The method is especially suitable for the determination of microgram amounts of iodide in the presence of excess of chloride. (Author)

  13. Neutron and X-ray study of stoichiometric and doped LiNbO3:Zn0.08

    International Nuclear Information System (INIS)

    Sulyanov, S.; Maximov, B.; Volk, T.; Boysen, H.; Schneider, J.; Rubinina, N.; Hansen, Th.

    2002-01-01

    LiNbO 3 (LN) crystals possess useful optical properties, which are strongly dependent on both the crystal stoichiometry and the content of dopants such as Mg 2+ , Zn 2+ , In 3+ , and Sc 3+ . Such elements drastically reduce photorefraction at a sufficiently high threshold concentration, which for Zn is in the range of 7-8 at. % and was supposed to be connected with the change of dopant-atom localisation in the lattice. We report the results of a single-crystal neutron study of stoichiometric, congruent, and doped (with 8.2 at. % Zn) LiNbO 3 at T=78 K and 298 K and also a multi-pattern powder neutron and X-ray Rietveld refinement of the doped material. Zn ions occupy both Li and Nb sites and there is no residual Nb on Li sites. LN single crystals are very perfect, and extinction problems are discussed. (orig.)

  14. Technical Note: On the calculation of stopping-power ratio for stoichiometric calibration in proton therapy

    International Nuclear Information System (INIS)

    Ödén, Jakob; Zimmerman, Jens; Nowik, Patrik; Poludniowski, Gavin; Bujila, Robert

    2015-01-01

    Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2

  15. Technical Note: On the calculation of stopping-power ratio for stoichiometric calibration in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ödén, Jakob [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm SE-17176 (Sweden); Zimmerman, Jens; Nowik, Patrik; Poludniowski, Gavin, E-mail: gavin.poludniowski@karolinska.se [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176 (Sweden); Bujila, Robert [Department of Medical Physics, Karolinska University Hospital, Stockholm SE-17176, Sweden and Department of Physics, Royal Institute of Technology, Stockholm SE-10691 (Sweden)

    2015-09-15

    Purpose: The quantitative effects of assumptions made in the calculation of stopping-power ratios (SPRs) are investigated, for stoichiometric CT calibration in proton therapy. The assumptions investigated include the use of the Bethe formula without correction terms, Bragg additivity, the choice of I-value for water, and the data source for elemental I-values. Methods: The predictions of the Bethe formula for SPR (no correction terms) were validated against more sophisticated calculations using the SRIM software package for 72 human tissues. A stoichiometric calibration was then performed at our hospital. SPR was calculated for the human tissues using either the assumption of simple Bragg additivity or the Seltzer-Berger rule (as used in ICRU Reports 37 and 49). In each case, the calculation was performed twice: First, by assuming the I-value of water was an experimentally based value of 78 eV (value proposed in Errata and Addenda for ICRU Report 73) and second, by recalculating the I-value theoretically. The discrepancy between predictions using ICRU elemental I-values and the commonly used tables of Janni was also investigated. Results: Errors due to neglecting the correction terms to the Bethe formula were calculated at less than 0.1% for biological tissues. Discrepancies greater than 1%, however, were estimated due to departures from simple Bragg additivity when a fixed I-value for water was imposed. When the I-value for water was calculated in a consistent manner to that for tissue, this disagreement was substantially reduced. The difference between SPR predictions when using Janni’s or ICRU tables for I-values was up to 1.6%. Experimental data used for materials of relevance to proton therapy suggest that the ICRU-derived values provide somewhat more accurate results (root-mean-square-error: 0.8% versus 1.6%). Conclusions: The conclusions from this study are that (1) the Bethe formula can be safely used for SPR calculations without correction terms; (2

  16. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products.

    Science.gov (United States)

    Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L

    2016-01-19

    Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.

  17. Isolation of a macrophage receptor for proteins modified by advanced glycosylation end products

    International Nuclear Information System (INIS)

    Radoff, S.; Vlassara, H.; Cerami, A.

    1987-01-01

    The nonenzymatic reaction of glucose with protein amino groups leads to the formation of irreversible AGE, such as the recently characterized glucose-derived crosslink, [2-furoyl-4(5)-(2-furanyl)-1-H-imidazole] (FFI). These products accumulate with time in aging tissues and diabetes, and are implicated in irreversible tissue damage. The authors have recently shown that macrophages bind and degrade AGE-proteins via a specific surface receptor, which is thus selectively removing senescent macromolecules. Scatchard plot analysis of binding data has indicated 1.5 x 10 5 receptors/cell with a binding affinity (Ka) of 1.7 x 10 7 /M. They have now isolated this receptor from murine macrophage RAW 264.7 membranes, solubilized with octylglucoside/protease inhibitors, and using FFI-Sepharose affinity chromatography and FPLC. The purified receptor binds radioactive FFI-containing compounds competitively. SDS-PAGE gels under reducing conditions indicate the receptor to be composed of two polypeptides, 83 Kda and 36 Kda. Crosslinking experiments with 125 I-AGE-albumin as ligand, indicate the 83 Kda subunit to be the AGE-binding peptide. These studies further characterize a macrophage receptor which selectively recognizes time-dependent glucose-modified proteins associated with aging and diabetes

  18. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.

    Science.gov (United States)

    Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K

    2017-10-24

    Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How does the composition of quasi-stoichiometric titanium diboride affect its wetting by molten Cu and Au?

    International Nuclear Information System (INIS)

    Aizenshtein, M.; Froumin, N.; Barth, P.; Shapiro-Tsoref, E.; Dariel, M.P.; Frage, N.

    2007-01-01

    The poor wetting in non-oxide ceramic/metal (M = Au or Cu) systems is usually attributed to the lack of chemical interaction at the solid/liquid interface. In contrast, sessile drop experiments on two non-stoichiometric titanium diboride substrates (TiB 1.9 and TiB 1.95 ) displayed a surprisingly good wetting. The experimental results are well accounted for by the thermodynamic analysis of the Me-Ti-B systems. According to this analysis, some limited boride dissolution and altering of the substrate composition takes place at the TiB x /Me interface. These changes are more substantial, the stronger the departure from stoichiometry of the initial substrate composition. Minor composition changes are sufficient for improving wetting. Based on the results of the thermodynamic analysis and the wetting experiments, a novel method for the fabrication of Cu infiltrated composites is put forward

  20. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    Science.gov (United States)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  1. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations.

    Science.gov (United States)

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε

  2. In vivo skin penetration of macromolecules in irritant contact dermatitis.

    Science.gov (United States)

    Abdel-Mottaleb, Mona M A; Lamprecht, Alf

    2016-12-30

    Recently, a selective preferential accumulation of polymeric nanoparticles (in the size range around 100nm) has been observed in the follicular system of dermatitis skin. The present investigation aimed at clearly investigating the effect of irritant contact dermatitis on the barrier permeability for colloidal systems below this size range, namely quantum dots and hydrophilic macromolecules. Irritant dermatitis was induced in mice and the penetrability of quantum dots (5nm) and hydrophilic dextran molecules has been tracked in both healthy and inflamed skin using confocal laser scanning microscopy. The selective accumulation of the quantum dots was clearly observed in inflamed skin while hydrophilic dextran behaved similarly in both healthy and inflamed skin. The therapeutic potential for the transdermal delivery of peptide drugs through inflamed skin has been also tested in rats. Results revealed that the transdermal permeation of insulin and calcitonin was not significantly enhanced in dermatitis compared to healthy skin. On the other side, permeation through stripped skin was significantly higher. However, the effect was limited and shorter compared to the SC injection where t min was 0.5h and 2h with a 70% and 46% reduction in blood glucose levels for the stripped skin and the SC injection respectively. Similarly, t min was 4h and 8h with area under the curve of 161±65% and 350±97% for the stripped skin and the SC injection respectively. In conclusion, the changes in skin permeability accompanied with skin inflammation did not affect its permeability to peptide drugs. Our findings also underline that experiments with the tape stripped skin model as a surrogate for inflamed skin can risk misleading conclusions due to significant difference of skin permeability between the tape stripped skin and inflamed skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters.

    Directory of Open Access Journals (Sweden)

    Oliver F Brandenberg

    2017-05-01

    Full Text Available The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.

  4. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H., E-mail: helmut.karl@physik.uni-augsburg.de

    2015-12-15

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO{sub 2} implanted AISI 304 – examined for different implantation and annealing parameters – is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 10{sup 16} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 17} cm{sup −2} (O{sup +}) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 10{sup 15} cm{sup −2} (Ti{sup +}) and 1 × 10{sup 16} cm{sup −2} (O{sup +}). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO{sub 2} inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  5. Equation of state for sub-stoichiometric urania using significant structures theory

    International Nuclear Information System (INIS)

    Fischer, E.A.

    1979-01-01

    The Significant Structures Theory (SST) by Eyring was successfully used to predict the equation of state in the liquid range for a variety of materials, including UO 2 . However, all these applications assumed that the liquid evaporates congruently i.e. the composition of the vapor phase is identical to that of the condensed phase. In this paper, an attempt is made to apply SST to non-congruently evaporating materials, using hypo-stoichiometric urania as an example. To this end, additional hypotheses to those of the original SST must be made. In the SST, it is assumed that the partition function of the liquid can be expressed by suitably combining that of 'solidlike molecules', and of 'gaslike molecules'. In the present work, starting from the fact that non-stoichiometry of solid urania is connected with lattice defects (e.g. oxygen interstitials or oxygen vacancies), it is assumed that a simple oxygen defect model can be extrapolated into the liquid state. Thus, the solidlike partition function includes a defect term, which determines the O/U; the defect concentration depends on the absolute activity of oxygen. The gaslike partition function allows for UO(g) and UO 2 (g), the ratio depending also on the oxygen activity. The parameters of the theory are selected such as to obtain agreement with experimental data at the melting point. The physical requirement that the difference between liquid and gas disappears at the critical temperature necessitates an adjustment of the solidlike partition function at high temperatures. (orig.) [de

  6. Growth and holographic data storage properties of near-stoichiometric LiTaO{sub 3} crystals doped with Mn

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao [College of Science, Harbin Engineering University, Harbin 150001 (China)], E-mail: tzhang_hit02@yahoo.com; Dong Yantang; Geng Tao; Dai Qiang [College of Science, Harbin Engineering University, Harbin 150001 (China); Xu Yuheng [School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    A series of Mn-doped near-stoichiometric LiTaO{sub 3} crystals were grown from a Li-rich (Li/Nb = 1.38, atomic ratio) and varying level of Mn-doping melt using a Cz furnace equipped with a radio frequency generator. The etching experiment reveals that as-grown polarized Mn:SLN has single ferroelectric domain structures under optical microscope. By two-beam coupling experiment, we measured and systematically analyzed the photorefractive properties such as the dynamic range, the sensitivity and the loss of signal-to-noise-ratio coefficient. Based on Mn (0.05 wt%):SLN crystal, a big capacity storage of 100 holograms in a coherent volume of 0.085 cm{sup 3} have been fulfilled successfully and the storage density arrived 0.93 Gbits cm{sup -3}.

  7. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat, E-mail: bjalan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  8. Microscope Raman scattering and X-ray diffraction study of near-stoichiometric Ti:LiNbO3 waveguides

    International Nuclear Information System (INIS)

    Zhang, De-Long; Siu, G.G.; Pun, E.Y.B.

    2005-01-01

    The crystalline phase within guiding layers of near-stoichiometric strip and planar Ti:LiNbO 3 wave-guides, prepared by the method of simultaneous work of vapour transport equilibration (VTE) treatment and indiffusion of Ti film, was studied by combined confocal microscope Raman scattering and X-ray powder diffraction. The results show that the strip and planar waveguide layers still retain the LiNbO 3 phase and no other non-LiNbO 3 phases can be identified within the guiding layer. Li/Nb ratios inside and outside the strip and planar waveguide layers were determined from the microscope Raman scattering results and compared to those obtained from the measured optical absorption edge. It is shown that the Li/Nb ratios are homogeneous within the waveguide layer and are close inside and outside the waveguide layer. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  10. The effect of gadolinium content on the thermal conductivity of near-stoichiometric (U,Gd)O2 solid solutions

    International Nuclear Information System (INIS)

    Fukushima, S.; Ohmichi, T.; Maeda, A.; Watanabe, H.

    1982-01-01

    The thermal conductivities of near-stoichiometric (U, Gd)O 2 solid solutions containing CdOsub(1.5) up to 15 mol% were determined in the temperature range 700 to 2000 K from thermal diffusivities measured by the laser flash method. Temperature dependence of the thermal conductivities up to around 1600 K could be expressed by the phonon conduction equation K = (A + BT) -1 . The thermal conductivity decreased gradually with an increase of gadolinium content. Thermal resistivities caused by lattice defects were calculated from a theoretical model considering U 4+ , U 5+ and Gd 3+ ions as phonon scattering centers. It was found that this model was in good agreement with the experimental results. The calculation based on this model indicates that the lattice strain effect on the lattice defect thermal resistivity is much larger than the mass effect. (orig.)

  11. The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization.

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke

    2015-12-01

    The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and which of these assumptions best correspond to the available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity (NPP), leaf N concentration, and ecosystem N partitioning, observed at 22 forest N fertilization experiments. Employing flexible ecosystem pool C : N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate degree of stoichiometric flexibility in vegetation, where wood C : N ratio changes were decoupled from leaf and root C : N ratio changes, led to consistent simulation of production and N cycle responses to N addition. Assuming fixed C : N ratios or scaling leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported data. Between the tested assumptions, the simulated changes in ecosystem C storage relative to changes in C assimilation varied by up to 20%. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available First, traditional diamine hardeners of epoxy resins (EP were checked as potential accelerators for the benzoxazine (BOX homopolymerization. It was established that the acceleration effect depends on both the type and amount of the diamine compounds. In the follow-up work amine-curable diglycidyl ether bisphenol A (DGEBA type EP was modified with BOX keeping the EP/BOX ratio constant (75/25 wt.%. The amine hardeners, added in the EP in stoichiometric amounts, were of aliphatic and aromatic nature, viz. diethylenetriamine (DETA, 4,4'-diaminodiphenyl methane (DDM, and their 1/1 mixture. The thermal, viscoelastic, flexural and fracture mechanical properties of the EP/BOX hybrids were determined and compared to those of the reference EPs. Based on dynamic-mechanical thermal analysis and atomic force microscopy the formation of co-network between EP and BOX was concluded. Homopolymerized BOX was built in the network in nanoscaled inclusions and it was associated with internal antiplasticization. Incorporation of BOX improved the charring, enhanced the flexural modulus and strength, and reduced the glass transition of the parent EP. The fracture toughness and energy were not improved by hybridization with BOX.

  13. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  14. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  15. Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray-Liebhafsky reaction.

    Science.gov (United States)

    Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D

    2008-12-25

    The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.

  16. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    Science.gov (United States)

    Chi, Hao-Hsin

    This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure

  17. Comparison of new nitrosoureas esters with modified steroidal nucleus for cytogenetic and antineoplastic activity.

    Science.gov (United States)

    Hussein, A; Mioglou-Kalouptsi, E; Papageorgiou, A; Karapidaki, I; Iakovidou-Kritsi, Z; Lialiaris, T; Xrysogelou, E; Camoutsis, C; Mourelatos, D

    2007-01-01

    Nitrosourea is decomposed under physiological conditions to react with biological macromolecules by two mechanisms: alkylation (with proteins and nucleic acids) and carbamoylation (with proteins but not nucleic acids). It has been suggested that the alkylating action is responsible for the therapeutic effects of nitrosoureas, and that the carbamoylation activity leads to toxicity effects. In order to reduce systemic toxicity and improve specificity and distribution for cancer therapy, 2-haloethyl nitrosourea has been esterified with modified steroids, which are used as biological platforms for transporting the alkylating agent to the tumor site in a specific manner. The cytogenetic and antineoplastic effect were studied of seven newly synthesized esters of N,N-bis(2-chloroethyl)alanyl carboxyl derivatives with a modified steroidal nucleus (compounds 1-7). As a very sensitive indicator of genotoxicity the Sister Chromatid Exchange (SCE) assay was used and as a valuable marker of cytostatic activity the cell Proliferation Rate Index (PRI) in cultures of normal human lymphocytes was used. The order of magnitude of the cytogenetic activity on a molar basis (15, 30, 120 microM) of the compounds was 7>6>3>5>2>4>1. The most active compound 7 has an enlarged (seven carbon atoms) A ring modified with a lactam group (-NHCO-) with the nitrosourea moiety esterified at position 17 In the group of seven substances a correlation was observed between the magnitude of SCE response and the depression in PRI (r=-O, 65, p6>2>5>4>3>1 and on lympocytic P388 leukemia cells is 7>2>6>5>4>3>1. The present results are in agreement with previous suggestions that the effectiveness in cytogenetic activity may well be correlated with antitumor effects [T/C: 248% for the compound 7 in 250 mg/kg b.w.; T/C: mean survival time of drug-treated animals (T) (excluding long term survivals) vs. corn-oil-treated controls (C)].

  18. Ab initio calculations of non-stoichiometric copper nitride, pure and with palladium

    International Nuclear Information System (INIS)

    Moreno-Armenta, Maria G.; Soto, Gerardo; Takeuchi, Noboru

    2011-01-01

    Research highlights: → The most stable arrangement corresponds to the Cu 3 N-anti ReO 3 structure. → Formation energy of Cu 32 Vac 0 N 8 and Cu 24 Pd 8 Vac 0 N 8 are very similar. → The biggest volume in the compound is Cu 31 Pd 1 Vac 0 N 8/ . → Small amount introduction of extra metal atoms in copper nitride is possible. - Abstract: We present first principles calculations of copper nitride by using periodic density functional theory within a plane-wave ultrasoft pseudopotential scheme. The insertions of extra Cu and/or Pd atoms in the empty sites, vacancy reorganization, and substitution of Cu by Pd atoms were studied. We have used an equivalent reduced-symmetry 2 x 2 x 2 Cu 3 N-like cubic super-cell. Small Cu and/or Pd concentrations and vacancy rearrangements in the copper sub-lattice were conveniently calculated in these low-symmetry cells. We cover probable situations like: the occupation of the initially empty copper sites by (1) copper atoms, and by (2) palladium; (3) the relocation of vacancies in the copper sub-lattice; and (4) the substitution of small quantities of copper by palladium atoms in the copper sub-lattice. The equilibrium volumes and energies after relaxing the atomic positions are compared to those of intrinsic copper nitride. We found that the most stable arrangement corresponds to the ideal stoichiometric Cu 3 N. We also found that any deviation from this ideal configuration shift the semiconductor state to a metallic or semi-metallic one.

  19. Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound

    International Nuclear Information System (INIS)

    Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.

    2015-01-01

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX 2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu 1−x Bi 2−y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu 1−x Bi 2−y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T N  = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H c  ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu 0.92 Bi 1.6 exhibits a weak heavy fermion behavior with strongly localized Ce 3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce 3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu 1−x Bi 2−y compounds, and we compare our results with the isostructural compound CeCuBi 2

  20. Realizing near stoichiometric and highly transparent CdS:Mo thin films by a low-cost improved SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613503, Tamil Nadu (India); Nisha Banu, N. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613503, Tamil Nadu (India); Research Department of Physics, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), Thanjavur 613007, Tamil Nadu (India); Baneto, M. [CUER-UL, Universite de Lome, BP 1515, Lome (Togo); Senthamil Selvi, V. [Research Department of Physics, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), Thanjavur 613007, Tamil Nadu (India)

    2016-02-15

    Undoped and molybdenum doped CdS thin films were deposited on glass substrates using Improved Successive Ionic Layer Adsorption and Reaction (ISILAR) technique. The Mo doping level was varied from 0 to 15 at.% in steps of 5 at.%. The XRD analysis shows that all the films are polycrystalline with cubic structure and grow preferentially along the (111) plane. The crystallite size increases gradually with the increase in Mo doping level up to 10 at.% and decreases with further doping. The morphological studies reveal that Mo doping significantly affects the grains size. Qualitative and quantitative compositional analysis show that near stoichiometric undoped and Mo doped CdS thin films can be achieved using this ISILAR technique. All the films exhibit high transparency in the visible region with an average transmittance in the range of 85-95%. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  2. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    International Nuclear Information System (INIS)

    Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.

    2015-01-01

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users

  3. Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3

    Directory of Open Access Journals (Sweden)

    Paula R. Realyvázquez-Guevara

    2017-03-01

    Full Text Available The effect of native defects originated by a non-stoichiometric variation of composition in CoSb3 on I-V curves and Hall effect was investigated. Hysteretic and a non-linear behavior of the  I-V curves at cryogenic temperatures were observed; the non-linear behavior originated from the Poole-Frenkel effect, a field-dependent ionization mechanism that lowers Coulomb barriers and increases emission of charge carriers, and the hysteresis was attributed to the drastic decrease of specific heat which produces Joule heating at cryogenic temperatures. CoSb3 is a narrow gap semiconductor and slight variation in the synthesis process can lead to either n- or p-type conduction. The Sb-deficient CoSb3 presented an n-type conduction. Using a single parabolic model and assuming only acoustic-phonon scattering the charge transport properties were calculated at 300 K. From this model, a carrier concentration of 1.18 × 1018 cm−3 and a Hall factor of 1.18 were calculated. The low mobility of charge carriers, 19.11 cm2/V·s, and the high effective mass of the electrons, 0.66 m0, caused a high resistivity value of 2.75 × 10−3 Ω·m. The calculated Lorenz factor was 1.50 × 10−8 V2/K2, which represents a decrease of 38% over the degenerate limit value (2.44 × 10−8 V2/K2.

  4. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64).

    Science.gov (United States)

    Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr

    2017-11-01

    Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Victoria C. Foletta

    2016-10-01

    Full Text Available Deuterated water (2H2O, a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules, thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation, protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines. Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.

  6. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  7. Ferroelectric and piezoelectric properties of non-stoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics prepared from sol-gel derived powders

    International Nuclear Information System (INIS)

    Jain, Rajni; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2004-01-01

    Ceramic compositions of strontium bismuth tantalate (SBT) [Sr 1-x Bi 2+2x/3 Ta 2 O 9 ] with x = 0.0, 0.15, 0.30, 0.45 prepared from a sol-gel process have been studied. Stoichiometric and non-stoichiometric phases stable within the series have been investigated for their structural, dielectric, ferroelectric, and piezoelectric properties. Sintering at 1000 deg. C produces a single homogeneous phase up to x = 0.15. With x > 0.15 an undesirable BiTaO 4 phase is detected and a higher sintering temperature (1100 deg. C) prevents the formation of this phase. The ferroelectric to paraelectric phase transition temperature (T c ) increases linearly from 325 to 455 deg. C up to x = 0.30, and with x > 0.30, it tends to deviate from the linear behavior. At x = 0.45 a broad and a weak transition is observed and the peak value of dielectric constant (ε' max ) is significantly reduced. The piezoelectric coefficient (d 33 ), remnant polarization (2P r ), and coercive field (2E c ) values increase linearly up to x = 0.30. The degradation in the electrical properties for x > 0.30 are attributed to the presence of undesirable BiTaO 4 phase, which is difficult to identify by X-ray powder diffraction analysis (XRD) due to the close proximity of the peaks positions of BiTaO 4 and the SBT phase

  8. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    Science.gov (United States)

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  9. Refractive Indices in Undoped and MgO-Doped Near-Stoichiometric LiTaO3 Crystals

    Science.gov (United States)

    Nakamura, Masaru; Higuchi, Shinji; Takekawa, Shunji; Terabe, Kazuya; Furukawa, Yasunori; Kitamura, Kenji

    2002-04-01

    Undoped and MgO (0.5 and 1.0-mol%)-doped near-stoichiometric LiTaO3 (SLT) crystals were grown from off-congruent Li-rich solutions (Li˜ 60 mol%) by the double-crucible Czochralski method using a continuous SLT ceramic grain charging system. Curie temperatures of the undoped and MgO (0.5 and 1.0-mol%)-doped SLT crystals are 688, 694 and 695°C, respectively. The ordinary and extraordinary refractive indices (no, ne) of these crystals were measured by the prism coupling technique in the wavelength range from 0.440 to 1.050 μm at room temperature, and the temperature-independent Sellmeier equations for each crystal were derived from the measured refractive index data. no of the SLT crystal was almost the same as that of a congruent-melt LiTaO3 (CLT) crystal, while ne of the SLT crystal was lower than that of the CLT crystal. ne was lower than no for the SLT crystal, similar to as in the case of the LiNbO3 crystal. The refractive indices of the SLT crystal, no and ne, were found to be almost independent of MgO concentration at the doping level of 0.5 and 1.0 mol%.

  10. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  11. Order parameters and magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga epitaxial films grown on MgO (001) and SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwachol; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Mitani, Seiji; Hono, Kazuhiro [National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2015-07-21

    We study the relationship between long range order parameters and the magnetocrystalline anisotropy of off-stoichiometric D0{sub 22} Mn{sub 2.36}Ga (MnGa) epitaxial films grown on MgO (001) and SrTiO{sub 3} (STO) (001) single crystalline substrates. MnGa films deposited on MgO (001) show rather large irregular variation in magnetization with increasing substrate temperature in spite of the improved long range order of total atomic sites. The specific site long range order of Mn-I site characterized in the [101] orientation revealed the fluctuation of the occupation fraction of two Mn atomic sites with elevated substrate temperature, which appears more relevant to the observed magnetization change than the long range order of the total atomic sites. In case of MnGa films grown on the lattice-matched STO (001), high long range order of the total atomic sites in spite of the existence of secondary phase represents that the lattice mismatch plays a crucial role in determining the atomic arrangement of Mn and Ga atoms in the off-stoichiometric compositional case of MnGa.

  12. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    Science.gov (United States)

    Skolnick, Jeffrey

    2016-09-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

  13. A new highly adaptable design of shear-flow device for orientation of macromolecules for Linear Dichroism (LD) measurement

    KAUST Repository

    Lundahl, P. Johan; Kitts, Catherine C.; Nordé n, Bengt

    2011-01-01

    This article presents a new design of flow-orientation device for the study of bio-macromolecules, including DNA and protein complexes, as well as aggregates such as amyloid fibrils and liposome membranes, using Linear Dichroism (LD) spectroscopy. The design provides a number of technical advantages that should make the device inexpensive to manufacture, easier to use and more reliable than existing techniques. The degree of orientation achieved is of the same order of magnitude as that of the commonly used concentric cylinders Couette flow cell, however, since the device exploits a set of flat strain-free quartz plates, a number of problems associated with refraction and birefringence of light are eliminated, increasing the sensitivity and accuracy of measurement. The device provides similar shear rates to those of the Couette cell but is superior in that the shear rate is constant across the gap. Other major advantages of the design is the possibility to change parts and vary sample volume and path length easily and at a low cost. © 2011 The Royal Society of Chemistry.

  14. Low potential stable glucose detection at dendrimers modified polyaniline nanotubes

    Directory of Open Access Journals (Sweden)

    Alessandra Nogueira Santos

    2010-03-01

    Full Text Available The utilization of nanostructured materials for development of biosensors is a growing field in medical diagnostics. In this work a glucose biosensor based on bioactive polyglycerol (PGLD and chitosan dendrimers (CHD was developed. PGLD and CHD were bioconjugated with the enzyme glucose oxidase (GOx to obtain dendrimers with glucose sensing properties. Polyaniline nanotubes (PANINT´s were used as electron mediator due to their high ability to promote electron-transfer reactions involving GOx. The PGLD-GOx and CHD-GOx were entrapped in PANINT´s during template electrochemical polymerization of aniline. The prepared PGLD-GOx/PANINT´s and CHD-GOx/PANINT´s biosensors exhibit a strong and stable amperometric response to glucose even at a low potential of +100 mV. The based PGLD-GOx/PANINT´s and CHD-GOx/PANINT´s biosensors showed a good performance in glucose concentrations range in human blood. A comparison of the sensitivities to glucose showed that both biosensors have a linearity range between 0.02 and 10 mM, though PGLD-GOx/PANINT´s is more sensitive (10.41 vs. 7.04 nA.mM-1. The difference in the biosensor behavior and the high sensitivity of the PGLD-GOx/PANINT´s may be due to the specific organization of GOx layer at surface of the modifier macromolecule PGLD and their distribution in PANINT´s. The enzyme affinity for the substrate, K Mapp remains quite good after GOx immobilization on PGLD and CHD dendrimers and entrapment of the bioconjugates in PANINT´s.

  15. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Schütz, Tanja

    2000-01-01

    BACKGROUND/AIMS: No information is yet available about the influence of alcohol abuse on the translocation of larger molecules (Mr>1200) through the intestinal mucosa in man. The present study aimed to determine the intestinal permeability to macromolecules in patients with chronic alcohol abuse...... and mild to more advanced stages of liver disease, and to measure the concentration of endotoxins in the plasma, as these compounds derive from the intestinal flora and are suspected to contribute to the development of alcoholic liver disease (ALD). METHODS: The permeability to polyethylene glycol Mr 400......, Mr 1500, Mr 4000, and Mr 10,000 and endotoxin plasma concentrations were measured in 54 patients with alcoholic liver disease, 19 of them with cirrhosis, and in 30 non-alcoholic healthy controls. RESULTS: Permeability to polyethylene glycol Mr 400 was found to be unchanged in patients with ALD...

  16. Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity

    Directory of Open Access Journals (Sweden)

    Chiara Emma Campiglio

    2017-05-01

    Full Text Available The extracellular matrix (ECM, the physiological scaffold for cells in vivo, provides structural support to cells and guaranties tissue integrity. At the same time, however, it represents an extremely complex and finely tuned signaling environment that contributes in regulating tissue homeostasis and repair. ECM can bind, release and activate signaling molecules and also modulate cell reaction to soluble factors. Cell-ECM interactions, as a result, are recognized to be critical for physiological wound healing, and consequently in guiding regeneration. Due to its complexity, mimicking ECM chemistry and architecture appears a straightforward strategy to exploit the benefits of a biologically recognizable and cell-instructive environment. As ECM consists primarily of sub-micrometric fibers, electrospinning, a simple and versatile technique, has attracted the majority efforts aimed at reprocessing of biologically occurring molecules. However, the ability to trigger specific cellular behavior is likely to depend on both the chemical and conformational properties of biological molecules. As a consequence, when ECM macromolecules are electrospun, investigating the effect of processing on their structure, and the extent to which their potential in directing cellular behavior is preserved, appears crucial. In this perspective, this review explores the electrospinning of ECM molecules specifically focusing on the effect of processing on polymer structure and on in vitro or in vivo experiments designed to confirm the maintenance of their instructive role.

  17. Multiscale simulation of protein hydration using the SWINGER dynamical clustering algorithm

    NARCIS (Netherlands)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    To perform computationally efficient concurrent multiscale simulations of biological macromolecules in solution, where the all-atom (AT) models are coupled to supramolecular coarse-grained (SCG) solvent models, previous studies resorted to a modified AT water models, such as the bundled-SPC models,

  18. QM/MM hybrid calculation of biological macromolecules using a new interface program connecting QM and MM engines

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Yohsuke; Tateno, Masaru [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571 (Japan); Ohta, Takehiro [Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8577 (Japan)], E-mail: tateno@ccs.tsukuba.ac.jp

    2009-02-11

    An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.

  19. Novel Non-Stoichiometric Manganese – Cobalt – Nickel – Oxide Composite as Humidity Sensor Through Solid-State Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    R. Sundaram

    2006-08-01

    Full Text Available Equimolar amounts of manganese(II chloride, cobalt(III nitrate and nickel(II chloride in aqueous solution were reacted with ammonia and the resulting precipitate of hydroxides was heated to 7500 C in 6h to yield a non stoichiometric oxides having a composition of Mn0.06Co0.6Ni0.6O2.5 as analyzed by atomic absorption spectroscopy to a pellet and sintered at 6000 C. Characterization of the material has been made with AAS, Far-IR, TG-DTA, XRD, SEM, VSM and electrical conductance measurement. The far-IR spectra indicated the presence of metal-oxygen bonds and the discrete nature of the oxide was established from power X-ray diffraction pattern recorded at room temperature. The thermogravimetric data indicated the successive loss and gain of fraction of oxygen atoms, a specific feature of non-stoichiometric metal oxides. It was subjected to solid-state DC electrical conductivity measurements at room temperature. The current increases linearly with applied field and exponentially with increase in temperature showing conformance to ohmic law and semiconducting nature. The scanning electron microscopy (SEM studies were carried out to study the surface and pores structure of the sensor materials. The Brunauer-Emmett-Teller (BET surface adsorption studies showed that the radiuses of the pore sizes were found to be distributed from 10-45A with the pore specific volume being 0.01 cm3 g-1. As the composites having micropores are preferred for humidity sensing properties, the material was subjected to water vapour of different humidity achieved by various water buffers at room temperature and the electrical conductivity was measured as a function of relative humidity (RH. The electrical resistivity drastically decreases with increase in humidity, proving the material to be a good water vapour sensor. The sensitivity factor (Sf was 55000 in the range 5–98% RH, meaning the resistivity falls by a factor of 5.5 x 104 when the atmospheric RH increases from 5

  20. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  1. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    Science.gov (United States)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  2. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  3. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Palacios-Huerta, L.; Aceves-Mijares, M. [Electronics Department, INAOE, Apdo. 51, Puebla, Pue. 72000, México (Mexico); Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Morales-Sánchez, A., E-mail: alfredo.morales@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Unidad Monterrey-PIIT, Apodaca, NL 66628, México (Mexico); Domínguez-Horna, C. [Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra 08193, Barcelona (Spain)

    2016-07-18

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si{sup +} implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  4. Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H{sub 2}-O{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kamenskihs, Vsevolods; Lee, John H.S. [Department of Mechanical Engineering, McGill University, Montreal, Quebec (Canada); Ng, Hoi Dick [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec (Canada)

    2010-09-15

    In this study, the critical energy for direct initiation of spherical detonations in stoichiometric high-pressure hydrogen-oxygen mixtures are measured and investigated to look at the effect of explosion limits on the detonation sensitivity. Results up to an initial pressure of 20 atm are obtained. Experiments are carried out in a spherical bomb and direct initiation is achieved via spark ignition from a high-voltage capacitor discharge. A detailed description of different methods to obtain a good estimate of the correct amount of energy deposited into the mixture used to initiate the detonation, including the calorimeter method and current method, is provided. It is demonstrated that at elevated initial pressure, the second explosion limit effect plays a significant role leading to slow-branching reactions and the detonation sensitivity of hydrogen mixtures is comparable to other common hydrocarbon mixtures at such condition. (author)

  5. Spectrum of hydrodynamic volumes and sizes of macromolecules of linear polyelectrolytes versus their charge density in salt-free aqueous solutions.

    Science.gov (United States)

    Pavlov, Georges M; Dommes, Olga A; Okatova, Olga V; Gavrilova, Irina I; Panarin, Evgenii F

    2018-04-18

    Molecular characteristics of statistical copolymers based on hydrophilic poly(N-methyl-N-vinylacetamide) have been monitored throughout the entire possible range of charge density from 1.5 to 39 mol%. Different trends in the dependence of intrinsic viscosity on the average charge density of polymer chains at minimal ionic strength were revealed. A new parameter, lqq/Abare, describing this behavior was proposed (lqq is the average distance between the neighboring charges along the chain, and Abare is the statistical segment length of a non-charged homologue). For polyelectrolyte chains, this parameter allows the regions of charge density values where electrostatic long-range or short-range interactions dominate to be indicated. Two homologous series of copolymers were characterized by methods of molecular hydrodynamics under conditions of suppressed charge effects. Intrinsic viscosity in salt-free solutions characterizing an individual macromolecule was estimated by a method proposed earlier [Pavlov et al., Russ. J. Appl. Chem., 2006, 79, 1407-1412].

  6. The use of anomalous scattering of uranium for the determination of biological macromolecules structures - From hard to soft X-rays

    International Nuclear Information System (INIS)

    Chesne-Seck, M.L.

    2002-01-01

    In order to solve biological macromolecules structures, structure factor phases must be derived from the intensities diffracted by the crystal. The SAD and the MAD methods make use of variations in scattering factors measured at specific absorption edges of heavy atoms, bound to the protein. The phasing power depends on the occupancy of the binding sites and on the variations of the scattering factors at the absorption edge that is used. With uranyl, numerous sites with low occupancies are usually obtained. We used new colored uranyl complexes, which give higher occupancies, to solve de novo the lysozyme structure and an unknown structure. We have developed the use of the My absorption edge of uranium (λ = 3,5 Angstroms), where a variation of 120 electrons is observed in the scattering factors. With a helium atmosphere to limit the X-rays absorption, we have collected three data sets, on a single image. Data were processed both with 'classical' and specific programs. (author) [fr

  7. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  8. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency

    KAUST Repository

    Li, Yanbo; Zhang, Li; Torres-Pardo, Almudena; Gonzá lez- Calbet, José Marí a Gonzá lez; Ma, Yanhang; Oleynikov, Peter; Terasaki, Osamu; Asahina, Shunsuke; Shima, Masahide; Cha, Dong Kyu; Zhao, Lan; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2013-01-01

    conversion efficiency of 1.5%, which is more than three times higher than that of state-of-the-art single-photon photoanodes. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with Faraday efficiency

  9. Formation of modified TbCu{sub 7} and Th{sub 2}Zn{sub 17} type structures during annealing of mechanical-alloyed Sm-Fe powders

    Energy Technology Data Exchange (ETDEWEB)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H. [Inst. fuer Festkoerper- und Werkstofforschung, Dresden (Germany)

    1998-06-26

    Compounds with the nominal composition near Sm{sub 2}Fe{sub 17} were prepared by mechanical alloying starting from the elemental powders and subsequent annealing at temperatures, T{sub A}, between 600 C and 900 C. For crystal structure investigations of the non-equilibrium phases formed at various temperatures, XRD methods with following Rietveld analysis were applied. For T{sub A} between 600 C and 750 C a modified TbCu{sub 7}-type structure of space group P6/mmm was found, in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(6l) site. Its approximate composition is SmFe{sub 8.8-9.0}. For T{sub A} between 800 C to 900 C a disordered modified Th{sub 2}Zn{sub 17} structure (space group R anti 3m) was found that is formed by introducing additional randomly occupied Fe (6c) and Sm(3a) positions, respectively. The degree of order of Sm atoms and Fe-dumbbells along the c-direction increases with increasing T{sub A}. A decrease in the Fe concentration in the cell is observed for increasing T{sub A}. The completely ordered stoichiometric Th{sub 2}Zn{sub 17}-type structure could not be reached by annealing samples prepared from the ball-milled elemental powders. (orig.) 20 refs.

  10. One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms.

    Science.gov (United States)

    Lapienis, Grzegorz; Penczek, Stanislaw

    2005-01-01

    Synthesis of fully hydrophilic star-shaped macromolecules with different kinds of arms (A(x)B(y)C(z)) based on polyglycidol (PGL, A(x)) and poly(ethylene oxide) (PEO, C(z)) arms and diepoxy compounds (diglycidyl ethers of ethylene glycol (DGEG) or neopentyl glycol (DGNG) in the core, B(y)) forming the core is described. Precursors of arms were prepared by polymerization of glycidol with protected -OH groups. The first-generation stars were formed in the series of consecutive-parallel reactions of arms A(x) with diepoxy compounds (B). These first-generation stars (A(x)B(y)), having approximately O-, Mt+ groups on the cores, were used as multianionic initiators for the second generation of arms (C(z)) built by polymerization of ethylene oxide. The products with M(n) up to 10(5) and having up to approximately 40 arms were obtained. The number of arms (f) was determined by direct measurements of M(n) of the first-generation stars (M(n) of arms A(x) is known), compared with f calculated from the branching index g, determined from R(g) measured with size-exclusion chromatography (SEC) triple detection with TriSEC software. The progress of the star formation was monitored by 1H NMR and SEC. These novel water-soluble stars, having a large number of hydroxyl groups, both at the ends of PEO arms as well as within the PGL arms, can be functionalized and further used for attaching compounds of interest. This approach opens, therefore, a new way of "multiPEGylation".

  11. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules

    Science.gov (United States)

    Lawrence, Marlon G.; Altenburg, Michael K.; Sanford, Ryan; Willett, Julian D.; Bleasdale, Benjamin; Ballou, Byron; Wilder, Jennifer; Li, Feng; Miner, Jeffrey H.; Berg, Ulla B.; Smithies, Oliver

    2017-01-01

    How the kidney prevents urinary excretion of plasma proteins continues to be debated. Here, using unfixed whole-mount mouse kidneys, we show that fluorescent-tagged proteins and neutral dextrans permeate into the glomerular basement membrane (GBM), in general agreement with Ogston's 1958 equation describing how permeation into gels is related to molecular size. Electron-microscopic analyses of kidneys fixed seconds to hours after injecting gold-tagged albumin, negatively charged gold nanoparticles, and stable oligoclusters of gold nanoparticles show that permeation into the lamina densa of the GBM is size-sensitive. Nanoparticles comparable in size with IgG dimers do not permeate into it. IgG monomer-sized particles permeate to some extent. Albumin-sized particles permeate extensively into the lamina densa. Particles traversing the lamina densa tend to accumulate upstream of the podocyte glycocalyx that spans the slit, but none are observed upstream of the slit diaphragm. At low concentrations, ovalbumin-sized nanoparticles reach the primary filtrate, are captured by proximal tubule cells, and are endocytosed. At higher concentrations, tubular capture is saturated, and they reach the urine. In mouse models of Pierson’s or Alport’s proteinuric syndromes resulting from defects in GBM structural proteins (laminin β2 or collagen α3 IV), the GBM is irregularly swollen, the lamina densa is absent, and permeation is increased. Our observations indicate that size-dependent permeation into the lamina densa of the GBM and the podocyte glycocalyx, together with saturable tubular capture, determines which macromolecules reach the urine without the need to invoke direct size selection by the slit diaphragm. PMID:28246329

  12. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences.

    Science.gov (United States)

    Wiig, Helge; Gyenge, Christina; Iversen, Per Ole; Gullberg, Donald; Tenstad, Olav

    2008-05-01

    The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.

  13. The preparation of benzyl esters using stoichiometric niobium (V chloride versus niobium grafted SiO2 catalyst: A comparison study

    Directory of Open Access Journals (Sweden)

    Sandro L. Barbosa

    2018-03-01

    Full Text Available Two solvent free methods of a one-to-one alcohol/acid mol ratio synthesis of benzyl esters of the formic, acetic, benzoic, salicylic, nicotinic, and oxalic acids are described. The stoichiometric reactions used 1.5 mol ratio solid NbCl5 as the reagent and required from two to three hours for completion at room temperature; for the catalytic processes, NbCl5 was grafted directly, at room temperature, onto a silica gel of specific area of 507 m2g−1, produced from construction sand and sodium carbonate, forming a 5.4% Nb w/w SiO2-Nb gel with a specific area of 412 m2g−1. At 10% w/w catalyst/alcohol ratio, this SiO2-Nb catalyst gave similarly very good yields but required from 6 to 9 hours at the reflux temperature of the slurry. The catalyst could be re-used three times. Keyword: Organic chemistry

  14. FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    William J. Lucas

    2012-11-12

    Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes. Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this

  15. Transport of macromolecules and particles at target sites for deposition of air pollutants

    International Nuclear Information System (INIS)

    Crocker, T.T.; Bhalla, D.K.

    1986-01-01

    This study analyzed rats' nasal, tracheal and bronchoalveolar epithelial permeability to macromolecules after they were exposed, in 2- or 4-hour periods of rest or exercise, to ozone (O3) (0.6, 0.8 or 2 ppm), nitrogen dioxide (NO2) (2.5, 6 or 12 ppm) or formaldehyde (10 ppm). Exercise was performed on a treadmill operated at a speed that led to a 2-fold increase in oxygen consumption. Histopathologic and electron microscopic cytochemical and autoradiographic studies were performed to identify the structural aspects of mucosal response. In rats not exposed to pollutants, the quantity of macromolecular tracers (99mTc-DTPA, 125I-BSA) in blood sampled 6, 7, 8, 9 and 10 minutes after a slow 5-minute instillation of comparable quantities of tracer molecules in the lumen of each zone, was lowest in nasal, highest in tracheal, and intermediate in the bronchoalveolar region. Exposure of resting rats to O3 did not affect nasal permeability, but tracheal and bronchoalveolar permeabilities increased by 2-fold 1 hour after the exposure. In rats exposed at rest to O3, tracheal permeability was no longer elevated 24 hours after exposure, but bronchoalveolar permeability remained elevated at 24 hours after exposure and was normal at 48 hours. Exposure during exercise increased the effect of O3 in the trachea and in the bronchoalveolar zone. However, exercise also prolonged the duration of the O3 effect on the tracheal zone from 1 hour to 24 hours and, in the bronchoalveolar zone, from 24 hours to 48 hours. Histologically, focal inflammatory lesions in the alveolar zone were maximal at 48 hours after a 4-hour resting exposure to O3. After exposure during exercise, the area of lung involved by lesions increased 4- to 7-fold above the lesion-bearing area in rats exposed while resting

  16. RF magnetron sputtered La3+-modified PZT thin films: Perovskite phase stabilization and properties

    International Nuclear Information System (INIS)

    Singh, Ravindra; Goel, T.C.; Chandra, Sudhir

    2008-01-01

    In this work, we report the preparation of lanthanum-modified lead zirconate titanate (PLZT) thin films in pure perovskite phase by RF magnetron sputtering. Various deposition parameters such as target-to-substrate spacing, sputtering gas composition, deposition temperature, post-deposition annealing temperature and time have been optimized to obtain PLZT films in pure perovskite phase. The films prepared in pure argon at 100 W RF power without external substrate heating exhibit pure perovskite phase after rapid thermal annealing (RTA) at 700 deg. C for 5 min. The film prepared at 225 deg. C substrate temperature also exhibits pure perovskite phase after RTA at 700 deg. C for 2 min. SIMS depth profile performed on one of the pure perovskite films (RTA at 700 deg. C for 5 min) shows very good stoichiometric uniformity of all elements of PLZT. The surface morphology of the films was examined using SEM and AFM. The dielectric, ferroelectric and electrical properties of the pure perovskite films were also investigated in detail. The remanent polarization for the films annealed at 700 deg. C for 5 and 2 min were found to be 15 and 13.5 μC cm -2 , respectively. Both the films have high DC resistivity of the order of 10 11 Ω cm at the electric field of ∼80 kV cm -1

  17. First-principles study of magnetic properties of stoichiometric and O deficient low-index surfaces of rutile SnO{sub 2} and TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ruilin; Yang, Hui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Wang, Dingdi [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Du, Xiaobo [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China); Yan, Yu, E-mail: yanyu@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012 (China)

    2015-01-15

    In consideration of experimental evidences of O vacancies or/and surface state as the possible origin of d{sup 0} ferromagnetism in SnO{sub 2} and TiO{sub 2}, the electronic structure and magnetic properties of stoichiometric and O deficient (110), (100), (101) and (001) surfaces of rutile SnO{sub 2} and TiO{sub 2} are investigated using first-principles calculations. The calculations show that the stoichiometric (110), (100), (101) and (001) surfaces of rutile SnO{sub 2} and TiO{sub 2} are nonmagnetic. The O vacancy at these low-index surfaces of SnO{sub 2} do not induce magnetic moment due to extended character of 5s and 5p orbitals of the reduced Sn atom, while the vacancy at the low-index surfaces of TiO{sub 2} produce spin splitting defect states in the band gap, resulting in the formation of magnetic moment of 2.0 μ{sub B}. The induced magnetic moment by surface O vacancy is mainly contributed by partially filled 3d orbitals of the reduced Ti atoms. It is noticed that the magnetic coupling between magnetic moments induced by two O vacancies at the low-index surfaces of rutile TiO{sub 2} are long-range ferromagnetic, which can be explained by the overlap of spin density around the common Ti or O atoms among reduced Ti atoms produced by two O vacancies. - Highlights: • Surface O vacancy does not induce magnetic moment in SnO{sub 2}. • Coupling between the moments induced by O vacancies at surfaces of TiO{sub 2} is ferromagnetic. • d{sup 0} ferromagnetism of TiO{sub 2} can be attributed to surface O vacancy.

  18. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.

    Science.gov (United States)

    Hirano, Katsuaki; Nihei, Satoshi; Hasegawa, Hiroki; Haruki, Mitsuru; Hirano, Nobutaka

    2015-07-01

    The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  20. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  1. Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways.

    Science.gov (United States)

    Zhang, Hongzhi R; Huynh, Lam K; Kungwan, Nawee; Yang, Zhiwei; Zhang, Shaowen

    2007-05-17

    The Utah Surrogate Mechanism was extended in order to model a stoichiometric premixed cyclohexane flame (P = 30 Torr). Generic rates were assigned to reaction classes of hydrogen abstraction, beta scission, and isomerization, and the resulting mechanism was found to be adequate in describing the combustion chemistry of cyclohexane. Satisfactory results were obtained in comparison with the experimental data of oxygen, major products and important intermediates, which include major soot precursors of C2-C5 unsaturated species. Measured concentrations of immediate products of fuel decomposition were also successfully reproduced. For example, the maximum concentrations of benzene and 1,3-butadiene, two major fuel decomposition products via competing pathways, were predicted within 10% of the measured values. Ring-opening reactions compete with those of cascading dehydrogenation for the decomposition of the conjugate cyclohexyl radical. The major ring-opening pathways produce 1-buten-4-yl radical, molecular ethylene, and 1,3-butadiene. The butadiene species is formed via beta scission after a 1-4 internal hydrogen migration of 1-hexen-6-yl radical. Cascading dehydrogenation also makes an important contribution to the fuel decomposition and provides the exclusive formation pathway of benzene. Benzene formation routes via combination of C2-C4 hydrocarbon fragments were found to be insignificant under current flame conditions, inferred by the later concentration peak of fulvene, in comparison with benzene, because the analogous species series for benzene formation via dehydrogenation was found to be precursors with regard to parent species of fulvene.

  2. Cogeneration from thermal treatment of selected municipal solid wastes. A stoichiometric model building for the case study on Palermo

    International Nuclear Information System (INIS)

    Lo Mastro, F.; Mistretta, M.

    2004-01-01

    This paper aims to calculate the energetic and environmental effects of an integrated solid waste management system in Palermo, Italy. In particular, the thermal treatment of Municipal Solid Waste (MSW) with energy recovery is assessed. The current characterization at the local scale is taken into account. Two different options of collection are taken into account: (1) unselected wastes; and (2) sorted collection, according to the current Italian regulation. Combustion process is analyzed and the following features are calculated: (1) stoichiometric content of air and air excess; and (2) temperature and enthalpy of flue gases. Energy recovery is performed in the hypothesis of Hirn cycle both with steam condensation to produce only power, and with bleeding cycle for the combined production of power and thermal energy. Total electric efficiency is assumed as representative index of the technological level of the assessed plant. Results show that the thermal treatment of selected MSW, associated with a cogenerative recovery of energy, represents a relevant sustainable strategy of waste valorization as an alternative to fossil fuels

  3. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    Science.gov (United States)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  4. The crystal structure and electronic properties of a new metastable non-stoichiometric BaAl{sub 4}-type compound crystallized from amorphous La{sub 6}Ni{sub 34}Ge{sub 60} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masashi [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Suzuki, Shoichiro [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Ohsuna, Tetsu [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Matsubara, Eiichiro [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Endo, Satoshi [Center for Low Temperature Science, Tohoku University, Sendai, Katahira 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan)

    2004-11-17

    A new metastable La-Ge-Ni ternary BaAl{sub 4}-type (ThCr{sub 2}Si{sub 2}-type) compound, of which the space group is I4/mmm is synthesized. It is obtained by a polymorphic transformation from an La{sub 6}Ni{sub 34}Ge{sub 60} amorphous alloy on crystallizing. The formula of the compound is (La{sub 0.3}Ge{sub 0.7})(Ni{sub 0.85}Ge{sub 0.15}){sub 2}Ge{sub 2}. This indicates that it is highly non-stoichiometric compared to the stoichiometric LaNi{sub 2}Ge{sub 2}. It is found that the c-axis lattice parameter of this compound is much longer than that of LaNi{sub 2}Ge{sub 2}. It should be noted that the longer c-axis unit cell parameter is attributable only to the longer interlayer distance between Ge site and Ni site layers. The temperature dependences of electrical resistivity and thermoelectric power of the (La{sub 0.3}Ge{sub 0.7})(Ni{sub 0.85}Ge{sub 0.15}){sub 2}Ge{sub 2} compound and La{sub 6}Ni{sub 34}Ge{sub 60} amorphous alloy are also clarified. The comparison of these electronic properties between the two materials indicates that sp-electrons mainly contribute to the density of states around the Fermi level of this compound.

  5. Smectite flocculation structure modified by Al13 macro-molecules--as revealed by the transmission X-ray microscopy (TXM).

    Science.gov (United States)

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2010-05-01

    The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Chemical modifications of Sterculia foetida L. oil to branched ester derivatives

    NARCIS (Netherlands)

    Manurung, Robert; Daniel, Louis; van de Bovenkamp, Hendrik H.; Buntara, Teddy; Maemunah, Siti; Kraai, Gerard; Makertihartha, I. G. B. N.; Broekhuis, Antonius A.; Heeres, Hero J.

    An experimental study to modify Sterculia foetida L. oil (STO) or the corresponding methyl esters (STO FAME) to branched ester derivatives is reported. The transformations involve conversion of the cyclopropene rings in the fatty acid chains of STO through various catalytic as well as stoichiometric

  7. Ecological Stoichiometric Characteristics of Two Typical Plantations in the Karst Ecosystem of Southwestern China

    Directory of Open Access Journals (Sweden)

    Danbo Pang

    2018-01-01

    Full Text Available Reforestation has been widely adopted to restore soil fertility and ecosystem service function in the rocky desertification region of southwestern China. However, there has been limited research concerning the stoichiometry of carbon (C, nitrogen (N, and phosphorus (P and nutrient resorption rate of plantations in karst ecosystems. In this study, we selected plantations of Pinus yunnanensis Franch. (PY and Eucalyptus maideni F. Muell. (EM in Yunnan Province. The C, N, and P concentrations and the C:N:P stoichiometry in different soil layers (0–10 cm, 10–20 cm, and 20–30 cm were examined. The nutrient limitation and nutrient resorption efficiency were also analyzed. The leaf C and N concentrations in the PY plantation were higher than that in the EM plantation; the P concentration demonstrated the opposite trend, both in green and senesced leaves. Soil C, N, and P concentrations in the EM plantation were much greater than in the PY plantation at all three depths and decreased with the depth of the soil. In addition, the high ratios of C:P, N:P, C:Available P, and N:Available P in soil coupled with the ratios of N:P in leaves indicate that the EM plantation has a greater P deficiency than the PY plantation. In the EM plantation, the relatively low P concentrations in senesced leaves indicates efficient TP (Total phosphorus resorption, which highlights that the high reuse proficiency of P could have favored moderating P limitation in the karst ecosystem. This research aids in understanding the stoichiometric characteristics that mediate forest properties, and provides a basis for management of vegetation in karst ecosystems.

  8. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    Science.gov (United States)

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  9. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    Science.gov (United States)

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Photodegradation of poly[methyl(phenyl)silylene] in the presence of modifying substances

    Czech Academy of Sciences Publication Activity Database

    Kochalska, Anna; Nožár, Juraj; Nešpůrek, Stanislav; Peter, Jakub

    2010-01-01

    Roč. 295, č. 1 (2010), s. 71-76 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA AV ČR KAN400720701; GA AV ČR IAA100100622; GA MŠk OC 138 Institutional research plan: CEZ:AV0Z40500505 Keywords : lithography * photodegradation * polymer Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. Gout: a review of non-modifiable and modifiable risk factors

    Science.gov (United States)

    MacFarlane, Lindsey A.; Kim, Seoyoung C.

    2014-01-01

    Gout is a common inflammatory arthritis triggered by the crystallization of uric acid within the joints. Gout affects millions worldwide and has an increasing prevalence. Recent research has been carried out to better qualify and quantify the risk factors predisposing individuals to gout. These can largely be broken into non-modifiable risk factors such as sex, age, race, and genetics, and modifiable risk factors such as diet and lifestyle. Increasing knowledge of factors predisposing certain individuals to gout could potentially lead to improved preventive practices. This review summarizes the non-modifiable and modifiable risk factors associated with development of gout. PMID:25437279

  12. Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?

    Science.gov (United States)

    Brandner, Diana L.

    2002-01-01

    Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)

  13. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    Science.gov (United States)

    Krishnan, M.

    2017-05-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or

  14. STUDY OF SURFACE MODIFIED POLYMERS IN THE MODIFICATION OF NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available The comparative study of change of surface tension of solutions of some commercial rubbers before and after thermal ageing technique du-Nui, analyzed the features of change of surface tension of solutions of various rubbers in the presence of a mixture of fullerenes. Calculations of the Gibbs energy and the analysis of the obtained data to predict the behavior of polymer systems when changes are made to mix of fullerenes in a wide concentration range. When comparing the results of changes in Gibbs energy and the surface tension in fluids rubbers shown that mentioned above in solutions of elastomers aged, than the control. This fact confirms the initial chapeau of physic-chemical interactions of molecules fullerenes by segments of the Kuna and end groups of the polymer chains, as it is known that when thermal-oxidative degradation of rubbers, respectively the number of segments of the Kuna and branched loose ends of macromolecules that are free to react with fullerenes in solution, free from spatial constraints. A comparative analysis of the interaction of rubbers with different chemical composition with double branches has shown that it is easier to just react and has minimum energy polibutadien interaction that has to do with lack of branching and no radicals in its structure and in the backbone chain. The maximum energy of interaction with Fullerenes have SBS rubber because it has large styrene blocks in the main polymer chain that causes the spatial constraints to direct contact with fullerene molecules, you can assume that the interaction is only low-molecular fraction of Fullerenes mixture, possessing the necessary dimensions. As a result of the study shows that the application of the method of separation ring (Du-Nui allows you to predict the properties of rubber with modified nanomaterial’s with minimal labor costs.

  15. Investigation of the optical properties of novel organic macromolecules for solar cell applications

    Science.gov (United States)

    Adegoke, Oluwasegun Oluwasina

    The search for renewable energy sources to replace fossil fuel has been a major research focus in the energy sector. The sun, with its vast amount of energy, remains the most abundant and ubiquitous energy source that far exceeds the world energy demand. The ability to effectively capture and convert energy from the sun in the form of photons will be the key to its effective utilization. Organic macromolecules have tremendous potentials to replace and out-perform existing materials, due to their low-cost, ease of tunability, high absorption coefficient and "green" nature. In this dissertation, spectroscopic techniques of steady state absorption and time-resolved fluorescence spectroscopy were used to show the improved absorption of the oligothiophene-functionalized ZnPc through ultrafast energy transfer. ZnPc is known for its chemical and thermal stability. The power conversion efficiency (PCE) in ZnPc-based solar devices is however, very low because of the poor absorption of ZnPc in the 300 - 550 nm region of the solar spectrum. Oligothiophenes have good absorption in the spectral region where the absorption of ZnPc is poor. Other groups of organic compounds that have gained prominence in the study for the design of efficient active materials for photovoltaic cells are the polymers. In the dissertation, different factors which can affect the performance of organic polymers in photovoltaics systems were investigated and analyzed. The effects of the alteration of conjugation, donor-acceptor groups, heteroatoms and alkyl side chains on the photophysical properties and ultimately the performance of organic polymers in organic photovoltaics were investigated. The different effects were investigated using ultrafast spectroscopic techniques which are capable of providing insight of fluorescence decay dynamics at very short times in a time scale of femtosecond. The electronic structure calculations of the polymers were carried out to provide further evidence to the

  16. The Stoichiometric Interaction of the Hsp90-Sgt1-Rar1 Complex by CD and SRCD Spectroscopy

    Directory of Open Access Journals (Sweden)

    Giuliano Siligardi

    2018-01-01

    Full Text Available While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule and an asymmetric complex (Sgt11-Hsp902-Rar11. The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation.

  17. Ferroelectric and piezoelectric properties of non-stoichiometric Sr{sub 1-x}Bi{sub 2+2x/3}Ta{sub 2}O{sub 9} ceramics prepared from sol-gel derived powders

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajni [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Mansingh, Abhai [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)]. E-mail: kondepudysreenivas@rediffmail.com

    2004-09-15

    Ceramic compositions of strontium bismuth tantalate (SBT) [Sr{sub 1-x}Bi{sub 2+2x/3}Ta{sub 2}O{sub 9}] with x = 0.0, 0.15, 0.30, 0.45 prepared from a sol-gel process have been studied. Stoichiometric and non-stoichiometric phases stable within the series have been investigated for their structural, dielectric, ferroelectric, and piezoelectric properties. Sintering at 1000 deg. C produces a single homogeneous phase up to x = 0.15. With x > 0.15 an undesirable BiTaO{sub 4} phase is detected and a higher sintering temperature (1100 deg. C) prevents the formation of this phase. The ferroelectric to paraelectric phase transition temperature (T{sub c}) increases linearly from 325 to 455 deg. C up to x = 0.30, and with x > 0.30, it tends to deviate from the linear behavior. At x = 0.45 a broad and a weak transition is observed and the peak value of dielectric constant ({epsilon}'{sub max}) is significantly reduced. The piezoelectric coefficient (d{sub 33}), remnant polarization (2P{sub r}), and coercive field (2E{sub c}) values increase linearly up to x = 0.30. The degradation in the electrical properties for x > 0.30 are attributed to the presence of undesirable BiTaO{sub 4} phase, which is difficult to identify by X-ray powder diffraction analysis (XRD) due to the close proximity of the peaks positions of BiTaO{sub 4} and the SBT phase.

  18. Stoichiometric control for heteroepitaxial growth of smooth ɛ-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition

    Science.gov (United States)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2017-07-01

    Epitaxial ɛ-Ga2O3 thin films with smooth surfaces were successfully grown on c-plane AlN templates by mist chemical vapor deposition. Using X-ray diffraction 2θ-ω and φ scans, the out-of-plane and in-plane epitaxial relationship was determined to be (0001) ɛ-Ga2O3 [10\\bar{1}0] ∥ (0001)AlN[10\\bar{1}0]. The gallium/oxygen ratio was controlled by varying the gallium precursor concentration in the solution. While scanning electron microscopy showed the presence of large grains on the surfaces of the films formed for low concentrations of oxygen species, no large grains were observed under stoichiometric conditions. Cathodoluminescence measurements showed a deep-level emission ranging from 1.55-3.7 eV; however, no band-edge emission was observed.

  19. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4

    Science.gov (United States)

    Fente, Antón; Meier, William R.; Kong, Tai; Kogan, Vladimir G.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2018-04-01

    We use a scanning tunneling microscope to study the superconducting density of states and vortex lattice of single crystals of CaKFe4As4 . This material has a critical temperature of Tc=35 K, one of the highest among stoichiometric iron based superconductors (FeBSCs), and is comparable to Tc found near optimal doping in other FeBSCs. We observe quasiparticle scattering from defects with a pattern related to interband scattering between zone centered hole sheets. We measure the tunneling conductance in vortex cores and find a peak due to Caroli-de Gennes-Matricon bound states. The peak is located above the Fermi level, showing that CaKFe4As4 is a clean superconductor with vortex core bound states close to the so-called extreme quantum limit. We identify locations where the superconducting order parameter is strongly suppressed due to pair breaking. Vortices are pinned at these locations, and the length scale of the suppression of the order parameter is of order of the vortex core size. As a consequence, the vortex lattice is disordered up to 8 T.

  20. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms.

    Science.gov (United States)

    Bagryantseva, Yana; Novotna, Bozena; Rossner, Pavel; Chvatalova, Irena; Milcova, Alena; Svecova, Vlasta; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2010-11-10

    DNA integrity was investigated in the lymphocytes of 50 bus drivers, 20 garagemen and 50 controls using the comet assay with excision repair enzymes. In parallel, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 15-F(2t)-isoprostane levels in the urine and protein carbonyl levels in the plasma were assessed as markers of oxidative damage to DNA, lipids and proteins. Exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and volatile compounds was measured by personal samplers for 48 and 24h, respectively, before the collection of biological specimens. Both exposed groups exhibited a higher levels of DNA instability and oxidative damage to biological macromolecules than the controls. The incidence of oxidized lesions in lymphocyte DNA, but not the urinary levels of 8-oxodG, correlated with exposure to benzene and triglycerides increased this damage. Oxidative damage to lipids and proteins was associated with exposure to cPAHs and the lipid peroxidation levels positively correlated with age and LDL cholesterol, and negatively with vitamin C. The carriers of at least one variant hOGG1 (Cys) allele tended to higher oxidative damage to lymphocyte DNA than those with the wild genotype, while XPD23 (Gln/Gln) homozygotes were more susceptible to the induction of DNA strand breaks. In contrast, GSTM1 null variant seemed to protect DNA integrity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  2. Ordering and structural vacancies in non-stoichiometric Cu-Al γ brasses

    International Nuclear Information System (INIS)

    Kisi, E.H.; Browne, J.D.

    1991-01-01

    γ-Brass structures are based on the cubic packing of 26-atom clusters which have, as concentric subunits, an inner and an outer tetrahedron (IT, OT), an octahedron (OH) and a cuboctahedron (CO). Cu 9 Al 4 [M r = 679.37, P43m, a = 8.7046(1) A, V = 659.5 A 3 , Z = 4, D x = 6.846 Mg m -3 , R wp = 0.051, R B = 0sun017 for 238 powder reflections] is the stoichiometric γ brass of the Cu-Al system and contains two clusters (A, B) per unit cell. Al atoms occupy a 4(e) (IT) site in cluster A and a 12(i) (CO) site in cluster B. Cu atoms occupy the remaining 4(e) (OT), 6(f) (OH) and 12(i) (CO) sites of cluster A and the two 4(e) (IT, OT) and a 6(g) (OH) site of cluster B. The structure has considerable solubility for Al and this paper contains a systematic neutron powder diffraction study of the changes in the Cu 9 Al 4 structure at 295 K (λ = 1.376 A) and 77 K(λ = 1.500 A) as Al is added. The structure was found to remain cubic for compositions Cu 8.93 Al 4.08 , Cu 8.83 , Al 4.17 , Cu 8.75 Al 4.25 and Cu 8.58 Al 4.42 . At Cu 8.30 Al 4.58 the structure was slightly distorted to an undetermined symmetry. For Cu 8.03 Al 4.68 and Cu 7.55 Al 4.80 the structure was found to be rhombohedral [M r = 636.57, R3m, a = 8.7066(1) A, α = 89.74(1) deg, V = 660.0(1) A 3 , Z = , D x = 6.406, D m = 6.41 Mg m -3 , R wp = 0.064, R B = 0.025 for 702 reflections; and M r = 609.31, R3m, a = 8.6884(1) A, α = 89.78(1) deg, V = 655.9(1) A 3 , Z = 4, D x = 6.170, D m = 6.18 Mg m -3 , R wp = 0.064, R B = 0.027 for 789 reflections, respectively]. The non-cubic structures contain sufficient structural vacancies to maintain a classical valence content of 88 electrons per unit cell. Refined structures are presented for all of the above compositions, except Cu 8.30 Al 4.58 , and the results discussed in terms of current γ-brass stability theories. (orig.)

  3. Modified Allergens for Immunotherapy.

    Science.gov (United States)

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  4. Modification of oxide films by ion implantation: TiO2-films modified by Ti+ and O+ as example

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Leitner, K.; Meyer, O.

    1988-01-01

    Oxide films can be modified by ion implantation. Changes in the electrochemical properties of the films are due to the deposition profile of the implanted ion, ie doping and stoichiometric changes, as well as to the radiation damage. The latter is due to the formation of Frenkel defects and at high concentrations to a complete amorphization of the oxide film. TiOsub(x)-films with 1 + - and O + -ions into anodic oxide films on titanium. The electrode capacity shows always the behaviour of an n-type semiconductor with an almost constant flatband potential but a strong maximum donor concentration at about 3% Ti + concentration. Oxygen implantation, on the other hand, causes a small increase of donor concentration only at high concentration of O + . Electron transfer reactions show strong modifications of the electronic behaviour of the oxide film with a maximum again at 3% titanium. Photocurrent spectra prove the increasing amorphization and show interband states 2.6 eV above the VB or below the CB. During repassivation measurements at various potentials different defects formed by Ti + - and O + -implantation become mobile. A tentative model of the band structure is constructed which takes into account the interband states due to localised Ti + - and O + -ions. The modification of ion implanted oxide films is compared with the effects of other preparation techniques. (author)

  5. Avaliação da interação macromolécula/íon Zn+2 em meio aquoso: poli(acrilamida-co-ácido acrílico e taninos Estimation of the macromolecules/zinc ion interaction in the aqueous solution: poly(acrylamide-co-acrylic acid and tannins

    Directory of Open Access Journals (Sweden)

    Márcia D. Clarisse

    2000-09-01

    Full Text Available Este trabalho visa o estudo da interação entre polímeros sintéticos e produtos naturais à base de taninos com o íon zinco (Zn+2 em meio aquoso para sua utilização na remoção de metais em efluentes. Uma série de copolímeros poli(acrilamida-co-ácido acrílico de diferentes composições e homopolímeros de acrilamida e de ácido acrílico foram preparados, assim como, taninos comerciais foram utilizados como recebidos e purificados por extração. Uma metodologia de avaliação da eficiência de interação da macromolécula com o íon Zn+2 foi desenvolvida baseada em curva padrão de intensidade de absorção na região do ultravioleta-visível (UV-VIS em função da concentração do complexo formado, utilizando colorimetria. A capacidade de interação com o íon zinco foi ligeiramente maior para os polímeros sintéticos porém o produto natural tem a vantagem de apresentar um custo mais baixo.The aim of this work was to evaluate the interaction between natural and synthetic macromolecules with the zinc ion (Zn+2 in aqueous solution. Polyacrylamide, poly(acrylic acid and poly(acrylamide-co-acrylic acid were prepared and natural products (tannins were extracted and purified from commercial products. The methodology to evaluate the macromolecule/zinc ion interaction was based on colorimetry by using a standard curve. The interaction efficiency was slightly larger for the synthetic macromolecules when compared to the natural one. Nevertheless, the tanning has lower cost and its use could be recommended.

  6. The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components.

    Science.gov (United States)

    Wiig, Helge; Gyenge, Christina C; Tenstad, Olav

    2005-09-01

    Knowledge of macromolecular distribution volumes is essential in understanding fluid transport within normal and pathological tissues. In this study in vivo we determined the distribution volumes of several macromolecules, including one monoclonal antibody, in tumours and tested whether charges associated with the tumour extracellular matrix influence their available volumes. Steady state levels of the monoclonal antibody trastuzumab (Herceptin) (pI = 9.2), IgG (pI = 7.6) as well as native (pI = 5.0) and cationized albumin (pI = 7.6) were established in rats bearing dimethylbenzanthracene (DMBA)-induced mammary tumours by continuous infusion using osmotic minipumps. After a 5-7 day infusion period, the rats were nephrectomized and the extracellular volume was determined with 51Cr-labelled EDTA. Plasma volumes were measured with 125I-labelled human serum albumin or rat IgM in a separate series. Steady state concentrations of probes were determined in the interstitial fluid that was isolated by centrifugation from tumours or by post mortem wick implantation in the back skin. Calculations were made for interstitial fluid volume (Vi), along with the available (Va/Vi) and excluded (Ve/Vi) relative interstitial volume fractions. The Ve/Vi for the positively charged trastuzumab in tumours averaged 0.29 +/- 0.03 (n = 16), a value which was significantly lower than the corresponding one for IgG of 0.36 +/- 0.02 (n = 16). Native albumin was excluded from 38% of the tumour interstitial fluid, whereas cationization of albumin reduced the excluded volume by approximately 50%. Our experiments suggest that the tumour interstitium acts as a negatively charged matrix and is an important factor in determining the macromolecular distribution volume.

  7. On Modified Bar recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    Modified bar recursion is a variant of Spector's bar recursion which can be used to give a realizability interpretation of the classical axiom of dependent choice. This realizability allows for the extraction of witnesses from proofs of forall-exists-formulas in classical analysis. In this talk I...... shall report on results regarding the relationship between modified and Spector's bar recursion. I shall also show that a seemingly weak form of modified bar recursion is as strong as "full" modified bar recursion in higher types....

  8. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott

    2016-03-24

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane-oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half of the Chapman-Jouguet detonation velocity (DCJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3-2.0 m or 317-488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 DCJ and 0.95 DCJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas

  9. The Tlo Proteins Are Stoichiometric Components of Candida albicans Mediator Anchored via the Med3 Subunit

    Science.gov (United States)

    Zhang, Anda; Petrov, Kostadin O.; Hyun, Emily R.; Liu, Zhongle; Gerber, Scott A.

    2012-01-01

    The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo proteins in addition to the Mediator-associated population. Coexpression and copurification of Tloα12 and caMed3 in Escherichia coli established a direct physical interaction between the two proteins. We have also made a C. albicans med3Δ/Δ strain and purified an intact Mediator from this strain. The analysis of the composition of the med3Δ Mediator shows that it lacks a Tlo subunit. Regarding Mediator function, the med3Δ/Δ strain serves as a substitute for the difficult-to-make tloΔ/Δ C. albicans strain. A potential role of the TLO and MED3 genes in virulence is supported by the inability of the med3Δ/Δ strain to form normal germ tubes. This study of caMediator structure provides initial clues to the mechanism of action of the Tlo genes and a platform for further mechanistic studies of caMediator's involvement in gene regulatory patterns that underlie pathogenesis. PMID:22562472

  10. Impact of higher n-butanol addition on combustion and performance of GDI engine in stoichiometric combustion

    International Nuclear Information System (INIS)

    Chen, Zheng; Yang, Feng; Xue, Shuo; Wu, Zhenkuo; Liu, Jingping

    2015-01-01

    Highlights: • Effects of 0–50% n-butanol addition on GDI engine are experimentally studied. • Higher n-butanol fractions increase combustion pressure and fasten burning rate. • Higher n-butanol fractions increase BSFC but improve BTE. • Higher n-butanol fractions enhance combustion stability but increase knock intensity. • Higher n-butanol fractions reduce exhaust temperature and NOx emissions. - Abstract: An experimental study was carried out on a turbocharged gasoline direct injection (GDI) engine fueled by n-butanol/gasoline blends. Effects of n-butanol percents (15%, 30%, and 50%) on combustion and performance of the engine operating on stoichiometric combustion condition were discussed and also compared with pure gasoline in this paper. The results indicate that n-butanol/gasoline blends increase combustion pressure and pressure rise rate, fasten burning rate, and shorten ignition delay and combustion duration, as compared to pure gasoline. Moreover, these trends are impacted more evidently with increased n-butanol fraction in the blends. In addition, higher n-butanol percent of gasoline blends increase combustion temperature but decrease the temperature in the later stage of expansion stroke, which contributes to the control of exhaust temperature at high-load. With regards to engine performance, higher n-butanol percent in the blends results in increased brake specific fuel consumption (BSFC) and higher brake thermal efficiency (BTE). However, higher n-butanol addition helps to improve combustion stability but shows slightly higher knock possibility in high-load. In that case, the knock trend could be weakened by retarding ignition timing. Moreover, higher n-butanol addition significantly decreases NOx emissions, but it increases CO emissions obviously.

  11. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    Science.gov (United States)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  12. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene.

    Science.gov (United States)

    Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu

    2009-03-14

    A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.

  13. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.

    Science.gov (United States)

    Getov, Ivan; Petukh, Marharyta; Alexov, Emil

    2016-04-07

    Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/.

  14. Characterization of modified clinoptilolite

    International Nuclear Information System (INIS)

    Novosad, J.; Jandl, J.; Woollins, J.D.

    1992-01-01

    Samples of clinoptilolite were modified using insoluble hexacyanoferrate from aqueous solution. The modified samples were characterized by elemental analysis, powder X-ray diffraction, solid state NMR and vibrational spectroscopy. The sorption properties of modified clinoptilolite were studied, too. Higher affinity for 137 Cs sorption in comparison with the natural clinoptilolite has been proved. (author) 5 refs.; 3 figs.; 2 tabs

  15. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhao, Guo; Yin, Yuan; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    Highlights: • A MWCNT-EBP-NA composite film modified GCE was fabricated and characterized. • The GCE modified with the MWCNT-EBP-NA composite film exhibited excellent performance in the analysis of Cd(II) and Pb(II) by SWASV. • The Cd(II) and Pb(II) detection limits of the developed electrode were approximately 0.06 μg/L and 0.08 μg/L, respectively. • Bi/MWCNT-EBP-NA/GCE was successfully used to determine metal ions in soil samples. - Abstract: In this study, a multi-walled carbon nanotube (MWCNT)-emeraldine base polyaniline (EBP)-Nafion (NA) composite modified glassy carbon electrode (MWCNT-EBP-NA/GCE) was prepared and used for the sensitive detection of trace Pb(II) and Cd(II), with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), by square wave anodic stripping voltammetry (SWASV). A bismuth film was prepared through the in situ plating of bismuth on the MWCNT-EBP-NA/GCE. The morphologies and electrochemical properties of the modified electrode were characterized by SWASV, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The parameters affecting the stripping current response were investigated and optimized. The formed MWCNTs in the composite film enlarged the specific surface area of the electrode and significantly promoted electron transferring, and the formed polyaniline (PANI) enhanced the ion-exchange capacity and prevented the macromolecules in real samples from absorbing onto the surface of the electrode. The presence of NA effectively increased the stability and adhesion of the composite film, enhanced the cation-exchange capacity and improved the ability to preconcentrate metal ions. Under the optimized conditions, a linear range of 1.0 to 50.0 μg/L was achieved for both metal ions, with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), offering good repeatability. Finally, the Bi/MWCNT-EBP-NA/GCE was used for the

  16. Ab initio simulation of structure and surface energy of low-index surfaces of stoichiometric α-Fe2O3

    Science.gov (United States)

    Stirner, Thomas; Scholz, David; Sun, Jizhong

    2018-05-01

    The structure and surface energy of a series of low-index surfaces of stoichiometric α-Fe2O3 (hematite) are investigated using the periodic Hartree-Fock approach with an a posteriori correction of the correlation energy. The simulations show that, amongst the modeled facets, (01 1 bar2) and (0001) are the most stable surfaces of hematite, which is consistent with the fact that the latter are the dominant growth faces exposed on natural α-Fe2O3. The Fe-terminated (0001) surface is shown to exhibit a large relaxation of the surface atoms. It is argued that this arises mainly due to the fact that the surface cations are located opposite empty cation sites in the filled-filled-unfilled cation sequence along the c-axis. In contrast, the (01 1 bar2) plane cuts the crystal through a plane of empty cation sites, thus giving rise to relatively small relaxations and surface energies. The small relaxations and concomitant exposure of five-coordinate cation sites may be important for the catalytic activity of hematite. The simulations also show that the relative stability of the investigated surfaces changes after a full lattice relaxation with the (0001) and (11 2 bar6) facets relaxing disproportionately large. Wherever possible, the simulations are compared with previous simulation data and experimental results. A Wulff-Gibbs construction is also presented.

  17. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    International Nuclear Information System (INIS)

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-01-01

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  18. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  19. Novel strategy for immunomodulation: Dissolving microneedle array encapsulating thymopentin fabricated by modified two-step molding technology.

    Science.gov (United States)

    Lin, Shiqi; Cai, Bingzhen; Quan, Guilan; Peng, Tingting; Yao, Gangtao; Zhu, Chune; Wu, Qiaoli; Ran, Hao; Pan, Xin; Wu, Chuanbin

    2018-01-01

    Thymopentin (TP5) is commonly used in the treatment for autoimmune diseases, with a short plasma half-life (30s) and a long treatment period (7 days to 6 months). It is usually administrated by syringe injection, resulting in compromised patient compliance. Dissolving microneedle array (DMNA) offers a superior approach for transdermal delivery of biological macromolecules, as it allows painless penetration through the stratum corneum and generates minimal biohazardous waste after dissolving in the skin. Despite recent advances in DMNA as a novel approach for transdermal drug delivery, problem of insufficient mechanical strength remains to be solved. In this study, TP5-loaded DMNA (TP5-DMNA) was uniquely developed using a modified two-step molding technology. The higher mechanical strength was furnished by employing bovine serum albumin (BSA) as a co-material to fabricate the needles. The obtained TP5-DMNA containing BSA displayed better skin penetration and higher drug loading efficiency than that without BSA. The in vivo pharmacodynamics study demonstrated that TP5-DMNA had comparative effect on immunomodulation to intravenous injection of TP5, in terms of ameliorating the CD4+/CD8+ ratio, SOD activity and MDA value to the basal level. Only mild irritation was observed at the site of administration. These results suggest that the novel TP5-DMNA utilizing BSA provides an alternative approach for convenient and safe transdermal delivery of TP5, which is a promising administration strategy for future clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electronic tuning of the transport properties of off-stoichiometric PbxSn1−xTe thermoelectric alloys by Bi2Te3 doping

    International Nuclear Information System (INIS)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-01-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb x Sn 1−x Te alloys by tuning of Bi 2 Te 3 doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb 0.5 Sn 0.5 Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected

  1. Phase Velocity Estimation of a Microstrip Line in a Stoichiometric Periodically Domain-Inverted LiTaO3 Modulator Using Electro-Optic Sampling Technique

    Directory of Open Access Journals (Sweden)

    Shintaro Hisatake

    2008-01-01

    Full Text Available We estimate the phase velocity of a modulation microwave in a quasi-velocity-matched (QVM electro-optic (EO phase modulator (QVM-EOM using EO sampling which is accurate and the most reliable technique for measuring voltage waveforms at an electrode. The substrate of the measured QVM-EOM is a stoichiometric periodically domain-inverted LiTaO3 crystal. The electric field of a standing wave in a resonant microstrip line (width: 0.5 mm, height: 0.5 mm is measured by employing a CdTe crystal as an EO sensor. The wavelength of the traveling microwave at 16.0801 GHz is determined as 3.33 mm by fitting the theoretical curve to the measured electric field distribution. The phase velocity is estimated as vm=5.35×107 m/s, though there exists about 5% systematic error due to the perturbation by the EO sensor. Relative dielectric constant of εr=41.5 is led as the maximum likelihood value that derives the estimated phase velocity.

  2. Shifted-modified Chebyshev filters

    OpenAIRE

    ŞENGÜL, Metin

    2013-01-01

    This paper introduces a new type of filter approximation method that utilizes shifted-modified Chebyshev filters. Construction of the new filters involves the use of shifted-modified Chebyshev polynomials that are formed using the roots of conventional Chebyshev polynomials. The study also includes 2 tables containing the shifted-modified Chebyshev polynomials and the normalized element values for the low-pass prototype filters up to degree 6. The transducer power gain, group dela...

  3. Microbiological method for purification of radioactive and chemically polluted water from the Ronneburg sanitation site. Pt. 1. Laboratory method. Final report of the preliminary phase

    International Nuclear Information System (INIS)

    Glombitza, F.; Hummel, A.; Loeffler, R.

    1994-01-01

    This project investigated the depolymeriying/modifying potential of fungi of different ecophysiological groups for native coals and selected coal model structures (with characteristic coal structure elements: Condensed aromatic hydrocarbons, ether bridges, short aliphatic sections between aromatic structure). Fungi were investigated because they are the only systems that can efficiently attack aromatic macromolecules (e.g. lignine) by means of extracellular enyume systems. (orig./SR) [de

  4. Modified SEAGULL

    Science.gov (United States)

    Salas, M. D.; Kuehn, M. S.

    1994-01-01

    Original version of program incorporated into program SRGULL (LEW-15093) for use on National Aero-Space Plane project, its duty being to model forebody, inlet, and nozzle portions of vehicle. However, real-gas chemistry effects in hypersonic flow fields limited accuracy of that version, because it assumed perfect-gas properties. As a result, SEAGULL modified according to real-gas equilibrium-chemistry methodology. This program analyzes two-dimensional, hypersonic flows of real gases. Modified version of SEAGULL maintains as much of original program as possible, and retains ability to execute original perfect-gas version.

  5. The oxygen potential of near- and non-stoichiometric urania-25 mol% plutonia solid solutions: a comparison of thermogravimetric and galavanic cell measurements

    International Nuclear Information System (INIS)

    Woodley, R.E.; Adamson, M.G.

    1979-01-01

    To resolve discrepancies between the existing low temperature ΔGsub(0 2 )(mean) data for solid solution mixed (U, Pu)-oxide nuclear fuel material, additional measurements have been performed on Usub(0.75)Pusub(0.25) employing a combined thermogravimetric (TGA) and solid-electrolyte galvanic cell technique. These measurements, which were performed at temperatures between 800 and 1000 0 C, and for O:M ratios in the range 1.940 to 2.028, are reasonably self-consistent and show good agreement with the results of previous TGA measurements. However, they do not corroborate the earlier EMF cell measurements of Markin and McIver. (1967). Possible explanations for errors in these earlier EMF cell results are examined. The new results indicate that the ΔGsub(O 2 )(mean) of stoichiometric mixed oxide at typical outer surface fuel temperature is close to -100 kcal/mol 0 2 (-419 kJ/mol O 2 ). Attempts have been made to fit the new ΔGsub(O 2 )(mean) data to two equations derived from recent defect models, and it is shown that neither equation accurately represents the experimental psub(O 2 ) - x data over more than a short range of x. (Auth.)

  6. 18FFPyKYNE, a fluoro-pyridine-based alkyne reagent designed for the fluorine-18 labelling of macromolecules using click chemistry

    International Nuclear Information System (INIS)

    Kuhnast, B.; Hinnen, F.; Tavitian, B.; Dolle, F.; Tavitian, B.

    2008-01-01

    [ 18 F]FPyKYNE (2-fluoro-3-pent-4-yn-1-yloxy-pyridine) is a novel fluoro-pyridine-based structure, designed for the fluorine-18 labelling of macromolecules using copper-catalysed Huisgen 1,3-dipolar cycloaddition (click chemistry). FPyKYNE (non-labelled as reference), as well as the 2-bromo, 2-nitro and 2-trimethylammonium analogues (as precursors for labelling with fluorine-18), was synthesized in 44, 95, 60 and 41%, respectively, from commercially available 5-chloro-pent-1-yne and the appropriate 2-substituted-3-hydroxypyridines. [ 18 F]FPyKYNE was synthesized in one single radiochemical step by reaction of no-carrier-added K[ 18 F]F-Kryptofix 222 (DMSO, 165 degrees C, 3-5 min) followed by C-18 SepPak cartridge pre-purification and finally semi-preparative HPLC purification on a Hewlett Packard SiO 2 Zorbax (R) Rx-SIL. Using the 2-nitropyridine or the pyridin-2-yl-trimethylammonium trifluoro-methanesulphonate precursor for labelling (30 and 10 μ mol, respectively), incorporation yields up to 90% were observed and 7.0-8.9 GBq (190-240 mCi) of [F-18]FPyKYNE ([ 18 F]-1) could be isolated within 60-70 min (HPLC purification included), starting from a 37.0 GBq (1.0 Ci) [ 18 F]fluoride batch (overall decay-corrected and isolated yields: 30-35%). (authors)

  7. Genetically modified foods and allergy.

    Science.gov (United States)

    Lee, T H; Ho, H K; Leung, T F

    2017-06-01

    2015 marked the 25th anniversary of the commercial use and availability of genetically modified crops. The area of planted biotech crops cultivated globally occupies a cumulative two billion hectares, equivalent to twice the land size of China or the United States. Foods derived from genetically modified plants are widely consumed in many countries and genetically modified soybean protein is extensively used in processed foods throughout the industrialised countries. Genetically modified food technology offers a possible solution to meet current and future challenges in food and medicine. Yet there is a strong undercurrent of anxiety that genetically modified foods are unsafe for human consumption, sometimes fuelled by criticisms based on little or no firm evidence. This has resulted in some countries turning away food destined for famine relief because of the perceived health risks of genetically modified foods. The major concerns include their possible allergenicity and toxicity despite the vigorous testing of genetically modified foods prior to marketing approval. It is imperative that scientists engage the public in a constructive evidence-based dialogue to address these concerns. At the same time, improved validated ways to test the safety of new foods should be developed. A post-launch strategy should be established routinely to allay concerns. Mandatory labelling of genetically modified ingredients should be adopted for the sake of transparency. Such ingredient listing and information facilitate tracing and recall if required.

  8. Macromolecule simulation and CH{sub 4} adsorption mechanism of coal vitrinite

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Song, E-mail: songyu10094488@126.com [School of Resources and Earth Science, China University of Mining & Technology, Xuzhou 221116 (China); Key Laboratory of Coal bed Methane Resource & Reservoir Formation Process, Ministry of Education, Xuzhou 221008 (China); Yan-ming, Zhu; Wu, Li [School of Resources and Earth Science, China University of Mining & Technology, Xuzhou 221116 (China); Key Laboratory of Coal bed Methane Resource & Reservoir Formation Process, Ministry of Education, Xuzhou 221008 (China)

    2017-02-28

    Highlights: • Molecular model of single maceral vitrinite was obtained by {sup 13}C NMR, FT IR and HRTEM. • An optimal configuration was obtained through calculation of MM and MD. • The adsorption parameters for methane and vitrinite were determined with DFT and GCMC. - Abstract: The microscopic mechanism of interactions between CH{sub 4} and coal macromolecules is of significant practical and theoretical importance in CBM development and methane storage. Under periodic boundary conditions, the optimal energy configuration of coal vitrinite, which has a higher torsion degree and tighter arrangement, can be determined by the calculation of molecular mechanics (MM) and molecular dynamics (MD), and annealing kinetics simulation based on ultimate analysis, {sup 13}C NMR, FT IR and HRTEM. Macromolecular stabilization is primarily due to the van der Waals energy and covalent bond energy, mainly consisting of bond torsion energy and bond angle energy. Using the optimal configuration as the adsorbent, GCMC simulation of vitrinite adsorption of CH{sub 4} is conducted. A saturated state is reached after absorbing 17 CH{sub 4}s per coal vitrinite molecule. CH{sub 4} is preferentially adsorbed on the edge, and inclined to gathering around the branched chains of the inner vitrinite sites. Finally, the adsorption parameters are calculated through first principle DFT. The adsorbability order is as follows: aromatic structure> heteroatom rings > oxygen functional groups. The adsorption energy order is as follows: Top < Bond < Center, Up < Down. The order of average RDF better reflects the adsorption ability and that of [-COOH] is lower than those of [−C=O] and [C−O−C]. CH{sub 4} distributed in the distance of 0.99–16 Å to functional groups in the type of monolayer adsorption and the average distance order manifest as [−C=O] (1.64 Å) < [C−O−C] (1.89 Å) < [−COOH] (3.78 Å) < [-CH{sub 3}] (4.11 Å) according to the average RDF curves. CH{sub 4} enriches

  9. Magnetization transfer from macromolecules to water protons in murine dental tissues as revealed by 500 MHz 1H-NMR

    International Nuclear Information System (INIS)

    Nakamura, Koji; Era, Seiichi; Nagai, Naoki; Sogami, Masaru; Takasaki, Akihiko; Kato, Kazuo.

    1997-01-01

    Although much is known about magnetization transfer phenomena in biological soft tissues, little is known about those in hard tissues. Using a 500 MHz 1 H-NMR spectrometer, we studied the spin-lattice relaxation time (T 1 (H 2 O)) and the intermolecular cross-relaxation times (T IS (H 2 O)) from irradiated macromolecular protons to observed water protons in murine lower incisors (hard tissue) and compared with those in murine lens tissue (soft tissue). Mean values for the water content (%) of murine lower incisors and lens tissue were 16.02±2.39 (n=14) and 67.20±4.60 (n=15), respectively. These findings were consistent with the large different in water content between soft tissues and hard tissues. T IS (H 2 O) values obtained by f 2 -irradiation at 7.13 or -4.00 ppm showed no significant difference between lower incisors and lens tissue. Plots of 1/T IS (H 2 O) values vs. tissue dry weight (W(%)) for lower incisor tissue approximated a straight line with slope approximately equal for that obtained for lens tissue. These results suggest that the state of water in hard tissue may be similar to that in soft tissues, in spite of the significant difference in water content. Thus, saturation transfer NMR techniques such as measurement of T IS (H 2 O) values may be applicable to the study of water-macromolecule interactions in both biological soft and hard tissues. (author)

  10. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration

    Science.gov (United States)

    Yang, Ming; Zhu, X. Ronald; Park, Peter C.; Titt, Uwe; Mohan, Radhe; Virshup, Gary; Clayton, James E.; Dong, Lei

    2012-07-01

    The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.

  11. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  12. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    Science.gov (United States)

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-08

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and

  13. Lignin Macromolecule

    Indian Academy of Sciences (India)

    plant or a structural component of a mature plant which is detected by certain colour reactions. An enzymologist has termed lignin as the ... a phenyl-propanoid structure. A soil chemist considers lignin to be the residue of .... refer to the hardness of wood, but to the botanical classifications. They are aptly called gymnosperms ...

  14. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  15. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: Agrowaste-modified kaolinite vs surfactant modified bentonite

    Directory of Open Access Journals (Sweden)

    E. I. Unuabonah

    2017-01-01

    Full Text Available The adsorption efficiency of a new hybrid clay adsorbent for polynuclear aromatic hydrocarbons (PAHs is compared with known modified clay adsorbents. The new hybrid clay adsorbent (HYCA showed far higher adsorption capacities for the adsorption of various PAH molecules compared with sodium dodecyl sulfate modified and humic acid modified Bentonite clay adsorbents. With the new hybrid clay adsorbent (HYCA, the adsorption of some of the larger PAH molecules was complete in the first 1 h as compared with ≈ 62% and ≈ 76% observed for both humic acid modified and sodium dodecyl sulfate modified Bentonite clay adsorbents respectively. In 24 h adsorption of the PAHs was complete for all adsorbents with HYCA adsorbent showing better efficiency in the removal of the PAH molecules from aqueous solutions. No significant change was observed with increase in time up to 48 h. The adsorption was observed to be more spontaneous with HYCA adsorbent than with either modified Bentonite adsorbents. The enthalpy of adsorption did not follow any specific order and were not consistent for all PAH molecules considered.

  16. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  17. Modified blank ammunition injuries.

    Science.gov (United States)

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups

  18. Deposition of copper indium sulfide on TiO2 nanotube arrays and its application for photocatalytic decomposition of gaseous IPA

    Directory of Open Access Journals (Sweden)

    Young Ku

    2016-09-01

    Full Text Available TiO2 nanotube arrays (TNTs were modified with copper indium sulfide (Cu/In/S by successive ionic layer adsorption and reaction (SILAR method. The field-emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated the presence of copper indium sulfide nanoparticles on the surface of the modified TNTs. The Cu/In/S-modified TNTs exhibited higher photocurrent density and photocatalytic activity than plain TNTs. The concentration of sulfur precursor was found to be an important factor on the composition of modified Cu/In/S films by SILAR. Some composition deviations were observed on the stoichiometry of the Cu/In/S-modified TNTs, which evidently affected the electrochemical characteristics of the modified TNTs. Experiments using the modified TNTs of composition close to the stoichiometric ratio of CuInS2 usually delivered higher photocatalytic decomposition of gaseous isopropyl alcohol in air streams and exhibited better stability during operation.

  19. {sup 18}FFPyKYNE, a fluoro-pyridine-based alkyne reagent designed for the fluorine-18 labelling of macromolecules using click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnast, B.; Hinnen, F.; Tavitian, B.; Dolle, F. [CEA, Serv Hosp FredericJoliot, I2BM, Inst Imagerie Biomed, F-91401 Orsay (France); Tavitian, B. [INSERM, Serv Hosp Frederic Joliot, U803, F-91401 Orsay (France)

    2008-07-01

    [{sup 18}F]FPyKYNE (2-fluoro-3-pent-4-yn-1-yloxy-pyridine) is a novel fluoro-pyridine-based structure, designed for the fluorine-18 labelling of macromolecules using copper-catalysed Huisgen 1,3-dipolar cycloaddition (click chemistry). FPyKYNE (non-labelled as reference), as well as the 2-bromo, 2-nitro and 2-trimethylammonium analogues (as precursors for labelling with fluorine-18), was synthesized in 44, 95, 60 and 41%, respectively, from commercially available 5-chloro-pent-1-yne and the appropriate 2-substituted-3-hydroxypyridines. [{sup 18}F]FPyKYNE was synthesized in one single radiochemical step by reaction of no-carrier-added K[{sup 18}F]F-Kryptofix 222 (DMSO, 165 degrees C, 3-5 min) followed by C-18 SepPak cartridge pre-purification and finally semi-preparative HPLC purification on a Hewlett Packard SiO{sub 2} Zorbax (R) Rx-SIL. Using the 2-nitropyridine or the pyridin-2-yl-trimethylammonium trifluoro-methanesulphonate precursor for labelling (30 and 10 {mu} mol, respectively), incorporation yields up to 90% were observed and 7.0-8.9 GBq (190-240 mCi) of [F-18]FPyKYNE ([{sup 18}F]-1) could be isolated within 60-70 min (HPLC purification included), starting from a 37.0 GBq (1.0 Ci) [{sup 18}F]fluoride batch (overall decay-corrected and isolated yields: 30-35%). (authors)

  20. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    Science.gov (United States)

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    2017-12-01

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  1. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Directory of Open Access Journals (Sweden)

    Maria eMooshammer

    2014-02-01

    Full Text Available Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition towards their resource in a non-homeostatic behaviour. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake, such that they release elements in excess depending on their demand (e.g., respiration and N mineralization. Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  2. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  3. Bioactive and Porous Metal Coatings for Improved Tissue Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2000-01-01

    Our first objective was to develop the SIM process for the deposition of calcium phosphate films. This process is based on the observation that, in nature, living organisms use macromolecules to control the nucleation and growth of mineral phases. These macromolecules act as templates where various charged functional groups, contained within the molecule, can interact with the ions in the surrounding media, thus stimulating crystal nucleation and growth. Rather than using complex proteins or biopolymers, surface modification schemes were developed to place simple functional groups on the underlying substrate using self-assembling monolayers. Once the substrate was chemically modified, it was then placed into an aqueous solution containing soluble precursors of the desired mineral coating. Solution pH, ionic concentration and temperature is maintained in a regime where the solution is supersaturated with respect to the desired mineral phase, thereby creating the driving force for nucleation and growth.

  4. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  5. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang

    2015-07-01

    Uncertainty quantification (UQ) methods are implemented to obtain a quantitative characterization of the evolution of electrons and ions during the ignition of methane-oxygen mixtures under lean and stoichiometric conditions. The GRI-Mech 3.0 mechanism is combined with an extensive set of ion chemistry pathways and the forward propagation of uncertainty from model parameters to observables is performed using response surfaces. The UQ analysis considers 22 uncertain rate parameters, which include both chemi-ionization, proton transfer, and electron attachment reactions as well as neutral reactions pertaining to the chemistry of the CH radical. The uncertainty ranges for each rate parameter are discussed. Our results indicate that the uncertainty in the time evolution of the electron number density is due mostly to the chemi-ionization reaction CH+O⇌HCO+ +E- and to the main CH consumption reaction CH+O2 ⇌O+HCO. Similar conclusions hold for the hydronium ion H3O+, since electrons and H3O+ account for more than 99% of the total negative and positive charge density, respectively. Surprisingly, the statistics of the number density of charged species show very little sensitivity to the uncertainty in the rate of the recombination reaction H3O+ +E- →products, until very late in the decay process, when the electron number density has fallen below 20% of its peak value. Finally, uncertainties in the secondary reactions within networks leading to the formation of minor ions (e.g., C2H3O+, HCO+, OH-, and O-) do not play any role in controlling the mean and variance of electrons and H3O+, but do affect the statistics of the minor ions significantly. The observed trends point to the role of key neutral reactions in controlling the mean and variance of the charged species number density in an indirect fashion. Furthermore, total sensitivity indices provide quantitative metrics to focus future efforts aiming at improving the rates of key reactions responsible for the

  6. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang; Rizzi, Francesco; Cheng, Kwok Wah; Han, Jie; Bisetti, Fabrizio; Knio, Omar Mohamad

    2015-01-01

    Uncertainty quantification (UQ) methods are implemented to obtain a quantitative characterization of the evolution of electrons and ions during the ignition of methane-oxygen mixtures under lean and stoichiometric conditions. The GRI-Mech 3.0 mechanism is combined with an extensive set of ion chemistry pathways and the forward propagation of uncertainty from model parameters to observables is performed using response surfaces. The UQ analysis considers 22 uncertain rate parameters, which include both chemi-ionization, proton transfer, and electron attachment reactions as well as neutral reactions pertaining to the chemistry of the CH radical. The uncertainty ranges for each rate parameter are discussed. Our results indicate that the uncertainty in the time evolution of the electron number density is due mostly to the chemi-ionization reaction CH+O⇌HCO+ +E- and to the main CH consumption reaction CH+O2 ⇌O+HCO. Similar conclusions hold for the hydronium ion H3O+, since electrons and H3O+ account for more than 99% of the total negative and positive charge density, respectively. Surprisingly, the statistics of the number density of charged species show very little sensitivity to the uncertainty in the rate of the recombination reaction H3O+ +E- →products, until very late in the decay process, when the electron number density has fallen below 20% of its peak value. Finally, uncertainties in the secondary reactions within networks leading to the formation of minor ions (e.g., C2H3O+, HCO+, OH-, and O-) do not play any role in controlling the mean and variance of electrons and H3O+, but do affect the statistics of the minor ions significantly. The observed trends point to the role of key neutral reactions in controlling the mean and variance of the charged species number density in an indirect fashion. Furthermore, total sensitivity indices provide quantitative metrics to focus future efforts aiming at improving the rates of key reactions responsible for the

  7. Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-01-01

    Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.

  8. Influence of pH during modified sol-gel process to synthesized pure phased YBCO

    International Nuclear Information System (INIS)

    Barekat Rezaee, S.; Daadmehr, V.; Saeb, F.; Falahati, S.

    2007-01-01

    Full text: Among numerous studies of high-Tc superconductor compound, the YBCO system is the most studied system. During 3 last decades synthesized of high quality pure homogeneous powder were done. One of these methods was modified citrate gel that was widely used to obtain nanosized single phase YBCO. One of the most important factors to yield pure product is adjustment of the pH during the gelation. Then in this work, we adjusted different pH for gelatin and compare phase purity and elemental composition by using XRD and EDS. To synthesize the YBCO, we used Nitrate of metal (Y, Ba, Cu) as precursor. stoichiometric (1:2:3) amount of metal nitrate were solved in distilled water and mixed with constant stirring, (for each equivalent gram of metal nitrate add one equivalent gram of citric acid) and stirred up to have unclear light blue solution and the ethylendiamine was added drop wise to adjust pH from 4.56 to 7.45. Then the solution was heated up 80 C to achieve viscous gel. The color changed from dark blue to purple according to pH. The gel was heated on furnace up to 520 C and kept for 2 hours. During heating the gel swell and filled the baker then special attention is needed to use over sized baker. Obtained powder was calcined for 22h at 900 C to yield homogeneous pure phase and then pellets with 1 sm diameter in 10 ton pressure were produced and sintered for 19 h at 930 C and annealed to room temperature in oxygen. Resistivity measurement using standard four probe technique exhibit Tc (zero) from 90 K to 94 K. The samples were discussed by XRD, SEM and EDS. (authors)

  9. Investigations on the electronic surface properties of the stoichiometric superconductor LiFeAs using scanning tunneling microscopy and spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Ronny

    2014-01-01

    This work presents scanning tunneling microscopy and spectroscopy investigations on the stoichiometric superconductor lithium iron arsenide (LiFeAs). To reveal the electronic properties, measurements on defect-free surfaces as well as near defects have been performed. The former shows a shift of atomic position with respect to the applied bias voltage. Furthermore, temperature dependent spectroscopic measurements indicate the coupling of quasiparticles in the vicinity of the superconducting coherence peaks. LiFeAs surfaces influenced by atomic defects show a spacial variation of the superconducting gap. The defects can be characterized by their symmetry and thus can be assigned to a position in the atomic lattice. Detailed spectroscopic investigations of defects reveal their influence on the quasiparticle density of states. In particular, Fe-defects show a small effect on the superconductivity while As-defects strongly disturb the superconducting gap. Measurements in magnetic field have been performed for the determination of the Ginzburg-Landau coherence length ξ GL . For this purpose, a suitable fit-function has been developed in this work. This function allows to fit the differential conductance of a magnetic vortex at E F . The fit results in a coherence length of ξ GL = 3,9 nm which corresponds to an upper critical field of 21 Tesla. Besides measurements on a single vortex, investigation on the vortex lattice have been performed. The vortex lattice constant follows thereby the predicted behavior of a trigonal vortex lattice. However, for magnetic fields larger than 6 Tesla an increasing lattice disorder sets in, presumably due to vortex-vortex-interactions.

  10. Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters.

    Science.gov (United States)

    Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni

    2016-12-01

    A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of individual protein-ligand NOEs in the limit of intermediate exchange

    International Nuclear Information System (INIS)

    Reibarkh, Mikhail; Malia, Thomas J.; Hopkins, Brian T.; Wagner, Gerhard

    2006-01-01

    Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein-ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D 1 H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein-ligand NOEs that allow calculation of initial complex structures

  12. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  13. Is the Fractional Laser Still Effective in Assisting Cutaneous Macromolecule Delivery in Barrier-Deficient Skin? Psoriasis and Atopic Dermatitis as the Disease Models.

    Science.gov (United States)

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Sung, Calvin T; Liu, Pei-Ying; Fang, Jia-You

    2018-04-26

    Most of the investigations into laser-assisted skin permeation have used the intact skin as the permeation barrier. Whether the laser is effective in improving cutaneous delivery via barrier-defective skin is still unclear. In this study, ablative (Er:YAG) and non-ablative (Er:glass) lasers were examined for the penetration of peptide and siRNA upon topical application on in vitro skin with a healthy or disrupted barrier. An enhanced peptide flux (6.9 fold) was detected after tape stripping of the pig stratum corneum (SC). A further increase of flux to 11.7 fold was obtained after Er:YAG laser irradiation of the SC-stripped skin. However, the application of Er:glass modality did not further raise the flux via the SC-stripped skin. A similar trend was observed in the case of psoriasiform skin. Conversely, the flux was enhanced 3.7 and 2.6 fold after treatment with the Er:YAG and the Er:glass laser on the atopic dermatitis (AD)-like skin. The 3-D skin structure captured by confocal microscopy proved the distribution of peptide and siRNA through the microchannels and into the surrounding tissue. The fractional laser was valid for ameliorating macromolecule permeation into barrier-disrupted skin although the enhancement level was lower than that of normal skin.

  14. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules.

    Science.gov (United States)

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2012-05-30

    Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential ( 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    Science.gov (United States)

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous

  16. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    Science.gov (United States)

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  17. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs

    DEFF Research Database (Denmark)

    Gutierrez, Belen; Douthwaite, Stephen Roger; Gonzalez-Zorn, Bruno

    2013-01-01

    (housekeeping) modifications at m (4)Cm1402, m (3)U1498, m (2)G1516, m (6) 2A1518, and m (6) 2A1519; helix 69 is modified at m (3)Ψ1915, with m (5)U1939 and m (5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m (3)Ψ1915, where about 80% of r...

  18. Flue Gas Desulfurization by Mechanically and Thermally Activated Sodium Bicarbonate

    OpenAIRE

    Walawska Barbara; Szymanek Arkadiusz; Pajdak Anna; Nowak Marzena

    2014-01-01

    This paper presents the results of study on structural parameters (particle size, surface area, pore volume) and the sorption ability of mechanically and thermally activated sodium bicarbonate. The sorption ability of the modified sorbent was evaluated by: partial and overall SO2 removal efficiency, conversion rate, normalized stoichiometric ratio (NSR). Sodium bicarbonate was mechanically activated by various grinding techniques, using three types of mills: fluid bed opposed jet mill, fine i...

  19. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  20. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  1. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  2. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  3. Physiochemical and spectroscopic behavior of actinides and lanthanides in solution, their sorption on minerals and their compounds formed with macromolecules

    International Nuclear Information System (INIS)

    Jimenez R, M.

    2010-01-01

    From the chemical view point, the light actinides has been those most studied; particularly the uranium, because is the primordial component of the nuclear reactors. The chemical behavior of these elements is not completely defined, since they can behave as transition metals or metals of internal transition, as they are the lanthanides. The actinides are radioactive; between them they are emitters of radiation alpha, highly toxic, of live half long and some very long, and artificial elements. For all this, to know them sometimes is preferable to use their chemical similarity with the lanthanides and to study these. In particular, the migration of emitters of radiation alpha to the environment has been studied taking as model the uranium. It is necessary to mention that actinides and lanthanides elements are in the radioactive wastes of the nuclear reactors. In the Chemistry Department of the Instituto Nacional de Investigaciones Nucleares (ININ) the researches about the actinides and lanthanides began in 1983 and, between that year and 1995 several works were published in this field. In 1993 the topic was proposed as a Department project and from then around of 13 institutional projects and managerial activity have been developed, besides 4 projects approved by the National Council of Science and Technology. The objective of the projects already developed and of the current they have been contributing knowledge for the understanding of the chemical behavior of the lanthanides and actinides, as much in solution as in the solid state, their behavior in the environment and the chemistry of their complexes with recurrent and lineal macromolecules. (Author)

  4. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  5. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee (Inventor); Luebben, Silvia DeVito (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  6. Nanoparticles modified with multiple organic acids

    Science.gov (United States)

    Cook, Ronald Lee; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew; Elliott, Brian John; Kreutzer, Cory; Wilson, Carolina; Meiser, Manfred

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  7. Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sushmita; Singh, Satnam; Roy, R.K.; Ghosh, M.; Mitra, A.; Panda, A.K., E-mail: akpanda@nmlindia.org

    2016-01-01

    The present investigation addresses the magnetocaloric behaviour in a series of Ni{sub 77−x}Mn{sub x}Ga{sub 23} (x=23, 24, 25, 27 and 29) rapidly solidified alloys prepared in the form of ribbons by melt spinning technique. The approach of the study is to identify the off-stoichiometric composition wherein room temperature magneto-structural transformation is achieved. The alloy chemistry was tailored through Mn incorporation for Ni such that the magnetic and structural transitions were at close proximity to achieve highest entropy value of ΔS equal to 8.51 J Kg{sup −1} K{sup −1} for #Mn{sub 24} ribbon measured at an applied field of 3 T. When such transitions are more staggered as in #Mn{sub 29} the entropy value of ribbon reduced to as low as 1.61 J Kg{sup −1} K{sup −1}. Near room temperature transformations in #Mn{sub 24} ribbon have been observed through calorimetric and thermomagnetic evaluation. Reverse martensitic transformation (martensite→autstenite) temperature indicates not only distinct change in the saturation flux density but also an inter-martensitic phase. Microstructural analysis of #Mn{sub 24} alloy ribbon revealed structural ordering with the existence of plate morphology evidenced for martensitic phase. - Highlights: • Magnetocaloric effect in a series of melt spun NiMnGa ribbon is addressed. • The alloy series revealed austenitic state as well as its presence with martensite. • The morphology of the ribbons has been shown and discussed through phase analysis. • Influence of magnetising field on entropy and relative cooling power is discussed. • Influence of intermartensitic state on magnetization plots have also been shown.

  8. Mesoporous Silicon with Modified Surface for Plant Viruses and Their Protein Particle Sensing

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2008-10-01

    Full Text Available Changes in electric parameters of a mesoporous silicon treated by a plasma chemical etching with fluorine and hydrogen ions, under the adsorption of NEPO (Nematodetransmitted Polyhedral plant viruses such as TORSV (Tomato Ringspot Virus, GFLV (Grapevine Fan Leaf Virus and protein macromolecule from TORSV particles are described. The current response to the applied voltage is measured for each virus particle to investigate the material parameters which are sensitive to the adsorbed particles. The peculiar behaviors of the response are modeled by the current-voltage relationship in a MOSFET. This model explains the behavior well and the double gate model of the MOSFET informs that the mesoporous silicon is a highly sensitive means of detecting the viruses in the size range less than 50 nm.

  9. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  10. A comparative study of NiZn ferrites modified by the addition of cobalt

    Directory of Open Access Journals (Sweden)

    Pereira S.L.

    1999-01-01

    Full Text Available Off-stoichiometric NiZn ferrite was obtained by hydrothermal process and compacted in torus form under different pressures. Two samples A1 and A2 - cobalt doped (0.5 % were sintered at 1573 K in air atmosphere during 3 h. The magnetic properties were studied by vibrating sample magnetometry, Mössbauer spectroscopy and complex impedanciometry. X-ray diffraction and Hg porosimetry were used in order to determine the average grain size and the type of packing in the samples. Both samples exhibited superparamagnetic behavior in the hysteresis loop. This effect does not agree with Mössbauer results, which were fitted using Normos, a commercial computer program. All samples parameters were compared.

  11. Synthesis of the off-stoichiometric oxide system Sr{sub 2}Fe{sub 1+x}Mo{sub 1−x}O{sub 6} with −1≤x≤0.25

    Energy Technology Data Exchange (ETDEWEB)

    Soto, T.E. [Instituto de Investigaciones en Materiales Unidad Morelia, Universidad Nacional Autónoma de Mexico, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán (Mexico); Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolas de Hidalgo, Av. Francisco J. Mojica S/N, Ciudad Universitaria, Morelia, Michoacán (Mexico); Valenzuela, J.L. [Instituto de Investigaciones en Materiales Unidad Morelia, Universidad Nacional Autónoma de Mexico, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán (Mexico); Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolas de Hidalgo, Av. Francisco J. Mojica S/N, Ciudad Universitaria, Morelia, Michoacán (Mexico); Mondragón, R., E-mail: reginaldo.mondragon@cimav.edu.mx [Instituto de Investigaciones en Materiales Unidad Morelia, Universidad Nacional Autónoma de Mexico, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán (Mexico); Facultad de Ingeniería Química, Universidad Michoacana de San Nicolas de Hidalgo, Av. Francisco J. Mojica S/N, Ciudad Universitaria, Morelia, Michoacán (Mexico); Centro de Investigaciones en Materiales Avanzados, S.C., Chihuahua, Chihuahua (Mexico); and others

    2014-12-15

    The half-metallic ferromagnetic oxide compounds are extensively studied in view of their spintronic applications. In this work, we have synthesized and characterized the off-stoichiometric double perovskite Sr{sub 2}Fe{sub 1+x}Mo{sub 1−x}O{sub 6} with x being in the range −1≤x≤0.25, the composition x=0 corresponding to the well-known ferromagnetic system Sr{sub 2}FeMoO{sub 6}. The double perovskite has been prepared in a polycrystalline form by the solid-state reaction method and ball milling, calcination in air and reduction in a mixture of He and H{sub 2} atmosphere in a thermogravimetric analyzer. Characterization has been done by X-ray diffraction and scanning electron microscopy techniques. Our results show that mechanochemical activation prior to the reaction synthesis helps to reduce the synthesis temperature and avoid the sublimation of MoO{sub 3} at high temperatures. The Curie temperature has also been obtained.

  12. Horseshoes in modified Chen's attractors

    International Nuclear Information System (INIS)

    Huang Yan; Yang Xiaosong

    2005-01-01

    In this paper we study dynamics of a class of modified Chen's attractors, we show that these attractors are chaotic by giving a rigorous verification for existence of horseshoes in these systems. We prove that the Poincare maps derived from these modified Chen's attractors are semi-conjugate to the 2-shift map

  13. Steps Towards Industrialization of Cu–III–VI2Thin‐Film Solar Cells:Linking Materials/Device Designs to Process Design For Non‐stoichiometric Photovoltaic Materials

    Science.gov (United States)

    Chang, Hsueh‐Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae‐Heng

    2016-01-01

    The concept of in‐line sputtering and selenization become industrial standard for Cu–III–VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto‐electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non‐stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full‐function analytical solar cell simulator. The future prospects regarding the development of copper–indium–gallium–selenide thin film solar cells have also been discussed. PMID:27840790

  14. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  15. Interfacial Modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ina; French, Roger H.

    2018-03-19

    Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification of the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.

  16. [Genetically modified food--unnecessary controversy?].

    Science.gov (United States)

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  17. Modified nasolacrimal duct stenting

    International Nuclear Information System (INIS)

    Tian Min; Jin Mei; Chen Huanjun; Li Yi

    2008-01-01

    Objective: Traditional nasolacrimal duct stenting possesses some shortcoming including difficulty of pulling ball head guide wire from the nasal cavity with turbinate hypertrophy and nasal septal deviation. The new method of nose-oral tube track establishment can overcome the forementioned and increase the successful rate. Methods: 5 F catheter and arterial sheath were modified to be nasolacrimal duct stent delivery device respectively. Antegrade dacryocystography was taken firstly to display the obstructed site and followed by the modified protocol of inserting the guide wire through nasolacrimal duct and nasal cavity, and establishing the stent delivery track for retrograde stent placement. Results: 5 epiphora patients with failure implantation by traditional method were all succeeded through the modified stenting (100%). During 6-mouth follow-up, no serious complications and reocclusion occurred. Conclusion: The establishment of eye-nose-mouth-nose of external nasal guide wire track can improve the successful rate of nasolacrimal duct stenting. (authors)

  18. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  19. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  20. Acid-degradable and bioerodible modified polyhydroxylated materials

    Energy Technology Data Exchange (ETDEWEB)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.

    2017-05-09

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single and double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.

  1. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.

    Science.gov (United States)

    Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi

    2008-03-01

    To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.

  2. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Su, Teng; Wang, Shuofeng; Zhang, Bo; Yu, Menghui; Cong, Xiaoyu

    2016-01-01

    Highlights: • The performance of a H_2-blended gasoline rotary engine was studied. • The p, Bmep, T_m_a_x and η_b increased after H_2 blending. • Both the CA0-10 and CA10-90 were shortened by the H_2 addition. • H_2 addition resulted in the reduced HC, CO and CO_2 emissions. - Abstract: The rotary engines may encounter high fuel consumption and emissions due to its narrow and long combustion chamber design. The low ignition energy and high flame speed of hydrogen may help improve the combustion of rotary engines. In this paper, a gasoline rotary engine equipped with gasoline and hydrogen injectors was developed to investigate the combustion and emissions of hydrogen-blended gasoline rotary engines. The engine was run at 3000 rpm and a manifolds absolute pressure of 37.5 kPa with the stoichiometric excess air ratio. The spark timing was set to be 25°CA before the top dead center. The engine was first fueled with the pure gasoline and then blended with the hydrogen. The hydrogen volume fractions in the intake were gradually increased from 0% to 5.2%. The results showed that the combustion pressure, brake mean effective pressure, cylinder temperature and thermal efficiency were simultaneously increased after the hydrogen blending. The crank angle of peak pressure was advanced with the hydrogen addition. The hydrogen enrichment was effective on reducing flame development and propagation periods. HC emissions were reduced by 44.8% when the hydrogen volume fraction in the intake was raised from 0% to 5.2%, CO and CO_2 emissions were also reduced after the hydrogen blending.

  3. Modified General Relativity and Cosmology

    Science.gov (United States)

    Abdel-Rahman, A.-M. M.

    1997-10-01

    Aspects of the modified general relativity theory of Rastall, Al-Rawaf and Taha are discussed in both the radiation- and matter-dominated flat cosmological models. A nucleosynthesis constraint on the theory's free parameter is obtained and the implication for the age of the Universe is discussed. The consistency of the modified matter- dominated model with the neoclassical cosmological tests is demonstrated.

  4. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  5. 21 CFR 184.1063 - Enzyme-modified lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified lecithin. 184.1063 Section 184.1063... Listing of Specific Substances Affirmed as GRAS § 184.1063 Enzyme-modified lecithin. (a) Enzyme-modified lecithin is prepared by treating lecithin with either phospholipase A2 (EC 3.1.1.4) or pancreatin. (b) The...

  6. Penumbra modifier for optimal electron fields combination

    International Nuclear Information System (INIS)

    ElSherbini, N.; Hejazy, M.A.; Khalil, W.

    2003-01-01

    Abutment of two or more electron fields to irradiate extended areas may lead to significant dose inhomogeneities in the junction region. This study describes the geometric and dosimetric characteristics of a device developed to modify the penumbra of an electron beam and therapy improve of dose uniformity in the over lap region when fields are abutted. The device is lipowitz metal block placed on top of the insertion plate of the electron applicator and positioned to stop part of he electron beam on side of field abutment. The air-scattered electrons beyond the block increase the penumbra width from about 1,4 to 2-7-43.4 cm at SSD 100 cm, the modified penumbra is broad and almost linear at all depths for the 6.8, and 15 MeV electron beams used. Film dosimetry was used to obtain profiles, iso-dose distributions, single modified beams and matched fields of 6, 10, and 15 MeV. Wellhofer dosimetry system was used to obtain beam profiles and iso-dose distributions of single modified beams needed for CADPLAN treatment planning system, which used to optimize and compare the skin gap to be used and to quantify the dose uniformity in a junction of the field separation for both modified and non-modified beams. Results are presented for various field configurations without the penumbra modifier; lateral setup error of 2-3 mm may introduce dose variations of 20% or more in the junction region. Similar setup error cause less than 5% dose variations when the penumbra modifier is used to match the field

  7. Assessment of off-stoichiometric Zr33-xFe52+xSi15 C14 Laves phase compounds as permanent magnet materials

    Science.gov (United States)

    Gabay, A. M.; Hadjipanayis, G. C.

    2018-05-01

    Recently, Fe-based rare-earth-free compounds with non-cubic crystal structures were proposed as a base for permanent magnets which would not rely on critical elements. In this work, two series of alloys, Zr27Fe73-wSiw (0 ≤ w ≤ 15) and Zr33-xFe52+xSi15 (0 ≤ x ≤ 11), were prepared and characterized after annealing at 1538 K in order to determine the fundamental magnetic properties of the C36 and C14 hexagonal Laves phase compounds. A mixture of the cubic C15 and Zr6Fe23 structures was observed instead of the expected C36 structure. The hexagonal C14 was found in all Zr33-xFe52+xSi15 alloys with its lattice parameters linearly decreasing as the Fe(Si) atoms occupy the Zr sites in the Laves phase crystal structure. The solubility limit of Fe in the C14 structure at 1538 K corresponds to x = 9.5. The Curie temperature of the C14 compounds increases with deviation from the Laves phase stoichiometry from 290 K to 530 K. The room-temperature spontaneous magnetization also increases reaching, after correcting for the non-magnetic impurities, a value of 6.7 kG. The magnetocrystalline anisotropy of the off-stoichiometric C14 Laves phase was found to be uniaxial with the easy magnetization direction parallel to the hexagonal axis. Unfortunately, the anisotropy field, which does not exceed 10 kOe, is not sufficiently high to make the compounds interesting as permanent magnet materials.

  8. Weak lensing probes of modified gravity

    International Nuclear Information System (INIS)

    Schmidt, Fabian

    2008-01-01

    We study the effect of modifications to general relativity on large-scale weak lensing observables. In particular, we consider three modified gravity scenarios: f(R) gravity, the Dvali-Gabadadze-Porrati model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the relation between matter and gravitational potentials, both of which will in general be affected by modified gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the same expansion history. In this way, the effects of modified gravity on the growth of perturbations are separated from the expansion history. We also propose a test which isolates the matter-potential relation from the growth factor and matter power spectrum. For all three modified gravity models, the predictions for galaxy and shear correlations will be discernible from those of dark energy with very high significance in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence and redshift evolution of galaxy and shear correlations, which can be traced back to the physical foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured via the galaxy-cosmic microwave background cross-correlation.

  9. Genotoxicity of unmodified and organo-modified montmorillonite

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Schmidt, Bjørn; Frandsen, Henrik Lauritz

    2010-01-01

    absent in the filtered samples, which was independently confirmed by dynamic light-scattering measurements. Detection and identification of free quaternary ammonium modifier in the filtered sample was carried out by HPLC-Q-TOF/MS and revealed a total concentration of a mixture of quaternary ammonium...... assay, none of the clays produced ROS in a cell-free test system (the DCFH-DA assay). Inductively coupled plasma mass-spectrometry (ICP-MS) was used to detect clay particles in the filtered samples using aluminium as a tracer element characteristic to clay. The results indicated that clay particles were...... analogues of 1.57 mu g/ml. These findings suggest that the genotoxicity of organo-modified montmorillonite was caused by the organo-modifier. The detected organo-modifier mixture was synthesized and comet-assay results showed that the genotoxic potency of this synthesized organo-modifier was in the same...

  10. Modifying Knowledge, Emotions, and Attitudes Regarding Genetically Modified Foods

    Science.gov (United States)

    Heddy, Benjamin C.; Danielson, Robert W.; Sinatra, Gale M.; Graham, Jesse

    2017-01-01

    The purpose of this study was to explore whether conceptual change predicted emotional and attitudinal change while learning about genetically modified foods (GMFs). Participants were 322 college students; half read a refutation text designed to shift conceptual knowledge, emotions, and attitudes, while the other half served as a control group.…

  11. MODIFIED TECHNIQUE OF TOTAL LARYNGECTOMY

    Directory of Open Access Journals (Sweden)

    Predrag Spirić

    2010-12-01

    Full Text Available Surgical technique of total laryngectomy is well presented in many surgical textbooks. Essentially, it has remained the same since Gluck an Soerensen in 1922 described all its details. Generally, it stresses the U shape skin incision with releasing laryngeal structures and removing larynx from up to down. Further, pharyngeal reconstruction is performed with different kinds of sutures in two or more layers and is finished with skin suture and suction drainage. One of worst complications following this surgery is pharyngocutaneous fistula (PF. Modifications proposed in this this article suggests vertical skin incision with larynx removal from below upwards. In pharyngeal reconstruction we used the running locked suture in submucosal plan with „tobacco sac“ at the end on the tongue base instead of traditional T shaped suture. Suction drains were not used.The aim of study was to present the modified surgical technique of total laryingectomy and its impact on hospital stay duration and pharyngocutanous fistula formation. In this randomized study we analyzed 49 patients operated with modified surgical technique compared to 49 patient operated with traditional surgical technique of total laryngectomy. The modified technique of total laryngectomy was presented. Using modified technique we managed to decrease the PF percentage from previous 20,41% to acceptable 8,16% (p=0,0334. Also, the average hospital stay was shortened from 14,96 to 10,63 days (t =-2.9850; p=0.0358.The modified technique of total laryngectomy is safe, short and efficient surgical intervention which decreases the number of pharyngocutaneos fistulas and shortens the hospital stay.

  12. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  13. Public attitudes towards genetically-modified food

    NARCIS (Netherlands)

    Miles, S.; Ueland, O.; Frewer, L.J.

    2005-01-01

    Abstract: Purpose - This study aimed to investigate the impact of information about traceability and new detection methods for identifying genetically-modified organisms in food, on consumer attitudes towards genetically-modified food and consumer trust in regulators in Italy, Norway and England. It

  14. Thermal oxidative degradation of wood modified with aminophenylborates

    Directory of Open Access Journals (Sweden)

    Klyachenkova Olga

    2016-01-01

    Full Text Available Comparative thermal analysis in the presence of oxygen was carried out for samples of native pine wood and wood samples modified with aminophenylborates. Significant decrease in the amount of heat released during thermal decomposition of the modified samples was established, which is due to the increase of carbonaceous residues on the surface. Reduction of heat release during decomposition of the modified samples may be explained by the lower yield of combustible volatile products as well as by thin film of boron oxide, formed on the surface of the modified wood, that partially reflects heat flow. Produced upon the modifier decomposition water vapor and inert nitrogen oxides dilute gaseous mixture near the wood surface and isolate it from oxygen. This enhances fire-resistance of wood modified with mono- and diethanolamine(N→Bphenylborates. Hydroxyl group at the sixth carbon atom of the glucopyranose ring of cellulose participates in reactions of cellulose modification, which prevents formation of flammable levoglucosan and, consequently, improves the fire-resistance of the modified wood.

  15. Corrosion, wettability and thrombogenicity investigation of ion beam modified HAP/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Shikha, Deep; Shahid, Md.; Jha, Ush [Department of Chemistry, BIT Mesra, Ranchi 835215 (India); Sinha, Sanjay Kumar, E-mail: sksinha@bitmesra.ac.in [Department of Physics, BIT Mesra, Ranchi 835215 (India); Reddy, V. Raghavendra [UGC-DAE Consortium for Scientific Research Indore (India); Ojha, Sunil; Kumar, P.; Kanjilal, Dinakar [IUAC, Aruna Asaf Ali road, New Delhi (India)

    2015-08-01

    Hydroxyapatite Ca{sub 10}(PO4){sub 6}(OH){sub 2}, is a biosensitive ceramic which promotes bone growth in human fluid. However due to its weak mechanical strength it is often coated on chemically inert material such as alumina. In the present work hydroxyapatite (HAP) of thickness 1 μm is deposited on alumina using sol–gel process and the stoichiometric ratio of Ca:P = 1.67 is maintained. Surface property of HAP is further improved by Ar{sup +} ion implantation. The samples were irradiated with 1.4 MeV Ar{sup +} ions with fluence ranging from 5 × 10{sup 14} to 1 × 10{sup 16} ions/cm{sup 2}. After irradiation, the surface is characterized using Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), electron dispersive X-ray spectroscopy (EDX), Glancing incidence X-ray diffraction (GXRD) and Rutherford backscattering Spectroscopy (RBS) techniques. Corrosion resistances and impedance analysis were carried out in Ringer solution. RBS and EDX were used to confirm the stoichiometric ratio of the film. Compound formation before and after ion implantation was studied using GXRD. Nanohardness, wettability and thrombogenicity of all the samples were studied. Correlation among surface morphology, improvement in corrosion resistance, hardness, wetability and thrombogenicity before and after ion implantation are discussed in this paper. - Highlights: • .People have worked on HAP coated on metallic alloy and even alumina but the characterization done here are all different. • Throbmobogenicity, corrosion resistance and wetability have all been carried out first time. • Improvement of Surface and interface using energetic inert ions like argon is carried out first time. • The best ion fluence for orthopaedic implants is proposed.

  16. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of lime mortar additivated with crystallization modifiers

    NARCIS (Netherlands)

    Granneman, S.J.C.; Lubelli, B.; van Hees, R.P.J.

    2018-01-01

    Additivating mortars with crystallization modifiers is a novel approach to mitigate salt crystallization damage in historic masonry. Once verified the effectiveness of crystallization modifiers in bulk solution, the next step consists in verifying whether: (i) modifiers are still effective when

  18. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  19. Biotechnology: Two Decades of Experimentation with Genetically Modified Foods

    Directory of Open Access Journals (Sweden)

    Marjan Ajami

    2016-10-01

    Full Text Available Background and Objective: Over the recent years, genetically modified food in varieties of corn, soybeans, canola and cotton have been introduced to the global market. This study reviews the health and nutritional value of genetically modified foods in the past two decades.Results and Conclusions: Contrary to the present biotechnological claims, transgenic products did not prove to be so flawless, and actually failed to maintain social satisfaction. Genetically modified foods could not gain an increase in the yield potential. Planting natural products and genetically modified products in parallel lines will absolutely result in genetic infection from the side of genetically modified foods. One of the major anxieties of the anti- genetically modified foods activism is the claim that genetically modified crops would alter the consumable parts of the plant quality and safety. Genetically modified foods have shown to have inadequate efficiency and potential adverse effects in both fields of health and biodiversity. This review has presented studies of genetically modified foods performances in the past two decades, and concludes that the wide application and the over generalization of genetically modified foods are not fundamentally recommended.Conflict of interest: Authors declare that there is no conflict of interest.

  20. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.