WorldWideScience

Sample records for modified silicas covalently

  1. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  2. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  3. Catalyst recycling via specific non-covalent adsorption on modified silicas

    Kluwer, A.M.; Simons, C.; Knijnenburg, Q.; van der Vlugt, J.I.; de Bruin, B.; Reek, J.N.H.

    2013-01-01

    This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular

  4. Extraction of metal ions using chemically modified silica gel: a PIXE analysis.

    Jal, P K; Dutta, R K; Sudarshan, M; Saha, A; Bhattacharyya, S N; Chintalapudi, S N; K Mishra, B

    2001-08-30

    Organic ligand with carboxyhydrazide functional group was immobilised on the surface of silica gel and the metal binding capacity of the ligand-embedded silica was investigated. The functional group was covalently bonded to the silica matrix through a spacer of methylene groups by sequential reactions of silica gel with dibromobutane, malonic ester and hydrazine in different media. Surface area value of the modified silica was determined. The changes in surface area were correlated with the structural change of the silica surface due to chemical modifications. A mixture solution of metal ions [K(I),Cr(III),Co(II),Ni(II),Cu(II),Zn(II),Hg(II) and U(VI)] was treated with the ligand-embedded silica in 10(-3) M aqueous solution. The measurement of metal extraction capacity of the silica based ligand was done by multielemental analysis of the metal complexes thus formed by using Proton Induced X-ray Emission (PIXE) technique.

  5. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  6. Bifunctional avidin with covalently modifiable ligand binding site.

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  7. Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network

    Liu Fengyi; Fu Lianshe; Wang Jun; Liu Ze; Li Huanrong; Zhang Hongjie

    2002-01-01

    Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propyltriethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by 1 H NMR, IR and MS. The monomer acts as a ligand for Tb 3+ ion and as a sol-gel precursor. Band emission from Tb 3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb 3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the 5 D 4 level of Tb 3+ ion falls in the exciting range to sensitize Tb 3+ ion fluorescence

  8. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  9. Modified silica sol coatings for surface enhancement of leather.

    Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir

    2012-06-01

    The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.

  10. Photooxidation of ethylene over Cu-modified and unmodified silica

    Ichihashi, Yuichi; Matsumura, Yasuyuki

    2003-01-01

    Silica catalyzes photooxidation of ethylene to carbon dioxide and modification of copper on silica results in the lower reaction rate and partial production of ethylene oxide. The reaction does not proceed by the light irradiation through a color filter (λ>280 nm). ESR measurement indicates that radical oxygen species assignable T-shape Si − O3− can be produced on silica by UV irradiation at 77 K. The same species are also found on silica modified with copper by UV irradiation whi...

  11. Study of radon transport through concrete modified with silica fume

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  12. Polyacrolein/mesoporous silica nanocomposite: Synthesis, thermal stability and covalent lipase immobilization

    Motevalizadeh, Seyed Farshad; Khoobi, Mehdi; Shabanian, Meisam [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Asadgol, Zahra; Faramarzi, Mohammad Ali [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176 (Iran, Islamic Republic of); Shafiee, Abbas, E-mail: ashafiee@ams.ac.ir [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14176 (Iran, Islamic Republic of); Center of Excellence in Biothermodynamics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-12-16

    In this work, new polyacrolein/MCM-41 nanocomposites with good phase mixing behavior were prepared through an emulsion polymerization technique. Mesoporous silica was synthesized by in situ assembly of tetraethyl orthosilicate (TEOS) and cetyl trimethyl ammonium bromide (CTAB). The structure and properties of polyacrolein containing nanosized MCM-41 particle (5 and 10 wt%), were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, Dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N{sub 2} adsorption techniques, and thermogravimetric (TGA) analyses. The SEM images from the final powder have revealed good dispersion of the MCM-41 nanoparticles throughout polymeric matrix with no distinct voids between two phases. The results indicated that the thermal properties of the nanocomposite were enhanced by addition of MCM-41. Thermomyces lanuginosa lipase (TLL) was used as a model biocatalyst and successfully immobilized with polyacrolein and the nanocomposite via covalent bonds with the aldehyde groups. The activity between free enzyme, polyacrolein, and MCM-41 nanocomposite (10 wt%)-immobilized TLL was compared. The immobilized lipase with the nanocomposite shows better operational stability such as pH tolerance, thermal and storage stability. In addition, the immobilized lipase with the nanocomposite can be easily recovered and retained at 74% of its initial activity after 15 time reuses. - Graphical abstract: The influence of incorporation of mesoporous MCM-41 nanoparticle with polyacrolein on the thermal properties and enzyme immobilization was investigated. - Highlights: • Polyacrolein/MCM-41 nanocomposites were prepared by emulsion polymerization method. • Thermal stability and char residues in nanocomposites were improved. • Nanocomposites significant effects on immobilization of lipase.

  13. Tetramethylguanidine covalently bonded onto silica gel as catalyst for the addition of nitromethane to cyclopentenone

    Oliveira, Edimar de; Torres, Jocilene D.; Silva, Carlos C.; Luz, Afranio A.M.; Bakuzis, Peter; Prado, Alexandre G.S.

    2006-01-01

    A catalyst based on silica chemically modified with tetramethylguanidine (TMG) was synthesized by the co-condensation of tetraethyl orthosilicate with a new silylant agent derived from the reaction between the TMG molecule and (3-chloropropyl)trimethoxysilane. A neutral n-dodecylamine template was used to organize the polymerization of the inorganic-organic catalyst. Thermogravimetry showed that the number of active pendant groups in the catalyst was 1.35 mmol g -1 , with a surface area of 811±75 m 2 g -1 . Infrared spectroscopy and 13 C and 29 Si nuclear magnetic resonance data are in agreement with the proposed structure. This material has been used to catalyse the addition of nitromethane to cyclopentenone. The catalytic efficiency was followed and the nitromethylcyclopentanone conversion presented a yield of 98% at 3 h of reaction. The catalyst was recovered and reused 14 times, maintaining about 98% of its catalytic efficiency. (author)

  14. Tetramethylguanidine covalently bonded onto silica gel as catalyst for the addition of nitromethane to cyclopentenone

    Oliveira, Edimar de; Torres, Jocilene D.; Silva, Carlos C.; Luz, Afranio A.M.; Bakuzis, Peter; Prado, Alexandre G.S. [Brasilia Univ., DF (Brazil). Inst. de Quimica]. E-mail: agspradus@gmail.com

    2006-09-15

    A catalyst based on silica chemically modified with tetramethylguanidine (TMG) was synthesized by the co-condensation of tetraethyl orthosilicate with a new silylant agent derived from the reaction between the TMG molecule and (3-chloropropyl)trimethoxysilane. A neutral n-dodecylamine template was used to organize the polymerization of the inorganic-organic catalyst. Thermogravimetry showed that the number of active pendant groups in the catalyst was 1.35 mmol g{sup -1}, with a surface area of 811{+-}75 m{sup 2} g{sup -1}. Infrared spectroscopy and {sup 13}C and {sup 29}Si nuclear magnetic resonance data are in agreement with the proposed structure. This material has been used to catalyse the addition of nitromethane to cyclopentenone. The catalytic efficiency was followed and the nitromethylcyclopentanone conversion presented a yield of 98% at 3 h of reaction. The catalyst was recovered and reused 14 times, maintaining about 98% of its catalytic efficiency. (author)

  15. Microviscosity of supercooled water confined within aminopropyl-modified mesoporous silica as studied by time-resolved fluorescence spectroscopy.

    Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio

    2012-01-01

    The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.

  16. Constructing a Multiple Covalent Interface and Isolating a Dispersed Structure in Silica/Rubber Nanocomposites with Excellent Dynamic Performance.

    Zheng, Junchi; Han, Dongli; Zhao, Suhe; Ye, Xin; Wang, Yiqing; Wu, Youping; Dong, Dong; Liu, Jun; Wu, Xiaohui; Zhang, Liqun

    2018-06-13

    Realizing and manipulating a fine dispersion of silica nanoparticles (NPs) in the polymer matrix is always a great challenge. In this work, we first successfully synthesized N, N'-bis[3-(triethoxysilyl)propyl-isopropanol]-propane-1,3-diamine (TSPD), which was a new interface modifier, aiming to promote the dispersion of silica NPs. Through Fourier transform infrared spectroscopy, nuclear magnetic resonance analysis, and mass spectroscopy, we verified that TSPD contains together six ethoxy groups at its two ends. Then, we used this TSPD to modify the pure silica NPs, and this modified silica was abbreviated as D-MS, which is realized by the thermal gravimetric analysis examination, scanning electron microscopy analysis, and dynamic light scattering results. It was clearly observed that D-MS NPs are connected to one another but are not conglutinated tightly, exhibiting a novel predispersed structure with around 1-2 nm certain extent of interparticle distance. Next, we fabricated the following four elastomer nanocomposites such as pure silica/natural rubber (NR) composite (PS-NR), D-MS/NR composite (DMS-NR), bis-(γ-triethoxysilylpropyl)-tetrasulfide (TESPT)-modified silica/NR composite (TS-NR), and TESPT-modified D-MS/NR composite (T&DMS-NR) and found that the Payne effect is the smallest for T&DMS-NR via the combination use of the D-MS and the traditional coupling agent TESPT, which is attributed to its best dispersion state evidenced by the transmission electron microscopy results. Moreover, by measuring a series of other important mechanical performances such as the stress-strain curve, the dynamic strain dependence of the loss factor, and the heat build-up, we concluded that the T&DMS-NR system greatly exceeds those of the three other rubber composites. In general, this new approach provides a good opportunity to prepare a silica/rubber composite with excellent properties in mechanical strength and dynamic behavior by tailoring the fine dispersion of NPs.

  17. Prevention of Bacterial Contamination of a Silica Matrix Containing Entrapped β-Galactosidase through the Action of Covalently Bound Lysozymes

    Heng Li

    2017-02-01

    Full Text Available β-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a “fish-in-net” approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM, X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared (FTIR spectroscopy were used to characterise the silica matrix hosting the two enzymes. Both encapsulated β-galactosidase and bound lysozyme exhibited high enzymatic activities and outstanding operational stability in model reactions. Moreover, enzyme activities of the co-immobilised enzymes did not obviously change relative to enzymes immobilised separately. In antibacterial tests, bound lysozyme exhibited 95.5% and 89.6% growth inhibition of Staphylococcus aureus ATCC (American type culture collection 653 and Escherichia coli ATCC 1122, respectively. In milk treated with co-immobilised enzymes, favourable results were obtained regarding reduction of cell viability and high lactose hydrolysis rate. In addition, when both co-immobilised enzymes were employed to treat milk, high operational and storage stabilities were observed. The results demonstrate that the use of co-immobilised enzymes holds promise as an industrial strategy for producing low lactose milk to benefit people with lactose intolerance.

  18. Copper hexacyanoferrate formation on the modified silica surface with DAB-Am-16 dendrimer

    Carmo, Devaney R. do; Gabriel Junior, Suelino; Bicalho, Urquisa O.; Paim, Leonardo L.

    2009-01-01

    The dendrimer hexadecamine poly(propylene)imine (DAB-Am-16) of third generation (G-3) was anchored on the silica gel surface. The modified silica interact easily with Cu 2+ and then with hexacyanoferrate to form copper hexacyanoferrate. The modified silica was characterized by following techniques: nuclear magnetic resonance (NMR), infrared (FTIR), energy dispersive X-ray (EDX) and cyclic voltammetry. As application of the composite obtained, the modified silica containing copper hexacyanoferrate (CuHCFSD) was tested for a voltammetric determination of nitrite using a graphite paste modified electrode. The modified graphite paste electrode can be applied also to the determination of others biological substances with success. (author)

  19. ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye

    Youxun Liu

    2015-01-01

    Full Text Available Efficient reuse and regeneration of spent mediators are highly desired for many of the laccases’ biotechnology applications. This investigation demonstrates that a redox mediator 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS covalently attached to silica nanoparticles (SNPs effectively mediated dye decolorization catalyzed by laccase. Characteristics of ABTS-modified silica nanoparticles (ABTS-SNPs were researched by scanning electron microscopy and Fourier-transformed infrared spectroscopy. When ABTS and ABTS-SNPs were used as laccase mediators, the decolorization yields of 96 and 95% were, respectively, obtained for indigo carmine dye. The results suggest that ABTS immobilized on SNPs can be used as laccase mediators as they retain almost the same efficiency as the free ABTS. The oxidized ABTS-SNPs were regenerated by their reduction reaction with ascorbic acid. Decolorization efficiency of regenerated ABTS-SNPs and their initial forms were found to be almost equivalent. Six reuse cycles for spent ABTS-SNPs were run for the treatment of indigo carmine, providing decolorization yields of 96–77%. Compared with free mediator, the immobilized mediators have the advantage of being easily recovered, regenerated, and reused making the whole process environmentally friendly.

  20. Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery.

    Zhao, Qinfu; Geng, Hongjian; Wang, Ying; Gao, Yikun; Huang, Jiahao; Wang, Yan; Zhang, Jinghai; Wang, Siling

    2014-11-26

    A redox-responsive delivery system based on colloidal mesoporous silica (CMS) has been developed, in which 6-mercaptopurine (6-MP) was conjugated to vehicles by cleavable disulfide bonds. The oligosaccharide of hyaluronic acid (oHA) was modified on the surface of CMS by disulfide bonds as a targeting ligand and was able to increase the stability and biocompatibility of CMS under physiological conditions. In vitro release studies indicated that the cumulative release of 6-MP was less than 3% in the absence of glutathione (GSH), and reached nearly 80% within 2 h in the presence of 3 mM GSH. Confocal microscopy and fluorescence-activated cell sorter (FACS) methods were used to evaluate the cellular uptake performance of fluorescein isothiocyanate (FITC) labeled CMS, with and without oHA modification. The CMS-SS-oHA exhibited a higher cellular uptake performance via CD44 receptor-mediated endocytosis in HCT-116 (CD44 receptor-positive) cells than in NIH-3T3 (CD44 receptor-negative) cells. 6-MP loaded CMS-SS-oHA exhibited greater cytotoxicity against HCT-116 cells than NIH-3T3 cells due to the enhanced cell uptake behavior of CMS-SS-oHA. This study provides a novel strategy to covalently link bioactive drug and targeting ligand to the interiors and exteriors of mesoporous silica to construct a stimulus-responsive targeted drug delivery system.

  1. Preparation of Silica Modified with 2-Mercaptoimidazole and its SorptionProperties of Chromium(III

    Harry Budiman

    2009-01-01

    Full Text Available Modified silica gel was prepared to remove the heavy metal of chromium(III from water sample. Silica gel was used as supporting material and the 2-mercaptoimidazole was immobilized onto surface silica so that the silica would have selective properties to adsorb the heavy metal chromium(III through the formation of coordination compound between the 2-mercaptoimidazole and chromium(III. The characterization of modified silica gel was carried out by analyzing the Fourier Transform Infrared Spectrum of this material in order to ensure the immobilization of 2-mercaptoimidazole onto the surface. The effect of pH solution, initial concentration of chromium(III, and interaction time were investigated in batch mode to find the adsorption properties of chromium(III onto modified silica. The condition optimum of these parameters was applied to determine the removal percentage of chromium(III in water sample using the modified silica gel

  2. Synthesis and application of silica gel modified with alkoxyalcohols. Alkoxyalcohol shushoku silica gel no gosei to riyo

    Moriguchi, T.; Ishiguro, H.; Matsubara, Y.; Yoshihara, M.; Maeshima, T.; Ito, S. (Kinki University, Osaka (Japan). Faculty of Science and Engineering)

    1991-08-20

    Several kinds of silica gel modified by alkoxyalcohols were synthesized by refluxing and dehyration and the organic reactions were studied when these silica gels were used as the catalyst. It could be confirmed by FT-IR spectra, DTA and elementary analysis that alkoxylalcohols adhere to the surface of silica gels without any decomposition. The acetate was produced by using alkyl halides. It was found that the modified silica gels had clearly the catalytic action for the reaction with n-hexyl bromide and dibromoethane although unmodified silica gels did not show the catalytic action. The reducing reaction of carbonyl compounds was carried out. The reaction proceeded at 25 centigrade for acetophenone, cyclohexanone, 1-indanone and 2-octanone to produce the corresponding reduction products. 11 refs., 5 figs., 4 tabs.

  3. Properties of nano-silica modified pervious concrete

    Bashar S. Mohammed

    2018-06-01

    Full Text Available The aim of this study is to evaluate the effects of inclusion nano-silica (also known as nano-SiO2 on the properties of pervious concrete containing fly ash (FA as a partial replacement to cement. It has been found, for cementitious paste, that incorporating NS leads to reduce the cumulative pore volume by 13.4%. While the compressive strength of NS modified pervious concrete has been improved without adversely affecting its void ratio and permeability. The workability has been adversely affected by the inclusion of NS, which can be enhanced by incorporating the fly ash and superplasticizer. The porosity of cementitious paste has increased as the FA content is increased. These results are in good agreement with SEM results. For the pervious concrete voids ratio, permeability and infiltration rate were decreased against the increase of paste to the aggregate ratio Response surface methodology (RSM has also been used to develop a model for navigating the design space of NS modified pervious concrete. Models revealed 95% significance of confidence level with difference less than 0.2 between Pred R-Squared value of 0.9515 and Adj R-Squared. The general expression has been developed for all the responses with the different coefficients using the RSM. Keywords: Fly ash, Final setting time, Infiltration rate, Pervious concrete, Nano-silica

  4. High-Yield and Sustainable Production of Phosphatidylserine in Purely Aqueous Solutions via Adsorption of Phosphatidylcholine on Triton-X-100-Modified Silica.

    Zhang, Xiaoli; Li, Binglin; Wang, Jiao; Li, Huanyu; Zhao, Binxia

    2017-12-13

    Triton X-100 was covalently bound to a surface of silica and acted as an anchor molecule to facilitate the adsorption of phosphatidylcholine (PC) in a purely aqueous solution. The silica-adsorbed PC obtained was successfully used for phospholipase D (PLD)-mediated transphosphatidylation in the production of phosphatidylserine (PS). Organic solvents were completely avoided in the whole production process. The PC loading and PS yield reached 98.9 and 99.0%, respectively. Two adsorption models were studied, and the relevant parameters were calculated to help us understand the adsorption and reaction processes deeply. In addition, the silica-adsorbed PC provides a promising way to continuously biosynthesize PS. A packed-bed reactor was employed to demonstrate the process flow of the continuous production of PS. The recyclability and stability of the Triton-X-100-modified silica were excellent, as demonstrated by its use 30 times during continuous operation without any loss of the productivity.

  5. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  6. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-01-01

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: → Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. → Strong positive charge was created by aminopropyl-modification. → Capability for immobilization of negatively charged protein was enhanced. → Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by 13 C and 29 Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  7. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    Shen, Shou-Cang, E-mail: shen_shoucang@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tan, Reginald B.H., E-mail: reginald_tan@ices.a-star.edu.sg [Institute of Chemical and Engineering Sciences, A-STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Chemical and Biomolecular Engineering, The National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  8. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Gholami, Zahra, E-mail: zahra.gholami@petronas.com.my [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Abdullah, Ahmad Zuhairi, E-mail: chzuhairi@usm.my; Gholami, Fatemeh, E-mail: fgholami59@gmail.com [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus,14300 Nibong Tebal, Penang (Malaysia); Vakili, Mohammadtaghi, E-mail: farshid3601@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  9. Modified silica-based heterogeneous catalysts for etherification of glycerol

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-01-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca 1.6 La 0.6 /MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%

  10. Sedimentation behaviour and colloidal properties of porous, chemically modified silicas in non-aqueous solvents

    Vissers, J.P.C.; Laven, J.; Claessens, H.A.; Cramers, C.A.M.G.; Agterof, W.G.M.

    1997-01-01

    The sedimentation behaviour and colloidal properties of porous, chemically modified silicas dispersed in non-aqueous solvents have been studied. The free settling behaviour of non-aggregated silica suspensions could effectively be described with a modified Stokes equation that takes into account the

  11. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  12. Loading cisplatin onto 6-mercaptopurine covalently modified MSNS: a nanomedicine strategy to improve the outcome of cisplatin therapy

    Lv X

    2016-12-01

    Full Text Available Xiaojie Lv,1 Ming Zhao,1,2 Yuiji Wang,1 Xi Hu,1 Jianhui Wu,1 Xueyun Jiang,1 Shan Li,1 Chunying Cui,1 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan Abstract: In the treatment of cancer patients, cisplatin (CDDP exhibits serious cardiac and renal toxicities, while classical combinations related to CDDP are unable to solve these problems and may result in worse prognosis. Alternately, this study covalently conjugated 6-mercaptopurine (6MP onto the surface of mercapto-modified mesoporous silica nanoparticles (MSNS to form MSNS-6MP and loaded CDDP into the holes on the surface of MSNS-6MP to form MSNS-6MP/CDDP, a tumor-targeting nano-releasing regime for CDDP and 6MP specifically. In the S180 mouse model, the anti-tumor activity and overall survival of MSNS-6MP/CDDP (50 mg·kg-1·day-1, corresponding to 1 mg·kg-1·day-1 of 6MP and 5 mg·kg-1·day-1 of CDDP were significantly higher than those of CDDP alone (5 mg·kg-1·day-1 or CDDP (5 mg·kg-1·day-1 plus 6MP (1 mg·kg-1·day-1. The assays of serum alanine aminotransferase, aspartate aminotransferase and creatinine, as well as the images of myocardium and kidney histology, support that MSNS-6MP/CDDP is able to completely eliminate liver, kidney and heart toxicities induced by CDDP alone or CDDP plus 6MP. Keywords: 6-mercaptopurine, cisplatin, mesoporous silica nanoparticles, cancer therapy, nanomedicine

  13. Structural evolution of silica sols modified with formamide

    Lenza R.F.S.

    2001-01-01

    Full Text Available In this work we investigated the influence of formamide on the acid-catalyzed sol-gel process by Fourier transform infrared spectroscopy (FTIR. Three silica sols were studied: Sol catalyzed with nitric acid without formamide, sol catalyzed with nitric acid containing formamide and sol catalyzed with a mixture of nitric acid and hydrofluoric acid and modified with formamide. Following the time evolution of both the Si-(OH stretching vibration at around 950 cm-1 and the Si-O-(Si vibration between 1040 cm-1 and 1200 cm-1 we were able to describe the structural evolution of each sol. The curve of evolution of Si-(OH stretching vibration corresponding to sol A has a simple asymptotic evolution. In the case of formamide containing sol, we observed a two-step structural evolution indicating that for the system containing formamide the polymerization goes through a temporary stabilization of oligomers, which can explain the non-variation of the Si-O(H bond wavenumber for a certain time. Gelation times were of several days for gels without formamide and few hours for gels containing additive. The presence of additive resulted in a highly interconnected gel.

  14. Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin

    Abdelsattar M. Omar

    2016-08-01

    Full Text Available Hemoglobin (Hb modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD, specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen. The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases.

  15. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase.

    Ehret, Fabian; Zhou, Cun Yu; Alexander, Seth C; Zhang, Dongyang; Devaraj, Neal K

    2018-03-05

    Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.

  16. Gelation of covalently edge-modified laponites in aqueous media. 1. rheology and nuclear magnetic resonance.

    Patil, Suhas P; Mathew, Renny; Ajithkumar, T G; Rajamohanan, P R; Mahesh, T S; Kumaraswamy, Guruswamy

    2008-04-17

    We describe the covalent modification of the edges of laponite with organic groups and the influence of this modification on gelation behavior. We compare three materials: an unmodified laponite, a laponite edge modified with a trimethyl moiety (MLap), and an octyldimethyl moiety (OLap). Gelation is investigated using rheology and NMR T1 relaxation measurements and nuclear Overhauser enhancement spectroscopy (NOESY). MLap and OLap show qualitatively different gelation. Gelation of MLap is very similar to laponite: MLap gels over the same time scale as laponite and has about the same solid modulus, and the MLap gel is almost as transparent as laponite. In contrast, OLap gels rapidly relative to laponite and forms a weak, turbid gel. We believe that gelation in laponite and MLap results from the formation of a network of well-dispersed platelets (or a few platelets), while in OLap, gelation results from a network of stacks of several platelets. NMR relaxation measurements indicate that gelation does not affect the average relaxation of water protons. However, T1 increases marginally for the protons in the organic moieties in MLap and decreases for protons in the organic moieties in OLap. Relaxation measurements, analyses of line width, and NOESY taken together suggest that, in OLap, gelation is a consequence of association of the organic moieties on the laponite edges, and that this association strengthens with time. Thus, the time-dependent changes in NMR suggest a structural origin for the time-dependent changes in the rheological behavior.

  17. Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles

    Pang, Beili; Ryu, Chong-Min; Kim, Hyung-Il, E-mail: hikim@cnu.ac.kr

    2013-11-01

    Highlights: • Silica nanoparticles were modified to carry the vinyl groups for photo-crosslinking. • Acrylic copolymer was modified to have the vinyl groups for photo-crosslinking. • Strong and extensive interfacial bondings were formed between polymer and silica. • Thermal stability of PSA was improved by forming nanocomposite with modified silica. -- Abstract: Pressure sensitive adhesives (PSAs) with higher thermal stability were successfully prepared by forming composite with the silica nanoparticles modified via reaction with 3-methacryloxypropyltrimethoxysilane. The acrylic copolymer was synthesized as a base resin for PSAs by solution polymerization of 2-EHA, EA, and AA with AIBN as an initiator. The acrylic copolymer was further modified with GMA to have the vinyl groups available for UV curing. The peel strength decreased with the increase of gel content which was dependent on both silica content and UV dose. Thermal stability of the composite PSAs was improved noticeably with increasing silica content and UV dose mainly due to the strong and extensive interfacial bonding between the organic polymer matrix and silica.

  18. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  19. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  20. Antidegradation and reinforcement effects of phenyltrimethoxysilane- or N-[3-(trimethoxysilyl)propyl]aniline-modified silica particles in natural rubber composites

    Tunlert, Apinya [Program in Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical and Advanced Material, Chulalongkorn University Bangkok 10330 (Thailand)

    2016-04-15

    The modification of silica particles with phenyltrimethoxysilane or N-[3-(trimethoxysilyl)propyl]aniline via a sol–gel reaction was performed in order to improve the dispersion of silica and antidegradation in natural rubber (NR). The functional groups on the modified silica surface were characterized by Fourier transform infrared spectroscopy, while the morphology was evaluated by scanning and transmission electron microscopy. The surface properties and antioxidant activity of the modified silica particles were determined by the water contact angle and 2, 2-diphenyl-1-picrylhydrazyl assay, respectively. The modified silica particles exhibited a higher hydrophobicity and a decreased interfacial adhesion energy compared with the unmodified silica particles. The modified silica particles were then incorporated into NR. The better dispersion of the modified silica particles than the unmodified ones in the NR matrix resulted in improved mechanical properties in terms of the modulus at 300% elongation (2.9 ± 0.02 MPa), hardness (52.5 ± 0.2 Shore A), abrasion resistance (241 ± 8 mm{sup 3}) and compression set (20.2 ± 0.6%). In addition, the inclusion of the modified silica particles in the NR matrix gave a high initial temperature of decomposition and retarded the ozone-induced degradation compared with the NR filled with unmodified silica particles. - Highlights: • Silica was surface modified with PhTMS or ATMS via a sol–gel reaction. • Modified silica showed a decreased interfacial adhesion energy. • Modified silica showed an enhanced free radical scavenging activity. • Modified silica improved the mechanical properties, thermal stability and ozone resistance in NR vulcanizates.

  1. On the PEEK composites reinforced by surface-modified nano-silica

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  2. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Torres, Cecilia C.; Urbano, Bruno F.; Campos, Cristian H.; Rivas, Bernabé L.; Reyes, Patricio

    2015-01-01

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, 29 Si and 13 C solid state NMR, and N 2 adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point

  3. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Torres, Cecilia C. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Urbano, Bruno F., E-mail: burbano@udec.cl [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Campos, Cristian H. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Rivas, Bernabé L. [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Reyes, Patricio [Department of Physical Chemistry, Faculty of Chemical Science, University of Concepción (Chile)

    2015-02-15

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, {sup 29}Si and {sup 13}C solid state NMR, and N{sub 2} adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point.

  4. A binderless, covalently bulk modified electrochemical sensor: Application to simultaneous determination of lead and cadmium at trace level

    Gunigollahalli Kempegowda, Raghu [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India); Malingappa, Pandurangappa, E-mail: mprangachem@gmail.com [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Proposed sensor is a new type of binderless covalent bulk modified electrode. Black-Right-Pointing-Pointer Surface can be easily renewed by simple mechanical polishing using emery sheets. Black-Right-Pointing-Pointer Free from modifier leaching during electrochemical measurements. Black-Right-Pointing-Pointer Provides long term storage stability with good reproducibility. Black-Right-Pointing-Pointer Nanomolar level detection limit achieved with selectivity. - Abstract: A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb{sup 2+} and Cd{sup 2+} ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.

  5. Effect of nano silica based modifying agent for hydrophobic coating application

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh

    2016-01-01

    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  6. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  7. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  8. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  9. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  10. Structural changes in femtosecond laser modified regions inside fused silica

    Juodkazis, Saulius; Kohara, Shinji; Ohishi, Yasuo; Hirao, Norihisa; Vailionis, Arturas; Mizeikis, Vygantas; Saito, Akira; Rode, Andrei

    2010-01-01

    Structural characterization of photomodified microvolumes formed by tightly focused femtosecond laser pulses inside silica glass was carried out using synchrotron x-ray diffraction. The observed distinct separation between the O–O and Si–Si pair correlation peaks can be interpreted as a phase separation induced by microexplosions at the focal volume. The mechanisms of structural transitions induced by femtosecond laser pulses inside dielectrics are discussed

  11. Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.

    Björklund, Sebastian; Kocherbitov, Vitaly

    2017-08-30

    Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.

  12. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...

  13. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection

  14. Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability.

    Fedorenko, Svetlana V; Grechkina, Svetlana L; Mustafina, Asiya R; Kholin, Kirill V; Stepanov, Alexey S; Nizameev, Irek R; Ismaev, Ildus E; Kadirov, Marsil K; Zairov, Rustem R; Fattakhova, Alfia N; Amirov, Rustem R; Soloveva, Svetlana E

    2017-01-01

    The present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres. The relaxivities of the prepared nanoparticles were measured at 0.47, 1.41 and 1.5T with the use of both NMR analyzer and whole body NMR scanner. Longitudinal relaxivities of the obtained silica nanoparticles reveal significant dependence on the confinement mode, changing from 4.1 to 49.6mM -1 s -1 at 0.47T when the localization of Gd(III) complexes changes from core to superficial zones of the silica spheres. The results highlight predominant contribution of the complexes located close to silica/water interface to the relaxivity of the nanoparticles. Low effect of blood proteins on the relaxivity in the aqueous colloids of the nanoparticles was exemplified by serum bovine albumin. T 1 - weighted MRI data indicate that the nanoparticles provide strong positive contrast at 1.5T, which along with low cytotoxicity effect make a good basis for their application as contrast agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. BINAP-Ru and -Rh catalysts covalently immobilised on silica and their repeated application in asymmetric hydrogenation

    McDonald, A.R.|info:eu-repo/dai/nl/304832634; Müller, C.; Vogt, D.; van Klink, G.P.M.|info:eu-repo/dai/nl/170637964; van Koten, G.|info:eu-repo/dai/nl/073839191

    2008-01-01

    We present the facile immobilisation of a chiral diphosphine ligand, BINAP, on a silica (high pore volume, low surface area). The protected ligand has been immobilised as a phosphine oxide and deprotected on the surface to prevent side reactions of unprotected phosphines with surface silanol groups.

  16. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  17. Aliphatic Hydrocarbons from Lignocellulose by Pyrolysis over Cesium-Modified Amorphous Silica Alumina Catalysts

    Zabeti, M.; Sai Sankar Gupta, Karthick Babu; Raman, G.; Lefferts, Leon; Schallmoser, Stefan; Lercher, Johannes A.; Seshan, K.

    2015-01-01

    Cesium-modified amorphous silica alumina (Cs/ASA) is a promising catalyst for the production of hydrocarbons through pyrolysis of biomass. Catalytic pyrolysis of pinewood over Cs/ASA in a pyrolyzer system in conjunction with a gas chromatograph and mass spectrometer resulted in a 22% yield of

  18. STABLE SILICA-GRAFTED POLYMER-BOUND BULKY-PHOSPHITE MODIFIED RHODIUM HYDROFORMYLATION CATALYSTS

    JONGSMA, T; VANAERT, H; FOSSEN, M; CHALLA, G; VANLEEUWEN, PWNM

    1993-01-01

    The present study demonstrates that silica-grafted polymer-bound phosphite modified rhodium complexes can be used in continuous flow reactors. The hydroformylation of styrene was carried out at moderate pressure (p(CO/H-2) = 30 bar) and temperature (T = 100-degrees-C), yielding constant conversions

  19. Separation of metronidazole, its major metabolites and their conjugates using dynamically modified silica

    Thomsen, U. G.; Cornett, Claus; Tjornelund, J.

    1995-01-01

    -performance liquid chromatographic (HPLC) system for the simultaneous determination of metronidazole, its major metabolites and their glucuronic acid conjugates in biological fluids. The separation is performed using bare silica dynamically modified with N-cetyl-N,N,N-trimethylammonium bromide contained...

  20. Synthesis and electron paramagnetic resonance study of a nitroxide free radical covalently bonded on aminopropyl-silica gel

    Tudose, Madalina; Constantinescu, Titus; Balaban, Alexandru T.; Ionita, Petre

    2008-01-01

    A solid spin-labeled material was obtained starting from 2-chloro-3,5-dinitro-N-(4-(2,2,6,6-tetramethyl-piperidine-1-oxyl) -benzamide) and aminopropyl-silica gel. Stability tests showed that even after several months the spin-labeled material had the same properties as immediately after synthesis. EPR properties of the TEMPO-derivatized silica were studied as a function of solvent polarity and temperature. Rotational correlation times were calculated from EPR spectra and correlated with solvent characteristics and temperature. Polar solvents induce a fast motion of the spin-label, clearly seen in the EPR spectra by the apparition of the well-known TEMPO radical triplet. The solid spin-labeled (dry) sample showed a high interspin interaction, which can be disrupted not only by different (liquid) solvents, but also by absorption of different solids, like cyclodextrins, dendrimers or polyethyleneglycols. Also, changes induced by the temperature were studied in the case of toluene wet sample. From 150 to 370 K, the spectrum is changing from a slow motion spectrum type to a fast motion regime. The preparative procedures to obtain the spin-labeled silica as well as some of its parameters are described

  1. Synthesis and electron paramagnetic resonance study of a nitroxide free radical covalently bonded on aminopropyl-silica gel

    Tudose, Madalina; Constantinescu, Titus [Institute of Physical Chemistry, Spl. Independentei 202, 060021 Bucharest (Romania); Balaban, Alexandru T. [Texas A and M University at Galveston, Marine Sciences Department, Galveston, TX 77551 (United States); Ionita, Petre [Institute of Physical Chemistry, Spl. Independentei 202, 060021 Bucharest (Romania)], E-mail: pionita@icf.ro

    2008-01-30

    A solid spin-labeled material was obtained starting from 2-chloro-3,5-dinitro-N-(4-(2,2,6,6-tetramethyl-piperidine-1-oxyl) -benzamide) and aminopropyl-silica gel. Stability tests showed that even after several months the spin-labeled material had the same properties as immediately after synthesis. EPR properties of the TEMPO-derivatized silica were studied as a function of solvent polarity and temperature. Rotational correlation times were calculated from EPR spectra and correlated with solvent characteristics and temperature. Polar solvents induce a fast motion of the spin-label, clearly seen in the EPR spectra by the apparition of the well-known TEMPO radical triplet. The solid spin-labeled (dry) sample showed a high interspin interaction, which can be disrupted not only by different (liquid) solvents, but also by absorption of different solids, like cyclodextrins, dendrimers or polyethyleneglycols. Also, changes induced by the temperature were studied in the case of toluene wet sample. From 150 to 370 K, the spectrum is changing from a slow motion spectrum type to a fast motion regime. The preparative procedures to obtain the spin-labeled silica as well as some of its parameters are described.

  2. Chemical composition of silica-based biocidal modifier

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  3. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  4. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  5. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5. (paper)

  6. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  7. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping.

    Stigter, E C A; de Jong, G J; van Bennekom, W P

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin beta- and alpha-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  8. Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping

    Stigter, E.C.A. [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)], E-mail: e.c.a.stigter@uu.nl; Jong, G.J. de; Bennekom, W.P. van [Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

    2008-07-07

    On-line digestion of proteins under acidic conditions was studied using micro-reactors consisting of dextran-modified fused-silica capillaries with covalently immobilized pepsin. The proteins used in this study differed in molecular weight, isoelectric point and sample composition. The injected protein samples were completely digested in 3 min and the digest was analyzed with micro-high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS). The different proteins present in the samples could be identified with a Mascot database search on the basis of auto-MS/MS data. It proved also to be possible to digest and analyze protein mixtures with a sequence coverage of 55% and 97% for the haemoglobin {beta}- and {alpha}-chain, respectively, and 35-55% for the various casein variants. Protease auto-digestion, sample carry-over and loss of signal due to adsorption of the injected proteins were not observed. The backpressure of the reactor is low which makes coupling to systems such as Surface Plasmon Resonance biosensors, which do not tolerate too high pressure, possible. The reactor was stable for at least 40 days when used continuously.

  9. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    V. Zelenak; M. Badanicova; D. Halamova; J. Cejka; A. Zukal; N. Murafa; G. Goerigk [P.J. Safarik University, Kosice (Slovak Republic)

    2008-10-15

    Three mesoporous silica materials with different pore sizes and pore connectivity were prepared and functionalized with aminopropyl (AP) ligands by post-synthesis treatment. The materials were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and nitrogen adsorption/desorption experiments. The carbon dioxide sorption on modified mesoporous molecular sieves was investigated by using of microbalances at 25{sup o}C, and the influence of pore size and pore architecture on CO{sub 2} sorption was discussed. The large pore silica, SBA-15, showed the largest carbon dioxide sorption capacity (1.5 mmol/g), relating to highest amine surface density in this material. On the other hand, three-dimensional accessibility of amine sites inside the pores of SBA-12 silica resulted in a faster response to CO{sub 2} uptake in comparison with MCM-41 and SBA-15 molecular sieves

  10. Influence of Silane modified nano silica on the corrosion protection of zinc rich coating

    Nguyen Thuy Duong; To Thi Xuan Hang; Trinh Anh Truc; Pham Gia Vu; Bui Van Truoc; Thai Hoang

    2015-01-01

    Zinc rich coatings are the best effective primers for corrosion protection of carbon steel in aggressive conditions. For traditional zinc rich primer the zinc content is very high, more than 90 wt.%. The coating adhesion is decreased with the increase of zinc content, so that it is necessary to decrease the zinc content by using additives. In this study the nano silica modified by N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was prepared and incorporated in zinc rich epoxy coatings containing 85 wt.% zinc powder. The corrosion protection performance of coatings was evaluated by electrochemical impedance spectroscopy. The results obtained show that the presence of nano silica improved corrosion protection of zinc rich epoxy coating and the best protection was obtained with 3 wt.% nano silica. (author)

  11. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  12. Determination of beryllium in water using silica gel chemically modified with aminophosphonic acid

    Zajtseva, G.N.; Strelko, V.V.

    2001-01-01

    Considered are methods of Be determination based on Be isolation from the solutions using aminophosphonic acid covalently bound on silica gel surface (APA-SiO 2 ) and subsequent photometric or atomic-absorption determination of Be in eluate ( the limit of Be determination is 0.00005 mg/l or 0.00008 mg/l, respectively). APA-SiO 2 high efficiency and a possibility of beryllium ions extraction from diluted solutions by means of sorbent small weighed portions is shown. High efficiency of the sorbent both for concentration and waters purification from beryllium is shown. Methods are tested in analysis of waste water. To assess the accuracy of the proposed methods, parallel determination of beryllium in tests by means of the additions method was carried out. The given data testify to a sufficient accuracy and reproducibility of the proposed methods [ru

  13. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  14. Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent.

    Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi

    2018-05-01

    Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Exploiting the interactions between the ruthenium Hoveyda–Grubbs catalyst and Al-modified mesoporous silica: the case of SBA15 vs. KCC-1

    Werghi, Baraa; Pump, Eva; Tretiakov, Mykyta; Abou-Hamad, Edy; Gurinov, Andrei; Doggali, Pradeep; Anjum, Dalaver H.; Cavallo, Luigi; Bendjeriou-Sedjerari, Anissa; Basset, Jean-Marie

    2018-01-01

    Immobilization of the 2 generation Hoveyda-Grubbs catalyst HG-II onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [(Si-O-Si)(Si-O-)Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, H and C solid state NMR, DNP-SENS, EF-TEM...). Together with DFT calculations, the immobilization of HG-II does not occur through the formation of a covalent bond between the complex and the Al-modified mesoporous silica as expected, but through an Al⋯Cl-[Ru]-coordination. It is not surprising that in functionalized olefin metathesis of diethyldiallyl malonate, DEDAM (liquid phase), leaching of the catalyst is observed which is not the case in non-functionalized olefin metathesis of propene (gas phase). Besides, the results obtained in propene metathesis with HG-II immobilized either on SBA15 (d = 6 nm) or KCC-1 (d = 4 or 8 nm) highlight the importance of the accessibility of the catalytic site. Therefore, we demonstrate that KCC-1 is a promising and suitable 3D mesoporous support to overcome the diffusion of reactants into the porous network of heterogeneous catalysts.

  16. Exploiting the interactions between the ruthenium Hoveyda–Grubbs catalyst and Al-modified mesoporous silica: the case of SBA15 vs. KCC-1

    Werghi, Baraa

    2018-03-05

    Immobilization of the 2 generation Hoveyda-Grubbs catalyst HG-II onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [(Si-O-Si)(Si-O-)Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, H and C solid state NMR, DNP-SENS, EF-TEM...). Together with DFT calculations, the immobilization of HG-II does not occur through the formation of a covalent bond between the complex and the Al-modified mesoporous silica as expected, but through an Al⋯Cl-[Ru]-coordination. It is not surprising that in functionalized olefin metathesis of diethyldiallyl malonate, DEDAM (liquid phase), leaching of the catalyst is observed which is not the case in non-functionalized olefin metathesis of propene (gas phase). Besides, the results obtained in propene metathesis with HG-II immobilized either on SBA15 (d = 6 nm) or KCC-1 (d = 4 or 8 nm) highlight the importance of the accessibility of the catalytic site. Therefore, we demonstrate that KCC-1 is a promising and suitable 3D mesoporous support to overcome the diffusion of reactants into the porous network of heterogeneous catalysts.

  17. Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry.

    Sanderson, Patience; Stickney, Morgan; Leach, Franklin E; Xia, Qiangwei; Yu, Yanlei; Zhang, Fuming; Linhardt, Robert J; Amster, I Jonathan

    2018-04-13

    Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Wettability of modified silica layers deposited on glass support activated by plasma

    Terpiłowski, Konrad, E-mail: terpil@umcs.pl [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin (Poland); Rymuszka, Diana [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin (Poland); Goncharuk, Olena V.; Sulym, Iryna Ya.; Gun’ko, Vladimir M. [Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Kiev (Ukraine)

    2015-10-30

    Highlights: • New modified silica materials synthesis. • Support surface plasma activation. • Apparent surface free energy determination. • Equilibrium contact angle calculation. - Abstract: Fumed silica modified by hexamethyldisilazane [HDMS] and polydimethylsiloxane [PDMS] was dispersed in a polystyrene/chloroform solution. To increase adhesion between deposited silica layers and a glass surface, the latter was pretreated with air plasma for 30 s. The silica/polystyrene dispersion was deposited on the glass support using a spin coater. After deposition, the plates were dried in a desiccator for 24 h. Water advancing and receding contact angles were measured using the tilted plate method. The apparent surface free energy (γ{sub S}) was evaluated using the contact angle hysteresis approach. The surface topography was determined using the optical profilometry method. Contact angles changed from 59.7° ± 4.4 (at surface coverage with trimethylsilyl groups Θ = 0.14) to 155° ± 3.1 at Θ = 1. The value of γ{sub S} decreased from 51.3 ± 2.8 mJ/m{sup 2} (for the sample at the lowest value of Θ) to 1.0 ± 0.4 mJ/m{sup 2} for the most hydrophobic sample. Thus, some systems with a high degree of modification by HDMS showed superhydrophobicity, and the sliding angle amounted to about 16° ± 2.1.

  19. Bioelectrocatalytic and biosensing properties of horseradish peroxidase covalently immobilized on (3-aminopropyl)trimethoxysilane-modified titanate nanotubes

    Sovic, David; Gajovic, Andreja; Ivekovic, Damir

    2011-01-01

    Titanate nanotubes (TiNT) surface modified with (3-aminopropyl)trimethoxysilane were employed as a support for covalent immobilization of horseradish peroxidase (HRP) by using 1,4-benzoquinone as a coupling agent. Composite film-electrodes consisting of HRP-modified TiNT embedded into the porous carbon powder/Nafion matrix were fabricated and their applicability in direct bioelectrocatalytic reduction of H 2 O 2 and H 2 O 2 biosensing were investigated. An efficient direct electron transfer between the immobilized HRP molecules and the electrode was observed in the presence of H 2 O 2 at potentials lower than 600 mV (vs. Hg/Hg 2 Cl 2 /3.5 M KCl). For the HRP-TiNT-modified electrodes polarized at 0 mV, a linear dependence of the bioelectrocatalytic current on the concentration of H 2 O 2 was observed up to the concentration of H 2 O 2 equal to 10 μM, with the sensitivity of (1.10 ± 0.01) AM -1 cm -2 and the detection limit of 35 nM.

  20. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  1. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions

    Puanngam, Mahitti; Unob, Fuangfa

    2008-01-01

    Adsorbents for Hg(II) ion extraction were prepared using amorphous silica gel and ordered MCM-41. Grafting with 2-(3-(2-aminoethylthio)propylthio)ethanamine was used to functionalize the silica. The functionalized adsorbents were characterized by nitrogen adsorption, X-ray diffraction, 13 C MAS NMR spectroscopy and thermogravimetric analysis. The adsorption properties of the modified silica gel and MCM-41 were compared using batch method. The effect of pH, stirring time, ionic strength and foreign ions were studied. The extraction of Hg(II) ions occurred rapidly with the modified MCM-41 and the optimal pH range for the extraction by the modified materials was pH 4-7. Foreign ions, especially Cl - had some effect on the extraction efficiency of the modified silica gel and the modified MCM-41. The adsorption behavior of both adsorbents could be described by a Langmuir model at 298 K, and the maximum adsorption capacity of the modified silica gel and MCM-41 at pH 3 was 0.79 and 0.70 mmol g -1 , respectively. The modified MCM-41 showed a larger Langmuir constant than that of the modified silica gel, indicating a better ability for Hg(II) ion adsorption. The results indicate that the structure of the materials affects the adsorption behavior. These materials show a potential for the application as effective and selective adsorbents for Hg(II) removal from water

  2. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

    Kołodyńska, D.; Gęca, M.; Skwarek, E.; Goncharuk, O.

    2018-04-01

    The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

  4. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  5. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  6. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    Uzun, K.; Cevik, E.; Senel, M.; Soezeri, H.; Baykal, A.; Abasiyanik, M. F.; Toprak, M. S.

    2010-01-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate (V max ) and Michaelis-Menten constant (K m ) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  7. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

    Saadaoui, Maroua; Sánchez, Alfredo; Díez, Paula; Raouafi, Noureddine; Pingarrón, José M.; Villalonga, Reynaldo

    2016-01-01

    Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine. (author)

  8. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  9. Laccase immobilized on methylene blue modified mesoporous silica MCM-41/PVA

    Xu Xinhua; Lu Ping; Zhou Yumei; Zhao Zhenzhen; Guo Meiqing

    2009-01-01

    The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t 90% ) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 μM and the linear detect range is about from 4.0 μM to 87.98 μM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis-Menten (K M app ) is estimated using the Lineweaver-Burk equation and the K M app value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.

  10. Crystalline silica is a negative modifier of pulmonary cytochrome P-4501A1 induction

    Battelli, L.A.; Ghanem, M.M.; Kashon, M.L.; Barger, M.; Ma, J.Y.C.; Simoskevitz, R.L.; Miles, P.R.; Hubbs, A.F. [NIOSH, Morgantown, WV (United States). Health Effects Laboratory Division

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH {beta}-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal {beta}-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. {beta}-Naphthoflavone induced pulmonary CYP1A1, but silica attenuated this {beta}-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constituitive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity.

  11. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells

    Stefania Roberta Cicco

    2016-12-01

    Full Text Available In the past decade, mesoporous silica nanoparticles (MSNs with a large surface area and pore volume have attracted considerable attention for their application in drug delivery and biomedicine. Here we propose biosilica from diatoms as an alternative source of mesoporous materials in the field of multifunctional supports for cell growth: the biosilica surfaces were chemically modified by traditional silanization methods resulting in diatom silica microparticles functionalized with 3-mercaptopropyl-trimethoxysilane (MPTMS and 3-aminopropyl-triethoxysilane (APTES. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the –SH or –NH2 were successfully grafted onto the biosilica surface. The relationship among the type of functional groups and the cell viability was established as well as the interaction of the cells with the nanoporosity of frustules. These results show that diatom microparticles are promising natural biomaterials suitable for cell growth, and that the surfaces, owing to the mercapto groups, exhibit good biocompatibility.

  12. Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites

    Y. F. Luo

    2012-01-01

    Full Text Available Nanocrystalline cellulose was modified by 3-aminopropyl-triethoxysilane (KH550. The modified nanocrystalline cellulose (MNCC was further investigated to partially replace silica in natural rubber (NR composites via coagulation. NR/MNCC/silica and NR/nanocrystalline cellulose (NCC/silica nanocomposites were prepared. Through the comparison of vulcanization characteristics, processing properties of compounds and mechanical properties, compression fatigue properties, dynamic mechanical performance of NR/MNCC/silica and NR/NCC/silica nanocomposites, MNCC was proved to be more efficient than NCC. MNCC could activate the vulcanization process, suppress Payne effect, increase 300% modulus, tear strength and hardness, and reduce the heat build-up and compression set. Moreover, fine MNCC dispersion and strong interfacial interaction were achieved in NR/MNCC/silica nanocomposites. The observed reinforcement effects were evaluated based on the results of apparent crosslinking density (Vr, thermo-gravimetric (TG and scanning electron microscopic (SEM analyses of NR/MNCC/silica in comparison with NR/NCC/silica nanocomposites.

  13. Preparation and characterization of micro-cell membrane chromatographic column with N-hydroxysuccinimide group-modified silica-based porous layer open tubular capillary.

    Xu, Liang; Xu, Bei; Zhao, Zhi-Yu; Yang, Hui-Ping; Tang, Cheng; Dong, Lin-Yi; Liu, Kun; Fu, Li; Wang, Xian-Hua

    2017-09-22

    Cell membrane chromatography (CMC) is an effective tool in screening active compounds from natural products and studying membrane protein interactions. Nevertheless, it always consumes a large amount of cells (e.g. 10 7 -10 8 ) for column preparation. To overcome this, micro-CMC (mCMC), that employs a silica capillary as membrane carrier, was developed. However, both CMC and mCMC suffer from short column life span (e.g. 3days), mainly due to the falling-off of cellular membranes (CMs). This has greatly limited further application of CMC and mCMC, especially when the cells are hard to obtain. To solve this, N-hydroxysuccinimide (NHS)-modified silica-based porous layer open tubular capillary was first prepared for mCMC. The NHS groups can easily react with amino groups on CMs to form a stable covalent bond under a mild condition. So, CMs immobilized on the NHS-modified capillary are less likely to fall off. To verify this, SKBR3/mCMC (Her2 positive) and BALL1/mCMC (CD20 positive) columns were prepared. Two monoclonal antibody drugs, trastuzumab (anti-Her2) and rituximab (anti-CD20), were selected as analytes to characterize the columns. As a result, NHS-modified column for mCMC can afford higher chromatographic retention than non-modified column. Besides, the column life span was significantly improved to more than 16days for SKBR3/mCMC and 14days for BALL1/mCMC, while the compared column showed a sharp decline in retention factor in first 3days. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  15. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  16. Determination of Thallium(I by Hybrid Mesoporous Silica (SBA-15 Modified Electrode

    Geeta Rani

    2016-01-01

    Full Text Available Chemically modified mesoporous silica material (SBA-15 was used for the construction of Tl(I selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM shows the high selectivity of electrode towards Tl(I over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.

  17. Development of efficient amine-modified mesoporous silica SBA-15 for CO2 capture

    Zhang, Xiaoyun; Qin, Hongyan; Zheng, Xiuxin; Wu, Wei

    2013-01-01

    Graphical abstract: - Highlights: • A secondary amine AN-TEPA is used to modify the SBA-15. • CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading) is high. • The sorbent exhibits a high stability after 12 cycling runs. • The modified SBA-15 achieves complete desorption at low temperature (100 °C). - Abstract: A novel CO 2 sorbent was prepared by impregnating mesoporous silica, SBA-15, with acrylonitrile (AN)-modified tetraethylenepentamine (TEPA) in order to increase CO 2 adsorption capacity and improve cycling stability. The mesoporous silica with pre- and post-surface modification was investigated by X-ray diffraction characterization (XRD), N 2 adsorption–desorption test (N 2 -BET), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The adsorption/desorption performance of S-TN (TN: AN modified TEPA) and S-TEPA was studied by dynamic adsorption. Test results showed that the solid base-impregnated SBA-15 demonstrated high CO 2 adsorption capacity (180.1 mg g −1 -adsorbent for 70% amine loading level). Compared to S-TEPA (24.1% decrease of initial capacity), S-TN with 50% amine loading exhibited improved cycling stability, 99.9% activity reserved (from initial 153.0 mg g −1 to 151.3 mg g −1 ) after 12 cycles of adsorption/desorption at 100 °C. A mechanism of molecular structure of the loaded amine was attributed to the improved performance

  18. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  19. Mesoporous silica materials modified with alumina polycations as catalysts for the synthesis of dimethyl ether from methanol

    Macina, Daniel; Piwowarska, Zofia; Tarach, Karolina; Góra-Marek, Kinga [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland); Ryczkowski, Janusz [Maria Curie Skłodowska University, Faculty of Chemistry, Maria Curie-Skłodowska 2, 20-031 Lublin (Poland); Chmielarz, Lucjan, E-mail: chmielar@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków (Poland)

    2016-02-15

    Highlights: • Deposition of alumina ologoctaions on mesoporous silicas modified with surface −SO{sub 3}H groups. • Alumina aggregates generated acid properties in the silica supports. • Alumina modified SBA-15 and MCF were active and selective catalysts in DME synthesis. - Abstract: Mesoporous silica materials (SBA-15 and MCF) were used as catalytic supports for the deposition of aggregated alumina species using the method consisting of the following steps: (i) anchoring 3-(mercaptopropyl)trimethoxysilane (MPTMS) on the silica surface followed by (ii) oxidation of −SH to−SO{sub 3}H groups and then (iii) deposition of aluminum Keggin oligocations by ion-exchange method and (iv) calcination. The obtained samples were tested as catalysts for synthesis of dimethyl ether from methanol. The modified silicas were characterized with respect to the ordering of their porous structure (XRD), textural properties (BET), chemical composition (EDS, CHNS), structure ({sup 27}Al NMR, FTIR) and location of alumina species (EDX-TEM), surface acidity (NH{sub 3}-TPD, Py-FTIR) and thermal stability (TGA). The obtained materials were found to be active and selective catalysts for methanol dehydration to dimethyl ether (DME) in the MTD process (methanol-to-dimethyl ether).

  20. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2007-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenc...

  1. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    Xingmao Jiang

    2011-01-01

    Full Text Available Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureidoazobenzene (TSUA. The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG, propylene glycol propyl ether (PGPE, and dipropylene glycol propyl ether (DPGPE delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchable pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.

  2. Removal of Parathion from Aqueous Media Through p-tert-Butylcalix[4]arene Based Modified Silica

    Sibghatullah Memon

    2013-12-01

    Full Text Available This study explores, adsorption efficiency of p-tert-butylcalix[4]arene based modified silica to remove parathion from aqueous environment. The adsorption parameters, i.e. pH, concentration of pesticide solution, contact time and adsorbent dosage were optimized, as 10, 1 mg L-1, 40 min and 0.04 g, respectively. Langmuir, Freundlich and Dubinin-Radushkevich (D-R isotherm models were used to evaluate the adsorption mechanism. Adsorption constants values of these models suggest that the adsorption of parathion is favorable and were found to be best fit with Freundlich isotherm. From the kinetic study it can be predicted that adsorption of parathion follows Ho and McKay model (pseudo-second order. Thermodynamic parameters, enthalpy (ΔH, entropy (ΔS and Gibbs free energy (ΔG have also been evaluated and were found as -132.25, 0.45, -4.14 Jmol-1, respectively.

  3. Metal Recovery and Preconcentration by Edta and Dtpa Modified Silica Surfaces

    Eveliina Repo

    2017-03-01

    Full Text Available This study focuses on the adsorption and preconcentration of various metals by silica gel surfaces modified with aminopolycarboxylic acids namely ethylenediaminetetraacetic acid or diethylenetriamine-pentaacetic acid. The adsorption performance of the studied materials was determined in mixed metal solutions and the adsorption isotherm studies were conducted for cobalt, nickel, cadmium, and lead. The results were modeled using various theoretical isotherm equations, which suggested that two different adsorption sites were involved in metal removal although lead showed clearly different adsorption behavior attributed to its lowest hydration tendency. Efficient regeneration of the adsorbents and preconcentration of metals was conducted with nitric acid. Results indicated that the metals under study could be analyzed rather accurately after preconcentration from both pure, saline and ground water samples.

  4. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.

    Wang, Ying; Zhao, Yating; Cui, Yu; Zhao, Qinfu; Zhang, Qiang; Musetti, Sara; Kinghorn, Karina A; Wang, Siling

    2018-01-01

    Oral administration of nanocarriers remains a significant challenge in the pharmaceutical sciences. The nanocarriers must efficiently overcome multiple gastrointestinal barriers including the harsh gastrointestinal environment, the mucosal layer, and the epithelium. Neutral hydrophilic surfaces are reportedly necessary for mucus permeation, but hydrophobic and cationic surfaces are important for efficient epithelial absorption. To accommodate these conflicting surface property requirements, we developed a strategy to modify nanocarrier surfaces with cationic cell-penetrating peptides (CPP) concealed by a hydrophilic succinylated casein (SCN) layer. SCN is a mucus-inert natural material specifically degraded in the intestine, thus protecting nanocarriers from the harsh gastric environment, facilitating their mucus permeation, and inducing exposure of CPPs after degradation for further effective transepithelial transport. Quantum dots doped hollow silica nanoparticles (HSQN) with a diameter around 180 nm was used as the nanocarrier and demonstrated as high as 50% loading efficacy of paclitaxel, a model drug with poor solubility and permeability. The dual layer modification strategy prevented premature drug leakage in stomach and maintained high mucus permeation (the trajectory spanned 9-fold larger area than single CPP modification). After intestinal degradation of SCN by trypsin, these nanocarriers exhibited strong interaction with epithelial membranes and a 5-fold increase in cellular uptake. Significant transepithelial transport and intestinal distribution were also observed for this dual-modified formulation. A pharmacokinetics study on the paclitaxel-loaded nanocarrier found 40% absolute bioavailability and 7.8-fold higher AUC compared to oral Taxol®. Compared with single CPP modified nanocarriers, our formulation showed increased in vivo efficacy and tumor accumulation of the model drug with negligible intestinal toxicity. In summary, sequential modification

  5. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  6. Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules.

    Valliere-Douglass, John F; Lewis, Patsy; Salas-Solano, Oscar; Jiang, Shan

    2015-02-01

    We report that a unique type of chemical modification occurs on lyophilized proteins. Freeze-dried mAbs and antibody-drug conjugates (ADCs) can be covalently modified with buffer and excipient molecules on the side chains of Glu, Asp, Thr, and Ser amino acids when subjected to temperature stress. The reaction occurs primarily via condensation of common buffers and excipients such as histidine, tris, trehalose and sucrose, with Glu and Asp carboxylates in the primary sequence of proteins. The reaction was also found to proceed through condensation of carboxylate containing buffers such as citrate, with Thr and Ser hydroxyls in the primary sequence of proteins. Based on the mass of the covalent adducts observed on mAbs and ADCs, it is apparent that the reaction produces water as a product and is thus favored in a low moisture environments such as a lyophilized protein cake. Herein, we present the evidence for the covalent modification of proteins drawn from case studies of in-depth characterization of heat-stressed mAbs and ADCs in the solid state. We also demonstrate how common charge variant assays such as imaged capillary isoelectric focusing and mass spectrometry can be used to monitor this specific class of protein modification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  8. Multifunctional Amine Mesoporous Silica Spheres Modified with Multiple Amine as Carriers for Drug Release

    Yan Li

    2018-01-01

    Full Text Available Mesoporous silica spheres were synthesized by using Stöber theory (MSN-40. Calcination of the mesostructured phase resulted in the starting solid. Organic modification with aminopropyl groups resulted in two MSN-40 materials: named MSN-NH2 and MSN-DQ-40, respectively. These two kinds of samples with different pore sizes (obtained from 3-[2-(2-aminoethylaminoethylamino]propyl-trimethox-ysilane (NQ-62 and modified NQ-62 showed control of the delivery rate of ibuprofen (IBU from the siliceous matrix. The obtained sample from modified NQ-62 has an increased loading rate and shows better control of the delivery rate of IBU than the obtained sample from NQ-62. These three solids were characterized using standard solid state procedures. During tests of in vitro drug release, an interesting phenomenon was observed: at high pH (pH 7.45, IBU in all carriers was released slowly; at low pH (pH 4.5, only a part of the IBU was slowly released from this carrier within 25 hours; most IBU was effectively confined in mesoporous material, but the remaining IBU was released rapidly and completely after 25 hours.

  9. Covalently {beta}-cyclodextrin modified single-walled carbon nanotubes: a novel artificial receptor synthesized by 'click' chemistry

    Guo Zhen; Liang Li [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China); Liang Jiajie; Ma Yanfeng; Yang Xiaoying [Nankai University, Center for Nanoscale Science and Technology and Institute of Polymer Chemistry, College of Chemistry (China); Ren Dongmei [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China); Chen Yongsheng [Nankai University, Center for Nanoscale Science and Technology and Institute of Polymer Chemistry, College of Chemistry (China); Zheng Jianyu, E-mail: jyzheng@nankai.edu.c [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China)

    2008-08-15

    Novel {beta}-cyclodextrin covalently modified single-walled carbon nanotubes have been synthesized via a 'click' coupling reaction. The product was fully characterized with Raman, FTIR, XRD, UV-Vis-NIR spectra as well as TEM and TGA measurements. The effective functionalization via 'click' coupling has set up a facile and versatile route for modular preparation of SWNTs based functional materials. The inclusion complexation behavior of this artificial receptor with quinine has been investigated in aqueous solution by fluorescence spectroscopy.

  10. Oxidation of 2,4,6,-tri-chlorophenol catalyzed by iron phthalocyanines covalently bound to silica. Oxydation du 2,4,6-trichlorophenol catalyse par des phtalocyanines de fer greffees sur silice par liaisons covalentes

    Sanchez, M.; Hadasch, A.; Meunier, B. (Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire de Chimie de Coordination); Rabion, A. (Elf-Atochem, 64 - Artix (France). Centre de Recherche)

    1999-04-01

    The degradation of recalcitrant pollutants remains a high priority in order to preserve our environment. For example, chlorinated aromatic compounds are extremely persistent in the environment because of their slow biodegradation by microorganisms. One of the most notable toxic offenders is 2,4,6-tri-chlorophenol (TCP) which is produced by paper mills and also used as a biocide. Thus TCP is an obvious benchmark for research on the decontamination of waste waters. In this work, the covalent attachment of an iron phthalocyanine with chloro-sulfonyl substituents (FePcSO[sub 2]Cl) onto a functionalized 3-amino-propyl-silica has been achieved. This supported catalyst FePcSO[sub 2]Cl-silica is able to degrade a recalcitrant pollutant like TCP with hydrogen peroxide as oxidant. In order to improve the catalytic efficiency of the grafted iron phthalocyanine complex, modifications of the macrocycle substituents, passivation of the silica surface, variation of the loading of the carrier and addition of an organic co solvent to the reaction mixture were carried out. (authors) 21 refs.

  11. Synthesis of Polyurethane/Silica Modified Epoxy Polymer Based on 1,3-Propanediol for Coating Application

    Lutviasari Nuraini

    2017-11-01

    Full Text Available Studies on the synthesis of polyurethane/silica modified epoxy polymer using 1,3-propanediol has been conducted. Synthesis of polymers made by reaction of tolonate and 1,3-propanediol (ratio NCO/OH=2.5 as the building blocks of polyurethane with diglycidyl ether bisphenol A (DGEBA epoxy and catalyst dibutyltin dilaurate (DBTL.The total weight of the polyurethane used was 20% (w/w of the total epoxy. Based on Fourier Transform Infrared (FTIR and 1H-Nuclear Magnetic Resonance (1H-NMR spectra indicated the existence of a new bond that is formed from the reaction of isocyanate group and hydroxyl group, where the hydroxyl groups derived from epoxy and 1,3-propanediol. The addition of silica (5, 10, and 15% w/w to epoxy into the epoxy-modified polyurethane has been carried out through sol-gel reaction of tetraethyl orthosilicate (TEOS. The isocyanate conversion rate for the addition of silica 5, 10, and 15% are 95.69; 100, and 100%, respectively. The morphology and element identification by Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis (SEM/EDX, showed that Si element has been successfully added in the polymer. From the tensile strength and elongation analysis, also thermal stability analysis using Thermal Gravimetric Analyzer (TGA, the increase of silica amount into the polyurethane modified epoxy did not significantly affect to thermal properties, but decrease the tensile strength of the polymer.

  12. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7

    Keppler, Julia Katharina; Martin, Dierk; Garamus, Vasil M.; Berton-Carabin, Claire; Nipoti, Elia; Coenye, Tom; Schwarz, Karin

    2017-01-01

    Whey protein isolate (WPI) (∼75% β-lactoglobulin (β-LG)) is frequently used in foods as a natural emulsifying agent. However, at an acidic pH value, its emulsification capacity is greatly reduced. The covalent attachment of natural electrophilic hydrophobic molecules to WPI proteins is a

  13. Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal

    Timin, Alexander, E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); Rumyantsev, Evgeniy, E-mail: evr@isuct.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); Lanin, Sergey N., E-mail: SNLanin@phys.chem.msu.ru [Chemistry Department, Physical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Rychkova, Sveta A. [Chemistry Department, Physical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Guseynov, Sabir S. [Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153000 Ivanovo (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); Antina, Elena V. [Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153000 Ivanovo (Russian Federation)

    2014-10-15

    The surface of silica particles was modified with polyvinyl pyrrolidone (PVP) through sol–gel process. The different experimental techniques, i.e., thermogravimetric analysis (TGA and DTG), nitrogen adsorption, scanning electron microscopy (SEM), laser diffraction analysis (LDA), fourier transform spectroscopy (FTIR) are used to characterize the pure non-functionalized and functionalized silicas containing different amount of PVP. It was shown that PVP-modified silica samples have well developed porous structure; the values of specific surface area for PVP-modified silicas are in the range of 140–264 m{sup 2} g{sup −1}. While the non-functionalized silica shows the low surface area (S{sub BET} = 40 m{sup 2} g{sup −1}). The BJH analysis showed that PVP can be used as an effective agent to increase an average pore size and total pore volume. The results indicate that PVP functionalized silicas show a potential as effective adsorbents for bilirubin removal compared to other available adsorbents. - Highlights: • PVP functionalized silicas were synthesized via sol–gel method. • Modification of silica by PVP leads to the formation of mesoporous structure. • PVP functionalized mesoporous silicas demonstrate good adsorption properties for bilirubin removal.

  14. Determination of Copper in Different Ethanolic Matrices Using a Chloropropyl Silica Gel Modified with a Nanostructured Cubic Octa(3-aminopropyloctasilsesquioxane

    Devaney Ribeiro Do Carmo

    2013-01-01

    Full Text Available The chloropropyl silica gel was modified with octa(3-aminopropyloctasilsesquioxane and characterized by Fourier transform infrared (FTIR spectroscopy, nuclear magnetic resonance (NMR, spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+ increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K in the order of 103 L mol−1 suggested the high adsorbent capacity of the modified silica (SGAPC for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel.

  15. Electrochromatographic performance of graphene and graphene oxide modified silica particles packed capillary columns.

    Zhao, Hongyan; Wang, Yizhou; Zhang, Danyu; Cheng, Heyong; Wang, Yuanchao

    2018-04-01

    Graphene oxide functionalized silica microspheres (GO@SiO 2 ) were synthesized based on condensation reaction between amino from aminosilica particles and carboxyl groups from GO. Reduction of GO@SiO 2 with hydrazinium hydroxide generated graphene modified silica particles (G@SiO 2 ). GO@SiO 2 and G@SiO 2 packed capillary columns for capillary electrochromatography were thereafter fabricated by pressure slurry packing with single-particle frits. GO of 0.3 mg/mL in dispersion solution for GO@SiO 2 synthesis was considered as a compromise between retaining and column efficiency whereas GO@SiO 2 of 20 mg/mL in slurries for column packing was chosen for a homogenous and tight bed. Optimum mobile phases were acquired considering both electroosmotic flow and resolution at an applied voltage of -6 kV as the following: acetonitrile/phosphate buffer (10 mM, pH 7.0), 75:25 (v/v) for polycyclic aromatic hydrocarbons and 50:50 (v/v) for aromatic compounds. A comparison was made between electrochromatographic performances for three PAHs (naphthalene, fluorene and phenanthrene) and three aromatic compounds of various polarities (toluene, aniline and phenol) on bare aminosilica, GO@SiO 2 and G@SiO 2 packed columns, which proved the contribution of alone or combinational actions of solvophobic effect and π-π electron stacking as well as hydrogen bonds to retaining behaviors by GO@SiO 2 and G@SiO 2 . Well over-run, over-day and over-column precisions (retention time: 0.3-1.4, 1.1-3.8 and 2.8-5.2%, respectively; peak area: 2.6-6.5, 4.8-8.3 and 6.5-12.6%, respectively) of GO@SiO 2 packed columns were a powerful proof for good reproducibility. Analytical characteristics of GO@SiO 2 packed capillary columns in CEC analysis of fresh water were evaluated with respect to linearity (R 2 = 0.9961-0.9989) over the range 0.1 to 100 mg/L and detection limits of 9.5 for naphthalene, 12.6 for fluorene and 16.2 μg/L for phenanthrene. Further application to fresh water increased the

  16. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  17. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  18. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  19. Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: Improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide

    Salimi, Abdollah; Rahmatpanah, Rojzin; Hallaj, Rahman; Roushani, Mahmoud

    2013-01-01

    A newly developed strategy based on gold (Au) electrode modified with cadmium sulfide nanoparticles (CdSnp) and thionine (Th) was proposed toward electrocatalytic and photoelectrocatalytic hydrogen peroxide (H 2 O 2 ) reduction. At first, a thin film of CdS nanoparticles was electrodeposited onto Au electrode. Then, the CdS/Au electrode was modified with mercaptoacetic acid (MAA), which not only acts as a stabilizing agent to prevent the chalcogenide CdS nanocrystals from aggregation but also as a linker for subsequent attachment of Th onto the CdS nanoparticles. The effective covalent immobilization of Th was achieved through amide bond formation reaction between -NH 2 groups of Th and -COOH groups of MAA, using dicyclohexylcarbodiimide (DCC) as condensation agent. The Au/CdS/Th modified electrode showed a well-defined redox couple with surface confined characteristics at wide pH range (2–12). The heterogeneous electron transfer rate constant (k s ) and the surface coverage of immobilized Th on the modified electrode was obtained as 0.12 s −1 and 4.35 × 10 −9 mole cm −2 , respectively. The electrocatalytic activity and stability of the modified electrode toward hydrogen peroxide reduction was investigated and it was found that the Au/CdS/Th electrode illustrates excellent electrocatalytic activity toward H 2 O 2 reduction at reduced overpotential. The detection limit, sensitivity and catalytic rate constant (k cat ) of the modified electrode toward H 2 O 2 were 55 nM, 3.4 μA μM −1 cm −2 and 3.75 (±0.1) × 10 3 M −1 s −1 , respectively, at linear concentration range up to 10 mM. Upon light irradiation, about two-fold improvements were attained in sensitivity and detection limit of the modified electrode toward H 2 O 2 electrocatalytic determination

  20. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-01-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  1. Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of etched optical fibers (EOFs).

    Veselov, Alexey A; Abraham, Bobin George; Lemmetyinen, Helge; Karp, Matti T; Tkachenko, Nikolai V

    2012-01-01

    Fluorescent proteins have the inherent ability to act as sensing components which function both in vitro and inside living cells. We describe here a novel study on a covalent site-specific bonding of fluorescent proteins to form self-assembled monolayers (SAMs) on the surface of etched optical fibers (EOFs). Deposition of fluorescent proteins on EOFs gives the opportunity to increase the interaction of guided light with deposited molecules relative to plane glass surfaces. The EOF modification is carried out by surface activation using 3-aminopropylthrimethoxysilane (APTMS) and bifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) which exposes sulfhydryl-reactive maleimide groups followed by covalent site-specific coupling of modified yellow fluorescent protein (YFP). Steady-state and fluorescence lifetime measurements confirm the formation of SAM. The sensor applications of YPF SAMs on EOF are demonstrated by the gradual increase of emission intensity upon addition of Ca(2+) ions in the concentration range from a few tens of micromolars up to a few tens of millimolars. The studies on the effect of pH, divalent cations, denaturing agents, and proteases reveal the stability of YFP on EOFs at normal physiological conditions. However, treatments with 0.5% SDS at pH 8.5 and protease trypsin are found to denaturate or cleave the YFP from fiber surfaces.

  2. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  3. Electroactive Properties of 1-propyl-3-methylimidazolium Ionic Liquid Covalently Bonded on Mesoporous Silica Surface: Development of an Electrochemical Sensor Probed for NADH, Dopamine and Uric Acid Detection

    Maroneze, Camila M.; Rahim, Abdur; Fattori, Natália; Costa, Luiz P. da; Sigoli, Fernando A.; Mazali, Italo O.; Custodio, Rogério; Gushikem, Yoshitaka

    2014-01-01

    Graphical abstract: - Abstract: A hybrid organic-inorganic porous material was successfully prepared through chemical modification of a non-ordered mesoporous silica, obtained by the sol-gel process, with 1-propyl-3-methylimidazolium groups. The porous material was evaluated as a platform for the development of electrochemical sensors, here probed toward the electrooxidation of NADH (β-nicotinamide adenine dinucleotide), uric acid (UA) and dopamine (DA). The presence of cationic imidazolium groups on the surface of the hybrid silica-based material allowed the electrochemical detection of these biomolecules without any other electron mediator or biomolecular recognition component. Such behavior highlights the potentiality of this material to be applied in the development of new electrochemical sensing devices. Theoretical calculations based on density functional theory emphasizes that the cationic character of imidazolium group provides better oxidation conditions if the solvent effect is minimized

  4. Alizarin red S functionalized mesoporous silica modified glassy carbon electrode for electrochemical determination of anthracene

    Liu, Shan; Wei, Maochao; Zheng, Xiangli; Xu, Shuai; Xia, Fangquan; Zhou, Changli

    2015-01-01

    Highlights: • Alizarin red S-SBA15 composite was prepared and characterized. • A novel sensing platform was constructed for anthracene determination. • The proposed sensor exhibited high sensitivity and low detection limit for detecting anthracene. • This method can be applied to the practical detection of anthracene in waste water. - Abstract: In the paper, a novel and sensitive electrochemical sensor based on modification of electroactive alizarin red S functionalized mesoporous silica material SBA15 onto glassy carbon electrode (ARS-SBA15/GCE) was developed. Alizarin red S, called electrochemical probe that can selectively recognize polycyclic aromatic hydrocarbons (PAHs), as tools for the detection of tricyclic aromatic hydrocarbon anthracene. The morphology and interface property of ARS modified SBA15 (ARS-SBA15) were examined by transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Taking advantage of the π-π stacking force between alizarin red S and anthracene, the ARS-SBA15/GCE sensor could detect anthracene quantitatively in a wide range of 1.0 pM–10.0 nM and a low detection limit of 0.5 pM (S/N = 3). Other PAHs, such as naphthalene, phenanthrene, pyrene, and benzo[a]pyrene show little interference on the detection. Consequently, a simple and sensitive electrochemical method was proposed for the determination of anthracene, which can be used to determine anthracene in waste water samples. The electrochemical method provides a general tool that complements the commonly used spectroscopic methods and immune method for the detection of PAHs

  5. Radon exhalation rates of concrete modified with fly ash and silica fumes

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  6. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    Junpeng Liu

    2016-12-01

    Full Text Available A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  7. Silica-gel modified with zirconium oxide as a novel 99Mo adsorbent 99mTc generators

    Salehi, H.; Mollarazi, E.; Abbasi, H.

    2010-01-01

    A new 99 Mo adsorbent has been prepared with modified silica gel with zirconium oxide (SiO 2 /ZrO 2 :Na 2 MoO 4 ) and used in technetium-99m generator. The adsorption behaviors of 99 Mo in the form of molybdate and 99m Tc in the form of pertechnetate on the new adsorbent was investigated showed that the adsorption capacity of molybdate on this generator was considerably higher than the usual generator with alumina column. Coating zirconium oxide on the surface of silica gel resulted in higher 99 Mo adsorption of this compound. 99m Tc is eluted with 0.9% NaCl, and the radionuclidic, radiochemical and chemical purities of the eluate were checked. This generator has a great potential as compared to the traditional alumina generators.

  8. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  9. Ionic Conductivity and Potential Application for Fuel Cell of a Modified Imine-Based Covalent Organic Framework.

    Montoro, Carmen; Rodríguez-San-Miguel, David; Polo, Eduardo; Escudero-Cid, Ricardo; Ruiz-González, Maria Luisa; Navarro, Jorge A R; Ocón, Pilar; Zamora, Félix

    2017-07-26

    We present the novel potential application of imine-based covalent organic frameworks (COFs), formed by the direct Schiff reaction between 1,3,5-tris(4-aminophenyl)benzene and 1,3,5-benzenetricarbaldehyde building blocks in m-cresol or acetic acid, named RT-COF-1 or RT-COF-1Ac/RT-COF-1AcB. The post-synthetic treatment of RT-COF-1 with LiCl leads to the formation of LiCl@RT-COF-1. The ionic conductivity of this series of polyimine COFs has been characterized at variable temperature and humidity, using electrochemical impedance spectroscopy. LiCl@RT-COF-1 exhibits a conductivity value of 6.45 × 10 -3 S cm -1 (at 313 K and 100% relative humidity) which is among the highest values so far reported in proton conduction for COFs. The mechanism of conduction has been determined using 1 H and 7 Li solid-state nuclear magnetic resonance spectroscopy. Interestingly, these materials, in the presence of controlled amounts of acetic acid and under pressure, show a remarkable processability that gives rise to quasi-transparent and flexible films showing in-plane structural order as confirmed by X-ray crystallography. Finally, we prove that these films are useful for the construction of proton exchange membrane fuel cells (PEMFC) reaching values up to 12.95 mW cm -2 and 53.1 mA cm -2 for maximum power and current density at 323 K, respectively.

  10. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Lewandowska-Łańcucka, Joanna; Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz; Romek, Marek; Tokarz, Waldemar; Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria

    2014-01-01

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO 2 was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe 2+ and Fe 3+ with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO 2 was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas

  11. Synthesis and characterization of the superparamagnetic iron oxide nanoparticles modified with cationic chitosan and coated with silica shell

    Lewandowska-Łańcucka, Joanna, E-mail: lewandow@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Staszewska, Magdalena; Szuwarzyński, Michał; Kępczyński, Mariusz [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Romek, Marek [Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow (Poland); Tokarz, Waldemar [Department of Solid State Physics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Szpak, Agnieszka; Kania, Gabriela; Nowakowska, Maria [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2014-02-15

    Highlights: • The new, facile methodology for synthesis of silica covered SPIONs is proposed. • The SPIONs was modified with cationic chitosan and coated with silica shell. • Negatively charged, rounded in shape particles of ca. 330 nm were obtained. • The product exhibits the superparamagnetic properties. • The product properties imply its potential applications in biomedicine areas. -- Abstract: Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPION) modified with a cationic chitosan (CCh) and coated with a silica shell, SPION-CCh-SiO{sub 2} was developed. The process was carried out in two steps. In the first step the chitosan coated SPIONs were obtained by co-precipitation of Fe{sup 2+} and Fe{sup 3+} with ammonium hydroxide in aqueous solution of CCh. In the second one, the silica shell is formed on their surfaces. The formation of SPION-CCh-SiO{sub 2} was achieved by direct decomposition of tetraethoxysilane (TEOS) adsorbed on a surface of SPION-CCh dispersed in aqueous phase under sonication and mechanical stirring at room temperature. The chemical composition and physicochemical properties of the materials were determined using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and zeta potential measurements. The morphology of the particles was evaluated by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). Magnetic properties were confirmed using Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and magnetization measurements. The resulting products are negatively charged, rounded in shape and exhibit the superparamagnetic properties what implies their potential applications in engineering and biomedicine areas.

  12. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study

    Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland)

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8 kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8 kJ/mol). - Graphical abstract: Modeling of boldine adsorption onto unmodified and propyl-sulfonic acid-modified mesoporous adsorbents. - Highlights: • The process of boldine adsorption onto SBA-15, SBA-16 and MCF silicas was examined. • Siliceous adsorbents were functionalized with propyl-sulfonic acid groups. • The equilibrium adsorption data were analyzed using several isotherm models. • Both linear regression and nonlinear fitting analysis were carried out.

  13. Physical Characteristics of Chitosan Based Film Modified With Silica and Polyethylene Glycol

    F. Widhi Mahatmanti

    2014-07-01

    Full Text Available Recently, development of film materials is focused on finding the films with high chemical and physical stabilities. Organic based material such as chitosan produces films with low physical stability, and hence addition of inorganic materials necessary. In this research, the effect of silica and polyethylene glycol (PEG addition on the properties of chitosan based films has been investigated. Precursors used to produce films included chitosan with the deacetylation degree of 83% and sodium silicate solution as the silica source. A simple synthesis in a one-pot process was carried out by mixing 1%(w of chitosan solution in 2%(v/v acetate acid and sodium silicate solution (27% SiO2 in various composition ratios and casting the solution on a glass dish. The tensile strength and percentage of elongation decrease with increasing the silica content. The tensile strength tends to decline with addition of PEG, but the elongation percentage of the film increases. Hydrophilicity of the film decreases with the addition of silica and increases with the addition of PEG. The addition of silica and PEG does not change significantly the morphology of the film and functional groups indicating the domination of physical interaction among active sites in the film components.

  14. Covalent Organic

    Vutti, Surendra

    chemistry of silicon, InAs and GaAs materials, covalentsurface functionalization using organosilanes, liquid-phase, and vapor-phasefunctionalizations, diazo-transfer reaction, CuAAC click chemistry, different types ofbiorthogonal chemistries, SPAAC chemistry, and cellular interactions of chemically...... immobilization of D-amino acid adhesion peptideson azide functionalized silicon, GaAs and InAs materials by using CuAAC-click chemistry.The covalent immobilization of penetration peptide (TAT) on gold nanotips of InAs NWs isalso demonstrated.In chapter four, the covalent immobilization of GFP on silicon wafers......, GaAs wafers andGaAs NWs is demonstrated. Series of Fmoc-Pra-OH, NHS-PEG5-NHS and BCN-NHSfunctionalized silicon surfaces has been prepared, whereby GFP-N3 and GFP-bicyclononyneare immobilized by using CuAAC and SPAAC chemistry. The specific and covalentimmobilization of GFP-N3 on bicyclononyne...

  15. Thermogravimetric analyses and mineralogical study of polymer modified mortar with silica fume

    Alessandra Etuko Feuzicana de Souza Almeida

    2006-09-01

    Full Text Available Mineral and organic additions are often used in mortars to improve their properties. Microstructural investigation concerning the effects of styrene acrylic polymer and silica fume on the mineralogical composition of high-early-strength portland cement pastes after 28 days of hydration are presented in this paper. Thermogravimetry and derivative thermogravimetry were used to study the interaction between polymers and cement, as well as the extent of pozzolanic reaction of the mortars with silica fume. Differential scanning calorimetry and X ray diffraction were used to investigate the cement hydration and the effect of the additions. The results showed that the addition of silica fume and polymer reduces the portlandite formation due to delaying of Portland cement hydration and pozzolanic reaction.

  16. Hybrid materials of SBA-16 functionalized by rare earth (Eu3+, Tb3+) complexes of modified β-diketone (TTA and DBM): Covalently bonding assembly and photophysical properties

    Li Yajuan; Yan Bing; Li Ying

    2010-01-01

    Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29 Si CP-MAS NMR, and N 2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE 3+ (Eu 3+ , Tb 3+ ) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb 3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16. - Graphical abstract: Novel organic-inorganic mesoporous luminescent hybrids containing RE 3+ complex covalently attached to the β-diketone-functionalized ordered mesoporous SBA-16, which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process.

  17. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  18. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties.

    Kumar, Dhiraj; Mutreja, Isha; Keshvan, Prashant C; Bhat, Madhusudan; Dinda, Amit K; Mitra, Susmita

    2015-11-01

    Silica nanoparticles have drawn a lot of attention for nanomedicine application, and this is attributed to their biocompatibility and ease of surface functionalization. However, successful utilization of these inorganic systems for biomedical application depends on their physicochemical properties. This study, therefore, discusses in vitro toxicity of organically modified silica nanoparticles on the basis of size, shape, and surface properties of silica nanoparticles. Spherical- and oval-shaped nanoparticles having hydroxyl and amine groups were synthesized in Tween 80 micelles using different organosilanes. Nanoparticles of similar size and morphology were considered for comparative assessment. "As-prepared" nanoparticles were characterized in terms of size, shape, and surface properties using ZetaSizer, transmission electron microscopy, and Fourier transform infrared to establish the above parameters. In vitro analysis in terms of nanoparticle-based toxicity was performed on J-774 (macrophage) cell line using propidium iodide-4',6-diamidino-2-phenylindol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Fluorescent dye-entrapped nanoparticles were used to visualize the uptake of the nanoparticles by macrophage cells. Results from cell studies suggested low levels of toxicity for different nanoparticle formulations studied, therefore are suitable for nanocarrier application for poorly soluble molecules. On the contrary, the nanoparticles of similar size and shape, having amine groups and low net negative charge, do not exhibit any in vitro cytotoxicity. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption

    Zukal, Arnošt; Pastva, Jakub; Čejka, Jiří

    2013-01-01

    Roč. 167, FEB 2013 (2013), s. 44-50 ISSN 1387-1811 R&D Projects: GA ČR GA203/08/0604 Institutional support: RVO:61388955 Keywords : mesoporous adsorbents * SBA-15 silica * introducing of MgO and K2CO3 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.209, year: 2013

  20. Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture

    Zeleňák, V.; Badaničová, M.; Halamová, D.; Čejka, Jiří; Zukal, Arnošt; Murafa, Nataliya; Goerigk, G.

    2008-01-01

    Roč. 144, č. 2 (2008), s. 336-342 ISSN 1385-8947 R&D Projects: GA ČR GA203/08/0604 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : mesoporous silica * hexagonal * amine * carbon dioxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.813, year: 2008

  1. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Roelofs, Kimball S.; Hirth, Thomas; Schiestel, Thomas

    2011-01-01

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 ± 2.6 kJ mol -1 . High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  2. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  3. Silica-modified Fe-doped calcium sulfide nanoparticles for in vitro and in vivo cancer hyperthermia

    Wu, Steven Yueh-Hsiu; Yang, Kai-Chiang; Tseng, Ching-Li; Chen, Jung-Chih; Lin, Feng-Huei

    2011-01-01

    In this study, sulfide-based magnetic Fe-doped CaS nanoparticles modified with a silica layer were investigated for cancer hyperthermia. A polyvinyl pyrrolidone polymer was used as the coupling agent. The developed nanoparticles contained 11.6 wt% iron concentration, and their X-ray diffraction pattern was similar to those of CaS and Fe–CaS nanoparticles. The average particle size was approximately 47.5 nm and homogeneously dispersed in aqueous solutions. The major absorption bands of silica were observed from the FTIR spectrum. The magnetic properties and heating efficiency were also examined. The specific absorption ratio of nanoparticles at a concentration of 10 mg/mL at 37 °C in an ethanol carrier fluid was 37.92 W/g, and the nanoparticles would raise the temperature to over 45 °C within 15 min. A cytotoxicity analysis revealed that the nanoparticles had good biocompatibility, which indicated that the nanoparticles did not affect cell viability. The therapeutic effects of the nanoparticles were investigated using in vitro and animal studies. Cells seeded with nanoparticles and treated under an AC magnetic field revealed a percentage of cytotoxicity (60%) that was significantly higher from that in other groups. In the animal study, during a hyperthermia period of 15 days, tumor-bearing Balb/c mice that were subcutaneously injected with nanoparticles and exposed to an AC magnetic field manifested a reduction in tumor volume. The newly developed silica-modified Fe–CaS nanoparticles can thus be considered a promising and attractive hyperthermia thermoseed.

  4. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  5. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  6. Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor

    Chien-Chung Chen

    2009-06-01

    Full Text Available Polyaniline (PANI, an attractive conductive polymer, has been successfully applied in fabricating various types of enzyme-based biosensors. In this study, we have employed mesoporous silica SBA-15 to stably entrap horseradish peroxidase (HRP, and then deposited the loaded SBA-15 on the PANI modified platinum electrode to construct a GA/SBA-15(HRP/PANI/Pt biosensor. The mesoporous structures and morphologies of SBA-15 with or without HRP were characterized. Enzymatic protein assays were employed to evaluate HRP immobilization efficiency. Our results demonstrated that the constructed biosensor displayed a fine linear correlation between cathodic response and H2O2 concentration in the range of 0.02 to 18.5 mM, with enhanced sensitivity. In particular, the current approach provided the PANI modified biosensor with improved stability for multiple measurements.

  7. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  8. Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste

    Dakroury, A. M.

    2007-01-01

    This paper discussed the mechanical and chemical properties of polyvinyl alcohol - modified cement mortar with silica fume to assess the safety for disposal of radioactive waste. The modified cement mortars containing polyvinyl alcohol (PVA) in the presence of 10 % silica fume (SF) .The chemical reaction between polymer and cement - hydrated product were investigated by the Infrared Spectral Technology, Differential Thermal Analysis and X-ray diffraction. The leaching of 137Cs from a waste composite into a surrounding fluid has been studied .The results shown that PVA increases the strength and decreases the porosity. The increase in strength duo to the interaction of PVA with cement , may be forming some new compound that fill the pores or improve the bond between the cement . The pozzolanic reaction of the SF increases the calcium silicate hydrates in the hardening matrix composites. There is distinct change in the refinement of the pore structure in cement composites giving fewer capillary pores and more of the finer gel pores

  9. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  10. Drug delivery from hydrophobic-modified mesoporous silicas: Control via modification level and site-selective modification

    Tang Qunli; Chen Yuxi; Chen Jianghua; Li Jin; Xu Yao; Wu Dong; Sun Yuhan

    2010-01-01

    Dimethylsilyl (DMS) modified mesoporous silicas were successfully prepared via co-condensation and post-grafting modification methods. The post-grafting modification was carried out by the reaction of the as-synthesized MCM-41 material (before CTAB removal) with diethoxydimethylsinale (DEDMS). N 2 adsorption-desorption and 29 Si MAS NMR characterization demonstrated that different amount of DMS groups were successfully incorporated into the co-condensation modified samples, and the functional DMS groups were placed selectively on the pore openings and external pore surfaces in the post-grafting modified samples. Subsequently, the controlled drug delivery properties from the resulting DMS-modified mesoporous silicas were investigated in detail. The drug adsorption experiments showed that the adsorption capacities were mainly depended on the content of silanol group (CSG) in the corresponding carriers. The in vitro tests exhibited that the incorporation of DMS groups greatly retarded the ibuprofen release rate. Moreover, the ibuprofen release profiles could be well modulated by varying DMS modification levels and site-selective distribution of functional groups in mesoporous carriers. - The distribution of DMS groups on the pore surfaces of the mesostructures strongly affects the drug release rate. The P-M41-1 and the P-M41-2 possess the close DMS modification levels as the C-M41-10, but the ibuprofen release rates from the P-M41-1 and P-M41-2 are much slower than that from the C-M41-10.

  11. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  12. Synthesis and Properties of Carbon Nanotube-Grafted Silica Nanoarchitecture-Reinforced Poly(Lactic Acid

    Yao-Wen Hsu

    2017-07-01

    Full Text Available A novel nanoarchitecture-reinforced poly(lactic acid (PLA nanocomposite was prepared using multi-walled carbon nanotube (MWCNT-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity.

  13. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  14. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  15. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H; Schmidt, H; Lehr, C M

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection complexes. In analogy to the terms lipoplex and polyplex, we propose to describe the nanoparticle-DNA complexes by the term "nanoplex". Three batches, Si10E, Si100E, and Si26H, sized between 10 and 100 nm and with zeta potentials ranging from +7 to +31 mV at pH 7.4 were evaluated. The galactosidase expression plasmid DNA pCMVbeta was immobilized on the particle surface and efficiently transfected Cos-1 cells. The transfection activity was accompanied by very low cytotoxicity, with LD(50) values in the milligrams per milliliter range. The most active batch, Si26H, was produced by modification of commercially available silica particles with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, yielding spherical nanoparticles with a mean diameter of 26 nm and a zeta potential of +31 mV at pH 7.4. Complexes of Si26H and pCMVbeta plasmid DNA formed at w/w ratios of 10 were most effective in promoting transfection of Cos-1 cells in the absence of serum. At this ratio, >90% of the DNA was associated with the particles, yielding nanoplexes with a net negative surface charge. When the transfection medium was supplemented with 10% serum, maximum gene expression was observed at a w/w ratio of 30, at which the resulting particle-DNA complexes possessed a positive surface charge. Transfection was strongly increased in the presence of 100 microM chloroquine in the incubation medium and reached approximately 30% of the efficiency of a 60 kDa polyethylenimine. In contrast to polyethylenimine, no toxicity was observed at the concentrations required. Atomic force microscopy of Si26H-DNA complexes revealed a spaghetti-meatball-like structure. The surface of complexes prepared at a w/w ratio of

  16. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  17. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  18. Cheap C18-modified silica monolith particles as HPLC stationary phase of good separation efficiency

    Ali, Ashraf; Ali, Faiz; Cheong, Woo Jo [Dept. of of Chemistry, Inha University, Incheon (Korea, Republic of)

    2015-06-15

    The columns packed with particles have a high efficiency but they are accompanied with a high column back pressure due to lower permeability, while the monolithic columns have a high permeability but they result in inferior separation efficiency for the analysis of small molecules in HPLC. In our laboratory,we have been using the pseudo-monolithic silica particles with C-18 ligand or polystyrene film. The column to column reproducibility was evaluated based on three columns made of three different batches of silica monolith particles, and better than 4.5% in N, and 1.6% in retention time were observed. The day to day reproducibility of a single column for three consecutive days was found better than 1.5% both in N and retention time. The van Deemter plots were derived for awide range of flow rates. The trends of van Deemter plots were similar to those of common patterns and the optimal flow rate was found to be 25 μL/min.

  19. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique

    Riccò, R.; Nizzero, S.; Penna, E.; Meneghello, A.; Cretaio, E.; Enrichi, F.

    2018-05-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. [Figure not available: see fulltext.

  20. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Carbon Paste Electrode Modified with Carbamoylphosphonic Acid Functionalized Mesoporous Silica: A New Mercury-Free Sensor for Uranium Detection

    Yantasee, Wassana; Lin, Yuehe; Fryxell, Glen E.; Wang, Zheming

    2004-01-01

    This study reports a new approach for developing a uranium (U(VI)) electrochemical sensor that is mercury-free, solid-state, and has less chance for ligand depletion than existing sensors. A carbon-paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica was developed for uranium detection based on an adsorptive square-wave stripping voltammetry technique. Voltammetric responses for U(VI) detection are reported as a function of pH, preconcentration time, and aqueous phase U(VI) concentration. The uranium detection limit is 25 ppb after 5 minutes preconcentration and improved to 1 ppb after 20 minutes preconcentration. The relative standard deviations are normally less than 5%

  2. Organically Modified Silica with Pyrazole-3-carbaldehyde as a New Sorbent for Solid-Liquid Extraction of Heavy Metals

    Smaail Radi

    2013-12-01

    Full Text Available A new chelating matrix, SiNP, has been prepared by immobilizing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel modified with 3-aminopropyl-trimethoxysilane. This new chelating material was well characterized by elemental analysis, FT-IR spectroscopy, cross polarization magic angle spinning solid state 13C-NMR, nitrogen adsorption-desorption isotherm, BET surface area, BJH pore size, and scanning electron microscopy (SEM. The new product exhibits good chemical and thermal stability as determined by thermogravimetry curves (TGA. The new prepared material was used as an adsorbent for the solid-phase extraction (SPE of Pb(II, Cd(II, Cu(II and Zn(II from aqueous solutions using a batch method, prior to their determination by flame atomic adsorption spectrometry. The adsorption capacity was investigated using kinetics and pH effects. Common coexisting ions did not interfere with separation and determination.

  3. Uptake and fate of surface modified silica nanoparticles in head and neck squamous cell carcinoma

    Besic Gyenge Emina

    2011-08-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is currently the eighth leading cause of cancer death worldwide. The often severe side effects, functional impairments and unfavorable cosmetic outcome of conventional therapies for HNSCC have prompted the quest for novel treatment strategies, including the evaluation of nanotechnology to improve e.g. drug delivery and cancer imaging. Although silica nanoparticles hold great promise for biomedical applications, they have not yet been investigated in the context of HNSCC. In the present in-vitro study we thus analyzed the cytotoxicity, uptake and intracellular fate of 200-300 nm core-shell silica nanoparticles encapsulating fluorescent dye tris(bipyridineruthenium(II dichloride with hydroxyl-, aminopropyl- or PEGylated surface modifications (Ru@SiO2-OH, Ru@SiO2-NH2, Ru@SiO2-PEG in the human HNSCC cell line UMB-SCC 745. Results We found that at concentrations of 0.125 mg/ml, none of the nanoparticles used had a statistically significant effect on proliferation rates of UMB-SCC 745. Confocal and transmission electron microscopy showed an intracellular appearance of Ru@SiO2-OH and Ru@SiO2-NH2 within 30 min. They were internalized both as single nanoparticles (presumably via clathrin-coated pits or in clusters and always localized to cytoplasmic membrane-bounded vesicles. Immunocytochemical co-localization studies indicated that only a fraction of these nanoparticles were transferred to early endosomes, while the majority accumulated in large organelles. Ru@SiO2-OH and Ru@SiO2-NH2 nanoparticles had never been observed to traffic to the lysosomal compartment and were rather propagated at cell division. Intracellular persistence of Ru@SiO2-OH and Ru@SiO2-NH2 was thus traceable over 5 cell passages, but did not result in apparent changes in cell morphology and vitality. In contrast to Ru@SiO2-OH and Ru@SiO2-NH2 uptake of Ru@SiO2-PEG was minimal even after 24 h. Conclusions Our study is the

  4. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles

    Wang, Jingtao; Bai, Huijuan; Zhang, Haoqin; Zhao, Liping; Chen, Huiling; Li, Yifan

    2015-01-01

    Highlights: • The concept of acid/base pairs was employed to design anhydrous PEMs. • Polydopamine-modified silica particles were uniformly dispersed in SPEEK membrane. • The membranes displayed enhancement in both stability and anhydrous proton conductivity. - Abstract: Novel anhydrous proton exchange membrane is (PEM) facilely prepared by embedding dopamine-modified silica nanoparticles (DSiOis 2 ) into sulfonated poly (ether ether ketone) (SPEEK) polymer matrix. DSiO 2 bearing -NH 2 /-NH- groups are synthesized inspired by the bioadhesion principle, which are uniformly dispersed within SPEEK membrane due to the good interfacial compatibility. The interfacial electrostatic attractions render unique rearrangement of the nanophase-separated structure and the chain packing of the resultant hybrid membranes. As a result, the thermal and mechanical stabilities as well as structural stability of the hybrid membranes are enhanced when compared to SPEEK control membrane. On the other hand, induced by the attractions, acid–base pairs are formed at the SPEEK/DSiOarewere 2 interface, where fast proton transfer via Grotthuss mechanism is expected. These features confer much higher proton conductivities on the DSiO 2 -filled membranes under both hydrated and anhydrous conditions, compared to those of the SPEEK control membrane and SiO 2 -filled membranes. Particularly, the hybrid membrane with 15 wt% DSiO 2 achieve the highest conductivities of 4.52achieveachieved × 10 −3 S cm −1 at 120 °C under anhydrous condition, which is much higher than the SPEEK control membrane and the commercial Nafion membrane (0.1iswas × 10 −3 S cm −1 ). The membrane with 9 wt% DSiO 2 show an open cell potential of 0.98showshowed V and an optimum power density of 111.7 mW cm −2 , indicative of its potential application in fuel cell under anhydrous condition

  5. A Double-Stimuli-Responsive Fluorescent Center for Monitoring of Food Spoilage based on Dye Covalently Modified EuMOFs: From Sensory Hydrogels to Logic Devices.

    Xu, Xiao-Yu; Lian, Xiao; Hao, Ji-Na; Zhang, Chi; Yan, Bing

    2017-10-01

    Unsafe food is a huge threat to human health and the economy, and detecting food spoilage early is an ongoing and imperative need. Herein, a simple and effective strategy combining a fluorescence sensor and one-to-two logic operation is designed for monitoring biogenic amines, indicators of food spoilage. Sensors (methyl red@lanthanide metal-organic frameworks (MR@EuMOFs)) are created by covalently modifying MR into NH 2 -rich EuMOFs, which have a high quantum yield (48%). A double-stimuli-responsive fluorescence center is produced via energy transfer from the ligands to Eu 3+ and MR. Portable sensory hydrogels are obtained by dispersing and solidifying MR@EuMOFs in water-phase sodium salt of carboxy methyl cellulose (CMC-Na). The hydrogels exhibit a color transition upon "smelling" histamine (HI) vapor. This transition and shift in the MR-based emission peak are closely related to the HI concentration. Using the HI concentration as the input signal and the two fluorescence emissions as output signals, an advanced analytical device based on a one-to-two logic gate is constructed. The four output combinations, NOT (0, 1), YES (1, 0), PASS 1 (1, 1), and PASS 0 (0, 0), allow the direct analysis of HI levels, which can be used for real-time food-freshness evaluation. The novel strategy suggested here may be a new application for a molecular logic system in the sensing field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel acridone-modified MCM-41 type silica: Synthesis, characterization and fluorescence tuning

    Maximilian Hemgesberg

    2011-06-01

    Full Text Available A Mobil Composition of Matter (MCM-41 type mesoporous silica material containing N-propylacridone groups has been successfully prepared by co-condensation of an appropriate organic precursor with tetraethyl orthosilicate (TEOS under alkaline sol–gel conditions. The resulting material was fully characterized by means of X-ray diffraction (XRD, N2-adsorption–desorption, transmission electron microscopy (TEM, IR and UV–vis spectroscopy, as well as 29Si and 13C CP-MAS NMR techniques. The material features a high inner surface area and a highly ordered two-dimensional hexagonal pore structure. The fluorescence properties of the organic chromophore can be tuned via complexation of its carbonyl group with scandium triflate, which makes the material a good candidate for solid state sensors and optics. The successful synthesis of highly ordered MCM materials through co-condensation was found to be dependent on the chemical interaction of the different precursors.

  7. Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture

    Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan; Wu, Wei, E-mail: wuweiupc@upc.edu.cn

    2014-08-15

    Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.

  8. Extraction of Silica from Cassava Periderm using Modified Sol-Gel ...

    Akorede

    6School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built ... glycol as capping agent in modified sol-gel method for ..... Effect of Organic Acid Treatment on the Properties of ... Journal of Analytical and Applied.

  9. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  10. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  11. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  12. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Selective removal mercury (Ⅱ) from aqueous solution using silica aerogel modified with 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion

    Tadayon, Fariba; Saber-Tehrani, Mohammad; Motahar, Shiva [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Silica aerogel surface modifications with chelating agents for adsorption/removal of metal ions have been reported in recent years. This investigation reported the preparation of silica aerogel (SA) adsorbent coupled with metal chelating ligands of 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion (AMTT) and its application for selective adsorption of Hg(Ⅱ) ion. The adsorbent was characterized by Fourier transform infrared spectra (FTIR) and thermo gravimetric analysis (TGA) measurements, nitrogen physisorption and scanning electron microscope (SEM). Optimal experimental conditions including pH, temperature, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data given by the Langmuir isotherm equation and the maximum adsorption capacity of the modified silica gel and silica aerogel was 142.85 and 17.24mgg⌃(-1), respectively. Thermodynamic parameters such as Gibbs free energy (ΔG{sup o}), standard enthalpy (ΔH{sup o}) and entropy change (ΔS{sup o}) were investigated. The adsorbed Hg(Ⅱ) on the SA-AMTT adsorbents could be completely eluted by 1.0M KBr solution and recycled at least four times without the loss of adsorption capacity. The results of the present investigation illustrate that modified silica aerogel with AMTT could be used as an adsorbent for the effective removal of Hg(Ⅱ) ions from aqueous solution.

  14. Magnetic, Fluorescence and Transition Metal Ion Response Properties of 2,6-Diaminopyridine Modified Silica-Coated Fe3O4 Nanoparticles

    Yunhui Zhai

    2016-08-01

    Full Text Available Multi-functional nanoparticles possessing magnetic, fluorescence and transition metal ion response properties were prepared and characterized. The particles have a core/shell structure that consists of silica-coated magnetic Fe3O4 and 2,6-diaminopyridine anchored on the silica surface via organic linker molecules. The resultant nanoparticles were found by transmission electron microscopy to be well-dispersed spherical particles with an average diameter of 10–12 nm. X-ray diffraction analysis suggested the existence of Fe3O4 and silica in/on the particle. Fourier transform infrared spectra revealed that 2,6-diaminopyridine molecules were successfully covalently bonded to the surface of magnetic composite nanoparticles. The prepared particles possessed an emission peak at 364 nm with an excitation wavelength of 307 nm and have a strong reversible response property for some transition metal ions such as Cu2+ and Zn2+. This new material holds considerable promise in selective magneto separation and optical determination applications.

  15. Sorption and Preconcentration of Lead on Silica Nanoparticles Modified with Resacetophenone

    Anupreet Kaur

    2009-01-01

    Full Text Available The silica-resacetophenone (SiO2-RATP nanoparticles were used as a new sorbent for extraction of trace amounts of Pb(II by batch technique. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer SiO2-RATP was found to be 167.24 µ mol/g at optimum pH and the detection limit (3σ was 0.58 µg/L. The adsorption equilibrium of Pb(II on nanometer SiO2-RATP was achieved in 20 min. Adsorbed Pb(II was easily eluted with 5 mL of 0.5 M hydrochloric acid. The maximum preconcentration factor was 60. The method was applied for the determination of trace amounts of Pb(II in various natural water rivers.

  16. Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions

    Nilchi, A.; Shariati Dehaghan, T.; Rasouli Garmarodi, S.

    2013-01-01

    A simple and reliable method for rapid extraction and determination of uranium and thorium using octadecyl-bonded silica modified with Cyanex 302 is presented. Extraction efficiency and the influence of various parameters such as aqueous phase pH, flow rate of sample solution and amount of extractant has been investigated. The study showed that the extraction of uranium and thorium increase with increasing pH value and was found to be quantitative at pH 6; and the retention of ions was not affected significantly by the flow rate of sample solution. The extraction percent were found to be 89.55 and 86.27 % for uranium and thorium, respectively. The maximal capacity of the cartridges modified by 30 mg of Cyanex 302 was found to be 20 mg of uranium and thorium. The method was successfully applied to the extraction and determination of uranium and thorium in aqueous solutions. The percentage recovery of uranium and thorium in a number of natural as well as seawater samples of Iran were also investigated and found to be in the range of 85-95%. (author)

  17. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification.

    Li, Jing; Xu, Lu; Wang, Hongyu; Yang, Baixue; Liu, Hongzhuo; Pan, Weisan; Li, Sanming

    2016-02-01

    The purpose of this study was to facilely develop amino modified mesoporous silica xerogel synthesized using biomimetic method (B-AMSX) and to investigate its potential ability to be a drug carrier for loading poorly water-soluble drug indomethacin (IMC). For comparison, mesoporous silica xerogel without amino modification (B-MSX) was also synthesized using the same method. The changes of characteristics before and after IMC loading were systemically studied using fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and nitrogen adsorption/desorption analysis. The results showed that B-MSX and B-AMSX were spherical nanoparticles with mesoporous structure. Compared with B-MSX, IMC loading capacity of B-AMSX was higher because more drug molecules can be loaded through stronger hydrogen bonding force. DSC and SAXS analysis confirmed the amorphous state of IMC after being loaded into B-MSX and B-AMSX. The in vitro drug release study revealed that B-MSX and B-AMSX improved IMC release significantly, and B-AMSX released IMC a little faster than B-MSX because of larger pore diameter of IMC-AMSX. B-MSX and B-AMSX degraded gradually in dissolution medium evidenced by color reaction and absorbance value, and B-AMSX degraded slower than B-MSX due to amino modification. In conclusion, B-AMSX with superiority of higher loading capacity and enhanced dissolution release can be considered to be a good candidate as drug carrier for IMC. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Adsorption of H[Ru(III) Cl2(H2EDTA)] complex on modified silica gel surface with [3-(2-aminoethyl)aminopropyl] trimethoxysilane in ethanol solutions

    Lazarin, Angelica Machi; Sernaglia, Rosana Lazara

    1999-01-01

    Silica gel was functionalized with [3-(2-aminoethyl) aminopropyl] trimethoxysilane group (SF-AEATS) and the characterization by chemical analysis (N) and infrared spectroscopy confirmed the functionalization. The capacity of the modified silica to adsorb the complex Ru (III) EDTA from ethanolic solution was studied. The selectivity coefficients of the complex formed on the support obtained was τn), 2,07 x 10 4 L/mol and the average number of ligand bonded by one metal ion on the support (n) was ∼1. (author)

  19. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  20. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica

    Camacho-Bunquin, Jeffrey [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Sohn, Hyuntae [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Yang, Dali [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Liu, Cong [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Ignacio-de Leon, Patricia Anne [Energy Sciences Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Perras, Frédéric A. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50010, United States; Pruski, Marek [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50010, United States; Department of Chemistry, Iowa State University, 2416 Pammel Drive, Ames, Iowa 50011, United States; Stair, Peter C. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Delferro, Massimiliano [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States

    2018-02-22

    Well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV-Vis, and solid-state (SS)NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H2 and TEM techniques revealed highly dispersed (methylcyclopentadi-enyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO2, 1). In addition, computational modelling suggests that the surface reaction of (MeCp)PtMe3 with Zn(II)-modified SiO2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as confirmed by NH3-TPD and DNP-enhanced 17O{1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-H sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 100%) with excellent tolerance of reduction-sensitive func-tional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.

  1. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment

    Wu, Lingjie; Wu, Ming; Zeng, Yongyi; Zhang, Da; Zheng, Aixian; Liu, Xiaolong; Liu, Jingfeng

    2015-01-01

    The combination of a multi-therapeutic mode with a controlled fashion is a key improvement in nanomedicine. Here, we synthesized polyethylene glycol (PEG)-modified doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) @CuS nanohybrids as efficient drug delivery carriers, combined with photothermal therapy and chemotherapy to enhance the therapeutic efficacy on hepatocellular carcinoma (HCC). The physical properties of the nanohybrids were characterized by transmission electron microscopy (TEM), N2 adsorption and desorption experiments and by the Vis-NIR absorption spectra. The results showed that the doxorubicin could be stored in the inner pores of mesoporous silica nanoparticles; the CuS nanoparticles, which are coated on the surface of a mesoporous silica nanoparticle, could serve as efficient photothermal therapy (PTT) agents; the loaded drug release could be easily triggered by NIR irradiation. The combination of the PTT treatment with controlled chemotherapy could further enhance the cancer ablation ability compared to any of the single approaches alone. Hence, the reported PEG-modified DOX-loaded mesoporous silica nanoparticle@CuS nanohybrids might be very promising therapeutic agents for HCC treatment.

  2. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu, E-mail: tycheng@shnu.edu.cn; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH = 7.0 phosphate buffered saline (PBS) solution without 365 nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH = 5.0 PBS) and 365 nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. - Highlights: • A pH and light-dual controlled cargo release system exhibiting AND logic is developed. • The delivery system can release the cargo in small potions by controlling the opening/closing of the gate. • The delivery system realizes the controlled release in zebrafish.

  3. Characteristics of Polysilicon Wire Glucose Sensors with a Surface Modified by Silica Nanoparticles/γ-APTES Nanocomposite

    Jheng-Jia Jhuang

    2011-03-01

    Full Text Available This report investigates the sensing characteristics of polysilicon wire (PSW glucose biosensors, including thickness characteristics and line-width effects on detection limits, linear range and interference immunity with membranes coated by micropipette/spin-coating and focus-ion-beam (FIB processed capillary atomic-force-microscopy (C-AFM tip scan/coating methods. The PSW surface was modified with a mixture of 3-aminopropyl-triethoxysilane (γ-APTES and polydimethylsiloxane (PDMS-treated hydrophobic fumed silica nanoparticles (NPs. We found that the thickness of the γ-APTES+NPs nonocomposite could be controlled well at about 22 nm with small relative standard deviation (RSD with repeated C-AFM tip scan/coatings. The detection limit increased and linear range decreased with the line width of the PSW through the tip-coating process. Interestingly, the interference immunity ability improves as the line width increases. For a 500 nm-wide PSW, the percentage changes of the channel current density changes (ΔJ caused by acetaminophen (AP can be kept below 3.5% at an ultra-high AP-to-glucose concentration ratio of 600:1. Simulation results showed that the line width dependence of interference immunity was strongly correlated with the channel electrical field of the PSW biosensor.

  4. Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2017-07-01

    Calcium oxide modified El-Zafarana silica sand (CMZS) was prepared as a new adsorbent for U(VI) removal from aqueous solutions in a series of batch experiments. The new adsorbent CMZS was characterized by different analysis techniques SEM, EDX, XRD, and FTIR. The influence of many parameters on the removal process like; effect of pH, contact time, U(VI) initial concentration and temperature on U(VI) removal were investigated. Kinetic experiments showed that U(VI) removal on CMZS followed pseudo-second-order kinetics model appropriately and the equilibrium data agreed well with the Langmuir isotherm model. Kinetics and isothermal data reveal the chemisorption process of U(VI) on CMZS. The thermodynamic parameters (ΔH {sup circle}, ΔS {sup circle}, ΔG {sup circle}) were evaluated from temperature dependent adsorption data and the U(VI) removal on CMZS was found to be endothermic and spontaneous in nature. U(VI) desorption from CMZS was studied by a simple acid treatment. The results indicate that CMZS is an effective adsorbent for U(VI) from aqueous solutions.

  5. Highly sensitive sorption-luminescence determination of trace europium with preconcentration on silica chemically modified with iminodiacetic acid

    Voronina, R.D.; Zorov, N.B.

    2007-01-01

    Features of a sorption-luminescence method for the determination of trace europium were studied. The method includes the preliminary sorption of europium at pH 7.1 from solutions with silica chemically modified with iminodiacetic acid, the subsequent treatment of the sorbent with 2-thenoyltrifluoroacetone at pH 8.0, and the measurement of the intensity of luminescence of the surface three-component europium complex at 613 nm. The effect of moisture as the quencher of luminescence of the surface europium complex was studied, and techniques for its removal were proposed. Sorption in the static mode provides the detection limit of europium of 7 x 10 -5 g/ml. The calibration plot is linear in the range of two orders of magnitude of europium concentration in solutions. The relative standard deviation in the determination of 1.5 x 10 -2 μg/ml europium is 5%. In the dynamic mode of sorption from 1000 ml of an analyzed solution with the use of sorption-desorption, the detection limit of europium of 8 x 10 -7 μg/ml was attained [ru

  6. Synthesis of monodisperse silica microspheres and modification with diazoresin for mixed-mode ultra high performance liquid chromatography separations.

    Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua

    2017-11-01

    Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  8. Different Effects of the Immunomodulatory Drug GMDP Immobilized onto Aminopropyl Modified and Unmodified Mesoporous Silica Nanoparticles upon Peritoneal Macrophages of Women with Endometriosis

    Yuliya Antsiferova

    2013-01-01

    Full Text Available The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs and modified by aminopropyl groups silica nanoparticles (AMNPs for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1, was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  9. Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis.

    Antsiferova, Yuliya; Sotnikova, Nataliya; Parfenyuk, Elena

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  10. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  11. Influence of acetone extract from natural rubber on the structure and interface interaction in NR/silica composites

    Xu, Tiwen; Jia, Zhixin; Wu, Lianghui; Chen, Yongjun; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2017-11-01

    It is well known that the coupling reagents as the additional modifiers were often used to improve the reinforcement effect of silica filled natural rubber. Actually, the commercial raw NR is a mixture consisting of polyisoprene and non-isoprene, where the latter one might have impact on the properties of NR/silica composites as an inartificial modifier inside. Thus, investigating the effect of non-isoprene compounds on the structure and properties of NR/silica composites is a novel approach to disclose the peculiarity of NR, which is meaningful to the assessment of NR quality. In this paper, the influences of acetone extract (AE) from natural rubber on the structure and mechanical properties of NR/silica composites were studied. Then the interfacial interactions between AE and silica were also illustrated through Fourier transform infrared spectroscopy (FTIR), thermogravimetic analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results demonstrated the existence of hydrogen bond between silica and AE, also the covalent bond induced by esterification reaction between sbnd COOH and Sisbnd OH, which resulted in an increase of constrained regions around silica surface leading to the promotions on mechanical and dynamical properties of NR/silica composites significantly.

  12. Metal-binding silica materials for wastewater cleanup

    Kroh, F.O. [TPL, Inc., Albuquerque, NM (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, TPL, Inc. is developing two series of high-efficiency covalently modified silica materials for removing heavy metal ions from wastewater. These materials have metal ion capacities greatly exceeding those of commercial ion exchange resins. One series, containing thiol groups, has high capacity for {open_quotes}soft{close_quotes} heavy metal ions such as Hg, Pb, Ag, and Cd; the other, containing quaternary ammonium groups, has high capacity for anionic metal ions such as pertechnetate, arsenate, selenite, and chromate. These materials have high selectivity for the contaminant metals and will function well in harsh systems that inactivate other systems.

  13. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film

    Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B.

    2017-01-01

    Highlights: •The steel substrate was treated by a covalently modified amino functionalized graphene oxide (fGO) film. •Deposition of fGO film at the interface of steel and epoxy could effectively improve the adhesion strength and corrosion protection properties. •More stable and stronger interfacial bonds was obtained when treating the interface by fGO film. -- Abstract: This study introduces a novel surface treatment approach of steel substrate by covalent modification of graphene oxide (fGO) nanosheets with 3-aminopropyltriethoxysilane to improve the adhesion and corrosion protection properties of an epoxy coating. The effect of fGO film on the epoxy coating performance was studied by field-emission scanning electron microscopy (FE-SEM), X-Ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Pull-off adhesion, salt spray and cathodic delamination tests. Results revealed that deposition of fGO film on steel surface can effectively improve the adhesion strength and corrosion protection properties and reduce the cathodic delamination rate of the epoxy coating.

  14. Voltammetric Study of the Copper Pentacyanonitrosylferrate Adsorbed on the Silica Modified with a Poly(propyleneimine Hexadecylamine Dendrimer for Determination of Nitrite

    D. R. do Carmo

    2012-01-01

    Full Text Available Poly(propyleneimine hexadecylamine dendrimer (DAB-Am-16 was anchored on the surface of 3-chloropropylsilyl silica gel and subsequently interacted with copper nitroprusside. The composite was characterized by infrared (FTIR, energy dispersive X-ray (EDX, and cyclic voltammetry. The above techniques confirmed the successful anchoring of the dendrimer on the silica gel modified surface and its interaction with copper nitroprusside. The cyclic voltammogram of CuNPSD was found to exhibit two redox couples with (Eθ′1 = 0.30 V and (Eθ′2 = 0.78 V versus Ag/AgCl (KCl=1.0 mol L−1; =20 mV s−1 attributed to the redox processes Cu(I/Cu(II and Fe(II(CN5NO/Fe(III(CN5NO, respectively. The CuNPSD-modified graphite paste electrode was found to show a linear response of 5.0×10−4 to 9.0×10−3 mol L−1 for nitrite determination with a detection limit (DL of 3.8×10−4 mol L−1 and an amperometric sensitivity of 25.0 mA/mol L−1. The CuNPSD-modified graphite paste electrode was found to show a good electrochemical stability and an excellent response to the electrocatalytic oxidation of sodium nitrite.

  15. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  17. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography

    Moravcová, Dana; Planeta, Josef; Wiedmer, S. K.

    2013-01-01

    Roč. 1317, SI (2013), s. 159-166 ISSN 0021-9673 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : monolithic silica capillary column * immobilized liposomes * biomimicking stationary phase Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  18. Optimization and application of octadecyl-modified monolithic silica for solid-phase extraction of drugs in whole blood samples.

    Namera, Akira; Saito, Takeshi; Ota, Shigenori; Miyazaki, Shota; Oikawa, Hiroshi; Murata, Kazuhiro; Nagao, Masataka

    2017-09-29

    Monolithic silica in MonoSpin for solid-phase extraction of drugs from whole blood samples was developed to facilitate high-throughput analysis. Monolithic silica of various pore sizes and octadecyl contents were synthesized, and their effects on recovery rates were evaluated. The silica monolith M18-200 (20μm through-pore size, 10.4nm mesopore size, and 17.3% carbon content) achieved the best recovery of the target analytes in whole blood samples. The extraction proceeded with centrifugal force at 1000rpm for 2min, and the eluate was directly injected into the liquid chromatography-mass spectrometry system without any tedious steps such as evaporation of extraction solvents. Under the optimized condition, low detection limits of 0.5-2.0ngmL -1 and calibration ranges up to 1000ngmL -1 were obtained. The recoveries of the target drugs in the whole blood were 76-108% with relative standard deviation of less than 14.3%. These results indicate that the developed method based on monolithic silica is convenient, highly efficient, and applicable for detecting drugs in whole blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular imprinting at walls of silica nanotubes for TNT recognition.

    Xie, Chenggen; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Guan, Guijian; Zhang, Zhongping

    2008-01-15

    This paper reports the molecular imprinting at the walls of highly uniform silica nanotubes for the recognition of 2,4,6-trinitrotoluene (TNT). It has been demonstrated that TNT templates were efficiently imprinted into the matrix of silica through the strong acid-base pairing interaction between TNT and 3-aminopropyltriethoxysilane (APTS). TNT-imprinted silica nanotubes were synthesized by the gelation reaction between APTS and tetraethylorthosilicate (TEOS), selectively occurring at the porous walls of APTS-modified alumina membranes. The removal of the original TNT templates leaves the imprinted cavities with covalently anchored amine groups at the cavity walls. A high density of recognition sites with molecular selectivity to the TNT analyte was created at the wall of silica nanotubes. Furthermore, most of these recognition sites are situated at the inside and outside surfaces of tubular walls and in the proximity of the two surfaces due to the ultrathin wall thickness of only 15 nm, providing a better site accessibility and lower mass-transfer resistance. Therefore, greater capacity and faster kinetics of uptaking target species were achieved. The silica nanotube reported herein is an ideal form of material for imprinting various organic or biological molecules toward applications in chemical/biological sensors and bioassay.

  20. Silica reinforced triblock copolymer gels

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  1. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    Zhang Ting; Chai Yaqin, E-mail: yqchai@swu.edu.cn; Yuan Ruo; Guo Junxiang

    2012-07-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag{sup +} ion ranging from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -1} M with a detection limit of 9.5 Multiplication-Sign 10{sup -7} M and a slope of 60.4 {+-} 0.2 mV dec{sup -1} over a wide pH range (4.0-9.0) with a fast response time (50 s) at 25 Degree-Sign C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl{sup -} and Br{sup -} ions. - Highlights: Black-Right-Pointing-Pointer Functionalized silica gels have become promising materials. Black-Right-Pointing-Pointer This work is the first attempt to apply triazene functionalized silica gel. Black-Right-Pointing-Pointer The Functionalized silica gels were used to detect silver. Black-Right-Pointing-Pointer The response of the previously reported papers are compared with this work. Black-Right-Pointing-Pointer The result indicates the proposed electrode is better than reported Ag{sup +} electrodes.

  2. Potentiometric detection of silver (I) ion based on carbon paste electrode modified with diazo-thiophenol-functionalized nanoporous silica gel

    Zhang Ting; Chai Yaqin; Yuan Ruo; Guo Junxiang

    2012-01-01

    For the first time, triazene compound functionalized silica gel was incorporated into carbon paste electrode for the potentiometric detection of silver (I) ion. A novel diazo-thiophenol-functionalized silica gel (DTPSG) was synthesized, and the presence of DTPSG acted as not only a paste binder, but also a reactive material. The electrode with optimum composition, exhibited an excellent Nernstian response to Ag + ion ranging from 1.0 × 10 −6 to 1.0 × 10 −1 M with a detection limit of 9.5 × 10 −7 M and a slope of 60.4 ± 0.2 mV dec −1 over a wide pH range (4.0–9.0) with a fast response time (50 s) at 25 °C. The electrode also showed a long-time stability, high selectivity and reproducibility. The response mechanism of the proposed electrode was investigated by using AC impedance. Moreover, the electrode was successfully applied for the determination of silver ions in radiology films, and for potentiometric titration of the mixture solution of Cl − and Br − ions. - Highlights: ► Functionalized silica gels have become promising materials. ► This work is the first attempt to apply triazene functionalized silica gel. ► The Functionalized silica gels were used to detect silver. ► The response of the previously reported papers are compared with this work. ► The result indicates the proposed electrode is better than reported Ag + electrodes.

  3. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-01-01

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10 −6 M of heavy metal ions at a flow rate of 5.0 mL min −1 . Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu 2+ , Zn 2+ , and Pb 2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu 2+ (5.0 × 10 −8 M) and Zn 2+ (5.7 × 10 −8 M) in a river water sample and Pb 2+ (3.8 × 10 −9 M) in a ground water sample

  4. Enhanced accumulation and visible light-assisted degradation of azo dyes in poly(allylamine hydrochloride)-modified mesoporous silica spheres

    Tao Xia; Liu Bing; Hou Qian; Xu Hui; Chen Jianfeng

    2009-01-01

    A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstrated that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater

  5. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel

    Sharma, R.K.; Pandey, Amit; Gulati, Shikha; Adholeya, Alok

    2012-01-01

    Highlights: ► Diphenyldiketone-monothiosemicarbazone modified silica gel. ► Highly selective, efficient and reusable chelating resin. ► Solid phase extraction system for on-line separation and preconcentration of Pd(II) ions. ► Application in catalytic converter and spiked tap water samples for on-line recovery of Pd(II) ions. - Abstract: A novel, highly selective, efficient and reusable chelating resin, diphenyldiketone-monothiosemicarbazone modified silica gel, was prepared and applied for the on-line separation and preconcentration of Pd(II) ions in catalytic converter and spiked tap water samples. Several parameters like effect of pH, sample volume, flow rate, type of eluent, and influence of various ionic interferences, etc. were evaluated for effective adsorption of palladium at trace levels. The resin was found to be highly selective for Pd(II) ions in the pH range 4–5 with a very high sorption capacity of 0.73 mmol/g and preconcentration factor of 335. The present environment friendly procedure has also been applied for large-scale extraction by employing the use of newly designed reactor in which on-line separation and preconcentration of Pd can be carried out easily and efficiently in short duration of time.

  6. Graphene and graphene oxide modified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid-phase extraction

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho [Dept. of Chemistry and Chemical Engineering, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    A novel deep eutectic solvent (DES) and ionic liquid (IL)-modified graphene (G) and graphene oxide (GO) were synthesized and used as effective adsorbents for the preconcentration of three chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP), in environmental water samples prior to high-performance liquid chromatography (HPLC). The new materials were characterized by scanning electron microscopy (S-4200) and Fourier-transform infrared spectrometry. The prepared functionalized GO@silica shows remarkable adsorption capacity toward CPs. When used as solid-phase extraction (SPE) sorbents, a superior recovery (88.49–89.70%) could be obtained compared to commercial sorbents, such as silica and aminosilica. Based on this, a method for the analysis of CPs in water samples was established by coupling SPE with HPLC. These results highlight the potential new role of DES and IL-modified GO in the preparation of analytical samples.

  7. Investigation of interaction between the Pt(II) ions and aminosilane-modified silica surface in heterogeneous system

    Nowicki, Waldemar; Gąsowska, Anna; Kirszensztejn, Piotr

    2016-05-01

    UV-vis spectroscopy measurements confirmed the reaction in heterogeneous system between Pt(II) ions and ethylenediamine type ligand, n-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, immobilized at the silica surface. The formation of complexes is a consequence of interaction between the amine groups from the ligand grafted onto SiO2 and ions of platinum. A potentiometric titration technique was to determine the stability constants of complexes of Pt(II) with immobilized insoluble ligand (SG-L), on the silica gel. The results show the formation of three surface complexes of the same type (PtHSG-L, Pt(HSG-L)2, PtSG-L) with SG-L ligand, in a wide range of pH for different Debye length. The concentration distribution of the complexes in a heterogeneous system is evaluated.

  8. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  9. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  10. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl2O4: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane

    Longfei Zhang

    2018-05-01

    Full Text Available Flexible 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO-oxidized nanofibrillated cellulose (ONFC films with long afterglow luminescence containing modified SrAl2O4: Eu2+, Dy3+ (SAOED phosphors were fabricated by a template method. Tetraethyl orthosilicate (TEOS and (3-aminopropyl trimethoxy-silane (APTMS were employed cooperatively to improve the water resistance and compatibility of the SAOED particles in the ONFC suspension. The structure and morphology after modification evidenced the formation of a superior SiO2 layer and coarse amino-compounds on the surface of the phosphors. Homogeneous dispersions containing ONFC and the modified phosphors were prepared and the interface of composite films containing the amino-modified particles showed a more closely packed structure and had less voids at the interface between the cellulose and luminescent particles than that of silica-modified phosphors. The emission spectra for luminescent films showed a slight blue shift (3.2 nm at around 512 nm. Such flexible films with good luminescence, thermal resistance, and mechanical properties can find applications in fields like luminous flexible equipment, night indication, and portable logo or labels.

  11. Chromatographic separation of metal cations on silica gel chemically modified with a polymeric derivative of diaza-18-crown-6

    Basyuk, V.A.

    1991-01-01

    Sorbent on the basis of γ-aminopropyl silica gel, containing chemically grafted polymer derivatives of diaza-18-crown-6, has been synthesized. Retaining of certain metal cations when acid mobile phases are used is studied. Acetate buffer solution, 0.005% aqueous solution of acetic acid and 10 mM aqueous solution of oxalic acid were used as mobile phases. Rare earth cations (including Sr 2+ ones) are weakly retained when any mobile phase is used. Retention of VO 2+ cations is the strongest one

  12. Separation, preconcentration and determination of silver ion from water samples using silica gel modified with 2,4,6-trimorpholino-1,3,5-triazin

    Madrakian, Tayyebeh; Afkhami, Abbas; Zolfigol, Mohammad Ali; Solgi, Mohammad

    2006-01-01

    A new modified silica gel using 2,4,6-trimorpholino-1,3,5-triazin was used for separation, preconcentration and determination of silver ion in natural water by atomic absorption spectrometry (AAS). This new bonded silica gel was used as an effective sorbent for the solid-phase extraction (SPE) of silver ion from aqueous solutions. Experimental conditions for effective adsorption of trace levels of silver ion were optimized with respect to different experimental parameters in column process. Common coexisting ions did not interfere with the separation and determination of silver at pH 3.5 so that silver ion completely adsorbed on the column. The preconcentration factor is 130 (1 mL elution volume for a 130 mL sample volume). The relative standard deviation (R.S.D.) under optimum conditions is 3.03% (n = 5). The accuracy of the method was estimated by using spring and tap water samples that were spiked with different amounts of silver ion. The adsorption isotherm of silver ion was obtained. The capacity of the sorbent at optimum conditions has been found to be 384 μg of silver per gram of sorbent

  13. Synthesis and characterization of mesoporous silica modified with chiral auxiliaries for their potential application as chiral stationary phase.

    Mayani, Vishal J; Abdi, S H R; Kureshy, R I; Khan, N H; Agrawal, Santosh; Jasra, R V

    2008-05-16

    Novel chiral stationary phase (CSP) based on chiral aminoalcohol immobilized on ordered mesoporous silica SBA-15 1a and standard silica 1b and their copper complexes 1a' and 1b', respectively, was synthesized as potential material for chiral ligand exchange chromatography (CLEC). Microanalysis, inductively coupled plasma spectroscopy (ICP), thermo-gravimetric analysis (TGA), cross polarized magic angle spinning (CP-MAS) (13)C NMR, Powder X-ray diffraction (PXRD), FTIR, N(2) adsorption isotherm, scanning electron microscopy (SEM), transmitted electron microscope (TEM) and solid reflectance UV-vis spectroscopy were used to characterize these materials. All the chiral stationary phases thus synthesized were used for the separation of different racemic compounds such as mandelic acid, 2,2'-dihydroxy-1,1'-binaphthalene BINOL) and diethyl tartrate by simple medium-pressure column chromatography. Successful enantio-separation of racemic mandelic acid was achieved with all the stationary phases but 1a and 1b gave slightly better resolution than their copper complexes 1a' and 1b'. Remarkably these materials are stable under the given experimental conditions and can be used repeatedly for several cycles of enantioresolution. It was observed that the porosity and surface area of the stationary phase play an important role in the chiral separation.

  14. Existence of a tribo-modified surface layer of BR/S-SBR elastomers reinforced with silica or carbon black

    Mokhtari, Milad; Schipper, Dirk J.

    2016-01-01

    The existence of a modified surface layer on top of a rubber disk, in contact with a rigid counter-surface, is still a point of discussion. In this study, we show that a modified surface layer with different mechanical properties exists. Modification of the reinforced elastomers is discussed and the

  15. The study of methanol transformation over Cu-modified ZSM-5, Beta zeolite and MCM-41 mesoporous silica using 11C-radioisotope labeling

    Sarkadi-Priboczki, E.; Kovacs, Z.

    2004-01-01

    Complete text of publication follows. The copper-containing zeolites and mesoporous silica, among other metals, are suitable for dehydrogenation of methanol. The Cu transition metal determines the route of methanol conversion on supports of ZSM-5 and Beta zeolite as well as MCM-41 mesoporous silica. The catalysis mechanism and the catalytic property are concluded from the composition of methanol derivates over Cu-modified catalysts. The Cu ion-exchanged ZSM-5 and Beta zeolite and MCM-41 mesoporous silica were synthesized and characterized using X-ray power diffraction, scanning electron microscope, nitrogen and pyridine adsorption, X-ray fluorescency and FTIR spectroscopy. The 11 C-radioactive labeling method ( 11 C radioisotope, T 1/2 = 20 min, is a gamma emitter by annihilation of its positron) is suitable for following the process of 11 C-methanol con- version i.e. adsorption, desorption and catalytic transformation as well as for investigation of small amounts of molecules over catalysts by very sensitive radioactivity detectors.The 11 C radioisotope was produced at cyclotron and the 11 C-methanol was synthesized by a classical radiochemical method. After catalysis the 11 C-radioactive and non radioactive volatile products were identified by radiogas chromatography hereby radiolabeled compound and -derivates were distinguished from other participant natural, nonradioactive carbon compounds. Along radioactive products dimethyl ether and small hydrocarbons products were formed by Bronsted acid sites of catalysts while formaldehyde and small methyl formate were formed by Cu metal over bifunctional Cu-ZSM-5, Cu-Beta zeolite and mesoporous Cu-MCM-41 silica at 240 deg C. The detection of methoxy methanol and dimethoxy methane confirmed the simultaneous presence of acid and basic sites of catalysts. At higher temperature (400 deg C) the CO and CO 2 final products were dominated. In our previous works, methanol conversion to hydrocarbons was observed by dehydration

  16. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  17. Fumed silica. Fumed silica

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  18. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de; Lazarin, Angélica M.; Andreotti, Elza I.S.; Sernaglia, Rosana L.; Gushikem, Yoshitaka

    2014-01-01

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN) 6 ] 4− complex ion initially. The reaction of this material with [Ru(edta)H 2 O] − complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr) 5 [(edta)RuNCFe(CN) 5 ]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success

  19. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  20. Development of an alcohol dehydrogenase biosensor for ethanol determination with toluidine blue O covalently attached to a cellulose acetate modified electrode.

    Alpat, Senol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10(-5) M and 4 × 10(-4) M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10(-6) M. At the end of the 20(th) day, the biosensor still retained 50% of its initial activity.

  1. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    Azmi Telefoncu

    2010-01-01

    Full Text Available In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH. Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA bonded to toluidine blue O (TBO. Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity.

  2. Amine-modified ordered mesoporous silica: The effect of pore size on CO{sub 2} capture performance

    Wang, Lin; Yao, Manli [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Hu, Xin [College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004 (China); Hu, Gengshen, E-mail: gshu@zjnu.edu.cn [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Lu, Jiqing; Luo, Mengfei [Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Fan, Maohong, E-mail: mfan@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2015-01-01

    Highlights: • Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. • The CO{sub 2} uptakes of sorbents were enhanced in the presence of moisture. • The sorbents are stable and regenerable under test conditions. - Abstract: The objective of current research is to investigate the effect of pore size of mesoporous silica supports on the CO{sub 2} capture performance of solid amine sorbents. Two ordered mesoporous silicas (OMS) with different pore sizes (5.6 nm and 7.6 nm) were synthesized as tetraethylenepentamine (TEPA) supports. A serious of techniques, such as physical adsorption, infrared spectroscopy and thermal gravimetric analysis were used to characterize the solid amine sorbents. The CO{sub 2} capture performances of the sorbents were evaluated using breakthrough method with a fixed-bed reactor equipped with an online mass spectrometer. The experimental results indicate that the pore size has significant influence on CO{sub 2} capture performance. Larger pore size could decrease the mass transfer resistance and increase the interaction between CO{sub 2} and TEPA. Therefore, OMS-7.6 is better than OMS-5.6 as amine support. The highest CO{sub 2} sorption capacities achieved with OMS-7.6 with 50 wt% TEPA loading (OMS-7.6-50) in the absence and presence of moisture are 3.45 mmol/g and 4.28 mmol/g, respectively, under the conditions of 10.0% CO{sub 2}/N{sub 2} mixture at 75 °C. Cyclic CO{sub 2} adsorption–desorption experiments indicate that the solid amine sorbents are fairly stable and regenerable.

  3. [Preparation of cysteine-click maltose modified silica as a hydrophilic interaction liquid chromatography material for the enrichment of glycopeptides].

    Sun, Xudong; Zhang, Lingyi; Zhang, Weibing

    2017-07-08

    Because of the low abundance of glycoprotein and glycopeptide in complex biological samples, it is urgent to develop an efficient method for glycopeptide enrichment in comprehensive and in-depth glycoproteomes research. Herein, a novel hydrophilic silica was developed through surface modification with cysteine-click maltose (Cys-Mal@SiO 2 ). The developed hydrophilic silica was packed into a solid phase extraction (SPE) column, and applied to the highly selective enrichment and identification of N -linked glycopeptides. The Cys-Mal@SiO 2 demonstrated better identification capability over Cys@SiO 2 , Mal@SiO 2 and commercial hydrophilic interaction liquid chromatography (HILIC) in glycopeptide enrichment due to the synergistic effect of the two kinds of hydrophilic molecules. In the selective enrichment of tryptic digest from human immunoglobulin G, glycopeptides with higher signal-to-noises were detected by Cys-Mal@SiO 2 . In addition, 1551 unique glycopeptides with 906 N -glycosylation sites from 466 different N -linked glycoproteins were identified from the proteins extracted from mouse liver after the enrichment with Cys-Mal@SiO 2 . In contrast, the numbers of identified glycopeptides, glycoproteins and N -glycosylation sites identified by Cys@SiO 2 were 211, 67, 127 respectively less than by Cys-Mal@SiO 2 , and the corresponding numbers were 289, 76, 193 by Mal@SiO 2 . These results showed that the developed Cys-Mal@SiO 2 is a promising affinity material for N -glycoproteomics research of real complex biological samples.

  4. Rapid electrochemical quantification of Salmonella Pullorum and Salmonella Gallinarum based on glucose oxidase and antibody-modified silica nanoparticles.

    Luo, Yiheng; Dou, Wenchao; Zhao, Guangying

    2017-07-01

    In this article, a facile and sensitive electrochemical method for quantification of Salmonella Pullorum and Salmonella Gallinarum (S. Pullorum and S. Gallinarum) was established by monitoring glucose consumption with a personal glucose meter (PGM). Antibody-functionalized magnetic nanoparticles (IgG-MNPs) were used to capture and enrich S. Pullorum and S. Gallinarum, and IgG-MNPs-S. Pullorum and IgG-MNPs-S. Gallinarum complexes were magnetically separated from a sample using a permanent magnet. The trace tag was prepared by loading polyclonal antibodies and high-content glucose oxidase on amino-functionalized silica nanoparticles (IgG-SiNPs-GOx). With a sandwich-type immunoassay format, IgG-SiNPs-GOx were added into the above mixture solution and conjugated to the complexes, forming sandwich composites IgG-MNPs/S. Pullorum and S. Gallinarum/IgG-SiNPs-GOx. The above sandwich composites were dispersed in glucose solution. Before and after the hydrolysis of glucose, the concentration of glucose was measured using PGM. Under optimal conditions, a linear relationship between the decrease of glucose concentration and the logarithm of S. Pullorum and S. Gallinarum concentration was obtained in the concentration range from 1.27 × 10 2 to 1.27 × 10 5  CFU mL -1 , with a detection limit of 7.2 × 10 1  CFU mL -1 (S/N = 3). This study provides a portable, low-cost, and quantitative analytical method for bacteria detection; thus, it has a great potential in the prevention of disease caused by S. Pullorum and S. Gallinarum in poultry. Graphical abstract A schematic illustration of the fabrication process of IgG-SiNPs-GOD nanomaterials (A) and IgG-MNPs (B) and experimental procedure of detection of S. Pullorum and S. Gallinarum using GOD-functionalized silica nanospheres as trace tags based on PGM (C).

  5. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  6. Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases

    Pascual Serra-Mora

    2018-02-01

    Full Text Available In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1, have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS and polyetilenglicol (PEG-based phases have been used, and the results have been compared with those obtained with a synthesized tetraethyl orthosilicate (TEOS-trimethoxyethylsilane (MTEOS polymer, as well as the same polymer reinforced with silica nanoparticles (SiO2 NPs. The SiO2 NPs functionalized TEOS-MTEOS coating provided the best results for most herbicides, especially for the most polar compounds. On the basis of the results obtained, conditions for the quantification of the herbicides tested are described using a SiO2 NPs reinforced TEOS-MTEOS coated capillary. The proposed method provided satisfactory linearity up to concentrations of 200 μg/L. The precision was also suitable, with relative standard deviations (RSDs values ≤9% (n = 3, and the limits of detection (LODs were within the 0.5–7.5 µg/L range. The method has been applied to different water samples and the extract obtained from an agricultural soil.

  7. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen

    2012-01-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E°′) of − 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s −1 ; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M −1 cm −2 and an apparent Michaelis–Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: ► A film composed of MWCNT-ACS was used for biosensor application. ► High sensitivity and good selectivity were obtained for the detection of glucose. ► This approach is potential for fabrication of mediator-free biosensor.

  8. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line.

    Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-02-01

    Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.

  9. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Javanbakht, Mehran; Divsar, Faten; Badiei, Alireza; Fatollahi, Fatemeh; Khaniani, Yeganeh; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaloosi, Marzieh; Ziarani, Ghodsi Mohammadi

    2009-01-01

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s -1 in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  10. Determination of picomolar silver concentrations by differential pulse anodic stripping voltammetry at a carbon paste electrode modified with phenylthiourea-functionalized high ordered nanoporous silica gel

    Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nano Science and Technology Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: mehranjavanbakht@gmail.com; Divsar, Faten [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Fatollahi, Fatemeh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khaniani, Yeganeh [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Chaloosi, Marzieh [Department of Chemistry, University of Tarbiat Moallem, Tehran (Iran, Islamic Republic of); Ziarani, Ghodsi Mohammadi [Department of Chemistry, University of Alzahra, Tehran (Iran, Islamic Republic of)

    2009-09-30

    This study introduces the design of an anodic stripping voltammetric (ASV) method for the silver ion determination at a carbon paste electrode (CPE), chemically modified with phenylthiourea-nanoporous silica gel (Tu-SBA-15-CPE). The electroanalytical pro includes two steps: preconcentration of metal ions at an electrode surface, followed by quantification of the accumulated species by differential pulse anodic stripping voltammetric methods. Factors affecting the performance of the anodic stripping were investigated, including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The most sensitive and reliable electrode contained 10% Tu-SBA-15 and 90% carbon paste. The accumulation potential and time were set at, -200 mV and 300 s, respectively, and the scan rate at 50 mV s{sup -1} in the scan range of -200 to 700 mV. The resulting electrode demonstrated a linear response over range of silver ion concentration of 8.0-80 pmol/L with detection limit (S/N = 3) of 5 pmol/L. The prepared electrodes were used for the silver determination in sea and tap water samples and very good recovery results were obtained. The accuracy was assessed through recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry.

  11. Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method

    Abo-Naf, S.M., E-mail: sm.abo-naf@nrc.sci.eg [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Abdel-Hameed, S.A.M.; Marzouk, M.A. [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt)

    2017-06-15

    Red phosphor, composed of Eu-Gd-Bi-codoped hybrid organo-silica glass, has been synthesized via a modified Pechini sol-gel process. The synthesized hybrid glass was analyzed with powder X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetry (DTA-TG) and Fourier transform infrared (FTIR) spectroscopy. XRD and DTA-TG confirmed its amorphous structure up to 1000 °C. Magnetic behavior of the produced phosphor was investigated using vibrating specimen magnetometer (VSM) and the obtained results revealed its unsaturated ferromagnetic behavior. Photoluminescence (PL) properties of the obtained phosphor have been investigated under near-UV excitation at 395 nm. The influence of calcination temperature on the PL intensity and its decay behavior as well as on the ferromagnetic characteristics has been studied to determine the optimal reaction temperature of the phosphor. The PL emission spectra show the characteristic emission bands of Eu{sup 3+} ions in the wavelength range from 580 to 700 nm. These emission spectra have been dominated by the electric dipole {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of the Eu{sup 3+} peaked at 610–620 nm producing the red light emission of the phosphors. It was found that the phosphor performance, expressed by its PL intensity and life time, could be significantly improved by increasing of the heat treatment temperature up to 900 °C. Also, calcination at 900 °C for 6 h greatly increased both of the magnetization and retentivity, while decreased the coercivity value. The organic phenomenon of metal citrate-ethylene glycol chelation and its degradation by calcination were well followed by FTIR spectroscopy. The obtained results are promising and could afford a basis for designing of efficient red phosphors for displays, lighting and bifunctional biosensors for biomedical applications. - Highlights: • Eu-Gd-Bi-codoped hybrid organo-silica phosphor was synthesized by sol-gel method. • Inorganic Eu-Gd-Bi-silica

  12. A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica for differential pulse adsorptive stripping analysis of nickel in ethanol fuel

    Takeuchi, Regina M.; Santos, Andre L.; Padilha, Pedro M.; Stradiotto, Nelson R.

    2007-01-01

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni 2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni 2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni 2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG) 2 complex, whose electrochemical reduction provides the analytical signal. All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10 -9 to 1.0 x 10 -6 mol L -1 with detection limit of 2.0 x 10 -9 mol L -1 . Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 μmol L -1 Ni 2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni 2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni 2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step

  13. Direct electron transfer and biosensing of glucose oxidase immobilized at multiwalled carbon nanotube-alumina-coated silica modified electrode

    Wu, Wei-Che; Huang, Jian-Lung; Tsai, Yu-Chen, E-mail: yctsai@dragon.nchu.edu.tw

    2012-05-01

    Investigations are reported regarding the direct electrochemical performance of glucose oxidase (GOD) immobilized on a film of multiwalled carbon nanotube-alumina-coated silica (MWCNT-ACS). The surface morphology of the GOD/MWCNT-ACS nanobiocomposite is characterized by scanning electron microscopy. In cyclic voltammetric response, the immobilized GOD displays a pair of well-defined redox peaks, with a formal potential (E Degree-Sign Prime ) of - 0.466 V versus Ag/AgCl in a 0.1 M phosphate buffer solution (pH 7.5) at a scan rate of 0.05 V s{sup -1}; also the electrochemical response indicates a surface-controlled electrode process. The dependence of formal potential on solution pH indicates that the direct electron transfer reaction of GOD is a reversible two-electron coupled with a two-proton electrochemical reaction process. The glucose biosensor based on the GOD/MWCNT-ACS nanobiocomposite shows a sensitivity of 0.127 A M{sup -1} cm{sup -2} and an apparent Michaelis-Menten constant of 0.5 mM. Furthermore, the prepared biosensor exhibits excellent anti-interference ability to the commonly co-existed uric acid and ascorbic acid. - Highlights: Black-Right-Pointing-Pointer A film composed of MWCNT-ACS was used for biosensor application. Black-Right-Pointing-Pointer High sensitivity and good selectivity were obtained for the detection of glucose. Black-Right-Pointing-Pointer This approach is potential for fabrication of mediator-free biosensor.

  14. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry

    Wang Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Dongmei; Li Qing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); East China University of Science and Technology, Shanghai 200237 (China); Zhang Lingxia; Qian Rong; Zhu Yan; Qu Haiyun [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Du Yiping [East China University of Science and Technology, Shanghai 200237 (China)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer A modified SBA-15 mesoporous silica material (NH{sub 2}-SBA-15) was synthesized as sorbent. Black-Right-Pointing-Pointer The material was used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Black-Right-Pointing-Pointer The NH{sub 2}-SBA-15 enables retain Cr (VI) with an enrichment factor of 44. Black-Right-Pointing-Pointer The micro-column of NH{sub 2}-SBA-15 underwent more than 100 adsorption/desorption cycles. - Abstract: A modified SBA-15 mesoporous silica material NH{sub 2}-SBA-15 was synthesized successfully by grafting {gamma}-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L{sup -1} NH{sub 3}{center_dot}H{sub 2}O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min{sup -1} sample loading (300 s) and an elution flow rate of 2.0 mL min{sup -1} (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 {mu}g L{sup -1} level with a detection limit of 0.2 {mu}g L{sup -1} (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).

  16. Preconcentration, speciation and determination of ultra trace amounts of mercury by modified octadecyl silica membrane disk/electron beam irradiation and cold vapor atomic absorption spectrometry

    Ashkenani, Hamid [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of)], E-mail: sdadfarnia@yazduni.ac.ir; Shabani, Ali Mohammad Haji; Jaffari, Abbas Ali [Department of Chemistry, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, Abbas [Department of physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2009-01-15

    Mercury (II) and methyl mercury cations at the Sub-ppb level were adsorbed quantitatively from aqueous solution onto an octadecyl-bonded silica membrane disk modified by 2-[(2-mercaptophyenylimino)methyl] phenol (MPMP). The trapped mercury was then eluted with 3 ml ethanol and Hg{sup 2+} ion was directly measured by cold vapor atomic absorption spectrometry, utilizing tin (II) chloride. Total mercury (Hgt) was determined after conversion of MeHg{sup +} into Hg{sup 2+} ion by electron beam irradiation. A sample volume of 1500 ml resulted in a preconcentration factor of 500 and the precision for a sampling volume of 500 ml at a concentration of 2.5 {mu}g l{sup -1} (n = 7) was 3.1%. The limit of detection of the proposed method is 3.8 ng l{sup -1}. The method was successfully applied to analysis of water samples, and the accuracy was assessed via recovery experiment.

  17. Efficient solid-phase microextraction of triazole pesticides from natural water samples using a Nafion-loaded trimethylsilane-modified mesoporous silica coating of type SBA-15

    Abolghasemi, Mir Mahdi; Hassani, Sona; Bamorowat, Mehdi

    2016-01-01

    A mesoporous silica surface of type SBA-15 was made more hydrophobic by modification with ethoxytrimethylsilane to obtain a hybrid organic–inorganic mesoporous nanocomposite, which then was impregnated with Nafion. The resulting nanocomposite was used as a fiber coating for solid-phase microextraction (SPME). The trimethylsilyl-modified Nafion/SBA-15 nanocomposite with high surface area was characterized by SEM and FTIR. It was immobilized on a stainless steel wire in order to fabricate a fiber for SPME. This fiber was evaluated for its suitability for extracting triazolic agrochemicals from water samples before their quantification through a combination of gas chromatography and mass spectrometry. Experimental conditions for fiber coating, extraction time, stirring rate, ionic strength, pH value, desorption temperature and desorption time were optimized. Under optimum conditions, the repeatability for one fiber (for n = 3) ranges from 4.3 to 5.6 % (relative standard deviation). The detection limits are between 50 and 90 pg⋅mL −1 . The method is simple, fast, low-cost (in terms of equipment), and the fiber used for SPME has high thermal stability and good recovery. (author)

  18. Assembly of crosslinked oxo-cyanoruthenate and zirconium oxide bilayers: Application in electrocatalytic films based on organically modified silica with templated pores

    Rutkowska, Iwona A.; Sek, Jakub P.; Mehdi, B. Layla; Kulesza, Pawel J.; Cox, James A.

    2014-01-01

    Electrochemical deposition of crosslinked oxo-cyanoruthenate, Ru-O/CN-O, from a mixture of RuCl 3 and K 4 Ru(CN) 6 is known to yield a film on glassy carbon that promotes oxidations by a combination of electron and oxygen transfer. Layer-by-layer (LbL) deposition of this species at a film formed by cycling of the electrode potential in a ZrO 2 solution systematically increases the number of catalytically active sites of the Ru-O/CN-O on the electrode. The evaluation of the electrocatalytic activity was by cyclic voltammetric oxidation of cysteine at pH 2. Plots of the anodic peak current vs. the square root of scan rate were indicative of linear diffusion control of this oxidation, even in the absence of ZrO 2 , but the slopes of these linear plots increased with bilayer number, n, of (ZrO 2 | Ru-O/CN-O) n . The latter observation is hypothesized to be due to an increased number of active sites for a given geometric electrode area, but proof requires further study. To optimize utilization of the catalyst and to provide a size-exclusion characteristic to the electrode, the study was extended to LbL deposition of the composite in 50-nm pores of an organically modified silica film deposited by electrochemically assisted sol-gel processing using surface-bound poly(styrene sulfonate) nanospheres as a templating agent

  19. In situ prepared PET nanocomposites: Effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics

    Vassiliou, A.A.; Chrissafis, K.; Bikiaris, D.N.

    2010-01-01

    In the present study a series of PET nanocomposites were prepared by in situ polymerization using different amounts of organically modified montmorillonite (OMMT) with a triphenylphosphine compound and fumed silica nanoparticles (SiO 2 ). As verified by TEM micrographs, the dispersion of both nanoparticles into the PET matrix was homogeneous while montmorillonite was dispersed in the exfoliated form. The intrinsic viscosities of the prepared nanocomposites were affected by the addition of the nanoparticles and in both cases a slight increase was observed. Tensile strength was also increased by increasing nanoparticles content while both types of nanoparticles act as nucleating agents, enhancing the crystallization rates of PET. From the thermogravimetric curves it was concluded that PET and the samples with different nanoparticles presented good thermostability, since no remarkable mass loss occurred up to 320 o C ( 2 2 wt.% nanocomposites was almost identical (222.1 kJ/mol). However, PET/OMMT 2 wt.% nanocomposites exhibited a higher activation energy (228.3 kJ/mol), indicating that OMMT incurred a stabilizing effect upon the decomposition of the matrix. The form of the conversion function for all the studied samples obtained by fitting was the mechanism of n th -order auto-catalysis.

  20. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    Thornburg, Nicholas E.; Notestein, Justin M. (NWU)

    2017-09-05

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions. Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.

  1. Flame Atomic Absorption Spectrometric Determination of Ultra Traces of Thallium(I) ion after Solid Phase Extraction by Octadecyl Silica Membrane Disk Modified by a New Schiff Base

    Mashhadizadeh, Mohammad Hossein; Moatafavi, Ali; Allah-Abadi, Hossein; Zadmehr, Mohammad Reza

    2004-01-01

    A simple and reliable method has been developed to selectively separate and concentrate trace amounts of thallium ion from real samples for the subsequent measurement by flame atomic absorption spectrometry (FAAS). Thallium ions are absorbed quantitatively during passage of aqueous real samples through an octadecyl bonded silica membrane disk modified by 4-(4-Chloro-phenylazo)-2-[(4-hydroxy-phenylamino)- methyl]-phenol. The retained Tl + ions are then stripped from the disk quantitatively with a minimal amount of thiosulfate solution as eluent. The proposed method permitted large enrichment factors of about 130 and higher. The relative standard deviation for ten replicate extraction of thallium from 1 L samples containing 5 μg thallium is 1.2%. The break through volume for 5 μg thallium is 1000 mL. The limit of detection of the proposed method is 11.2 ng of Tl + per 1000 mL. The effects of various cationic interferences on the recovery of thallium in binary mixtures were studied. The method was applied to the recovery of Tl + ions from natural water and human hair samples

  2. Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples

    Xu, Wanzhen; Zhang, Xiaoming; Huang, Weihong; Luan, Yu; Yang, Yanfei; Zhu, Maiyong; Yang, Wenming

    2017-12-01

    In this work, the molecular imprinted polymers were synthesized with the low monomer concentrations for dibutyl phthalate (DBP). The polymers were prepared over carboxyl-modified silica nanoparticle, which used methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker agent and azoisobutyronitrile as the initiator in the process of preparation. Various measures were used to characterize the structure and morphology in order to get the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. And adsorption capacity experiments were evaluated to analyze its adsorption performance, through adsorption isotherms/kinetics, selectivity adsorption and desorption and regeneration experiments. These results showed that the molecular imprinted polymers had a short equilibrium time about 60 min and high stability with 88% after six cycles. Furthermore, the molecular imprinted polymers were successfully applied to remove dibutyl phthalate. The concentration range was 5.0-30.0 μmol L-1, and the limit of detection was 0.06 μmol L-1 in tap water samples.

  3. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium

    Midori de Oliveira, Fernanda; Gava Segatelli, Mariana [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Tarley, César Ricardo Teixeira, E-mail: ctarleyquim@yahoo.com.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Londrina, PR CEP 86051-990 (Brazil); Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz s/n, CEP 13083-970 Campinas, SP (Brazil)

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium (pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers. - Highlights: • The molecularly imprinted hybrid polymer showed high adsorption capacity for folic acid. • The molecularly imprinted hybrid polymer showed high selectivity for folic acid. • The molecularly imprinted hybrid polymer modified with GPTMS excludes higher amount of BSA.

  4. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  5. Characteristic of Hybrid Cellulose-Amino Functionalized POSS-Silica Nanocomposite and Antimicrobial Activity

    Sivalingam Ramesh

    2015-01-01

    Full Text Available Recently, cellulose has much attention as an emerging renewable nanomaterial which holds promising properties having unique piezoelectricity, insulating, and biodegradable nature for various applications. Also, the modified properties of cellulose by appropriate chemical modifications in various functional groups with outstanding properties or significantly improved physical, chemical, biological, and electronic properties will widen the way for it to be utilized in different usages. Therefore, in this paper, cellulose-functionalized polyhedral oligomeric silsesquioxanes (POSS based materials were considered an important class of high-performance hybrid nanocomposite materials. To functionalize the regenerated cellulose, amino functionalized POSS material was synthesized via sol-gel covalent crosslinking process in presence of amino coupling agent. In this reaction, tetraethoxsilane (TEOS and γ-aminopropyltriethoxy silane (γ-APTES as coupling agent for metal precursors were selected. The chemical structure of cellulose-amine functionalized bonding and covalent crosslinking hybrids was confirmed by FTIR and 1H NMR spectral analysis. From the TEM results, well-dispersed hybrid cellulose-functionalized POSS-silica composites are observed. The resulting cellulose-POSS-silica hybrid nanocomposites materials provided significantly improved the optical transparency, and thermal and morphological properties to compare the cellulose-silica hybrid materials. Further, antimicrobial test against pathogenic bacteria was carried out.

  6. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Solid-phase extraction method for preconcentration of trace amounts of some metal ions in environmental samples using silica gel modified by 2,4,6-trimorpholino-1,3,5-triazin

    Madrakian, Tayyebeh; Zolfigol, Mohammad Ali; Solgi, Mohammad

    2008-01-01

    A method was proposed for the preconcentration of some transition elements at trace levels using a column packed with silica gel modified by a synthetic ligand. Metal ions were adsorbed on 2,4,6-trimorpholino-1,3,5-triazin modified silica gel, then analytes retained on the adsorbent were eluted by 1 mol L -1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The influences of some experimental parameters including pH of the sample solution, weight of adsorbent, type, concentration and volume of eluent, flow rates of the sample solution and eluent, and sample volume on the preconcentration efficiency have been investigated. The influences of some matrix elements were also examined. The method also was used for simultaneous preconcentration of these elements and the method was successfully applied to the preconcentration and determination of them. The detection limits of the method for Ni 2+ , Co 2+ , Cd 2+ and Zn 2+ were 0.29, 0.20, 0.23 and, 0.30 ng mL -1 , respectively. The application of this modified silica gel to preconcentration of investigated cation from tap water, lake water, urine and apple leaves gave high accuracy and precision (relative standard deviation (R.S.D.) <3%)

  8. Covalent functionalization of graphene with reactive intermediates.

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  9. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  10. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  11. Combining the Physical Adsorption Approach and the Covalent Attachment Method to Prepare a Bifunctional Bioreactor

    Zhi Wang

    2012-09-01

    Full Text Available Aminopropyl-functionalized SBA-15 mesoporous silica was used as a support to adsorb myoglobin. Then, in order to avoid the leakage of adsorbed myoglobin, lysozyme was covalently tethered to the internal and external surface of the mesoporous silica with glutaraldehyde as the coupling agent. The property of amino-functionalized mesoporous silica was characterized by N2 adsorption-desorption and thermogravimetric (TG analysis. The feature of the silica-based matrix before and after myoglobin adsorption was identified by fourier transform infrared (FTIR and UV/VIS measurement. With o-dianisidine and H2O2 as the substrate, the peroxidase activity of adsorbed myoglobin was determined. With Micrococus lysodeilicus as the substrate, the antibacterial activity of covalently tethered lysozyme was measured. Results demonstrated that the final product not only presented peroxidase activity of the myoglobin but yielded antibacterial activity of the lysozyme.

  12. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  13. Silica Nephropathy

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  14. Silica gel modified with N-(3-propyl)-O-phenylenediamine: functionalization, metal sorption equilibrium studies and application to metal enrichment prior to determination by flame atomic absorption spectrometry.

    Akl, Magda Ali Abd-elAziz; Kenawy, Ibraheim Mohamed; Lasheen, Rabab Ramadan

    2005-08-01

    The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

  15. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples

    Afkhami, Abbas; Soltani-Felehgari, Farzaneh; Madrakian, Tayyebeh; Ghaedi, Hamed; Rezaeivala, Majid

    2013-01-01

    Highlights: ► A new modified electrochemical sensor was constructed and used. ► A new Schiff base coated nano-silica was used as modifier. ► The electrochemical properties of electrode were studied. ► This modifier enhanced the electrochemical properties of electrode. ► The electrode was used for simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ ions. -- Abstract: A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL −1 for the determination of Cd 2+ , Cu 2+ and Hg 2+ , respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd 2+ , Cu 2+ and Hg 2+ . Furthermore, the present method was applied to the determination of Cd 2+ , Cu 2+ and Hg 2+ in water and some foodstuff samples

  16. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  17. Goat anti-rabbit IgG conjugated fluorescent dye-doped silica nanoparticles for human breast carcinoma cell recognition.

    Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen

    2013-11-12

    We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.

  18. Fast and simultaneous determination of Pb2+ and Cu2+ in water samples using a solid paraffin-based carbon paste electrode chemically modified with 2-aminothiazole-silica-gel

    Silva, Daiane H; Costa, Dayane A; Takeuchi, Regina M; Santos, André L

    2011-01-01

    A solid paraffin-based carbon paste electrode modified with 2-aminothiazole functionalized silica-gel was used for simultaneous quantification of Pb2+ and Cu2+ in water samples by anodic stripping voltammetry. The present method uses short preconcentration time (180 s), which allowed reliable and simultaneous quantification of Pb2+ and Cu2+ in a very fast way. Detection limits of 7.3 and 90 nmol L-1 were obtained for Pb2+ and Cu2+, respectively. These values are below their maximum concentrat...

  19. Potentiometric urea biosensor based on multi-walled carbon nanotubes (MWCNTs)/silica composite material

    Ahuja, Tarushee; Kumar, D.; Singh, Nahar; Biradar, A.M.; Rajesh

    2011-01-01

    A novel potentiometric urea biosensor has been fabricated with urease (Urs) immobilized multi-walled carbon nanotubes (MWCNTs) embedded in silica matrix deposited on the surface of indium tin oxide (ITO) coated glass plate. The enzyme Urs was covalently linked with the exposed free -COOH groups of functionalized MWCNTs (F-MWCNTs), which are subsequently incorporated within the silica matrix by sol-gel method. The Urs/MWCNTs/SiO 2 /ITO composite modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA) and UV-visible spectroscopy. The morphologies and electrochemical performance of the modified Urs/MWCNTs/SiO 2 /ITO electrode have been investigated by scanning electron microscopy (SEM) and potentiometric method, respectively. The synergistic effect of silica matrix, F-MWCNTs and biocompatibility of Urs/MWCNTs/SiO 2 made the biosensor to have the excellent electro catalytic activity and high stability. The resulting biosensor exhibits a good response performance to urea detection with a wide linear range from 2.18 x 10 -5 to 1.07 x 10 -3 M urea. The biosensor shows a short response time of 10-25 s and a high sensitivity of 23 mV/decade/cm 2 .

  20. Application of 1-(2-pyridylazo)-2-naphthol-modified nanoporous silica as a technique in simultaneous trace monitoring and removal of toxic heavy metals in food and water samples.

    Abolhasani, Jafar; Behbahani, Mohammad

    2015-01-01

    Solid-phase extraction is one the most useful and efficient techniques for sample preparation, purification, cleanup, preconcentration, and determination of heavy metals at trace levels. In this paper, functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was applied for trace determination of copper, lead, cadmium, and nickel in water and seafood samples. The experimental conditions such as pH, sample and eluent flow rate, type, concentration and volume of the eluent, breakthrough volume, and effect of coexisting ions were optimized for efficient solid-phase extraction of trace heavy metals in different water and seafood samples. The content of solutions containing the mentioned heavy metals was determined by flame atomic absorption spectrometry (FAAS), and the limits of detection were 0.3, 0.4, 0.6, and 0.9 ng mL(-1) for cadmium, copper, nickel, and lead, respectively. Recoveries and precisions were >98.0 and adsorption capacity of the modified nanoporous silica was 178 mg g(-1) for cadmium, 110 mg g(-1) for copper, 98 mg g(-1) for nickel, and 210 mg g(-1) for lead, respectively. The functionalized MCM-48 nanoporous silica with 1-(2-pyridylazo)-2-naphthol was characterized by thermogravimetry analysis (TGA), differential thermal analysis (DTA), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), elemental analysis (CHN), and N2 adsorption surface area measurement.

  1. Covalent modification and exfoliation of graphene oxide using ferrocene

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  2. Covalent modification of platelet proteins by palmitate

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  3. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Rofouei, Mohammad Kazem; Payehghadr, Mahmood; Shamsipur, Mojtaba; Ahmadalinezhad, Asieh

    2009-01-01

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l -1 detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 μg of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  4. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  5. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  6. Synthesis of titania modified silica-pillared clay (SPC) with highly ordered interlayered mesoporous structure for removing toxic metal ion Cr(VI) from aqueous state

    Mao, Huihui, E-mail: maohuihui_beijing@126.com [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Zhu, Kongnan [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China); Li, Baoshan, E-mail: bsli@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yao, Chao; Kong, Yong [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province 213164 (China)

    2014-02-15

    Titanium-functionalized silica-pillared clays synthesized through post synthetic route was utilized as adsorbers for the removal of Cr(VI) ions from aqueous solutions under different temperatures and initial concentrations. The starting mesostructured silica-pillared clay is assembled by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using cationic surfactant as gallery template, and subsequently, the formed interlayered pore walls were decorated with nano-sized TiO{sub 2} particle through organic titanium functionalization process. The kind of structural transformation has been confirmed by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, Fourier transform infrared (FT-IR) analysis, UV–vis diffuse reflectance spectroscopy (DRS), elemental analysis (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Such results indicate that most of the grafted titanium species was combined with Si–OH on the surface of gallery pores. By changing the concentration of organic titanium source during synthesis, the porous structure system is effected. Under suitable conditions, these materials exhibit high adsorption capacity and efficiency. Qualitative estimates of the thermodynamic parameters showed that the overall adsorption process is spontaneous (ΔG° < 0) and endothermic (ΔH° > 0). The adsorption isotherms of Cr(VI) on titanium-functionalized silica-pillared clay were best fitted by Redlich–Peterson models. Detail results of thermodynamics and kinetics are also presented.

  7. Synthesis of titania modified silica-pillared clay (SPC) with highly ordered interlayered mesoporous structure for removing toxic metal ion Cr(VI) from aqueous state

    Mao, Huihui; Zhu, Kongnan; Li, Baoshan; Yao, Chao; Kong, Yong

    2014-01-01

    Titanium-functionalized silica-pillared clays synthesized through post synthetic route was utilized as adsorbers for the removal of Cr(VI) ions from aqueous solutions under different temperatures and initial concentrations. The starting mesostructured silica-pillared clay is assembled by intragallery ammonia-catalyzed hydrolysis of tetraethoxysilane using cationic surfactant as gallery template, and subsequently, the formed interlayered pore walls were decorated with nano-sized TiO 2 particle through organic titanium functionalization process. The kind of structural transformation has been confirmed by X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms, Fourier transform infrared (FT-IR) analysis, UV–vis diffuse reflectance spectroscopy (DRS), elemental analysis (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Such results indicate that most of the grafted titanium species was combined with Si–OH on the surface of gallery pores. By changing the concentration of organic titanium source during synthesis, the porous structure system is effected. Under suitable conditions, these materials exhibit high adsorption capacity and efficiency. Qualitative estimates of the thermodynamic parameters showed that the overall adsorption process is spontaneous (ΔG° 0). The adsorption isotherms of Cr(VI) on titanium-functionalized silica-pillared clay were best fitted by Redlich–Peterson models. Detail results of thermodynamics and kinetics are also presented.

  8. Characterization of Metal-Doped Methylated Microporous Silica for Molecular Separations

    El-Feky, Hany Hassan; Briceno, Kelly; Szalata, Kamila

    2015-01-01

    Novel silica xerogels are prepared and developed by sol-gel method in the present study. The preparation involves cobalt-doping within the organic templated silica matrices, where methyltriethoxysilane (MTES), which contains methyl groups as a covalently bonded organic template is used. The synth...

  9. Covalent and non-covalent functionalization and solubilization of ...

    Wintec

    photographs of the dispersions of amide-functio- nalized DWNTs in dichloromethane and tetrahydro- furan. In figure 3b, we show a TEM image of DWNTs after covalent functionalization. The images are not as sharp after functionalization as in the case of pris- tine nanotubes (figure 3a), and the bundles seem to be intact.

  10. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    Luong, T.T., E-mail: thientai.luong@chem.kuleuven.be [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Hanoi National University of Education, Faculty of Chemistry, Xuan Thuy 136, Cau Giay, Hanoi (Viet Nam); Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Locquet, J.-P. [KU Leuven, Department of Physics, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Verbiest, T. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium)

    2016-10-15

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating. - Graphical abstract: The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. - Highlights: • Iron oxide/mesoporous-SiO{sub 2} core-shell NPs were synthesized. • The dye was covalently bound to SiO{sub 2} shells. • The release of dye under magnetothermal heating was studied. • The results are relevant for controlled drug release.

  11. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  12. Chemistry of Covalent Organic Frameworks.

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  13. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  14. Silica nanoparticles with a substrate switchable luminescence

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  15. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  16. Biofunctional Paper via Covalent Modification of Cellulose

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A.; Kaplan, Justin M.; Andrade, Rodrigo B.; Ratner, Daniel M.

    2012-01-01

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to covalently immobilize small molecules, proteins and DNA onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane’s bioactivity was specific, dose-dependent, and stable over a long period of time. Use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices. PMID:22708701

  17. Ultra-trace monitoring of copper in environmental and biological samples by inductively coupled plasma atomic emission spectrometry after separation and preconcentration by using octadecyl silica membrane disks modified by a new schiff's base

    Mohammad Reza Ganjali

    2004-04-01

    Full Text Available Ultra-trace amounts of Cu(II were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone -2,2-dimethyl-1,3-propanediimine (SBTD followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.

  18. Atomic Covalent Functionalization of Graphene

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  19. Magnetic molecularly imprinted polymers based on silica modified by deep eutectic solvents for the rapid simultaneous magnetic-based solid-phase extraction of Salvia miltiorrhiza bunge, Glycine max (Linn.) Merr and green tea.

    Li, Guizhen; Wang, Xiaoqin; Row, Kyung Ho

    2018-04-01

    Novel magnetic molecularly imprinted polymers (MMIPs) with multiple-template based on silica were modified by four types of deep eutectic solvents (DESs) for the rapid simultaneous magnetic solid-phase extraction (MSPE) of tanshinone Ⅰ, tanshinone ⅡA, and cryptotanshinone from Salvia miltiorrhiza bunge; glycitein, genistein, and daidzein from Glycine max (Linn.) Merr; and epicatechin, epigallocatechin gallate, and epicatechin gallate from green tea, respectively. The synthesized materials were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Single factor experiments were to explore the relationship between the extraction efficiency and four factors (the sample solution pH, amount of DESs for modification, amount of adsorbent, and extraction time). It was showed that the DES4-MMIPs have better extraction ability than the MMIPs without DESs and the other three DESs-modified MMIPs. The best extraction recoveries with DES4-MMIP were tanshinone Ⅰ (85.57%), tanshinone ⅡA (80.58%), cryptotanshinone (92.12%), glycitein (81.65%), genistein (87.72%), daidzein (92.24%), epicatechin (86.43%), epigallocatechin gallate (80.92%), and epicatechin gallate (93.64%), respectively. The novel multiple-template MMIPs materials modified by DES for the rapid simultaneous MSPE of active compounds were proved to reduce the experimental steps than single-template technique, and increase the extraction efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode.

    Dagar, Kusum; Pundir, C S

    2017-01-01

    An improved amperometric l-lactate biosensor was constructed based on covalent immobilization of lactate oxidase (LOx) from Pediococcus species onto carboxylated multiwalled carbon nanotubes (cMWCNT)/copper nanoparticles (CuNPs)/polyaniline (PANI) hybrid film electrodeposited on the surface of a pencil graphite electrode (PGE). The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS), while CuNPs synthesized by chemical reduction method, were characterized by transmission electron microscopy (TEM), UV spectrascopy and X-ray diffraction (XRD). The biosensor showed maximum response within 5s at pH 8.0 in 0.05M sodium phosphate buffer and 37°C, when operated at 20mVs -1 . The biosensor had a detection limit of 0.25μM with a wide working range between 1μM-2500μM. The biosensor was employed for measurement of l-lactic acid level in plasma of apparently healthy and diseased persons. Analytical recovery of added lactic acid in plasma was 95.5%. Within- and between-batch coefficients of variations were 6.24% and 4.19% respectively. There was a good correlation (R 2 =0.97) between plasma lactate values as measured by standard enzymatic spectrophotometric method and the present biosensor. The working enzyme electrode was used 180 times over a period of 140 days, when stored at 4°C. Copyright © 2016. Published by Elsevier Inc.

  1. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  2. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    Lombardo, M.V.; Videla, M.; Calvo, A.; Requejo, F.G.; Soler-Illia, G.J.A.A.

    2012-01-01

    Highlights: ► We produce mesoporous amino-silica as Cu(II) adsorbent (1.15–1.75 mmol Cu(II) g −1 ). ► Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. ► The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. ► These materials can be regenerated by exposure to acidic media. ► A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption–desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15–1.75 mmol Cu(II) g −1 ), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the materials processing factors involved in the improved adsorption of Cu(II), its quantitative release and reusability of the

  3. Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration.

    Toskas, Georgios; Cherif, Chokri; Hund, Rolf-Dieter; Laourine, Ezzeddine; Mahltig, Boris; Fahmi, Amir; Heinemann, Christiane; Hanke, Thomas

    2013-05-15

    New hybrid nanofibers prepared with chitosan (CTS), containing a total amount of polyethylene oxide (PEO) down to 3.6wt.%, and silica precursors were produced by electrospinning. The solution of modified sol-gel particles contained tetraethoxysilane (TEOS) and the organosilane 3-glycidyloxypropyltriethoxysilane (GPTEOS). This is rending stable solution toward gelation and contributing in covalent bonding with chitosan. The fibers encompass advantages of biocompatible polymer template silicate components to form self-assembled core-shell structure of the polymer CTS/PEO encapsulated by the silica. Potential applicability of this hybrid material to bone tissue engineering was studied examining its cellular compatibility and bioactivity. The nanofiber matrices were proved cytocompatible when seeded with bone-forming 7F2-cells, promoting attachment and proliferation over 7 days. These found to enhance a fast apatite formation by incorporation of Ca(2+) ions and subsequent immersion in modified simulated body fluid (m-SBF). The tunable properties of these hybrid nanofibers can find applications as active biomaterials in bone repair and regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Aminopropyl-modified mesoporous silica SBA-15 as recovery agents of Cu(II)-sulfate solutions: Adsorption efficiency, functional stability and reusability aspects

    Lombardo, M.V. [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); Videla, M. [Rhein Chemie Argentina, Luis Maria Drago 1555 - (B1852LGS) Burzaco, Buenos Aires (Argentina); Calvo, A.; Requejo, F.G. [INIFTA-CONICET, Universidad Nacional de La Plata, CC 16 Sucursal 4 (1900), La Plata (Argentina); Soler-Illia, G.J.A.A., E-mail: gsoler@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, CNEA, Av. General Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina); DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II (C1428EHA), Buenos Aires (Argentina)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We produce mesoporous amino-silica as Cu(II) adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}). Black-Right-Pointing-Pointer Elemental analysis and XPS demonstrate that amino groups concentrate at the material surface. Black-Right-Pointing-Pointer The integrity of the adsorbent through the adsorption, desorption and recycling processes is assessed. Black-Right-Pointing-Pointer These materials can be regenerated by exposure to acidic media. Black-Right-Pointing-Pointer A careful thermal processing of the material is central to better durability during reprocessing. - Abstract: Hybrid mesoporous materials are potentially useful for metal ion scavenging and retrieval because of their high surface areas, controlled accessibility and tailored functionalization. Some aspects that are linked to the performance of HMM include pore accessibility, stability of the organic functions and reusability. Knowledge of these aspects is critical in the design of adsorption-desorption protocols. In this work we produce and characterize propylamino-substituted large pore silica (SBA-15-N), which is submitted to Cu(II) adsorption from copper sulfate solutions, followed by desorption in acid media and material regeneration. We find that the hybrid material is an efficient adsorbent (1.15-1.75 mmol Cu(II) g{sup -1}), although a fraction of the organic groups is lost during the adsorption process. An X-ray photoelectron spectroscopy (XPS) study demonstrates that the contents of amino groups are higher in the material surface, leading to different behaviors in Cu(II) complexation along the material. These materials can be regenerated by exposure to acidic media. Thermal processing of the hybrid materials leads to better durability in aqueous solutions during reprocessing, due to enhanced polycondensation of the inorganic framework. Thermally treated samples, once regenerated, are efficient adsorbents in a second step of Cu(II) adsorption. We discuss the

  5. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    Cestari, Antonio R.; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G.; Loh, Watson; Airoldi, Claudio

    2009-01-01

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms (Δ ads C p ). For the yellow dye, it is observed that the values of Δ ads H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative Δ ads G values indicate spontaneous adsorption processes. Almost all adsorption entropy values (Δ ads S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2 3 full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone

  6. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant-The temperature dependence and a thermodynamic multivariate analysis

    Cestari, Antonio R. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil)], E-mail: cestari@ufs.br; Vieira, Eunice F.S.; Vieira, Glaucia S.; Costa, Luiz P. da; Tavares, Andrea M.G. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, CEP 49100-000, Sao Cristovao, Sergipe (Brazil); Loh, Watson; Airoldi, Claudio [Universidade Estadual de Campinas, Instituto de Quimica, CP 6154, 13083-970, Campinas, Sao Paulo (Brazil)

    2009-01-15

    The three-parameter Sips adsorption model was successfully employed to modeled equilibrium adsorption data of a yellow and a red dye onto a mesoporous aminopropyl-silica, in the presence of the surfactant sodium dodecylbenzenesulfonate (DBS) from 25 to 55 deg. C. The results were evaluated in relation to the previously reported surface tension measurements. The presence of curvatures of the vant Hoff plots suggested the presence of non-zero heat capacities terms ({delta}{sub ads}C{sub p}). For the yellow dye, it is observed that the values of {delta}{sub ads}H are almost all positive and they decrease in endothermicity, in the absence and in the presence of DBS, from 25 to 55 deg. C. For the red dye, there is an increase in endothermicity in relation to the temperature increase. The negative {delta}{sub ads}G values indicate spontaneous adsorption processes. Almost all adsorption entropy values ({delta}{sub ads}S) were positive. This suggests that entropy is a driving force of adsorption. The adsorption thermodynamic parameters were also evaluated using a new 2{sup 3} full factorial design analysis. The multivariate polynomial modelings indicated that the thermodynamic parameters are also affected by important interactive effects of the experimental factors and not by the temperature changes alone.

  7. Synthesis and characterization of organically modified silica gel with 4-amino-5-(4-pyridyl)-4h-1 ,2,4-triazole-3-thiol (APTT)

    Magossi, M.S.; Carmo, D.R. do

    2014-01-01

    This work object the preparation and characterization of a silica gel (SG) organically with a triazole compound, 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3- thiol (APTT). The prepared organofunctionalized material (SGAPTT) was preliminarily characterized by spectroscopic techniques such as: Spectroscopy in the Region of Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy X-ray (EDX). The vibrational spectrum (FTIR) showed characteristic bands of the starting materials, such as bands at ∼ 1120cm"-"1 related to the asymmetric stretching Si-O-Si (νSi-O-Si) as well as the bands between 1350 and 1650 cm"-"1 assigned vibrations and deformations of the ring APTT. The SGAPTT material was tested as support for adsorption of cupric ions in aqueous solution, ethanol and 42% ethanol. The maximum amount of copper (II) adsorbed (Nf "m"a"x".) was 22.0 × 10"-"5 mol g"-"1, 31.4 × 10-5 mol g-1 and 47.17 × 10"-"5 mol g"-"1 to aqueous media, 42% ethanol and 99% ethanol respectively. (author)

  8. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  9. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  10. Solid phase extraction of lead on octadecyl bonded silica membrane disk modified with Cyanex302 and determination by flame atomic absorption spectrometry

    Karve, Manjusha; Rajgor, Reeta V.

    2007-01-01

    A simple, reliable and rapid method for preconcentration and determination of lead using octadecyl bonded silica membrane disk impregnated with Cyanex302 and flame atomic absorption spectrometry is presented. The influence of aqueous phase pH, type of eluent, flow rates of sample solution and eluent, volume of eluent and amount of extractant has been investigated. The break through volume is greater than 4.0 dm 3 with an enrichment factor of more than 400 and a detection limit of 1.0 μg dm -3 . The method developed for determination of lead is good as six replicate determinations using 100 cm 3 solution containing lead in the range 1-4900 μg provides a relative standard deviation (R.S.D.) of 0.4%. The selectivity of the proposed method was confirmed from the interference studies. The developed procedure was successfully applied for the determination of lead in spiked sea water, USGS standard soil sample, sludge and industrial effluents, medicinal formulation, plant, some food products and wine

  11. Micro-structure, Mechanical Properties and Dielectric Properties of Bisphenol A Allyl Compound-Bismaleimide Modified by Super-Critical Silica and Polyethersulfone Composite

    Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun

    2017-07-01

    Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.

  12. A modified Poisson-Boltmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica

    Biesheuvel, P.M.; Veen, van der M.; Norde, W.

    2005-01-01

    The equilibrium adsorption of polyelectrolytes with multiple types of ionizable groups is described using a modified Poisson-Boltzmann equation including charge regulation of both the polymer and the interface. A one-dimensional mean-field model is used in which the electrostatic potential is

  13. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  14. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-01-01

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N 2 adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica

  15. Electron population uncertainty and atomic covalency

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  16. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  17. Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers

    Jian-Yong Zhang; Li-Hua Zeng; Juan Feng

    2017-01-01

    Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels.

  18. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  19. Synthesis and Characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride – Mesoporous Silica Composite as Adsorbent for Dehydration in Industrial Processes

    Liévano,Javier F. Plata; Díaz,Luz A. Carreno

    2016-01-01

    Ionic liquid – mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix...

  20. Solid-phase extraction of copper(II) in water and food samples using silica gel modified with bis(3-aminopropyl)amine and determination by flame atomic absorption spectrometry.

    Cagirdi, Duygu; Altundag, Hüseyin; Imamoglu, Mustafa; Tuzen, Mustafa

    2014-01-01

    A simple and selective separation and preconcentration method was developed for the determination of Cu(ll) ions. This method is based on adsorption of Cu(ll) ions from aqueous solution on a bis(3-aminopropyl)amine modified silica gel column and flame atomic absorption spectrometric determination after desorption. Various analytical parameters such as pH, type of eluent solution and its volume, flow rate of sample and eluent, and sample volume were optimized. Effects of some cation, anion, and transition metal ions on the recoveries of Cu(ll) ions were also investigated. Cu(ll) ions were quantitatively recovered at pH 6; 5.0 mL of 2 M HCI was used as the eluent. The preconcentration factor was found to be 150. The LOD was 0.12 microg/L for Cu(ll). The accuracy of the method was confirmed by analysis of Tea Leaves (INCT-TL-1) and Fish Protein (DORM-3) certified reference materials. The optimized method was applied to various water and food samples for the determination of Cu(ll).

  1. Synthesis of Various Silica Nanoparticles for Foam Stability

    Yoon, Suk Bon; Yoon, Inho; Jung, Chonghun; Kim, Chorong; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    The synthesis of the non-porous silica nanoparticles with uniform sizes has been reported through the Sto ber method, the synthesis of meso porous silica nanoparticles with a specific morphology such as core-shell, rod-like, and hexagonal shapes is not so common. As a synthetic strategy for controlling the particle size, shape, and porosity, the synthesis of core-shell silicas with meso porous shells formed on silica particle cores through the self-assembly of silica precursor and organic templates or spherical meso porous silicas using modified Sto ber method was also reported. Recently, in an effort to reduce the amount of radioactive waste and enhance the decontamination efficiency during the decontamination process of nuclear facilities contaminated with radionuclides, a few research for the preparation of the decontamination foam containing solid nanoparticles has been reported. In this work, the silica nanoparticles with various sizes, shapes, and structures were synthesized based on the previous literatures. The resulting silica nanoparticles were used to investigate the effect of the nanoparticles on the foam stability. In a study on the foam stability using various silica nanoparticles, the results showed that the foam volume and liquid volume in foam was enhanced when using a smaller size and lower density of the silica nanoparticles. Silica nanoparticles with various sizes, shapes, and structures such as a non-porous, meso porous core-shell, and meso porous silica were synthesized to investigate the effect of the foam stability. The sizes and structural properties of the silica nanoparticles were easily controlled by varying the amount of silica precursor, surfactant, and ammonia solution as a basic catalyst. The foam prepared using various silica nanoparticles showed that foam the volume and liquid volume in the foam were enhanced when using a smaller size and lower density of the silica nanoparticles

  2. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  3. Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica

    Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi

    2018-01-01

    SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.

  4. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles

    Croissant, Jonas G.

    2017-01-13

    The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.

  5. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-01-01

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO 2 , ZnO and Fe 2 O 3 as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO 2 , Fe 2 O 3 and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  6. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Health hazards due to the inhalation of amorphous silica

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  8. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    Benjamin Baumgärtner

    2017-05-01

    Full Text Available A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine, silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  9. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  10. Disorder phenomena in covalent semiconductors

    Popescu, M.A.

    1975-01-01

    The structure of the amorphous semiconductors has been investigated by means of X-ray diffraction and by computer simulation of random network models. Amorphous germanium contains mainly five and six-membered rings of atoms. In glassy state, the ternary compounds A 2 B 4 C 2 5 , such as CdGeAs 2 contain only even rings of atoms (six-membered and eight-membered rings). In the memory glasses of the type A 2 B 4 C 2 5 , such as GeAs 2 Te 7 , the valency state of every element is that from the crystal and important van der Waals forces are effective in the network. No Ge-Ge, Ge-As and As-As bonds are formed. The high pressure forms of the germanium have been simulated by computer. The force constants of the covalent bonds in Ge III and Ge IV differ from those in Ge I. The bond bending force constant decreases rapidly when the density of the crystal increases, a fact which has been imparted to a reduction of the sp 3 hybridization. The compressibility curve of the Ge I has been explained. The effect of the radial and uniaxial deformation on the non-crystalline networks has been studied. The compressibility of the amorphous germanium is by 1.5 per cent greater than that of crystalline germanium. The Poisson coefficient for a-Ge network is 0.233. The structure of the As 2 S 3 glass doped with different amounts of germanium (up to 40 at. per cent) and silver (up to 12 at. per cent) has been investigated. The As 2 S 3 Gesub(x) compositions are constituted from a disordered packing of structural units whose chemical composition and relative proportion in the glass essentially depends on the germanium content. (author)

  11. Covalent bonding in heavy metal oxides

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  12. Covalently linked bisporphyrins bearing tetraphenylporphyrin and ...

    Covalently linked bisporphyrins bearing tetraphenylporphyrin and perbromoporphyrin units: Synthesis and their properties. Puttaiah Bhyrappa V Krishnan ... yields of the TPP moiety. Electrochemical redox and fluorescence data seem to suggest the possible existence of intramolecular interactions in these bisporphyrins.

  13. Stimulated resonant scattering at stressed fused silica surface

    Bouchut, Philippe; Reymermier, Maryse

    2015-01-01

    The radiative emission in CO 2 laser heated stressed fused silica is radically modified when gold microspheres are on the surface. At high heating rates, the emission dynamics changes from thermoluminescence to stimulated resonant scattering with an emission rate that is increased tenfold and the near infrared (NIR) spectrum is red-shifted. We show that the dynamic tensile stress that rises in heated silica is coupled with a fluctuating electromagnetic field that enables electromagnetic friction between moving OH emitters from silica bulk and NIR resonant scatterers at the silica surface. (paper)

  14. Covalent Surface Modifications of Carbon Nanotubes.

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  15. Targeting of porous hybrid silica nanoparticles to cancer cells

    Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Lindén, M.

    2009-01-01

    Mesoporous silica nanoparticles functionalized by surface hyperbranching polymerization of polyethylene imine), PEI, were further modified by introducing both fluorescent and targeting moieties, with the aim of specifically targeting cancer cells. Owing to the high abundance of folate receptors in

  16. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  17. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  18. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  19. Surface-modified electrodes (SME)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  20. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  1. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation.

    Zhang, Jie; Men, Yuwen; Lv, Shanshan; Yi, Long; Chen, Jian-Feng

    2015-12-21

    An efficient and bench-stable reagent was synthesized for direct and covalent introduction of tetrazines onto target protein or virus surfaces, which can be further modified based on tetrazine-ene ligation to achieve fluorescence labelling or PEGylation under mild conditions.

  2. Microporous silica membranes

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  3. Structure and Properties of LENRA/ Silica Composite

    Mahathir Mohamed; Dahlan Mohd

    2010-01-01

    The sol-gel reaction using tetra ethoxysilane (TEOS) was conducted for modified natural rubber (NR) matrix to obtain in situ generated NR/ silica composite. The present of acrylate group in the modified NR chain turns the composite into radiation-curable. The maximum amount of silica generated in the matrix was 50 p hr by weight. During the sol-gel process the inorganic mineral was deposited in the rubber matrix forming hydrogen bonding between organic and inorganic phases. The composites obtained were characterized by various techniques including thermogravimetric analysis and infrared spectrometry to study their molecular structure. The increase in mechanical properties was observed for low silica contents ( 30 p hr) where more silica were generated, agglomerations were observed at the expense of the mechanical properties. From the DMTA data, it shows an increase of the interaction between the rubber and silica phases up to 30 p hr TEOS. Structure and morphology of the heterogeneous system were analyzed by transmission electron microscopy. The average particle sizes of between 150 nm to 300 nm were achieved for the composites that contain less than 20 p hr of TEOS. (author)

  4. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  5. What Is Crystalline Silica?

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  6. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene (TPX with cRGD pentapeptide

    Lena Möller

    2013-02-01

    Full Text Available Covalent multistep coating of poly(methylpentene, the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells.

  7. CovalentDock Cloud: a web server for automated covalent docking.

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-07-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/.

  8. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  9. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  10. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3

    Hong Chenglin; Yuan Ruo; Chai Yaqin; Zhuo Ying

    2009-01-01

    The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 U mL -1 with a coefficient 0.9986 and a detection limit of 0.64 U mL -1 at S/N = 3

  11. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.

    Hong, Chenglin; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying

    2009-02-09

    The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 UmL(-1) with a coefficient 0.9986 and a detection limit of 0.64 UmL(-1) at S/N=3.

  12. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd{sup 2+}, Cu{sup 2+} and Hg{sup 2+} ions in water and some foodstuff samples

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Soltani-Felehgari, Farzaneh; Madrakian, Tayyebeh; Ghaedi, Hamed [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Rezaeivala, Majid [Department of Chemical Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of)

    2013-04-10

    Highlights: ► A new modified electrochemical sensor was constructed and used. ► A new Schiff base coated nano-silica was used as modifier. ► The electrochemical properties of electrode were studied. ► This modifier enhanced the electrochemical properties of electrode. ► The electrode was used for simultaneous determination of Cd{sup 2+}, Cu{sup 2+} and Hg{sup 2+} ions. -- Abstract: A new chemically modified carbon paste electrode was constructed and used for rapid, simple, accurate, selective and highly sensitive simultaneous determination of cadmium, copper and mercury using square wave anodic stripping voltammetry (SWASV). The carbon paste electrode was modified by N,N′-bis(3-(2-thenylidenimino)propyl)piperazine coated silica nanoparticles. Compared with carbon paste electrode, the stripping peak currents had a significant increase at the modified electrode. Under the optimized conditions (deposition potential, −1.100 V vs. Ag/AgCl; deposition time, 60 s; resting time, 10 s; SW frequency, 25 Hz; pulse amplitude, 0.15 V; dc voltage step height, 4.4 mV), the detection limit was 0.3, 0.1 and 0.05 ng mL{sup −1} for the determination of Cd{sup 2+}, Cu{sup 2+} and Hg{sup 2+}, respectively. The complexation reaction of the ligand with several metal cations in methanol was studied and the stability constants of the complexes were obtained. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective for the simultaneous determination of Cd{sup 2+}, Cu{sup 2+} and Hg{sup 2+}. Furthermore, the present method was applied to the determination of Cd{sup 2+}, Cu{sup 2+} and Hg{sup 2+} in water and some foodstuff samples.

  13. Cu(II) recognition materials: Fluorophores grafted on mesoporous silica supports

    Kledzik, Krzysztof; Orlowska, Maja; Patralska, Dorota; Gwiazda, Marcin; Jezierska, Julia; Pikus, Stanislaw; Ostaszewski, Ryszard; Klonkowski, Andrzej M.

    2007-01-01

    There were designed and synthesized naphthalene and pyrene derivatives consisting of fluorophore group and of receptor fragment with donor N and O atoms. These fluorosensors were covalently attached by grafting carboxyl group to surfaces of silica xerogel or mesoporous silicas (MCM-41 and MCM-48) functionalized either with 3-aminopropyl or 3-glycidoxypropyl groups. The pyrene derivatives 2 and 3 covalently grafted on MCM-48 silica functionalized with 3-aminopropyl groups are potential recognition elements of a fluorescence chemical sensor. Fluorescence emission of the prepared recognition materials is quenched specifically owing to photoinduced electron transfer (PET) effect after coordination reactions with Cu(II) ions. Moreover, both the materials exhibit selectivity for Cu(II) ions in aqueous solutions in presence of such metal ions as: alkali, alkaline earth and transition. During UV irradiation the studied recognition elements undergo slowly photochemical degradation

  14. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  15. Crystalline Silica Primer

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  16. Surge-Resistant Nanocomposite Enameled Wire Using Silica Nanoparticles with Binary Chemical Compositions on the Surface

    Jeseung Yoo

    2015-01-01

    Full Text Available We developed polyesterimide (PEI nanocomposite enameled wires using surface-modified silica nanoparticles with binary chemical compositions on the surface. The modification was done using silanes assisted by ultrasound, which facilitated high density modification. Two different trimethoxysilanes were chosen for the modification on the basis of resemblance of chemical compositions on the silica surface to PEI varnish. The surface-modified silica was well dispersed in PEI varnish, which was confirmed by optical observation and viscosity measurement. The glass transition temperature of the silica-PEI nanocomposite increased with the silica content. The silica-dispersed PEI varnish was then used for enameled wire fabrication. The silica-PEI nanocomposite enameled wire exhibited a much longer lifetime compared to that of neat PEI enameled wire in partial discharge conditions.

  17. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    Lei, Wei-Wei; Li, Hang [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Shi, Ling-Ying, E-mail: shilingying@scu.edu.cn [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong [College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200 (China)

    2017-05-15

    Highlights: • The graphene oxide (GO) was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. • Through the vacuum filtration method, the GO, RGO and PDMS-modified graphene membranes were successfully prepared respectively. • The morphology of membranes had smooth surface and well-stacked structure indicated by SEM and EDS mapping results. • The contact angle of GO-g-PDMS membrane was high to be 129.5° indicating a great enhancement of hydrophobicity. - Abstract: In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  19. Covalent biofunctionalization of silicon nitride surfaces

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  20. Oxygen configurations in silica

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  1. Silica coatings on clarithromycin.

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  2. Immobilization of mesoporous silica particles on stainless steel plates

    Pasqua, Luigi; Morra, Marco

    2017-01-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  3. Immobilization of mesoporous silica particles on stainless steel plates

    Pasqua, Luigi, E-mail: luigi.pasqua@unical.it [University of Calabria, Department of Environmental and Chemical Engineering (Italy); Morra, Marco, E-mail: mmorra@nobilbio.com [Via Valcastellana 26 (Italy)

    2017-03-15

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  4. Near universal support for covalent immobilisation of enzymes for biotechnology

    Elnashar, M.M.; Millner, P.A.; Gibson, T.D.

    2005-01-01

    Carrageenan [1], natural polymer, has been modified to be used as a universal/near universal support to immobilise enzymes, where the gel remained stable at 70 degree C for 24 h at a wide range of buffers and ph s and its mechanical strength was 400% greater than the unmodified gel. The new matrix successfully immobilised covalently eight commercially used enzymes including hydrolases, Upases, oxidoreductases, proteases and dehydrogenases. It also acted as a self buffering system in case of hydrolases and stopped enzyme's product inhibition. The apparent Km values of immobilised enzymes were found in many cases to be much less than those of the free enzymes. Another interesting correlation was observed where the great lowering of the apparent Km with immobilised enzymes was directly proportional to the substrate molecular weight. In economic terms, the new matrix is at least two orders of magnitude cheaper than supports such as Eupergit C

  5. Biofunctional paper via the covalent modification of cellulose.

    Yu, Arthur; Shang, Jing; Cheng, Fang; Paik, Bradford A; Kaplan, Justin M; Andrade, Rodrigo B; Ratner, Daniel M

    2012-07-31

    Paper-based analytical devices are the subject of growing interest for the development of low-cost point-of-care diagnostics, environmental monitoring technologies, and research tools for limited-resource settings. However, there are limited chemistries available for the conjugation of biomolecules to cellulose for use in biomedical applications. Herein, divinyl sulfone (DVS) chemistry was demonstrated to immobilize small molecules, proteins, and DNA covalently onto the hydroxyl groups of cellulose membranes through nucleophilic addition. Assays on modified cellulose using protein-carbohydrate and protein-glycoprotein interactions as well as oligonucleotide hybridization showed that the membrane's bioactivity was specific, dose-dependent, and stable over a long period of time. The use of an inkjet printer to form patterns of biomolecules on DVS-activated cellulose illustrates the adaptability of the DVS functionalization technique to pattern sophisticated designs, with potential applications in cellulose-based lateral flow devices.

  6. Silica aerogel Cerenkov counter

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  7. Supramolecular structures on silica surfaces and their adsorptive properties.

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  8. High pH mobile phase effects on silica-based reversed-phase high-performance liquid chromatographic columns

    Kirkland, J.J.; Straten, van M.A.; Claessens, H.A.

    1995-01-01

    Aqueous mobile phases above pH 8 often cause premature column failure, limiting the utility of silica-based columns for applications requiring high pH. Previous studies suggest that covalently bound silane ligands are hydrolyzed and removed by high-pH mobile phases. However, we found that the

  9. Health hazards due to the inhalation of amorphous silica

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  10. NOVEL APPLICATION OF POROUS AND CELLULAR MATERIALS FOR COVALENT IMMOBILIZATION OF PEPSIN

    K. Szałapata

    Full Text Available Abstract Pepsin was immobilized via covalent bonds on different carriers: a silica gel carrier, acrylic beads, and a cellulose-based carrier - Granocel. All carriers were functionalized through the presence of -OH, -COOH, -NH2, or glycidyl groups on their surfaces. Three different cross-linkers were used for activation thereof. The results showed that Granocel activated by glutaraldehyde or carbodiimide and silica gel activated by glutaraldehyde were suitable carriers for the expression of enzyme activity. The optimum pH range for the native enzyme was 2.5-3.5 and this range was extended to the value 6.5 in the case of enzyme immobilized on the silica gel carrier and on Granocel. The optimum temperature values for the native and immobilized enzyme were in the range 37-40 °C and 40-50 °C, respectively. The activity of the immobilized pepsin at different values of pH and temperature was higher in comparison with the activity of the free enzyme.

  11. Modified sol-gel coatings for biotechnological applications

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  12. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  13. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-01-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl (U(VI)) ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

  14. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno, E-mail: lcarreno@uis.edu.co [Universidad Industrial de Santander (Colombia)

    2016-07-15

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  15. Synthesis and characterization of 1-Methyl-3-Methoxysilyl Propyl Imidazolium Chloride - mesoporous silica composite as adsorbent for dehydration in industrial processes

    Lievano, Javier F. Plata; Diaz, Luz A. Carreno

    2016-01-01

    Ionic liquid - mesoporous silica composite was synthesized as a new adsorbent for dehydration in industrial processes. An ionic liquid (IL) with proved dehydration properties has been covalently anchored to mesoporous silica. The parameters of the synthesis were studied to produce a solid and stable composite. The material was then characterized by SEM, BET, FTIR, NMR, Raman, XRD, XRF, MALDI and LDI confirming the presence of a covalent bond between the ionic liquid and the solid matrix. Evaluations have shown that the material kept the IL dehydration property. (author)

  16. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  17. Design of a covalently bonded glycosphingolipid microarray

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  18. Silica-Immobilized Enzyme Reactors

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  19. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  20. Supercritical carbon dioxide versus toluene as reaction media in silica functionalisation: Synthesis and characterisation of bonded aminopropyl silica intermediate.

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D

    2017-06-09

    This research reports supercritical carbon dioxide versus toluene as reaction media in silica functionalisation for use in liquid chromatography. Bonded aminopropyl silica (APS) intermediates were prepared when porous silica particles (Exsil-pure, 3μm) were reacted with 3-aminopropyltriethoxysilane (3-APTES) or N,N-dimethylaminopropyltrimethoxysilane (DMAPTMS) using supercritical carbon dioxide (sc-CO 2 ) and toluene as reaction media. Covalent bonding to silica was confirmed using elemental microanalysis (CHN), thermogravimetric analysis (TGA), zeta potential (ξ), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The results demonstrate that under sc-CO 2 conditions of 100°C/414bar in a substantial reduced time of 3h, the surface coverage of APS (evaluated from%C obtained from elemental analysis) prepared with APTES (%C: 8.03, 5.26μmol/m -2 ) or DMAPTES (%C: 5.12, 4.58μmol/m 2 ) is somewhat higher when compared to organic based reactions under reflux in toluene at a temperature of 110°C in 24h with APTES (%C: 7.33, 4.71μmol/m 2 ) and DMAPTMS (%C: 4.93, 4.38μmol/m 2 ). Zeta potential measurements revealed a change in electrostatic surface charge from negative values for bare Exsil-pure silica to positive for functionalised APS materials indicating successful immobilization of the aminosilane onto the surface of silica. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices

    Allali, Naoual [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Universite de Lorraine, 54602 Villers-les-Nancy (France); Laboratoire de Structure et Reactivite des Systemes Moleculaires Complexes, UMR 7565 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Urbanova, Veronika; Waldbock, Jeremy; Etienne, Mathieu; Mallet, Martine; Walcarius, Alain; Dossot, Manuel [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS-Universite de Lorraine, 54602 Villers-les-Nancy (France); Mamane, Victor; Fort, Yves [Laboratoire de Structure et Reactivite des Systemes Moleculaires Complexes, UMR 7565 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Devaux, Xavier [Insitut Jean Lamour, Department P2M, UMR 7198 CNRS-Universite de Lorraine, Ecole des Mines, 54042 Nancy (France); Vigolo, Brigitte; McRae, Edward [Insitut Jean Lamour, Department CP2S, UMR 7198 CNRS-Universite de Lorraine, 54506 Vandoeuvre-les-Nancy (France); Noel, Maxime [Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Soldatov, Alexander V. [Department of Engineering Sciences and Mathematics, Luleaa University of Technology, 97187 Luleaa (Sweden); Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2012-12-15

    The present work reports the covalent functionalization of few-wall CNTs (FWCNTs) by ferrocene derivatives to (i) improve their dispersion efficiency in water and (ii) graft electroactive chemical groups on their side-walls in order to promote electron transfer to biomolecules. The functionalized CNTs (f-CNTs) are used to modify a glassy carbon electrode and this modified electrode is used for oxidizing the cofactor NADH (dihydronicotinamide adenine dinucleotide). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Silica coating of nanoparticles by the sonogel process.

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  3. Ordered silica particles made by nonionic surfactant for VOCs sorption

    Difallah, Oumaima; Hamaizi, Hadj, E-mail: hamaizimizou@yahoo.fr [University of Oran, OranMenaouer (Algeria); Amate, Maria Dolores Urena; Socias-Viciana, Maria Del Mar [University of Almeria (Spain)

    2017-07-15

    Adsorption of light organic compounds such acetone, 1-propanol and carbon dioxide was tested by using mesoporous silica materials made from non ionic surfactant with long chain and silica sources as tetraethyl orthosilicate TEOS and modified Na-X and Li-A Zeolites. X-ray powder diffraction (XRD), nitrogen adsorption-desorption analysis and scanning electron microscopy (SEM) were applied to characterize the silica particles of a variety prepared samples. Acetone, 1-propanol and CO{sub 2} adsorption at 298K was evaluated by a volumetric method and indicate a high sorption capacity of organic compounds depending essentially on the porous texture of adsorbents. An adsorption kinetic model was proposed to describe the adsorption of VOCs over template-free mesoporous silica materials. A good agreement with experimental data was found. (author)

  4. Silica Treatments: A Fire Retardant Strategy for Hemp Fabric/Epoxy Composites

    Branda, Francesco; Malucelli, Giulio; Durante, Massimo; Piccolo, Alessandro; Mazzei, Pierluigi; Costantini, Aniello; Silvestri, Brigida; Pennetta, Miriam; Bifulco, Aurelio

    2016-01-01

    In this paper, for the first time, inexpensive waterglass solutions are exploited as a new, simple and ecofriendly chemical approach for promoting the formation of a silica-based coating on hemp fabrics, able to act as a thermal shield and to protect the latter from heat sources. Fourier Transform Infrared (FTIR) and solid-state Nuclear Magnetic Resonance (NMR) analysis confirm the formation of –C–O–Si– covalent bonds between the coating and the cellulosic substrate. The proposed waterglass t...

  5. Biodiesel production by using lipase immobilized onto novel silica-based hybrid foams

    Brun, Nicolas [Centre de Recherche Paul Pascal, Pessac (France); Institut des Sciences Moleculaires, Talence (France); Garcia, Annick Babeau; Oestreicher, Victor; Durand, Fabien; Backov, Renal [Centre de Recherche Paul Pascal, Pessac (France); Deleuze, Herve [Institut des Sciences Moleculaires, Talence (France); Laurent, Guillaume; Sanchez, Clement [Laboratoire de Chimie de la Matiere Condensee, Paris (France)

    2010-07-01

    The covalent immobilization of crude lipases within silica-based macroporous frameworks have been performed by combining sol-gel process, concentrated direct emulsion, lyotropic mesophase and post-synthesis functionalizations. The assynthesized open cell hybrid monoliths exhibit high macroscopic porosity, around 90%, providing interconnected scaffold while reducing the diffusion low kinetic issue. The entrapment of enzymes in such foams deals with a high stability over esterification of fatty acids, hydrolysis of triglycerides (not shown herein) and biodiesel production by transesterification. (orig.)

  6. Silica from Ash

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  7. Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design.

    Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong

    2016-07-22

    A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.

  8. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  9. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  10. Particulate silica test agents for hepa filters

    Bauman, A.J.

    1987-01-01

    The authors developed a solid test aerosol (Dri-Test) and a versatile portable delivery system for it. The aerosol is based on thermal silica, modified chemically to make it surface-hydrophobic and fluorescent under UV illumination. The fluorescent tag enables one to identify tested filters. Primary particles are 7 nm in diameter, spherical, and of density 2.20 gm-cm/sup -3/ bulk aerosol powder has a density of 0.048 gm-cm/sup -3/. Tests by means of laser particle counters, TSI Nucleation counters and California Measurements Quartz Microbalance mass analyzer show that the delivered aerosol has a bimodal size distribution with peaks near 80 and 100 nm. An estimated 40-50% of the aerosol has a size below the limits of detectability by laser (Las-X) counters, i.e. 50 nm. The surfachydrophobic aerosol is unaffected by ambient humidity and unlike hydrophilic silicas is innocuous to health

  11. Covalent Immobilization of Peroxidase onto Hybrid Membranes for the Construction of Optical Biosensor

    Lyubov Yotova

    2015-06-01

    Full Text Available The aim of this study is to covalently immobilize horse radish peroxidase (HRP onto new hybrid membranes synthesized by the sol-gel method based on silica precursors, dendrimers and cellulose derivatives. This new system will be used for designing biosensor. For investigation of the properties of membranes, HRP was used as a modeling enzyme. Kinetic parameters, pH and temperature optimum were determined, and the structure of the membranes surface was examined. Results showed higher relative and residual activity of HRP immobilized onto membranes with cellulose acetate butyrate with high molecular weight CAB/H. This novel biosensor could offer a simple, cheap and rapid tool with enhanced sensing performance as well as having potentials to find application in medicine, pharmacy, food and process control and environmental monitoring.

  12. Sponges with covalently tethered amines for high-efficiency carbon capture

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  13. Covalent immobilization of lipase from Candida rugosa on Eupergit®

    Bezbradica Dejan I.

    2005-01-01

    Full Text Available An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.

  14. Covalent Grafting of the RGD-Peptide onto Polyetheretherketone Surfaces via Schiff Base Formation

    Marc Becker

    2013-01-01

    Full Text Available In recent years, the synthetic polymer polyetheretherketone (PEEK has increasingly been used in a number of orthopedic implementations, due to its excellent mechanical properties, bioinertness, and chemical resistance. For in vivo applications, the surface of PEEK, which does not naturally support cell adhesion, has to be modified to improve tissue integration. In the present work we demonstrate a novel wet-chemical modification of PEEK to modify the surface, enabling the covalent grafting of the cell-adhesive RGD-peptide. Modification of the polymer surface was achieved via Schiff base formation using an aliphatic diamine and subsequent crosslinker-mediated immobilization of the peptide. In cell culture experiments with primary osteoblasts it was shown that the RGD-modified PEEK not only significantly promoted cellular adhesion but also strongly enhanced the proliferation of osteoblasts on the modified polymer surface.

  15. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M. [Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching of the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.

  16. Revisiting nitrogen species in covalent triazine frameworks

    Osadchii, Dmitrii Yu.

    2017-11-28

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  17. Non-covalent associative structure of coal

    Shui, H. [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering

    2004-06-01

    The recent progress of non-covalent associative structure of coal and the mechanisms of the carbon disulphide-N-methyl-2-pyrrolidone (CS{sub 2}/NMP) are mixed solvent and the additive addition enhancing the extraction yield of coals are reviewed, and the aggregation behaviour of coal in solid and solution states are presented, and the aggregation behavior of coal in solid and solution states are introduced in this paper. Coal extraction and swelling in organic solvents at room temperature were the most useful methods to understand the associative structure of coal. CS{sub 2}/NMP is a unique solvent to give high extraction yields for some bituminous coals. Some additives such as tetracyanoethylene (TCNE) can dissociate the stronger interactions among coal molecules and enhance the extraction yields of coal in the mixed solvent. 37 refs., 1 fig.

  18. Revisiting nitrogen species in covalent triazine frameworks

    Osadchii, Dmitrii Yu.; Olivos Suarez, Alma Itzel; Bavykina, Anastasiya V.; Gascon, Jorge

    2017-01-01

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  19. Pore surface engineering in covalent organic frameworks.

    Nagai, Atsushi; Guo, Zhaoqi; Feng, Xiao; Jin, Shangbin; Chen, Xiong; Ding, Xuesong; Jiang, Donglin

    2011-11-15

    Covalent organic frameworks (COFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in COFs remains challenging. Here we introduce pore surface engineering to COF chemistry, which allows the controlled functionalization of COF pore walls with organic groups. This functionalization is made possible by the use of azide-appended building blocks for the synthesis of COFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in COFs. Therefore, this methodology constitutes a step in the pore surface engineering of COFs to realize pre-designed compositions, components and functions.

  20. Cell Signalling Through Covalent Modification and Allostery

    Johnson, Louise N.

    Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases catalyze the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. This covalent modification allows activation or inhibition of enzyme activity, creates recognition sites for other proteins and promotes order/disorder or disorder/order transitions. These properties regulate ­signalling pathways and cellular processes that mediate metabolism, transcription, cell cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. In this lecture I shall review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase and the cell cycle cyclin dependent protein kinases as illustrations. Regulation of protein phosphorylation may be disrupted in the diseased state and protein kinases have become high profile targets for drug development. To date there are 11 compounds that have been approved for clinical use in the treatment of cancer.

  1. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  2. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and its application as Cu(II) adsorbent from aqueous samples

    Wondracek, Marcos Henrique P., E-mail: marcoswondracek@gmail.com [Faculdade de Ciências Exatas e Tecnologia – UFGD, C.P.533, 79804-970 Dourados, MS (Brazil); Institute of Chemistry-UNESP, 14800-060 Araraquara, SP (Brazil); Jorgetto, Alexandre Oliveira [Institute of Biosciences of Botucatu-UNESP – Chemistry and Biochemistry Department, C.P. 510, 18618-000 Botucatu, SP (Brazil); Institute of Chemistry-UNESP, 14800-060 Araraquara, SP (Brazil); Silva, Adrielli Cristina P. [Institute of Biosciences of Botucatu-UNESP – Chemistry and Biochemistry Department, C.P. 510, 18618-000 Botucatu, SP (Brazil); Ivassechen, Janaíne do Rocio [Institute of Biosciences of Botucatu-UNESP – Chemistry and Biochemistry Department, C.P. 510, 18618-000 Botucatu, SP (Brazil); Institute of Chemistry-UNESP, 14800-060 Araraquara, SP (Brazil); Schneider, José Fabián [Department of Physics and Interdisciplinary Science, Institute of Physics of Sao Carlos – USP C.P. 369, 13560-970 Sao Carlos, SP (Brazil); Saeki, Margarida Juri; Pedrosa, Valber Albuquerque [Institute of Biosciences of Botucatu-UNESP – Chemistry and Biochemistry Department, C.P. 510, 18618-000 Botucatu, SP (Brazil); Yoshito, Walter Kenji [Centro de Ciência e Tecnologia de Materiais – IPEN, 05508-000 São Paulo, SP (Brazil); Colauto, Fabiano; Ortiz, Wilson A. [Departamento de Física-UFsCar, C.P. 676, 13565-905 São Carlos, SP (Brazil); Castro, Gustavo Rocha [Institute of Biosciences of Botucatu-UNESP – Chemistry and Biochemistry Department, C.P. 510, 18618-000 Botucatu, SP (Brazil)

    2016-03-30

    Graphical abstract: - Highlights: • Groups of interest to perform metal complexation could be detected in the material. • Adsorption isotherms are in agreement with Langmuir model. • The material has a typical behavior of superparamagnetic material with high magnetization. - Abstract: This study presents an alternative, rapid, and environment-friendly synthesis procedure of a magnetic core–shell mesoporous SBA-15 silica composite, its functionalization with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald), and its application in dispersive solid-phase microextraction (DSPME) for Cu(II) from water. The materials were characterized through magnetization measurements, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) of {sup 29}Si and {sup 13}C, elemental analysis, and surface area measurements. FTIR and NMR analyses indicated the presence of the ligand on the functionalized material and that it was coupled through a C−S bond. TEM images clearly show that the magnetite core particles were effectively coated with a silica shell. The material presented a surface area of 287.99 m{sup 2} g{sup −1} and an average pore diameter of approximately 15.1 nm. The material had its point of zero charge (PZC) determined (6.17) and its adsorption capacity was evaluated as a function of time, pH, and metal concentration. Dynamic adsorption equilibrium was reached in 120 min, and it had a good correlation with the pseudo-second-order kinetic model (r{sup 2} = 0.9997). The maximum experimental adsorption capacity (0.0786 mmol g{sup −1}) and the value calculated by the linearized Langmuir model (0.0799 mmol g{sup −1}) are very approximate, indicating the formation of a monolayer over the material. Furthermore, the material proved to be very stable, because their adsorption capacity remained greater than 95% even after 10 cycles of adsorption

  3. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and its application as Cu(II) adsorbent from aqueous samples

    Wondracek, Marcos Henrique P.; Jorgetto, Alexandre Oliveira; Silva, Adrielli Cristina P.; Ivassechen, Janaíne do Rocio; Schneider, José Fabián; Saeki, Margarida Juri; Pedrosa, Valber Albuquerque; Yoshito, Walter Kenji; Colauto, Fabiano; Ortiz, Wilson A.; Castro, Gustavo Rocha

    2016-01-01

    Graphical abstract: - Highlights: • Groups of interest to perform metal complexation could be detected in the material. • Adsorption isotherms are in agreement with Langmuir model. • The material has a typical behavior of superparamagnetic material with high magnetization. - Abstract: This study presents an alternative, rapid, and environment-friendly synthesis procedure of a magnetic core–shell mesoporous SBA-15 silica composite, its functionalization with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald), and its application in dispersive solid-phase microextraction (DSPME) for Cu(II) from water. The materials were characterized through magnetization measurements, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) of "2"9Si and "1"3C, elemental analysis, and surface area measurements. FTIR and NMR analyses indicated the presence of the ligand on the functionalized material and that it was coupled through a C−S bond. TEM images clearly show that the magnetite core particles were effectively coated with a silica shell. The material presented a surface area of 287.99 m"2 g"−"1 and an average pore diameter of approximately 15.1 nm. The material had its point of zero charge (PZC) determined (6.17) and its adsorption capacity was evaluated as a function of time, pH, and metal concentration. Dynamic adsorption equilibrium was reached in 120 min, and it had a good correlation with the pseudo-second-order kinetic model (r"2 = 0.9997). The maximum experimental adsorption capacity (0.0786 mmol g"−"1) and the value calculated by the linearized Langmuir model (0.0799 mmol g"−"1) are very approximate, indicating the formation of a monolayer over the material. Furthermore, the material proved to be very stable, because their adsorption capacity remained greater than 95% even after 10 cycles of adsorption/desorption. A high enrichment factor of 98

  4. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition.

    Grenoble, Zlata; Baldelli, Steven

    2013-08-29

    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  5. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  6. Effects of Covalent Functionalization of MWCNTs on the Thermal Properties and Non-Isothermal Crystallization Behaviors of PPS Composites

    Myounguk Kim

    2017-09-01

    Full Text Available In this study, a PPS/MWCNTs composite was prepared with poly(phenylene sulfide (PPS, as well as pristine and covalent functionalized multi-walled carbon nanotubes (MWCNTs via melt-blending techniques. Moreover, the dispersion of the MWCNTs on the PPS matrix was improved by covalent functionalization as can be seen from a Field-Emission Scanning Electron Microscope (FE-SEM images. The thermal properties of the PPS/MWCNTs composites were characterized using a thermal conductivity analyzer, and a differential scanning calorimeter (DSC. To analyze the crystallization behavior of polymers under conditions similar with those in industry, the non-isothermal crystallization behaviors of the PPS/MWCNTs composites were confirmed using various kinetic equations, such as the modified Avrami equation and Avrami-Ozawa combined equation. The crystallization rate of PPS/1 wt % pristine MWCNTs composite (PPSP1 was faster because of the intrinsic nucleation effect of the MWCNTs. However, the crystallization rates of the composites containing covalently-functionalized MWCNTs were slower than PPSP1 because of the destruction of the MWCNTs graphitic structure via covalent functionalization. Furthermore, the activation energies calculated by Kissinger’s method were consistently decreased by covalent functionalization.

  7. Silica-calcium zirconate nanocomposite, studying its thermal

    Silica–calcium zirconate nanocomposite was prepared in a two-step procedure. First, nanocalcium zirconate was synthesized by the modified sol–gel method; then, silica was added to the prepared sol and the resulting product was calcined at 700–1000° C. Dilatometric measurements were performed to determine the ...

  8. Covalent versus ionic bonding in alkalimetal fluoride oligomers

    Bickelhaupt, F.M.; Sola, M.; Fonseca Guerra, C.

    2007-01-01

    The most polar bond in chemistry is that between a fluorine and an alkalimetal atom. Inspired by our recent finding that other polar bonds (C - M and H - M) have important covalent contributions (i.e., stabilization due to bond overlap), we herein address the question if covalency is also essential

  9. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  10. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  11. Preparation and Characterization of Silica/Polyamide-imide Nanocomposite Thin Films

    Hwang Jong-Sun

    2010-01-01

    Full Text Available Abstract The functional silica/polyamide-imide composite films were prepared via simple ultrasonic blending, after the silica nanoparticles were modified by cationic surfactant—cetyltrimethyl ammonium bromide (CTAB. The composite films were characterized by scanning electron microscope (SEM, thermo gravimetric analysis (TGA and thermomechanical analysis (TMA. CTAB-modified silica nanoparticles were well dispersed in the polyamide-imide matrix, and the amount of silica nanoparticles to PAI was investigated to be from 2 to 10 wt%. Especially, the coefficients of thermal expansion (CET continuously decreased with the amount of silica particles increasing. The high thermal stability and low coefficient of thermal expansion showed that the nanocomposite films can be widely used in the enamel wire industry.

  12. Nanosilica Modification of Elastomer-Modified VARTM Epoxy Resins for Improved Resin and Composite Toughness

    Robinette, Jason; Bujanda, Andres; DeSchepper, Daniel; Dibelka, Jessica; Costanzo, Philip; Jensen, Robert; McKnight, Steven

    2007-01-01

    Recent publications have reported a synergy between rubber and silica in modified epoxy resins that results in significantly improved fracture toughness without reductions in other material properties...

  13. Fluorescence properties of riboflavin-functionalized mesoporous silica SBA-15 and riboflavin solutions in presence of different metal and organic cations

    Lewandowski, Dawid; Schroeder, Grzegorz; Sawczak, Mirosław; Ossowski, Tadeusz

    2015-10-01

    Riboflavin was covalently linked to mesoporous SBA-15 silica surface via grafting technique. Then fluorescence properties of the system obtained were analyzed in the presence of several metal and organic cations. Both quenching and strengthening of fluorescence as well as significant changes in the maximum fluorescence wavelength were observed. The results were compared with absorption and fluorescence data obtained for riboflavin water solutions.

  14. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-01-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  15. Silica particles and method of preparation thereof

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  16. Cobalt(II phthalocyanine bonded to 3-n-propylimidazole immobilized on silica gel surface: preparation and electrochemical properties

    Fujiwara Sergio T.

    1999-01-01

    Full Text Available Co-Phthalocyanine complex was immobilized on 3-n-propylimidazole groups grafted on a porous SiO2 surface (specific surface area S BET = 500 m² g-1 and efficiently electrocatalyzed the oxalic acid oxidation on a carbon paste electrode surface made of this material. Intermolecular interactions of the complex species which can normally interfere in the redox process practically are not observed in the present case because of a low average surface density, delta = 4.7 x 10-13 mol cm-2 (delta = Nf/S BET, where Nf is the amount of adsorbed Co-phtalocyanine per gram of modified silica gel of the complex species material prepared. The linear response of the electrode to oxalic acid concentration, between 6.5 x 10-4 and 3.2 x 10-3 mol L-1, associated with its high chemical stability makes the covalently immobilized Co-phtalocyanine complex material very attractive in preparing a new class of chemical sensors.

  17. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials

    Gushikem Yoshitaka

    2001-01-01

    Full Text Available In the highly dispersed MxOy monolayer film on a porous SiO2 surface, denoted as SiO2/MxOy, the Si-O-M covalent bond formed on the SiO2 surface restricts the mobility of the attached oxide resulting in coordinatively unsaturated metal oxides (LAS in addition to the Brønsted acid sites (BAS. The BAS arise from the MOH and SiOH groups, the latter due to the unreacted silanol groups. As the attached oxides are strongly immobilized on the surface, they are also thermally very stable. The amphoteric character of most of the attached oxides allows the immobilization of various chemical species, acid or bases, resulting in a wide application of these surface modified materials. In this work many of the recent applications of these MxOy coated silica surfaces are described, such as selective adsorbents, in preconcentration processes, as new packing material for use in HPLC, support for immobilization of enzymes, amperometric electrodes, sensors and biosensors

  18. Synthesis and characterization of organically modified silica gel with 4-amino-5-(4-pyridyl)-4h-1 ,2,4-triazole-3-thiol (APTT); Sintese e caracterizacao da silica gel organofuncionalizada com 4-amino-5-(4-piridil)-4h-1,2,4-triazol-3-tiol (APTT)

    Magossi, M.S.; Carmo, D.R. do, E-mail: maiaramagossi@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia

    2014-07-01

    This work object the preparation and characterization of a silica gel (SG) organically with a triazole compound, 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3- thiol (APTT). The prepared organofunctionalized material (SGAPTT) was preliminarily characterized by spectroscopic techniques such as: Spectroscopy in the Region of Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy X-ray (EDX). The vibrational spectrum (FTIR) showed characteristic bands of the starting materials, such as bands at ∼ 1120cm{sup -1} related to the asymmetric stretching Si-O-Si (νSi-O-Si) as well as the bands between 1350 and 1650 cm{sup -1} assigned vibrations and deformations of the ring APTT. The SGAPTT material was tested as support for adsorption of cupric ions in aqueous solution, ethanol and 42% ethanol. The maximum amount of copper (II) adsorbed (Nf {sup max.}) was 22.0 × 10{sup -5} mol g{sup -1}, 31.4 × 10-5 mol g-1 and 47.17 × 10{sup -5} mol g{sup -1} to aqueous media, 42% ethanol and 99% ethanol respectively. (author)

  19. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-01-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f t =kt n was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: → Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. → Loading and release profiles of aspirin in modified BMMs and MCM-41. → Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  20. A flexible, bolaamphiphilic template for mesoporous silicas.

    Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas

    2013-08-28

    A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.

  1. Serpentinization processes: Influence of silica

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  2. Europium polyoxometalates encapsulated in silica nanoparticles - characterization and photoluminescence studies

    Neves, Cristina S.; Granadeiro, Carlos M.; Cunha-Silva, Luis; Eaton, Peter; Balula, Salete S.; Pereira, Eulalia [REQUIMTE/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto (Portugal); Ananias, Duarte [CICECO, Departamento de Quimica, Universidade de Aveiro (Portugal); Gago, Sandra [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Feio, Gabriel [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica (Portugal); Carvalho, Patricia A. [ICEMS/Departamento de Bioengenharia, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-06-15

    The incorporation of europium polyoxometalates into silica nanoparticles can lead to a biocompatible nanomaterial with luminescent properties suitable for applications in biosensors, biological probes, and imaging. Keggin-type europium polyoxometalates Eu(PW{sub 11}){sub x} (x = 1 and 2) with different europium coordination environments were prepared by using simple methodologies and no expensive reactants. These luminescent compounds were then encapsulated into silica nanoparticles for the first time through the water-in-oil microemulsion methodology with a nonionic surfactant. The europium polyoxometalates and the nanoparticles were characterized by using several techniques [FTIR, FT-Raman, {sup 31}P magic angle spinning (MAS) NMR, and TEM/energy-dispersive X-ray spectroscopy (TEM-EDS), AFM, dynamic light scattering (DLS), and inductively coupled plasma MS (ICP-MS) analysis]. The stability of the material and the integrity of the europium compounds incorporated were also examined. Furthermore, the photoluminescence properties of the Eu(PW{sub 11}){sub x} rate at SiO{sub 2} nanomaterials were evaluated and compared with those of the free europium polyoxometalates. The silica surface of the most stable nanoparticles was successfully functionalized with appropriate organosilanes to enable the covalent binding of oligonucleotides. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of their Photocatalytic Activity

    Leila Mazaheri

    2012-12-01

    Full Text Available Silica nanoparticles were modified with titanium tetraisopropoxide (TTIP via atwo-step sol-gel route. The modified silica nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis (TGA and EDAX elemental analysis. Photocatalytic activity of the modified nanocomposites was evaluated by photo-activated degradation of Rhodamine B (Rh.B dyestuff, as a colorant model, in distilled water. Reduction in Rh.B concentration in aqueous solution was evaluated by UV-visible spectroscopy and with the aid of visual observations. The FTIR spectroscopy results confirmed the formation of Ti-O-Si chemical bond on the surfaceof silica nanoparticles. TGA test results showed that the weight loss of the modified sample is due to deterioration of the alkoxy groups of the SiO2 surface. According to the results of EDAX elemental analysis, the presence of carbon and titanium in the structure of the modified samples and also reduction in oxygen levels are attributed to the chemical interactions due to surface chemical modification. Carbon detection in the composition can be attributed to the presence of isopropoxide in titanium tetraisopropoxide compound. The results also revealed that, with TiO2 grafting on the silica nanoparticles surface, absorption in UV region is increased and that the silica nanoparticles modified with titanate compound show photocatalytic characteristics and degradation ability of Rh.B dyestuff under UV light irradiation. It became also evident that the photocatalytic activity of the modified nanoparticles is less than TiO2 nanoparticles. However, by inclusion of modified silica nanoparticles into the polymeric coating, the photocatalytic properties of the coating can be established. Although modified silica nanoparticles have less photocatalytic activity compared to TiO2 nanoparticles, but they cause less damage to the polymer matrix.

  4. Detection of HBV Covalently Closed Circular DNA

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  5. Protein covalent modification by biologically active quinones

    MIROSLAV J. GASIC

    2004-11-01

    Full Text Available The avarone/avarol quinone/hydroquinone couple shows considerable antitumor activity. In this work, covalent modification of b-lactoglobulin by avarone and its derivatives as well as by the synthetic steroidal quinone 2,5(10-estradiene-1,4,17-trione and its derivatives were studied. The techniques for studying chemical modification of b-lactoglobulin by quinones were: UV/Vis spectrophotometry, SDS PAGE and isoelectrofocusing. SDS PAGE results suggest that polymerization of the protein occurs. It could be seen that the protein of 18 kD gives the bands of 20 kD, 36 kD, 40 kD, 45 kD, 64 kD and 128 kD depending on modification agent. The shift of the pI of the protein (5.4 upon modification toward lower values (from pI 5.0 to 5.3 indicated that lysine amino groups are the principal site of the reaction of b-lactoglobulin with the quinones.

  6. Covalently crosslinked diels-alder polymer networks.

    Bowman, Christopher (University of Colorado, Boulder, CO); Adzima, Brian J. (University of Colorado, Boulder, CO); Anderson, Benjamin John

    2011-09-01

    This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis of the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.

  7. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  8. Hydrothermal stability of microporous silica and niobia-silica membranes

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  9. Polyoxometalate grafting onto silica: stability diagrams of H3PMo12O40 on {001}, {101}, and {111} β-cristobalite surfaces analyzed by DFT

    Rozanska, Xavier; Sautet, Philippe; Delbecq, Franoise; Lefebvre, Fré dé ric; Borshch, Sergei; Chermette, Henri; Basset, Jean-Marie; Grinenval, Eva

    2011-01-01

    The process of grafting H3PMo12O40 onto silica surfaces is studied using periodic density functional theory methods. For surfaces with a high hydroxyl coverage, the hydroxyl groups are consumed by the polyoxometalate protons, resulting in water formation and the creation of a covalent bond between the polyoxometalate and the surface, and mostly no remaining acidic proton on the polyoxometalate. When the surfaces are partially dehydroxylated and more hydrophobic, after temperature pretreatment, less covalent and hydrogen bonds are formed and the polyoxometalate tends to retain surface hydroxyl groups, while at least one acidic proton remains. Hence the hydroxylation of the surface has a great impact on the chemical properties of the grafted polyoxometalate. In return, the polyoxometalate species affects the compared stability of the partially hydroxylated silica surfaces in comparison with the bare silica case. © 2011 the Owner Societies.

  10. Study on immobilization enzyme using radiation grafting and condensation covalent

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  11. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  12. Fabrication and characterization of all-covalent nanocomposite functionalized screen-printed voltammetric sensors

    Jasmin, Jean-Philippe; Cannizzo, Caroline; Dumas, Eddy; Chaussé, Annie

    2014-01-01

    Highlights: • Screen printed electrodes were covalently functionalized by gold nanoparticles. • The covalent grafting of AuNPs was achieved via diazonium salt chemistry. • Two grafting methods and two types of AuNPs were compared. • Carboxylate ligands were grafted on these nanostructured electrodes. • Good preliminary responses towards lead analysis were obtained by SW-ASV. - Abstract: We report in this paper an all-covalent method to obtain highly nanostructured carbon screen printed electrodes (SPEs) bearing gold nanoparticles (AuNPs) functionalized by complexing groups using diazonium salts chemistry. SPEs were first modified with 4-aminophenyl functions (SPE-Ph-NH 2 ). The amino moieties were then converted into diazonium salts (SPE-Ph-N 2 + Cl − ). These reactive SPEs were then used to immobilize AuNPs by electrochemical or spontaneous method. The spontaneous method proved to be a more efficient grafting approach. Two types of AuNPs suspensions were compared: AuNPs obtained via the well-known Turkevich method, citrate-stabilized and having a diameter of about 20 nm, and AuNPs obtained by the method recently described by Eah et al., stabilizer-free with an average diameter of 4 nm. We show that the size of the Au-NPs, their concentration and their surface properties are key parameters that affect the electrochemical properties of the final nanostructured SPEs. The covalent grafting of 4-carboxyphenyl ligands through diazonium chemistry, able to complex metallic cations, at the surface of SPE-Ph-AuNPs allowed their use for the detection of Pb(II). Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, Scanning Electron Microscopy, Rutherford Backscattering and X-ray Photoelectron Spectroscopy were used to characterize these nanostructured materials

  13. Pecan drying with silica gel

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  14. Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers.

    Pivetal, Jeremy; Pereira, Filipa M; Barbosa, Ana I; Castanheira, Ana P; Reis, Nuno M; Edwards, Alexander D

    2017-03-13

    This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 μm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1β, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1β and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption

  15. Predominantly ligand guided non-covalently linked assemblies of ...

    JUBARAJ B BARUAH

    2018-05-12

    May 12, 2018 ... Abstract. Various non-covalently linked inorganic self-assemblies formed by the supramolecular interacting .... metal-organic frameworks.59 Inorganic chemists rou- ...... two-dimensional organic–inorganic layered perovskite.

  16. Molecular electrostatic potential analysis of non-covalent complexes

    Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), ... workers proposed the electrostatic-covalent model of hydrogen bonding. ..... tain degree of electron donation and acceptance occurs.

  17. Patchy silica-coated silver nanowires as SERS substrates

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  18. Patchy silica-coated silver nanowires as SERS substrates

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-01-01

    We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  19. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective

    Francesco Picchioni

    2018-03-01

    Full Text Available Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing. These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.

  1. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  2. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  3. In vivo assessment of a novel dacron surface with covalently bound recombinant hirudin.

    Wyers, M C; Phaneuf, M D; Rzucidlo, E M; Contreras, M A; LoGerfo, F W; Quist, W C

    1999-01-01

    Prosthetic arterial graft surfaces are relatively thrombogenic and fail to heal with a cellular neointima. The goal of this study was to characterize the in vivo antithrombin properties of a novel Dacron surface with covalently linked recombinant hirudin (rHir) implanted in a canine thoracic aorta with high flow and shear rates. rHir was bound to a knitted Dacron patch using crosslinker-modified bovine serum albumin (BSA) as a basecoat protein. BSA was first reacted with the heterobifunctional crosslinker, sulfo-SMCC. This BSA-SMCC complex was then bound to the carboxylic acid groups of hydrolyzed Dacron patches using the carbodiimide crosslinker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. Iodinated, Traut's-modified rHir (125I-rHir-SH) was then reacted with the Dacron-BSA-SMCC surface, thereby covalently binding 125I-rHir. Graft segments were washed and sonicated to remove any nonspecifically bound 125I-rHir. Dacron-BSA-SMCC-S-125I-rHir patches (n = 5) and control Dacron-BSA patches (n = 5) were implanted in series in the thoracic aortas of canines. These patches were exposed to nonheparinized, arterial blood flow for 2 hours. Patches were explanted and assessed for 125I-rHir loss. Antithrombin activity of explanted 1-cm2 patch segments was evaluated using a chromogenic assay with 1, 5, 10, 15 units of added thrombin. Light microscopy was performed to qualitatively examine the pseudointima. Two animals were excluded from the study owing to excessive bleeding through the knitted 125I-rHir patch. Comparison of preoperative and postoperative 125I-rHir gamma counts revealed an overall decrease of 20+/-5.4% over the period studied. Explanted 125I-rHir patch segments were able to inhibit 1, 5, and 7 NIHU of thrombin, demonstrating retained antithrombin activity. Gross and microscopic examination of the control and test Dacron surfaces showed marked differences. Dacron surfaces with covalently bound 125I-rHir had no gross thrombus and a thin

  4. Sensing behavior study of silica-coated Ag nanoparticles deposited on glassy carbon toward nitrobenzene

    Devi, Pooja; Reddy, Pramod [CSIR, Sector-30C, Central Scientific Instruments Organization (India); Arora, Swati [Shri Mata Vaishno Devi University (India); Singh, Suman; Ghanshyam, C.; Singla, M. L., E-mail: singla_min@yahoo.co.in [CSIR, Sector-30C, Central Scientific Instruments Organization (India)

    2012-10-15

    In this study, we report the synthesis and characterization of silica-coated silver core/shell nanostructures (NSs) and their sensing behavior when deposited on glassy carbon (GC) electrode for nitrobenzene (NB) detection. Synthesized silica-coated silver core/shell NSs were characterized for their chemical, structural and morphological properties. TEM analysis confirmed that the silica-coated silver nanoparticles (size {approx}200 nm) are spherical in shape and the core diameter is {approx}38 nm. FT-IR spectra also confirmed the coating of silica on the surface of silver nanoparticles. Cyclic voltammetry studies of NB with silica-coated silver core-shell nanoparticles-modified GC electrodes revealed two cathodic peaks at -0.74 V (C{sub 1}) and -0.34 V (C{sub 2}) along with two anodic peaks at -0.64 V (A{sub 1}) and -0.2 V (A{sub 2}). Enhanced cathodic peak current (C{sub 1}, I{sub P}) of the core-shell NSs-modified electrode is observed relative to bare and silica-modified electrodes. Amperometric studies revealed a very high current sensitivity (114 nA/nM) and linearly dependent reduction current with NB amount in the low concentration range and a detection limit of 25 nM. Moreover, the core-shell NSs-modified electrode showed good reproducibility and selectivity toward NB in the presence of many cationic, anionic, and organic interferents.

  5. Sensing behavior study of silica-coated Ag nanoparticles deposited on glassy carbon toward nitrobenzene

    Devi, Pooja; Reddy, Pramod; Arora, Swati; Singh, Suman; Ghanshyam, C.; Singla, M. L.

    2012-01-01

    In this study, we report the synthesis and characterization of silica-coated silver core/shell nanostructures (NSs) and their sensing behavior when deposited on glassy carbon (GC) electrode for nitrobenzene (NB) detection. Synthesized silica-coated silver core/shell NSs were characterized for their chemical, structural and morphological properties. TEM analysis confirmed that the silica-coated silver nanoparticles (size ∼200 nm) are spherical in shape and the core diameter is ∼38 nm. FT-IR spectra also confirmed the coating of silica on the surface of silver nanoparticles. Cyclic voltammetry studies of NB with silica-coated silver core–shell nanoparticles-modified GC electrodes revealed two cathodic peaks at −0.74 V (C 1 ) and −0.34 V (C 2 ) along with two anodic peaks at −0.64 V (A 1 ) and −0.2 V (A 2 ). Enhanced cathodic peak current (C 1 , I P ) of the core–shell NSs-modified electrode is observed relative to bare and silica-modified electrodes. Amperometric studies revealed a very high current sensitivity (114 nA/nM) and linearly dependent reduction current with NB amount in the low concentration range and a detection limit of 25 nM. Moreover, the core–shell NSs-modified electrode showed good reproducibility and selectivity toward NB in the presence of many cationic, anionic, and organic interferents.

  6. Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate.

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2014-07-01

    Although most of the water in a bio-ethanol fermentation broth can be removed by distillation, a small amount of water remains in the bio-ethanol distillate as the water-ethanol azeotrope. To improve the use of ethanol as a fuel, glucose-modified silica, as an adsorbent, was prepared using a facile method and applied to the dehydration of bio-ethanol distillate. The factors affecting the adsorption capacity of the adsorbent, such as the particle size, initial concentration of water in the samples, adsorption temperature and adsorbent dose, were examined by measuring the adsorption kinetics and equilibrium. The Langmuir, Freundlich and Temkin isotherms were used to evaluate the adsorption efficiency. Of these, the Freundlich and Temkin isotherms showed a good correlation with the experimental data. The Langmuir isotherm showed some deviation from the experimental results, and indicated that adsorption in this case was not a simple monolayer adsorption. The property of the adsorbent was attributed to functionalized silica with many hydroxyl groups on its surface. An examination of the separation factors of water/ethanol revealed the modified silica to have preferential selectivity for water. Compared to activated carbon and silica, glucose-modified silica exhibited higher adsorption capacity for water under the same adsorption conditions. In addition, the glucose-modified silica adsorbent exhibited a relatively constant adsorption capacity for five adsorption/desorption cycles.

  7. Silica research in Glasgow

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  8. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improved Stabilities of Immobilized Glucoamylase on Functionalized Mesoporous Silica Synthesised using Decane as Swelling Agent

    Reni George

    2013-06-01

    Full Text Available Ordered mesoporous silica, with high porosity was used to immobilize glucoamylase via adsorption and covalent binding. Immobilization of glucoamylase within mesoporous silica was successfully achieved, resulting in catalytically high efficiency during starch hydrolysis. In this study, mesoporous silica was functionalized by co-condensation of tetraethoxysilane (TEOS with organosilane (3-aminopropyl triethoxysilane (APTES in a wide range of molar ratios of APTES: TEOS in the presence of triblock copolymer P123 under acidic hydrothermal conditions. The prepared materials were characterized by Small angle XRD, Nitrogen adsorption – desorption and 29Si MAS solid state NMR. N2 desorption studies showed that pore size distribution decreases due to pore blockage after functionalization and enzyme immobilization. Small angle XRD and 29Si MAS NMR study reveals mesophase formation and Si environment of the materials. The main aim of our work was to study the catalytical activity, effect of pH, temperature storage stability and reusability of covalently bound glucoamylase on mesoporous silica support. The result shows that the stability of enzyme can be enhanced by immobilization.  © 2013 BCREC UNDIP. All rights reservedReceived: 3rd December 2012; Revised: 4th April 2013; Accepted: 20th April 2013[How to Cite: George, R., Gopinath, S., Sugunan, S. (2013. Improved Stabilities of Immobilized Glucoamyl-ase on Functionalized Mesoporous Silica Synthesized using Decane as Swelling Agent. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 70-76. (doi:10.9767/bcrec.8.1.4208.70-76][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4208.70-76] | View in  |

  10. Properties of chymotrypsin bound covalently to dextran.

    Zlateva, T P; Krysteva, M; Balajthy, Z; Elödi, P

    1988-01-01

    The kinetic properties dextran-chymotrypsin conjugate were studied by means of low molecular weight substrates. It was found that KM, kcat and kcat/KM of dextran chymotrypsin for the hydrolysis of benzoyl-L-tyrosine-ethyl-ester did not differ substantially from those of the free enzyme. However, the data found for kcat of dextran-chymotrypsin and free chymotrypsin assayed for the hydrolysis of three tripeptidyl-p-nitroanilide D-Arg-Val-Trp-pNA, D-Arg-Val-Tyr-pNA, Z-Phe-Pro-Phe-pNA, were definitely different. The inhibition of the modified chymotrypsin with soybean trypsin inhibitor was found to be less pronounced than that with the free enzyme. The effect of potassium and magnesium salts on the inactivation of both enzymes was also studied. The effect of dextran matrix on the catalytic properties and the conformational stability of modified chymotrypsin is discussed.

  11. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  12. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  13. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    Michael A Cook

    Full Text Available BACKGROUND: Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM, we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. CONCLUSIONS/SIGNIFICANCE: These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  14. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications.

    Muriel-Galet, V; Talbert, J N; Hernandez-Munoz, P; Gavara, R; Goddard, J M

    2013-07-10

    The objective of this study was to develop a new antimicrobial film, in which lysozyme was covalently attached onto two different ethylene vinyl alcohol copolymers (EVOH 29 and EVOH 44). The EVOH surface was modified with UV irradiation treatment to generate carboxylic acid groups, and lysozyme was covalently attached to the functionalized polymer surface. Surface characterization of control and modified films was performed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and dye assay. The value of protein loading after attachment on the surface was 8.49 μg protein/cm(2) and 5.74 μg protein/cm(2) for EVOH 29 and EVOH 44, respectively, after 10 min UV irradiation and bioconjugation. The efficacy of the EVOH-lysozyme films was assessed using Micrococcus lysodeikticus. The antimicrobial activity of the films was tested against Listeria monocytogenes and was similar to an equivalent amount of free enzyme. The reduction was 1.08 log for EVOH 29-lysozyme, 0.95 log for EVOH 44-lysozyme, and 1.34 log for free lysozyme. This work confirmed the successful use of lysozyme immobilization on the EVOH surface for antimicrobial packaging.

  15. Carbon paste electrode with covalently immobilized thionine for electrochemical sensing of hydrogen peroxide

    Thenmozhi, K.; Sriman Narayanan, S.

    2017-11-01

    A water-soluble redox mediator, thionin was covalently immobilized to the functionalized graphite powder and a carbon paste electrode was fabricated from this modified graphite powder. The immobilization procedure proved to be effective in anchoring the thionin mediator in the graphite electrode setup without any leakage problem during the electrochemical studies. The covalent immobilization of the thionin mediator was studied with FT-IR and the electrochemical response of the thionin carbon paste electrode was optimized on varying the supporting electrolyte, pH and scan rate. The modified electrode exhibited well-defined electrocatalytic activity towards the reduction of H2O2 at a lower potential of -0.266 V with good sensitivity. The developed amperometric sensor was efficient towards H2O2 in the linear range from 2.46 × 10-5 M to 4.76 × 10-3 M, with a detection limit of 1.47 × 10-5 M respectively. Important advantages of this sensor are its excellent electrochemical performance, simple fabrication, easy renewability, reproducible analytical results, acceptable accuracy and good operational and long-term stability.

  16. Tyrosine-derived polycarbonate-silica xerogel nanocomposites for controlled drug delivery.

    Costache, M C; Vaughan, A D; Qu, H; Ducheyne, P; Devore, D I

    2013-05-01

    Biodegradable polymer-ceramic composites offer significant potential advantages in biomedical applications where the properties of either polymers or ceramics alone are insufficient to meet performance requirements. Here we demonstrate the highly tunable mechanical and controlled drug delivery properties accessible with novel biodegradable nanocomposites prepared by non-covalent binding of silica xerogels and co-polymers of tyrosine-poly(ethylene glycol)-derived poly(ether carbonate). The Young's moduli of the nanocomposites exceed by factors of 5-20 times those of the co-polymers or of composites made with micron scale silica particles. Increasing the fraction of xerogel in the nanocomposites increases the glass transition temperature and the mechanical strength, but decreases the equilibrium water content, which are all indicative of strong non-covalent interfacial interactions between the co-polymers and the silica nanoparticles. Sustained, tunable controlled release of both hydrophilic and hydrophobic therapeutic agents from the nanocomposites is demonstrated with two clinically significant drugs, rifampicin and bupivacaine. Bupivacaine exhibits an initial small burst release followed by slow release over the 7 day test period. Rifampicin release fits the diffusion-controlled Higuchi model and the amount released exceeds the dosage required for treatment of clinically challenging infections. These nanocomposites are thus attractive biomaterials for applications such as wound dressings, tissue engineering substrates and stents. Published by Elsevier Ltd.

  17. Study of association of Eu(III) β-diketonato-1,10-phenanthroline complexes in silica-based hybrid materials

    Fadieiev, Yevhen M.; Smola, Sergii S. [A.V. Bogatsky Physico-chemical Institute, National Academy of Sciences of Ukraine, 86, Lustdorfskaya doroga, 65080 Odessa (Ukraine); Malinka, Elena V. [Odessa National Academy of Food Technology, 112, Kanatna Street, 65039 Odessa (Ukraine); Rusakova, Nataliia V., E-mail: lanthachem@ukr.net [A.V. Bogatsky Physico-chemical Institute, National Academy of Sciences of Ukraine, 86, Lustdorfskaya doroga, 65080 Odessa (Ukraine)

    2017-03-15

    Hybrid organic-inorganic materials based on silica and mixed-ligand complexes of Eu(III) with β-diketones and 1,10-phenanthroline with covalent and non-covalent attachment to matrix were obtained by a sol-gel route. Luminescent study of obtained systems allowed to propose spectral criteria for estimation of the uniformity of complex distribution in amorphous silica matrix. Thus, such criteria are the broadening of Eu(III) 4f-luminescence bands, emission decay and the shape of plot of the emission intensity vs. concentration of complex in the materials. Full width of {sup 5}D{sub 0}→{sup 7}F{sub 2} band at its half maximum and the ratio of the {sup 5}D{sub 0}→{sup 7}F{sub 2} and {sup 5}D{sub 0}→{sup 7}F{sub 1} bands intensities were used as quantitative measures of spectral changes and the bands broadening in Eu(III) emission spectra. - Highlights: • Modification of Eu(III) β-diketonates by an anchor fragments was carried out. • The degree of association of molecules was estimated based on emission spectra. • Covalent anchoring of complexes promotes their uniform distribution in matrix. • Non-covalently grafted complexes are prone to association in amorphous silica.

  18. Covalent modification of boron-doped diamond electrodes with an imidazolium-based ionic liquid

    Wang Mei [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); School of Materials Science and Engineering, Shandong University, 19723 Jingshi Road, Jinan, Shandong Province (China); Schneider, Amene [Austrian Centre of Competence for Tribology, Viktor Kaplan Strasse 2, 2700, Wiener Neustadt (Austria); Niedziolka-Joensson, Joanna; Marcon, Lionel [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Ghodbane, Slimane; Steinmueller-Nethl, Doris [Rho-BeSt Coating GmbH, Exlgasse 20a, 6020 Innsbruck (Austria); Li Musen [School of Materials Science and Engineering, Shandong University, 19723 Jingshi Road, Jinan, Shandong Province (China); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)

    2010-02-01

    An ionic liquid (IL, 1-(methylcarboxylic acid)-3-octylimidazolium-bis (trifluoromethylsulfonyl)imide) was covalently coupled onto a boron-doped diamond (BDD) surface through an esterification reaction. The resulting surface was characterized by X-ray photoelectron spectroscopy, water contact angle and electrochemical measurements. Selective electron transfer towards positively and negatively charged redox species was recorded. While the presence of Fe(CN){sub 6}{sup 4-} could be detected on the IL-modified BDD interface, no surface-immobilized Ru(NH{sub 3}){sub 6}{sup 3+} was recorded. The IL-modified BDD electrode showed in addition changes in surface wettability when immersed into aqueous solution containing different anions.

  19. Zeolite - a possible substitute of silica gel in spectrophotometric determination of uranium?

    Foeldesova, M; Dillinger, P.

    2006-01-01

    Zeolites sorption abilities differ from the ones of the silica gel, which is normally used for uranium determination by spectrophotometric method. The difference is obvious mainly in the case of zeolites chemically modified with 1 or 2 mol/L NaOH solution. Absorbances measured using these zeolites on an radioactive water samples were 4 to 4.2 times bigger than the ones with silica gel. This avoids a use of one universal calibration curve for experimental data evaluation. Within delivered experimental data only a calibration curve for silica gel was provided. Its application to zeolites caused substantial misinterpretation of the results. Calculational construction of individual calibration curves made at this work shaw, that zeolites have a potential to replace the silica gel. This possibility is necessary to confirm by more experiments. Better sorption abilities of the modified zeolites would be utilized to reduce the lower limit for uranium determination by spectrophotometric method. (authors)

  20. Study of silica sol-gel materials for sensor development

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  1. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    Xue, Ping; Xu, Fang; Xu, Lidong

    2008-12-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (˜400 m 2/g) and large-size mesopores (˜17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 °C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a Km of 2.1 × 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 × 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  2. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    Xue Ping; Xu Fang; Xu Lidong

    2008-01-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (∼400 m 2 /g) and large-size mesopores (∼17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29 Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 o C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a K m of 2.1 x 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 x 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  3. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    Xue Ping [Key Laboratory of Energy Resources and Chemical Engineering, Ningxia University, Yinchuan 750021 (China)], E-mail: Ping@nxu.edu.cn; Xu Fang [Department of Molecule Biology, Ningxia Medical College, Yinchuan 750021 (China); Xu Lidong [Key Laboratory of Energy Resources and Chemical Engineering, Ningxia University, Yinchuan 750021 (China)

    2008-12-30

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area ({approx}400 m{sup 2}/g) and large-size mesopores ({approx}17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N{sub 2} adsorption, TG-DTA and {sup 29}Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 {sup o}C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a K{sub m} of 2.1 x 10{sup -2} mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 x 10{sup -2} mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G

  4. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  5. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  6. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  7. In situ polymerization of L-Lactide in the presence of fumed silica

    Prebe, A.; Alcouffe, P.; Cassagnau, Ph.; Gerard, J.F.

    2010-01-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  8. In situ polymerization of L-Lactide in the presence of fumed silica

    Prebe, A. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France); Alcouffe, P. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Cassagnau, Ph., E-mail: philippe.cassagnau@univ-lyon1.fr [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Gerard, J.F. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France)

    2010-11-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  9. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  11. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  12. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-01-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N 2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO x films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH 2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  13. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  14. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    Tunma, Somruthai [The Graduate School, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Song, Doo-Hoon [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Si-Eun; Kim, Kyoung-Nam [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Han, Jeon-Geon [Center for Advanced Plasma Surface Technology, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746 (Korea, Republic of); Boonyawan, Dheerawan [Thailand Center of Excellence in Physics (ThEP), 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand); Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200 (Thailand)

    2013-10-15

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N{sub 2} films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiO{sub x} films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV–vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of -NH{sub 2} groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  15. Reactive silica fractions in coastal lagoon sediments from the northern Gulf of Mexico

    Krause, Jeffrey W.; Darrow, Elizabeth S.; Pickering, Rebecca A.; Carmichael, Ruth H.; Larson, Ashley M.; Basaldua, Jose L.

    2017-12-01

    Continental-margin sediments account for 50% of the oceanic biogenic silica burial despite covering Gulf of Mexico (nGoM), we measured sediment biogenic silica at sites removed from major freshwater discharge sources using the traditional method and a method that has been modified for deltaic systems to quantify other reactive silica pools, specifically those involved in the process of reverse weathering. The magnitude of authigenically-altered biogenic silica during our study was significant and represented, on average, 33% of the total sediment biogenic silica among core depths and sites. Additionally, there was a significant relationship between the degree to which the biogenic silica pool was authigenically altered and the source of the sediment organic matter, with lower modification in sediments corresponding with higher terrestrial organic matter. We observed no positive correlation between the magnitude of authigenic modification and sediment clay content. Thus, our findings suggest that these processes may occur within a variety of sediment compositions and add to a growing body of evidence suggesting that reverse weathering of silica in coastal systems is a significant pathway in the global silica budget.

  16. Characterization of a humic gel synthesized from an activated epoxy silica gel

    Barbot, C.; Pieri, J.; Durand, J.P.; Goudard, F.; Czerwinski, K.; Vial, M.; Buckau, G.; Kim, J.I.; Moulin, V.

    2002-01-01

    Purified humic acid has been covalently bound on activated epoxy silica gel particles. Determination of physical properties and chemical properties was conducted in order to characterize the material at different stages of the preparation. FTIR spectra and the PEC of the surface bound humic acid is very similar to that of humic acid starting material. This shows that the humic acid was not deteriorated during the surface binding process. This humic gel can be used as an analogue for sediment associated humic acid, with the advantage that covalently bound humic acid does not desorb, and thus allows for simple species separation between non-complexed and humic bound metal ions in batch and column experiments

  17. Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls

    Hezekiel Mathambo Kumalo

    2015-01-01

    Full Text Available he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i covalent interactions in biomolecular systems; (ii the mathematical framework of covalent molecular docking; (iii implementation of covalent docking protocol in drug design workflows; (iv applications covalent docking: case studies and (v shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  18. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as

  19. Silica research in Glasgow

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  20. Silica Nanofibers with Immobilized Tetracycline for Wound Dressing

    Irena Lovětinská-Šlamborová

    2016-01-01

    Full Text Available Local antibiotic treatment has its justification for superficial infections. The advantage of this treatment is that the antibiotic has effects on bacterial agent directly at the application site. Skin infections which are intended for the local antibiotic treatment are superficial pyoderma, some festering wounds, burns of second and third degree, infected leg ulcers, or decubitus of second and third degree. Tetracyclines are available topical antibiotics with a broad bacterial spectrum. At present, ointments containing tetracycline are also used for the treatment, which rarely can lead to skin sensitization. In this paper, a development of novel nanofibrous material with immobilized tetracycline is presented. Two different methods of immobilized tetracycline quantification onto silica nanofibers are employed. It was proven that the prevailing part of tetracycline was bound weakly by physisorption forces, while the minor part was covalently bound by NH2 groups formed by the preceding functionalization. The silica nanofibers with immobilized tetracycline are promising material for wound dressing applications due to its antibacterial activity; it was proved by tests.

  1. A covalent attraction between two molecular cation TTF·~+

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  2. A covalent attraction between two molecular cation TTF·~+

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  3. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  4. Improving Fracture Toughness of Epoxy Nanocomposites by Silica Nanoparticles

    Seyed Reza Akherati Sany

    2017-04-01

    Full Text Available An epoxy resin was modified by silica nanoparticles and cured with an anhydride. The particles with different batches of 12, 20, and 40 nm sizes were each distributed into the epoxy resin ultrasonically. Electron microscopy images showed that the silica particles were well dispersed throughout the resin. Tensile test results showed that Young’s modulus and tensile strength increased with the volume fraction and surface area of the silica particles. The simultaneous use of two average sizes of 20 and 40 nm diameter silica particles still increased these mechanical properties but other combinations of silica particles were unsuccessful. A three-point bending test on each pre-cracked specimen was performed to measure the mode I fracture toughness energy. The fracture energy increased from 283 J/m2 for the unmodified epoxy to about 740 J/m2 for the epoxy with 4.5 wt% of 12 nm diameter silica nanoparticles. The fracture energy of smaller particles was greater because of their higher surface to volume ratio. The fracture energy results showed also that the combined nanoparticles has a synergic effect on the fracture toughness of nanocomposites. Simultaneous use of 10 and 20 nm particles increased the fracture energy to about 770 J/m2. Finally, crack-opening displacement was calculated and found to be in the range of several micrometers which was much larger than the sizes of particles studied. Thus, the toughening mechanisms of crack pinning and crack deflection have a negligible effect on improvement of toughness, nevertheless, the plastic deformation and plastic void growth are dominant mechanisms in epoxy toughening by nanoparticles.

  5. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  6. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  7. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  8. Galactose oxidase immobilized on silica in an analytical determination of galactose-containing carbohydrates.

    Kondakova, Lyudmila; Yanishpolskii, Victor; Tertykh, Valentin; Buglova, Tat'yana

    2007-01-01

    Galactose oxidase from Fusarium graminearum IMV-1060 adsorbed on, and covalently bound to, silica carriers has been used for analytical determinations of D-galactose and galactose-containing sugars. Using a flowing oxygen electrode of the Clark-type, sensor system for enzymatic analysis of water solutions of galactose-containing carbohydrates was made. Measurements were taken both in the pulse and continuous modes of a substrate flowing through a column with an immobilized biocatalyst. The linear measurement ranges for galactose-containing carbohydrates concentrations were determined.

  9. Construction of covalently coupled, concatameric dimers of 7TM receptors

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...

  10. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  11. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  12. New fluorescent pH sensors based on covalently linkable PET rhodamines

    Aigner, Daniel; Borisov, Sergey M.; Orriach Fernández, Francisco J.; Fernández Sánchez, Jorge F.; Saf, Robert; Klimant, Ingo

    2012-01-01

    A new class of rhodamines for the application as indicator dyes in fluorescent pH sensors is presented. Their pH-sensitivity derives from photoinduced electron transfer between non-protonated amino groups and the excited chromophore which results in effective fluorescence quenching at increasing pH. The new indicator class carries a pentafluorophenyl group at the 9-position of the xanthene core where other rhodamines bear 2-carboxyphenyl substituents instead. The pentafluorophenyl group is used for covalent coupling to sensor matrices by “click” reaction with mercapto groups. Photophysical properties are similar to “classical” rhodamines carrying 2′-carboxy groups. pH sensors have been prepared with two different matrix materials, silica gel and poly(2-hydroxyethylmethacrylate). Both sensors show high luminescence brightness (absolute fluorescence quantum yield ΦF≈0.6) and high pH-sensitivity at pH 5–7 which makes them suitable for monitoring biotechnological samples. To underline practical applicability, a dually lifetime referenced sensor containing Cr(III)-doped Al2O3 as reference material is presented. PMID:22967541

  13. Preparation and Characterization of Hybrid Nanocomposite of Polyacrylamide/Silica-Nanoparticles

    Ahmad Rabiee

    2013-01-01

    Full Text Available Polyacrylamides are water soluble macromolecules. These polymers are widely used for flocculation, separation and treatment of solid-liquid phase materials. In this research, organic-inorganic hybrid of polyacrylamide/silica nanoparticle is prepared via radical polymerization. First, the silica nanoparticle surfaces were modified by 3-methacryloxypropyltrimethoxysilane as coupling agent using a sol-gel technique in aqueous media in acidic condition. Afterwards, the modified nanoparticles are copolymerized by acrylamide monomer in presence of a peroxide initiator during a free radical polymerization. The chemical structure of the prepared modified nano-silica as well as polyacrylamide nanocomposite was studied and confirmed by FTIR spectroscopy technique. The morphology of nanocomposite was investigated by scanning electron microscopy. The SEM micrograph showed that the surface of the composite did not display any phase separation. Nanoparticles distribution was investigated by SEM-EDX technique. The results showed a uniform distribution of particles throughout the polymer bulk. TEM analysis showed the presence of silica nanoparticles in bulk of polymer which is an indicative of suitable dispersion of nanoparticles. The thermal stability of hybrid nanocomosite with that of polyacrylamide was compared by TGA technique. The higher thermal stability of hybrid nanocomposite with respect to homopolymer is indicative of a reaction between the modified nanoparticles and polyacrylamide chain. The presence of silica particles in copolymer was also confirmed with EDX analysis in ash content of hybrid nanocomposite.

  14. Pumping Iron and Silica Bodybuilding

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  15. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro.

    Lankoff, Anna; Arabski, Michal; Wegierek-Ciuk, Aneta; Kruszewski, Marcin; Lisowska, Halina; Banasik-Nowak, Anna; Rozga-Wijas, Krystyna; Wojewodzka, Maria; Slomkowski, Stanislaw

    2013-05-01

    Silica nanoparticles have an interesting potential in drug delivery, gene therapy and molecular imaging due to the possibility of tailoring their surface reactivity that can be obtained by surface modification. Despite these potential benefits, there is concern that exposure of humans to certain types of silica nanomaterials may lead to significant adverse health effects. The motivation of this study was to determine the kinetics of cellular binding/uptake of the vinyl- and the aminopropyl/vinyl-modified silica nanoparticles into peripheral blood lymphocytes in vitro, to explore their genotoxic and cytotoxic properties and to compare the biological properties of modified silica nanoparticles with those of the unmodified ones. Size of nanoparticles determined by SEM varied from 10 to 50 nm. The average hydrodynamic diameter and zeta potential also varied from 176.7 nm (+18.16 mV) [aminopropyl/vinyl-modified] and 235.4 nm (-9.49 mV) [vinyl-modified] to 266.3 (-13.32 mV) [unmodified]. Surface-modified silica particles were internalized by lymphocytes with varying efficiency and expressed no cytotoxic nor genotoxic effects, as determined by various methods (cell viability, apoptosis/necrosis, oxidative DNA damage, chromosome aberrations). However, they affected the proliferation of the lymphocytes as indicated by a decrease in mitotic index value and cell cycle progression. In contrast, unmodified silica nanoparticles exhibited cytotoxic and genotoxic properties at high doses as well as interfered with cell cycle.

  16. Covalent Immobilization of Bacillus licheniformis γ-Glutamyl Transpeptidase on Aldehyde-Functionalized Magnetic Nanoparticles

    Meng-Chun Chi

    2013-02-01

    Full Text Available This work presents the synthesis and use of surface-modified iron oxide nanoparticles for the covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase (BlGGT. Magnetic nanoparticles were prepared by an alkaline solution of divalent and trivalent iron ions, and they were subsequently treated with 3-aminopropyltriethoxysilane (APES to obtain the aminosilane-coated nanoparticles. The functional group on the particle surface and the amino group of BlGGT was then cross-linked using glutaraldehyde as the coupling reagent. The loading capacity of the prepared nanoparticles for BlGGT was 34.2 mg/g support, corresponding to 52.4% recovery of the initial activity. Monographs of transmission electron microscopy revealed that the synthesized nanoparticles had a mean diameter of 15.1 ± 3.7 nm, and the covalent cross-linking of the enzyme did not significantly change their particle size. Fourier transform infrared spectroscopy confirmed the immobilization of BlGGT on the magnetic nanoparticles. The chemical and kinetic behaviors of immobilized BlGGT are mostly consistent with those of the free enzyme. The immobilized enzyme could be recycled ten times with 36.2% retention of the initial activity and had a comparable stability respective to free enzyme during the storage period of 30 days. Collectively, the straightforward synthesis of aldehyde-functionalized nanoparticles and the efficiency of enzyme immobilization offer wide perspectives for the practical use of surface-bound BlGGT.

  17. Molecular assembly of materials with covalent bonding: Path to robust structures

    Puniredd, Sreenivasa Reddy; Zhang Fengxiang; Srinivasan, M.P.

    2006-01-01

    Ultrathin films were fabricated using synthesized polyimide (HPI) with hydroxyl pendant groups in a layer-by-layer fashion on amine-terminated substrates of silicon, quartz and gold. The interlayer linkages were established by using terephthaloyl chloride as a bridging agent to form ester groups between HPI layers. Furthermore, when working on the nanometer scale in liquid solvents, necessity of a solvent rinse after each deposition step and the presence of residual solvent are problematic. To avoid the problems related to residual solvent we have fabricated an ultrathin film of oligoimide on amine-modified substrates of silicon and quartz through alternate layer-by-layer (LBL) assembly of pyromellitic dianhydride (PMDA) and diaminodiphenylether (DDE), with inter-layer links established by covalent bonds. The assembly was formed in supercritical carbon dioxide (SCCO 2 ), and in solution (N,N-dimethylacetamide, DMAc), and the imidization reaction was performed by thermal and chemical methods, in benzene and in the supercritical medium. We have compared these films with those assembled in a conventional solvent medium. The comparison is further extended to carrying out the imidization reaction by various methods. The films show excellent stability and strength, which can be attributed to the covalent interlayer linkage

  18. Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones

    Dongjiang Pan

    2016-11-01

    Full Text Available The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD, the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.

  19. Covalent microcontact printing of proteins fro cell patterning

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An

  20. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. COVAL, Compound Probability Distribution for Function of Probability Distribution

    Astolfi, M.; Elbaz, J.

    1979-01-01

    1 - Nature of the physical problem solved: Computation of the probability distribution of a function of variables, given the probability distribution of the variables themselves. 'COVAL' has been applied to reliability analysis of a structure subject to random loads. 2 - Method of solution: Numerical transformation of probability distributions

  2. Covalent Attachment of Bent-Core Mesogens to Silicon Surfaces

    Scheres, L.; Achten, R.; Giesbers, M.; Smet, de L.; Arafat, A.; Sudhölter, E.J.R.; Marcelis, A.T.M.; Zuilhof, H.

    2009-01-01

    Two vinyl-terminated bent core-shaped liquid crystalline molecules that exhibit thermotropic antiferroelectric SmCPA phases have been covalently attached onto a hydrogen-terminated silicon(111) surface. The surface attachment was achieved via a mild procedure from a mesitylene solution, using

  3. Multi-step non-covalent pathways to supramolecular systems

    Hermans, T.M.

    2010-01-01

    The spontaneous organization of building blocks into ordered structures governed by non-covalent interactions, or self-assembly, is a commonly encountered pathway in nature to obtain functional materials. These materials often consist of many different components ordered into intricate structures.

  4. Covalent Functionalization of Carbon Nanotube by Tetrasubtituted Amino Manganese Phthalocyanine

    Zheng Long YANG; Hong Zheng CHEN; Lei CAO; Han Yin LI; Mang WANG

    2004-01-01

    The multiwall carbon nanotube (MWCNT) bonded to 2, 9, 16, 23-tetraamino manganese phthalocyanine (TAMnPc) was obtained by covalent functionalization, and its chemical structure was characterized by TEM. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was also studied.

  5. Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers

    Schaeffer, Gaël; Buhler, Eric; Candau, Sauveur Jean; Lehn, Jean-Marie

    2013-01-01

    Double-dynamic polymers, incorporating both molecular and supramolecular dynamic features (“double dynamers”) have been generated, where these functions are present in a nonstoichiometric ratio in the main chain of the polymer. It has been achieved by (1) the formation of covalent oligo-dynamers in

  6. Covalent bindings in proteins following UV-C irradiation

    Diezel, W.; Meffert, H.; Soennichsen, N.; Reinicke, C.

    1980-01-01

    Following a UV-C irradiation of catalase cross-linked catalase subunits could be detected by sodium dodecylsulfate gel electrophoresis. The subunits of aldolase were not cross-linked. The origin of covalent bindings in the catalase molecule is suggested to be effected by a free radical chain reaction induced by the heme component of catalase after UV-C irradiation. (author)

  7. Silica nanoparticle stability in biological media revisited.

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  8. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    2010-07-01

    ... uses are: (i) Protection in the workplace. Requirements as specified in § 721.63 (a)(1), (a)(2)(i), (a... National Institute for Occupational Safety and Health (NIOSH)-approved respirators with an APF of 10-25...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for...

  9. Immobilization of Jacobsen type catalysts on modified silica

    Jairo Cubillos

    2011-01-01

    Full Text Available Varios catalizadores tipo Jacobsen fueron inmovilizados por enlace covalente en sílica amorfa previamente funcionalizada con 3-aminopropiltrietoxisilano (3-APTES. La caracterización de estos catalizadores y sus precursores por FTIR, DR UV-VIS, TGA y AAS permitió confirmar la inmovilización de los complejos de salen de Mn(III. Los catalizadores heterogéneos se evaluaron en la epoxidación diastereoselectiva de R-(+-limoneno utilizando dimetildioxirano (DMD generado in situ como agente oxidante, obteniéndose 1,2-epóxido como producto mayoritario. Bajo las mismas condiciones de reacción, los catalizadores heterogéneos mostraron una leve reducción en la selectividad en comparación con el catalizador homogéneo. La selectividad inicial se mantuvo en tres ensayos consecutivos de los catalizadores. Sin embargo, después de tres reusos, se observó pérdida de selectividad del catalizador inmovilizado. Los resultados FTIR sugieren la degradación parcial del catalizador heterogenizado. A pesar de que el método de inmovilización se seleccionó de tal manera que se minimizaran los cambios en la estructura del catalizador homogéneo, el exceso diastereomérico (d.e. se redujo considerablemente con los catalizadores inmovilizados.

  10. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo.

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-05-07

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.