WorldWideScience

Sample records for modified matrix element

  1. Matrix elements of u and p for the modified Poeschl-Teller potential

    International Nuclear Information System (INIS)

    Gomez-Camacho, J; Lemus, R; Arias, J M

    2004-01-01

    Closed analytical expressions in terms of a single sum are obtained for the matrix elements of the momentum and the natural variable u tanh(αx) in the basis of the modified Poeschl-Teller (MPT) bound eigenstates. These matrix elements are first expressed in terms of Franck-Condon factors, which thereafter are substituted for analytic expressions. Expansions of the variables p and u in terms of creation and annihilation operators associated with the MPT bound eigenfunctions are also presented

  2. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  3. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.

    2017-01-01

    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  4. Closed form for two-photon free-free transition matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Karule, Erna E-mail: karule@latnet.lv

    2000-08-01

    Two-photon free-free transitions happen in the multiphoton ionization with more than one excess photon and in Bremsstrahlung. Up to now, the configuration space free-free transition amplitudes have not been written in closed form. We propose a modified Coulomb Green's function (CGF) Sturm ian expansion which allows one to obtain expressions for two-photon radial transition matrix elements in the closed form which are easy to continue analytically to calculate free-free transitions in H.

  5. The finite element response matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-02-01

    A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt

  6. Intermediate coupling collision strengths from LS coupled R-matrix elements

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    1978-01-01

    Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)

  7. A new program for calculating matrix elements of one-particle operators in jj-coupling

    International Nuclear Information System (INIS)

    Pyper, N.C.; Grant, I.P.; Beatham, N.

    1978-01-01

    The aim of this paper is to calculate the matrix elements of one-particle tensor operators occurring in atomic and nuclear theory between configuration state functions representing states containing any number of open shells in jj-coupling. The program calculates the angular part of these matrix elements. The program is essentially a new version of RDMEJJ, written by J.J. Chang. The aims of this version are to eliminate inconsistencies from RDMEJJ, to modify its input requirements for consistency with MCP75, and to modify its output so that it can be stored in a discfile for access by other compatible programs. The program assumes that the configurational states are built from a common orthonormal set of basis orbitals. The number of electrons in a shell having j>=9/2 is restricted to be not greater than 2 by the available CFP routines . The present version allows up to 40 orbitals and 50 configurational states with <=10 open shells; these numbers can be changed by recompiling with modified COMMON/DIMENSION statements. The user should ensure that the CPC library subprograms AAGD, ACRI incorporate all current updates and have been converted to use double precision floating point arithmetic. (Auth.)

  8. Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements

    International Nuclear Information System (INIS)

    Eberspaecher, M.; Amos, K.; Apagyi, B.

    1999-12-01

    The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed

  9. Rovibrational matrix elements of the multipole moments

    Indian Academy of Sciences (India)

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...

  10. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  11. S-matrix elements from T-duality

    International Nuclear Information System (INIS)

    Babaei Velni, Komeil; Garousi, Mohammad R.

    2013-01-01

    Recently it has been speculated that the S-matrix elements satisfy the Ward identity associated with the T-duality. This indicates that a group of S-matrix elements is invariant under the linear T-duality transformations on the external states. If one evaluates one component of such T-dual multiplet, then all other components may be found by the simple use of the linear T-duality. The assumption that fields must be independent of the Killing coordinate, however, may cause, in some cases, the T-dual multiplet not to be gauge invariant. In those cases, the S-matrix elements contain more than one T-dual multiplet which are intertwined by the gauge symmetry. In this paper, we apply the T-dual Ward identity on the S-matrix element of one RR (p−3)-form and two NSNS states on the world volume of a D p -brane to find its corresponding T-dual multiplet. In the case that the RR potential has two transverse indices, the T-dual multiplet is gauge invariant, however, in the case that it has one transverse index the multiplet is not gauge invariant. We find a new T-dual multiplet in this case by imposing the gauge symmetry. We show that the multiplets are reproduced by explicit calculation, and their low energy contact terms at order α ′2 are consistent with the existing couplings in the literature

  12. Lattice results for heavy light matrix elements

    International Nuclear Information System (INIS)

    Soni, A.

    1994-09-01

    Lattice results for heavy light matrix elements are reviewed and some of their implications are very briefly discussed. Despite the fact that in most cases the lattice results for weak matrix elements at the moment have only a modest accuracy of about 20--30% they already have important phenomenological repercussions; e.g. for V td /V ts , x s /x d and B → K*γ

  13. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  14. Electromagnetic matrix elements in baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.; Moinester, M.A.

    1992-01-01

    Some simple symmetry relations between matrix elements of electromagnetic operators are investigated. The implications are discussed for experiments to study hyperon radiative transitions and polarizabilities and form factors. (orig.)

  15. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Zhou; LIU Wei

    2002-01-01

    In a neutron-proton system, the matrix elements of the generators for SO(8) × SO(8) symmetry areconstructed explicitly, and with these matrix elements the low-lying excitation spectra obtained by diagonalization arepresented. The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe, Ba, andCe isotopes are calculated, and comparison with the experimental results is carried out.

  16. Matrix Elements in Fermion Dynamical Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    LIUGuang-Zhou; LIUWei

    2002-01-01

    In a neutron-proton system,the matrix elements of the generators for SO(8)×SO(8) symmetry are constructed exp;icitly,and with these matrix elements the low-lying excitation spsectra obtained by diagonalization are presented.The excitation spectra for SO(7) nuclei Pd and Ru isotopes and SO(6) r-soft rotational nuclei Xe,Ba,and Ce isotopes are calculated,and comparison with the experimental results is carried out.

  17. Direct calculation of off-diagonal matrix elements

    International Nuclear Information System (INIS)

    Killingbeck, J P; Jolicard, G

    2011-01-01

    Gauss elimination is used in a sequence of calculations which give the squares of the off-diagonal matrix elements of x between quartic oscillator eigenstates, in a modification of the original sum rule approach of Tipping et al to the problem. New and more flexible methods are then devised and tested and are shown to permit the isolation and calculation of individual squared matrix elements of x and x 2 .

  18. Renormalon ambiguities in NRQCD operator matrix elements

    International Nuclear Information System (INIS)

    Bodwin, G.T.; Chen, Y.

    1999-01-01

    We analyze the renormalon ambiguities that appear in factorization formulas in QCD. Our analysis contains a simple argument that the ambiguities in the short-distance coefficients and operator matrix elements are artifacts of dimensional-regularization factorization schemes and are absent in cutoff schemes. We also present a method for computing the renormalon ambiguities in operator matrix elements and apply it to a computation of the ambiguities in the matrix elements that appear in the NRQCD factorization formulas for the annihilation decays of S-wave quarkonia. Our results, combined with those of Braaten and Chen for the short-distance coefficients, provide an explicit demonstration that the ambiguities cancel in the physical decay rates. In addition, we analyze the renormalon ambiguities in the Gremm-Kapustin relation and in various definitions of the heavy-quark mass. copyright 1999 The American Physical Society

  19. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  20. An Explicit Consistent Geometric Stiffness Matrix for the DKT Element

    Directory of Open Access Journals (Sweden)

    Eliseu Lucena Neto

    Full Text Available Abstract A large number of references dealing with the geometric stiffness matrix of the DKT finite element exist in the literature, where nearly all of them adopt an inconsistent form. While such a matrix may be part of the element to treat nonlinear problems in general, it is of crucial importance for linearized buckling analysis. The present work seems to be the first to obtain an explicit expression for this matrix in a consistent way. Numerical results on linear buckling of plates assess the element performance either with the proposed explicit consistent matrix, or with the most commonly used inconsistent matrix.

  1. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    International Nuclear Information System (INIS)

    Martini, Till; Uwer, Peter

    2015-01-01

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  2. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Cortez Diaz, Mirella del Carmen

    2002-01-01

    Heavy metals are a big source of environmental contamination and are also highly toxic to humans. Since shellfish are bio-accumulators of these metals, proper techniques for quantifying them should be available. This work aims to develop an analytical method for the quantitative determination of heavy metals in biological materials (shellfish), specifically arsenic and cadmium at the trace level, using graphite furnace atomic absorption spectrometry, for which nickel and phosphate solutions were used to modify the modifiers. Prior to the analysis, the sample was diluted with nitric acid in a DAB II pressure digestion system order to destroy the organic matter. The instrument conditions were initially set (wavelength, slit, integration peaks, graphite tube, etc.), then the work range was defined for each element and the most appropriate operational parameters were studied, such as: temperature, ramp times, hold times and internal gas flow, in the different stage of the electrothermal treatment (drying, calcination, atomization) for the furnace program. Once the above mentioned conditions were set and since this was a biological sample, a matrix chemical modifier had to be used, in order to make the elements that accompany the element being studied more volatile. In this way the chemical and spectral interferences decrease together with the high background absorption of the matrix. Therefore, different matrix modifiers were studied for the definition of each analyte. The method validation was done using Certified Oyster Tissue Reference Material N o 1566a from the National Institute of Standards and Technology applying different tests in order to eliminate outliers. Repeatability, uncertainty, sensitivity, lineal range, working range, detection limit and quantification limit were evaluated for each element, and the results were compared with the values for the certified material. The Fisher and Student tests were the statistical tools used. The experimental values

  3. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  4. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)

    2015-09-14

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  5. Radiation-induced evolution of austenite matrix in silicon-modified AISI 316 alloys

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1980-01-01

    The microstructures of a series of silicon-modified AISI 316 alloys irradiated to fast neutron fluences of about 2-3 and 10 x 10 22 n/cm 2 (E > 0.1 MeV at temperatures ranging from 400 0 C to 600 0 C have been examined. The irradiation of AISI 316 leads to an extensive repartition of several elements, particularly nickel and silicon, between the matrix and various precipitate phases. The segregation of nickel at void and grain boundary surfaces at the expense of other faster-diffusing elements is a clear indication that one of the mechanisms driving the microchemical evolution is the Inverse Kirkendall effect. There is evidence that at one sink this mechanism is in competition with the solute drag process associated with interstitial gradients

  6. Finite size effects of a pion matrix element

    International Nuclear Information System (INIS)

    Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.

    2004-01-01

    We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation

  7. Weak matrix elements on the lattice - Circa 1995

    International Nuclear Information System (INIS)

    Soni, A.

    1995-01-01

    Status of weak matrix elements is reviewed. In particular, e'/e, B → K*γ, B B and B B , are discussed and the overall situation with respect to the lattice effort and some of its phenomenological implications are summarised. For e'/e the need for the relevant matrix elements is stressed in view of the forthcoming improved experiments. For some of the operators, (e.g. O 6 ), even bound on their matrix elements would be very helpful. On B → K degrees γ, a constant behavior of T 2 appears disfavored although dependence of T 2 could, of course, be milder than a simple pole. Improved data is badly needed to settle this important issue firmly, especially in view of its ramification for extractions of V td from B → ργ. On B κ , the preliminary result from JLQCD appears to contradict Sharpe et al. JLQCD data seems to fit very well to linear α dependence and leads to an appreciably lower value of B κ . Four studies of B κ in the open-quotes fullclose quotes (n f = 2) theory indicate very little quenching effects on B κ ; the full theory value seems to be just a little less than the quenched result. Based on expectations from HQET, analysis of B-parameter (B h ell) for the heavy-light mesons via B h ell) = constant + constants'/m h ell is suggested. A summary of an illustrative sample of hadron matrix elements is given and constraints on CKM parameters (e.g. V td /V ts , on the unitarity triangle and on x s /x d , emerging from the lattice calculations along with experimental results are briefly discussed. In quite a few cases, for the first time, some indication of quenching errors on weak matrix elements are now becoming available

  8. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  9. Rotational covariance and light-front current matrix elements

    International Nuclear Information System (INIS)

    Keister, B.D.

    1994-01-01

    Light-front current matrix elements for elastic scattering from hadrons with spin 1 or greater must satisfy a nontrivial constraint associated with the requirement of rotational covariance for the current operator. Using a model ρ meson as a prototype for hadronic quark models, this constraint and its implications are studied at both low and high momentum transfers. In the kinematic region appropriate for asymptotic QCD, helicity rules, together with the rotational covariance condition, yield an additional relation between the light-front current matrix elements

  10. Hadron matrix elements of quark operators in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1979-07-01

    General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.

  11. Matrix elements of a hyperbolic vector operator under SO(2,1)

    International Nuclear Information System (INIS)

    Zettili, N.; Boukahil, A.

    2003-01-01

    We deal here with the use of Wigner–Eckart type arguments to calculate the matrix elements of a hyperbolic vector operator V-vector by expressing them in terms of reduced matrix elements. In particular, we focus on calculating the matrix elements of this vector operator within the basis of the hyperbolic angular momentum T-vector whose components T-vector 1 , T-vector 2 , T-vector 3 satisfy an SO(2,1) Lie algebra. We show that the commutation rules between the components of V-vector and T-vector can be inferred from the algebra of ordinary angular momentum. We then show that, by analogy to the Wigner–Eckart theorem, we can calculate the matrix elements of V-vector within a representation where T-vector 2 and T-vector 3 are jointly diagonal. (author)

  12. Comparison between phase shift derived and exactly calculated nucleon--nucleon interaction matrix elements

    International Nuclear Information System (INIS)

    Gregersen, A.W.

    1977-01-01

    A comparison is made between matrix elements calculated using the uncoupled channel Sussex approach to second order in DWBA and matrix elements calculated using a square well potential. The square well potential illustrated the problem of the determining parameter independence balanced with the concept of phase shift difference. The super-soft core potential was used to discuss the systematics of the Sussex approach as a function of angular momentum as well as the relation between Sussex generated and effective interaction matrix elements. In the uncoupled channels the original Sussex method of extracting effective interaction matrix elements was found to be satisfactory. In the coupled channels emphasis was placed upon the 3 S 1 -- 3 D 1 coupled channel matrix elements. Comparison is made between exactly calculated matrix elements, and matrix elements derived using an extended formulation of the coupled channel Sussex method. For simplicity the potential used is a nonseparable cut-off oscillator. The eigenphases of this potential can be made to approximate the realistic nucleon--nucleon phase shifts at low energies. By using the cut-off oscillator test potential, the original coupled channel Sussex method of determining parameter independence was shown to be incapable of accurately reproducing the exact cut-off oscillator matrix elements. The extended Sussex method was found to be accurate to within 10 percent. The extended method is based upon more general coupled channel DWBA and a noninfinite oscillator wave function solution to the cut-off oscillator auxiliary potential. A comparison is made in the coupled channels between matrix elements generated using the original Sussex method and the extended method. Tables of matrix elements generated using the original uncoupled channel Sussex method and the extended coupled channel Sussex method are presented for all necessary angular momentum channels

  13. Gamow-Teller matrix elements from 00 ( p,n) cross section

    International Nuclear Information System (INIS)

    Goodman, C.D.; Goulding, C.A.; Greenfield, M.B.; Rapaport, J.; Bainum, D.E.; Foster, C.C.; Love, W.G.; Petrovich, F.

    1980-01-01

    After simple corrections for distortion effects, 120-MeV, 0 0 (p,n) cross sections are found to be proportional to the squares of the corresponding Fermi and Gamow-Teller matrix elements extracted from β-decay measurements. It is suggested that this proportionality can be used to extract Gamow-Teller matrix elements for transitions inaccessible to β decay

  14. The finite element response Matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-01-01

    A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed

  15. Rules for matrix element evaluations in JWKB approximation

    International Nuclear Information System (INIS)

    Giler, S.

    1990-01-01

    Using the properties of the so-called fundamental solutions to the one-dimensional Schroedinger equation having Froeman and Froeman form the rules are formulated which allow one to evaluate matrix elements in the JWKB approximation and its generalizations. The rules apply to operators M(x, d/dx), M being polynomial functions of their arguments. The applicability of the rules depends on the properties of the so-called canonical indices introduced in this paper. The canonical indices are global characteristics of underlying Stokes graphs. If sufficiently small in comparison with unity they allow one to apply safely the JWKB approximation within the so-called ε-reduced canonical domains of a given Stokes graph. The Oth canonical index for the nth energy level Stokes graph corresponding to the harmonic oscillator potential is found to be ε CAN = 0.678/(2n+1). If the application of the rules is allowed then approximated matrix elements are obtained in an unambiguous way and with an accuracy controlled by corresponding canonical indices. Several examples of matrix elements are considered to illustrate how the rules should be used. Limitations to the rules are also discussed with the aid of suitably chosen examples. (author)

  16. Rigorous constraints on the matrix elements of the energy–momentum tensor

    Directory of Open Access Journals (Sweden)

    Peter Lowdon

    2017-11-01

    Full Text Available The structure of the matrix elements of the energy–momentum tensor play an important role in determining the properties of the form factors A(q2, B(q2 and C(q2 which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincaré generators in order to derive constraints on these form factors as q→0. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment B(0 and the condition A(0=1 are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincaré generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincaré transformations.

  17. Analytic vibrational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.; Ogilvie, J.F.; Tipping, R.H.

    1986-01-01

    The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential-energy function. (orig.)

  18. The Matrix Element Method at Next-to-Leading Order

    OpenAIRE

    Campbell, John M.; Giele, Walter T.; Williams, Ciaran

    2012-01-01

    This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...

  19. Matrix modifiers application during microimpurities determination in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  20. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  1. Glueball Spectrum and Matrix Elements on Anisotropic Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang

    2006-01-01

    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.

  2. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    Science.gov (United States)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  3. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  4. Hadronic matrix elements in the QCD on the lattice

    International Nuclear Information System (INIS)

    Altmeyer, R.

    1995-01-01

    The work describes a lattice simulation of full QCD with dynamical Kogut-Susskind fermions. We evaluated different hadronic matrix elements which are related to the static and low-energy behaviour of hadrons. The analysis was performed on a 16 3 x 24 lattice with a coupling constant of β = 5.35 and a quark mass of m = 0.010. The calculations are based on a set of 85 configurations created by using a Hybrid-Monte-Carlo algorithm. First we evaluated the mass and energy spectrum of the low-lying hadrons using local operators as well as non-local operators. As the complete spectrum of the different pion and ρ meson lattice representations has been calculated we were able to check the restoration of continuum flavor symmetry. Moreover, the determination of energies E of hadron states with non-vanishing momentum vector q made it possible to investigate the lattice dispersion function E( vector q). Another part of the presented work is the determination of mesonic decay constants which parameterise the weak decay of mesons. They are related to hadronic matrix elements of the respective quark currents and through the calculation of these matrix elements we were able to determine the decay constants f π and f ρ . Before doing so, we calculated non-perturbatively renormalization constants for the currents under consideration. The next part is the determination of hadronic coupling constants. These parameterise in an effective low-energy model the interactions of different hadrons. They are related to hadronic matrix elements whose lattice calculation can be dpme bu evaluating 3-point correlation functions. Thus we evaluted the hadronic coupling constants g ρππ and g NNπ . Finally, an investigation of the pion-nucleon σterm was done. The σterm is defined through a hadronic matrix element of a quark-antiquark operator and can thus be evaluated on the lattice via the calculation of a 3-point correlation function. As we determined the connected and the disconnected

  5. Hierarchy of Poisson brackets for elements of a scattering matrix

    International Nuclear Information System (INIS)

    Konopelchenko, B.G.; Dubrovsky, V.G.

    1984-01-01

    The infinite family of Poisson brackets [Ssub(i1k1) (lambda 1 ), Ssub(i2k2) (lambda 2 )]sub(n) (n=0, 1, 2, ...) between the elements of a scattering matrix is calculated for the linear matrix spectral problem. (orig.)

  6. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  7. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  8. Analytic vibration-rotational matrix elements for diatomic molecules

    International Nuclear Information System (INIS)

    Bouanich, J.P.

    1987-01-01

    The vibration-rotational matrix elements for infrared or Raman transitions vJ → v'J' of diatomic molecules are calculated for powers of the reduced displacement X from parameters of the Dunham potential-energy function. (orig.)

  9. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  10. Single-particle Glauber matrix elements

    International Nuclear Information System (INIS)

    Oset, E.; Strottman, D.

    1983-01-01

    The single-particle matrix elements of the Glauber profile function are tabulated for harmonic oscillator single-particle wave functions. The tables are presented in such a manner as to be applicable if the hadron--nucleon elementary scattering amplitude is specified by either a partial wave expansion or a Gaussian in momentum transfer squared. The table is complete through the 1 g/sub 9/2/ orbital and contains entries for the 3s/sub 1/2/ orbital for use if realistic wave functions are expanded in terms of harmonic oscillator functions

  11. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  12. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    Science.gov (United States)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  13. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    International Nuclear Information System (INIS)

    CDF Collaboration; Freeman, John; Freeman, John

    2007-01-01

    A measurement of the top quark mass in t(bar t) → l + jets candidate events, obtained from p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t(bar t) production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb -1 data sample, using events with a high-p T lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M meas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c 2

  14. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, John [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  15. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  16. The effects of flavour symmetry breaking on hadron matrix elements

    International Nuclear Information System (INIS)

    Cooke, A.N.; Horsley, R.; Pleiter, D.; Zanotti, J.M.

    2012-12-01

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  17. The effects of flavour symmetry breaking on hadron matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Pleiter, D. [Juelich Research Centre (Germany); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). School of Chemistry and Physics

    2012-12-15

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  18. A collocation finite element method with prior matrix condensation

    International Nuclear Information System (INIS)

    Sutcliffe, W.J.

    1977-01-01

    For thin shells with general loading, sixteen degrees of freedom have been used for a previous finite element solution procedure using a Collocation method instead of the usual variational based procedures. Although the number of elements required was relatively small, nevertheless the final matrix for the simultaneous solution of all unknowns could become large for a complex compound structure. The purpose of the present paper is to demonstrate a method of reducing the final matrix size, so allowing solution for large structures with comparatively small computer storage requirements while retaining the accuracy given by high order displacement functions. Collocation points, a number are equilibrium conditions which must be satisfied independently of the overall compatibility of forces and deflections for a complete structure. (Auth.)

  19. Analytic Expression of Arbitrary Matrix Elements for Boson Exponential Quadratic Polynomial Operators

    Institute of Scientific and Technical Information of China (English)

    XU Xiu-Wei; REN Ting-Qi; LIU Shu-Yan; MA Qiu-Ming; LIU Sheng-Dian

    2007-01-01

    Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's), we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.

  20. Radiation and penetration matrix elements for magnetic quadrupole transitions between Nilsson states in odd nuclei

    International Nuclear Information System (INIS)

    Feresin, A.P.; Guseva, I.S.

    1984-01-01

    Single-particle matrix elements for magnetic quadrupole gamma radiation in odd deformed nuclei, calculated with the aid of Nilsson-potential wave functions, are presented. Also given are the internal conversion penetration matrix elements, calculated in the same manner. The penetration matrix elements are needed to estimate the nuclear penetration parameter, which determines the deviation of experimental internal conversion coefficients from their standard values given in tables. Matrix elements are given for transitions between all pairs of Nilsson single-particle states with ΔN = 1 and ΔK = 0, 1, and 2 for the nuclear shells with 4< or =N< or =7 and for the two deformation values epsilon = 0.2 and 0.3

  1. Nucleon matrix elements using the variational method in lattice QCD

    International Nuclear Information System (INIS)

    Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA

    2016-06-01

    The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  2. Inert matrix fuel in dispersion type fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  3. Inert matrix fuel in dispersion type fuel elements

    Science.gov (United States)

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  4. Scattering-matrix elements of coated infinite-length cylinders

    International Nuclear Information System (INIS)

    Manickavasagam, S.; Menguec, M.P.

    1998-01-01

    The angular variations of scattering-matrix elements of coated cylindrical particles are presented. The sensitivity of different elements for a number of physical parameters are discussed, including size parameter, real and imaginary parts of the refractive index of the outer coat, and the inner core. The numerical predictions are presented for typical index-of-refraction values of cotton fibers. These results show that the physical structure of coated cylinders can be determined from carefully conducted light-scattering experiments. copyright 1998 Optical Society of America

  5. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  6. Bag-model matrix elements of the parity-violating weak hamiltonian for charmed baryons

    International Nuclear Information System (INIS)

    Ebert, D.; Kallies, W.

    1983-01-01

    Baryon matrix elements of the parity-violating part of the charmchanging weak Hamiltonian might be significant and comparable with those of the parity-conserving one due to large symmetry breaking. Expression for these new matrix elements by using the MIT-bag model are derived and their implications on earlier calculations of nonleptonic charmed-baryon decays are estimated

  7. Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H

    1979-11-01

    Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.

  8. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  9. A Literature Study of Matrix Element Influenced to the Result of Analysis Using Absorption Atomic Spectroscopy Method (AAS)

    International Nuclear Information System (INIS)

    Tyas-Djuhariningrum

    2004-01-01

    The gold sample analysis can be deviated more than >10% to those thrue value caused by the matrix element. So that the matrix element character need to be study in order to reduce the deviation. In rock samples, the matrix elements can cause self quenching, self absorption and ionization process, so there is a result analysis error. In the rock geochemical process, the elements of the same group at the periodic system have the tendency to be together because of their same characteristic. In absorption Atomic Spectroscopy analysis, the elements associate can absorb primer energy with similar wave length so that it can cause deviation in the result interpretation. The aim of study is to predict matrix element influences from rock sample with application standard method for reducing deviation. In quantitative way, assessment of primer light intensity that will be absorbed is proportional to the concentration atom in the sample that relationship between photon intensity with concentration in part per million is linier (ppm). These methods for eliminating matrix elements influence consist of three methods : external standard method, internal standard method, and addition standard method. External standard method for all matrix element, internal standard method for elimination matrix element that have similar characteristics, addition standard methods for elimination matrix elements in Au, Pt samples. The third of standard posess here accuracy are about 95-97%. (author)

  10. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  11. Composition Feature of the Element Tangent Stiffness Matrix of Geometrically Nonlinear 2D Frame Structures

    Directory of Open Access Journals (Sweden)

    Romanas Karkauskas

    2011-04-01

    Full Text Available The expressions of the finite element method tangent stiffness matrix of geometrically nonlinear constructions are not fully presented in publications. The matrixes of small displacements stiffness are usually presented only. To solve various problems of construction analysis or design and to specify the mode of the real deflection of construction, it is necessary to have a fully described tangent matrix analytical expression. This paper presents a technique of tangent stiffness matrix generation using discrete body total potential energy stationary conditions considering geometrically nonlinear 2D frame element taking account of interelement interaction forces only. The obtained vector-function derivative of internal forces considering nodal displacements is the tangent stiffness matrix. The analytical expressions having nodal displacements of matrixes forming the content of the 2D frame construction element tangent stiffness matrix are presented in the article. The suggested methodology has been checked making symbolical calculations in the medium of MatLAB calculation complex. The analytical expression of the stiffness matrix has been obtained.Article in Lithuanian

  12. Matrix elements of Yale potential and level properties of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N; Prakash, O [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-07-01

    Shell model calculations using bare and renormalized matrix elements of the Yale potential are reported for the normal-parity states of A = 6-9 nuclei. Renormalization of the two-body matrix elements using second-order perturbation theory is not found to improve the agreements with the experimental data. Inclusion of the energy shifts of ground state rotational bands in /sup 8/Be and /sup 9/Be are, however, found to improve the agreements with the excitation energies of nuclear levels. The need for carrying out more calculations of these nuclei with realistic forces is pointed out.

  13. A pedagogical derivation of the matrix element method in particle physics data analysis

    Science.gov (United States)

    Sumowidagdo, Suharyo

    2018-03-01

    The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.

  14. Improved method for eliminating center-of-mass coordinates from matrix elements in oscillator basis

    International Nuclear Information System (INIS)

    Richardson, R.H.; Shapiro, J.Y.

    1986-01-01

    This paper presents a concise, efficient method of reducing potential energy matrix elements to relative coordinates, when one is using an oscillator basis. It is especially suited to computer calculations. One nice feature of the method is its modular form, which allows a wide range of calculations. Separate FORTRAN subroutines have been written which calculate and store tables of the one-dimensional brackets of an equation that is presented and the single particle brackets from the isotropic to the axially symmetric oscillator equations. The tables are used by other subroutines which calculate the modified brackets and the brackets with spin. The methods developed here are a substantial improvement over what has been done heretofore, and open up new possibilities for performing nuclear structure calculations

  15. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Shanker, Balasubramaniam; Lu, Mingyu; Michielssen, Eric

    2013-01-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  16. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  17. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)

    2011-12-16

    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  18. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Frank E., E-mail: harris@qtp.ufl.edu [Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, Florida 32611 (United States)

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  19. Proton decay matrix elements from lattice QCD

    International Nuclear Information System (INIS)

    Aoki, Yasumichi; Shintani, Eigo

    2012-01-01

    We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.

  20. Influence of the measurement medium and matrix modifiers on the ...

    African Journals Online (AJOL)

    An electrothermal atomic absorption (ETAAS) method has been developed for the direct determination of Si in natural waters. Measurements were carried out on previously alkalinized samples and using a mixture of Pd and Mg(NO3)2 as matrix modifier, with an ashing temperature of 1400 oC and an atomization ...

  1. On the estimation of matrix elements for optical transitions in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1992-09-01

    A semi-empirical method is used to calculate the numerical values of the interband momentum matrix elements of the allowed optical transitions in semiconductors. This method is based on the evaluation of the ratio of the two-photon and one-photon absorption coefficients and the compare the result with the corresponding experimental values in a number of semiconductors both for direct and indirect transition processes. The numerical values of the momentum matrix elements are compared with the convenient theoretical calculations available. The result is found to agree fairly well with the corresponding values computed using the k-vector · p-vector perturbation theory. (author). 19 refs, 2 figs, 2 tabs

  2. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  3. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Paris-XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Morte, Michele della [CERN, Geneva (Switzerland). Physics Dept.]|[Mainz Univ. (Germany). Inst. fuer Kernphysik; Hippel, Georg von; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Mendes, Tereza [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Sao Paulo Univ. (Brazil). IFSC

    2009-02-15

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E{sub N+1}-E{sub n}) t). The gap E{sub N+1}-E{sub n} can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m{sub b} in HQET. (orig.)

  4. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    International Nuclear Information System (INIS)

    Blossier, Benoit; Mendes, Tereza; Sao Paulo Univ.

    2009-02-01

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E N+1 -E n ) t). The gap E N+1 -E n can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m b in HQET. (orig.)

  5. A modified DTC-SVM for sensorless matrix converter drives using a simple deadbeat scheme

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    In this paper, a modified direct torque control (DTC) for matrix converter drives is proposed which enables to minimize torque ripple and to obtain unity input power factor, while maintaining constant switching frequency. It is possible to combine the advantages of matrix converters with the adva...

  6. Method of computer algebraic calculation of the matrix elements in the second quantization language

    International Nuclear Information System (INIS)

    Gotoh, Masashi; Mori, Kazuhide; Itoh, Reikichi

    1995-01-01

    An automated method by the algebraic programming language REDUCE3 for specifying the matrix elements expressed in second quantization language is presented and then applied to the case of the matrix elements in the TDHF theory. This program works in a very straightforward way by commuting the electron creation and annihilation operator (a † and a) until these operators have completely vanished from the expression of the matrix element under the appropriate elimination conditions. An improved method using singlet generators of unitary transformations in the place of the electron creation and annihilation operators is also presented. This improvement reduces the time and memory required for the calculation. These methods will make programming in the field of quantum chemistry much easier. 11 refs., 1 tab

  7. A stochastic method for computing hadronic matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-based Science and Technology Research Center; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Collaboration: European Twisted Mass Collaboration

    2013-02-15

    We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.

  8. A modified discrete element model for sea ice dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Baohui; LI Hai; LIU Yu; WANG Anliang; JI Shunying

    2014-01-01

    Considering the discontinuous characteristics of sea ice on various scales, a modified discrete element mod-el (DEM) for sea ice dynamics is developed based on the granular material rheology. In this modified DEM, a soft sea ice particle element is introduced as a self-adjustive particle size function. Each ice particle can be treated as an assembly of ice floes, with its concentration and thickness changing to variable sizes un-der the conservation of mass. In this model, the contact forces among ice particles are calculated using a viscous-elastic-plastic model, while the maximum shear forces are described with the Mohr-Coulomb fric-tion law. With this modified DEM, the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths. The thicknesses, concentrations and velocities of ice particles are obtained, and then reasonable dynamic process is analyzed. The sea ice dynamic process is also simulated in a vortex wind field. Taking the influence of thermodynamics into account, this modified DEM will be improved in the future work.

  9. Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods

    Science.gov (United States)

    Alexander, Steven; Coldwell, R. L.

    2015-03-01

    The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.

  10. Rovibrational matrix elements of the multipole moments and of the ...

    Indian Academy of Sciences (India)

    The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...

  11. Application of FIRE for the calculation of photon matrix elements

    Indian Academy of Sciences (India)

    to evaluate the two-loop Feynman diagrams for the photon matrix element of the ... sum of scalar Feynman integrals to a linear combination of a few master integrals. .... Then, FIRE is used to express these scalar integrals as a linear combi-.

  12. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  13. On the possibility to measure 0νββ-decay nuclear matrix element for 48Ca

    International Nuclear Information System (INIS)

    Rodin, Vadim

    2011-01-01

    As shown in Ref. [2], the Fermi part M F 0ν of the total 0νββ-decay nuclear matrix element M 0ν can be related to the single Fermi transition matrix element between the isobaric analog state (IAS) of the ground state of the initial nucleus and the ground state of the final nucleus. The latter matrix element could be measured in charge-exchange reactions. Here we discuss a possibility of such a measurement for 48 Ca and estimate the cross-section of the reaction 48 Ti(n,p) 48 Sc(IAS).

  14. Measurement of the CKM matrix element |V_ts|²

    CERN Document Server

    Unverdorben, Christopher Gerhard

    This is the first direct measurement of the CKM matrix element |V_ts|, using data collected by the ATLAS detector in 2012 at √s=8 TeV pp-collisions with a total integrated luminosity of 20.3 fb⁻¹. The analysis is based on 112171 reconstructed tt̅ candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 tt̅→WWbs̅ decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element |V_ts|². To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K0s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called "boosted decision trees". The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of |V_ts|² < 1.74 % at 95 % confidence level is set, includi...

  15. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)

  16. Matrix elements and few-body calculations within the unitary correlation operator method

    International Nuclear Information System (INIS)

    Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.

    2005-01-01

    We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges

  17. Reorientation-effect measurement of the matrix element in 10Be

    Science.gov (United States)

    Orce, J. N.; Drake, T. E.; Djongolov, M. K.; Navrátil, P.; Triambak, S.; Ball, G. C.; Al Falou, H.; Churchman, R.; Cross, D. S.; Finlay, P.; Forssén, C.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hayes, A. B.; Kshetri, R.; Lassen, J.; Leach, K. G.; Li, R.; Meissner, J.; Pearson, C. J.; Rand, E. T.; Sarazin, F.; Sjue, S. K. L.; Stoyer, M. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Teigelhoefer, A.; Williams, S. J.; Wong, J.; Wu, C. Y.

    2012-10-01

    The highly-efficient and segmented TIGRESS γ-ray spectrometer at TRIUMF has been used to perform a reorientation-effect Coulomb-excitation study of the 21+ state at 3.368 MeV in 10Be. This is the first Coulomb-excitation measurement that enables one to obtain information on diagonal matrix elements for such a high-lying first excited state from γ-ray data. With the availability of accurate lifetime data, a value of -0.110±0.087 eb is determined for the diagonal matrix element, which assuming the rotor model, leads to a negative spectroscopic quadrupole moment of QS(21+)=-0.083±0.066 eb. This result is in agreement with both no-core shell-model calculations performed in this work with the CD-Bonn 2000 two-nucleon potential and large shell-model spaces, and Green's function Monte Carlo predictions with two- plus three-nucleon potentials.

  18. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  19. Study of color-octet matrix elements through J/ψ production in e{sup +}e{sup -} annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi-Jie; Xu, Guang-Zhi; Zhang, Pan-Pan; Liu, Kui-Yong [Liaoning University, Department of Physics, Shenyang (China); Zhang, Yu-Jie [Beihang University, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)

    2017-09-15

    In this paper, the color-octet long distance matrix elements are studied through the inclusive J/ψ production in e{sup +}e{sup -} annihilation within the framework of non-relativistic QCD factorization. The calculations are up-to next-to-leading order with the radiative and relativistic corrections in the energy region of the B-factory and the near-threshold region of 4.6-5.6 GeV. A constraint of the long distance matrix elements (left angle {sup 1}S{sub 0}{sup 8} right angle, left angle {sup 3}P{sub 0}{sup 8} right angle) is obtained. Through our estimation, the P-wave color-octet matrix element (left angle 0 vertical stroke {sup 3}P{sup 8}{sub 0} vertical stroke 0 right angle) should be of the order of 0.008m{sub c}{sup 2} GeV{sup 3} or less. The constrained region is not compatible with the values of the long distance matrix elements fitted at hadron colliders. (orig.)

  20. Role of shell structure in the 2νββ nuclear matrix elements

    International Nuclear Information System (INIS)

    Nakada, H.

    1998-01-01

    Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)

  1. Chemically modified tetracyclines stimulate matrix metalloproteinase-s production by periodontal ligament cells

    NARCIS (Netherlands)

    Bildt, M.M.; Snoek-van Beurden, A.M.P.; Groot, J. de; El, B. van; Kuijpers-Jagtman, A.M.; Hoff, J.W. van den

    2006-01-01

    Background and Objective: The purpose of this study was to investigate the effects of chemically modified tetracyclines (CMTs) on the production of gelatinases [matrix metalloproteinase (MMP)-2 and -9] by human periodontal ligament (PDL) cells, and on the activity of recombinant gelatinases.

  2. Reweighting QCD matrix-element and parton-shower calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bothmann, Enrico; Schumann, Steffen [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Schoenherr, Marek [Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland)

    2016-11-15

    We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full α{sub s} and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates. (orig.)

  3. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  4. A generalized Talmi-Moshinsky transformation for few-body and direct interaction matrix elements

    International Nuclear Information System (INIS)

    Tobocman, W.

    1981-01-01

    A set of basis states for use in evaluating matrix elements of few-body system operators is suggested. These basis states are products of harmonic oscillator wave functions having as arguments a set of Jacobi coordinates for the system. We show that these harmonic oscillator functions can be chosen in a manner that allows such a product to be expanded as a finite sum of the corresponding products for any other set of Jacobi coordinates. This result is a generalization of the Talmi-Moshinsky transformation for two equal-mass particles to a system of any number of particles of arbitrary masses. With the help of our method the multidimensional integral which must be performed to evaluate a few-body matrix element can be transformed into a sum of products of three dimensional integrals. The coefficients in such an expansion are generalized Talmi-Moshinsky coefficients. The method is tested by calculation of a matrix element for knockout scattering for a simple three-body-system. The results indicate that the method is a viable calculational tool. (orig.)

  5. A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2017-07-01

    Full Text Available In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a modified Cholesky decomposition is proposed. The method works as follows: the precision matrix of the background error distribution is estimated based on a modified Cholesky decomposition. The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on a series of rank-one matrices in order to approximate the precision matrix of the analysis distribution. By using this matrix, the posterior ensemble can be built by either sampling from the posterior distribution or using synthetic observations. Furthermore, the computational effort of the proposed method is linear with regard to the model dimension and the number of observed components from the model domain. Experimental tests are performed making use of the Lorenz-96 model. The results reveal that, the accuracy of the proposed implementation in terms of root-mean-square-error is similar, and in some cases better, to that of a well-known ensemble Kalman filter (EnKF implementation: the local ensemble transform Kalman filter. In addition, the results are comparable to those obtained by the EnKF with large ensemble sizes.

  6. The current matrix elements from HAL QCD method

    Science.gov (United States)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-03-01

    HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.

  7. Double β-decay nuclear matrix elements and lepton conservation

    International Nuclear Information System (INIS)

    Vergados, J.D.

    1976-01-01

    The nuclear matrix elements involved in the double β-decay of 48 Ca, 130 Te, and 128 Te were calculated using realistic nuclear interactions and shell model nuclear wave functions. The double doorway state is not appreciably mixed in the ground state of the final nuclei. So the ground state transitions contain a small fraction of the sum rule. A lepton nonconservation parameter eta -4 was deduced

  8. Validity of M-3Y force equivalent G-matrix elements for calculations of the nuclear structure in heavy mass region

    International Nuclear Information System (INIS)

    Cheng Lan; Huang Weizhi; Zhou Baosen

    1996-01-01

    Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region

  9. Validity of the M-3Y force equivalent G-matrix element for the calculations of nuclear structure in the s-d shell

    International Nuclear Information System (INIS)

    Song Hong-qiu; Wang Zixing; Cai Yanhuang; Huang Weizhi

    1987-01-01

    The matrix elements of the M-3Y force are adopted as the equivalent G-matrix elements and the folded diagram method is used to calculate the spectra of 18 O and 18 F. The results show that the matrix elements of the M-3Y force as the equivalent G-matrix elements are suitable for microscopic calculations of the nuclei in the s-d shell

  10. 3-Loop massive O(T2F) contributions to the DIS operator matrix element Agg

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Bluemlein, J.; Freitas, A. de; Hasselhuhn, A.; Round, M.; Manteuffel, A. von

    2014-09-01

    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A (3) gg,Q is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.

  11. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  12. The two-mass contribution to the three-loop pure singlet operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-11-15

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  13. Correlated random-phase approximation from densities and in-medium matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, Richard; Roth, Robert [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The random-phase approximation (RPA) as well as the second RPA (SRPA) are established tools for the study of collective excitations in nuclei. Addressing the well known lack of correlations, we derived a universal framework for a fully correlated RPA based on the use of one- and two-body densities. We apply densities from coupled cluster theory and investigate the impact of correlations. As an alternative approach to correlations we use matrix elements transformed via in-medium similarity renormalization group (IM-SRG) in combination with RPA and SRPA. We find that within SRPA the use of IM-SRG matrix elements leads to the disappearance of instabilities of low-lying states. For the calculations we use normal-ordered two- plus three-body interactions derived from chiral effective field theory. We apply different Hamiltonians to a number of doubly-magic nuclei and calculate electric transition strengths.

  14. X-ray microanalysis of elements present in the matrix of cnidarian nematocysts.

    Science.gov (United States)

    Tardent, P; Zierold, K; Klug, M; Weber, J

    1990-01-01

    The composition and concentration of elements, in particular those of metallic cations, present in the intracapsular matrix and the wall of nematocysts of various cnidarian species have been recorded by means of X-ray microanalysis performed on 100nm thick cryosections. The predominant cation detected in the nematocyst matrix of the hydrozoan Podocoryne carnea (medusa), the scyphozoan Aurelia aurita (scyphopolyp) and the anthozoan Calliactis parasitica (tentacles and acontia) is K(+). Mg(2+) prevails in tentacular cysts of Anthopleura elegantissima, Actinia equina and Anemonia viridis, whereas, the acrorhagial cysts of A. elegantissima and A. equina contain Ca(2+) instead of Mg(2+). The acrorhagial cysts of A. viridis contain Mg(2+) like those of the tentacles. In the tentacular nematocysts of Podocoryne carnea polyps (Hydrozoa) on the other hand ambiguous element contents were found indicating that the cysts of this species has no preference for a particular cation. The high values of sulfur recorded in the matrix and particularly the wall of all the cysts are reflecting the presence of numerous protein disulfide bonds within the structural components (wall, shaft, tubule) of the nematocysts.

  15. The influence of pyrolysis and matrix modifiers on determination of Cr and Pb in sediment samples by GFAAS

    Directory of Open Access Journals (Sweden)

    Risfidian Mohadi

    2016-04-01

    Full Text Available Abstract: The Influence of pyrolysis and matrix modifiers on determination of Cr and Pb in sediment samples using graphite furnace atomic absorption spectrometry has been investigated. The sediment samples including three certified reference materials (CRMs are reported. Analyses were performed using microwave assisted dissolution. The matrix modifiers Mg(NO32, Pd+Mg(NO32 and NH4H2PO4were shown to be optimazed. The recovery for Cr and Pb in CRMs in the case of sample dissolution was found to be between 81 to 91% for Cr and 94 to 98% for Pb of the certified values, respectively. Keywords: Sediment, Pyrolysis, Matrix modifiers, Cr, Pb Abstrak (Indonesia: Pengaruh pirolisis dan matriks pengubah pada penentuan Cr dan Pb dalam sampel sedimen menggunakan tungku grafit spektroskopi serapan atom telah diteliti. Sampel sedimen termasuk tiga bahan referensi bersertifikat (CRMs dilaporkan dianalisis dengan menggunakan bantuan microwave ekstraktor. Matriks pengubah Mg(NO32, Pd+Mg(NO32 dan NH4H2PO4 telah digunakan dan menghasilkan nilai temu balik untuk Cr dan Pb dalam CRMs ditemukan antara 81-91% untuk Cr dan 94-98 % untuk Pb dari nilai sertifikat masing-masing. Katakunci: Sedimen, Pirolisis, Matrix modifiers, Cr, Pb

  16. The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Directory of Open Access Journals (Sweden)

    Nien-Te Liu

    2016-11-01

    Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.

  17. A study regarding friction behaviour of lysine and isoleucine modified epoxy matrix

    Science.gov (United States)

    Bălan, I.; Bosoancă, R.; Căpăţină, A.; Graur, I.; Bria, V.; Ungureanu, C.

    2017-02-01

    The aim of this study is to point out the effect of L-lysine and L-isoleucine used as modifying agents for epoxy resins. The amino acids are largely used to turn the usual polymers in bio-compatible materials but they effect also other significant proprieties of formed materials. The general study developed in Polymer Composite Laboratory is focused on analysis of 14 amino acids used as modifying agents but the two above mentioned showed a special behaviour namely they re-crystalized during the polymerization of the matrix. The coefficient of friction was obtained through the calculation of friction torque measured with a loaded cell sensor. As far as we know, there is no report on the friction proprieties of amino acids modified epoxy resins.

  18. AMPS: An Augmented Matrix Formulation for Principal Submatrix Updates with Application to Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, Yu-Hong; Pothen, Alex; Halappanavar, Mahantesh; Huang, Zhenyu

    2017-10-09

    We present an augmented matrix approach to update the solution to a linear system of equations when the coefficient matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, where operators need to perform $N-x$ contingency analysis, i.e., determine the state of the system when up to $x$ links from $N$ fail. Our algorithms augment the coefficient matrix to account for the changes in it, and then compute the solution to the augmented system without refactoring the modified matrix. We provide two algorithms, a direct method, and a hybrid direct-iterative method for solving the augmented system. We also exploit the sparsity of the matrices and vectors to accelerate the overall computation. Our algorithms are compared on three power grids with PARDISO, a parallel direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the coefficient matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude), and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as the number of elements updated increases. The solutions are computed with high accuracy. Our algorithms are capable of computing $N-x$ contingency analysis on a $778K$ bus grid, updating a solution with $x=20$ elements in $1.6 \\times 10^{-2}$ seconds on an Intel Xeon processor.

  19. Reactor physics assessment of modified 37-element CANDU fuel bundles

    International Nuclear Information System (INIS)

    Pristavu, R.; Rizoiu, A.

    2016-01-01

    Reducing the central element diameter in order to improve the total flow area of CANDU fuel bundle and redistribute the power density of all remaining elements was studied in Canada and Korea when considering the effect of aging pressure tube diametral creep. The aim of this paper is to study the modified bundle behavior using the transport codes WIMS and DRAGON. In calculations, a WIMS nuclear data library on 172 energy groups was used. 2-D transport calculations were performed with WIMS and DRAGON, leading to similar results in estimated cell parameters. Additionally, 3-D DRAGON calculations were carried on in order to evaluate the local flux distribution shift, as well as the incremental cross sections for supercells containing modified CANDU bundles and reactivity devices. The overall effect of using modified fuel bundles was meaningless for both cell and supercell parameters, thus ensuring this possibility of fuel improvement for thermal-hydraulic purposes only. (authors)

  20. Analytical matrix elements of semifinite 2D two centre nuclear potential

    International Nuclear Information System (INIS)

    Niculescu, V. L. R.; Catana, S.; Catana, D.; Babin, V.

    1998-01-01

    In the present work we introduce a new 2D potential which is a symmetric double-well in one variable and with one centre in the other. The factorable potential matrix elements are expressed by analytical formulas. This implies a shorter computational time. (author)

  1. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  2. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Directory of Open Access Journals (Sweden)

    J. Ablinger

    2017-08-01

    Full Text Available Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=mc2/mb2∼1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  3. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates

    Science.gov (United States)

    Protasevich, Alexander E.; Nikitin, Andrei V.

    2018-01-01

    In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.

  4. Analytical Expressions of Matrix Elements of Physical Quantities for Dirac Oscillator

    Institute of Scientific and Technical Information of China (English)

    LI Ning; JU Guo-Xing; REN Zhong-Zhou

    2004-01-01

    The analytical expressions of the matrix elements for physical quantities are obtained for the Dirac oscillator in two and three spatial dimensions. Their behaviour for the case of operator's square is discussed in details. The twodimensional Dirac oscillator has similar behavior to that for three-dimensional one.

  5. Matching NLO parton shower matrix element with exact phase space case of $W\\to l\

    CERN Document Server

    Nanava, G; Was, Z

    2010-01-01

    In practical applications PHOTOS Monte Carlo is often used for simulation of QED effects in decay of intermediate particles and resonances. Generated in such a way that samples of events cover the whole bremsstrahlung phase space. With the help of selection cuts, experimental acceptance can be then taken into account. The program is based on exact multiphoton phase space. To evaluate the program precision it is necessary to control its matrix element. Generally it is obtained using iteration of the universal multidimensional kernel. In some cases it is however obtained from the exact first order matrix element. Then, as a consequence, all terms necessary for non-leading logarithms are taken into account. In the present paper we will focus on the decays W -> l nu and gamma^* -> pi^+ pi^-. The Born level cross sections for both processes approach zero in some points of the phase space. Process dependent, compensating weight is constructed to implement exact matrix element, but it will be recommended for use onl...

  6. Program package for calculating matrix elements of two-cluster structures in nuclei

    International Nuclear Information System (INIS)

    Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1982-01-01

    Matrix elements of operators between Slater determinants of two-cluster structures must be expanded into partial waves for the purpose of angular momentum projection. The expansion coefficients contain integrals over the spherical angles theta and phi. (orig.)

  7. Determinant representations of spin-operator matrix elements in the XX spin chain and their applications

    Science.gov (United States)

    Wu, Ning

    2018-01-01

    For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.

  8. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  9. Calculations of hadronic weak matrix elements: A status report

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1988-01-01

    I review the calculations of hadronic matrix elements of the weak Hamiltonian. My major emphasis is on lattice calculations. I discuss the application to weak decay constants (f/sub K/, f/sub D/, f/sub B/), K 0 /minus/ /bar K/sup 0// and B 0 /minus/ /bar B/sup 0// mixing, K → ππ decays, and the CP violation parameters ε and ε'. I close with speculations on future progress. 57 refs., 4 figs., 2 tabs

  10. Determination of As, Cd, and Pb in Tap Water and Bottled Water Samples by Using Optimized GFAAS System with Pd-Mg and Ni as Matrix Modifiers

    Directory of Open Access Journals (Sweden)

    Sezgin Bakırdere

    2013-01-01

    Full Text Available Arsenic, lead, and cadmium were determined in tap and bottled water samples consumed in the west part of Turkey at trace levels. Graphite furnace atomic absorption spectrometry (GFAAS was used in all detections. All of the system parameters for each element were optimized to increase sensitivity. Pd-Mg mixture was selected as the best matrix modifier for As, while the highest signals were obtained for Pb and Cd in the case of Ni used as matrix modifier. Detection limits for As, Cd, and Pb were found to be 2.0, 0.036, and 0.25 ng/mL, respectively. 78 tap water and 17 different brands of bottled water samples were analyzed for their As, Cd, and Pb contents under the optimized conditions. In all water samples, concentration of cadmium was found to be lower than detection limits. Lead concentration in the samples analyzed varied between N.D. and 12.66 ± 0.68 ng/mL. The highest concentration of arsenic was determined as 11.54 ± 2.79 ng/mL. Accuracy of the methods was verified by using a certified reference material, namely, Trace Element in Water, 1643e. Results found for As, Cd, and Pb in reference materials were in satisfactory agreement with the certified values.

  11. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)

    2017-05-15

    Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  12. The scattering matrix element of the three body reactive collision

    International Nuclear Information System (INIS)

    Morsy, M.W.; Hilal, A.A.; El-Sabagh, M.A.

    1980-08-01

    The optical model approximation has been applied to a previously derived set of coupled equations representing the dynamics of the three-body reactive scattering. The Schroedinger equation obtained describing the scattering problem has then been solved by inserting the effective mass approximation. The asymptotic requirements for both the entrance and exit channels, respectively, have been supplied to give the scattering matrix element of the reactive collision. (author)

  13. Calculation of hadronic matrix elements using lattice QCD

    International Nuclear Information System (INIS)

    Gupta, R.

    1993-01-01

    The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D → Keν. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5

  14. Calculation of hadronic matrix elements using lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1993-08-01

    The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D {yields} Ke{nu}. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5.

  15. Modified Baptista type chaotic cryptosystem via matrix secret key

    International Nuclear Information System (INIS)

    Ariffin, M.R.K.; Noorani, M.S.M.

    2008-01-01

    In 1998, M.S. Baptista proposed a chaotic cryptosystem using the ergodicity property of the simple low-dimensional and chaotic logistic equation. Since then, many cryptosystems based on Baptista's work have been proposed. However, over the years research has shown that this cryptosystem is predictable and vulnerable to attacks and is widely discussed. Among the weaknesses are the non-uniform distribution of ciphertexts and succumbing to the one-time pad attack (a type of chosen plaintext attack). In this Letter, our objective is to modify the chaotic cryptographic scheme proposed previously. We use a matrix secret key such that the cryptosystem would no longer succumb to the one-time pad attack

  16. Second level semi-degenerate fields in W{sub 3} Toda theory: matrix element and differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudnyi, 141700 Moscow region (Russian Federation); Cao, Xiangyu [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie, Sorbonne Universités,4 Place Jussieu, 75252 Paris Cedex 05 (France); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2017-03-02

    In a recent study we considered W{sub 3} Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl{sub 3}. We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  17. Neutrinoless double-β decay matrix elements in large shell-model spaces with the generator-coordinate method

    Science.gov (United States)

    Jiao, C. F.; Engel, J.; Holt, J. D.

    2017-11-01

    We use the generator-coordinate method (GCM) with realistic shell-model interactions to closely approximate full shell-model calculations of the matrix elements for the neutrinoless double-β decay of 48Ca, 76Ge, and 82Se. We work in one major shell for the first isotope, in the f5 /2p g9 /2 space for the second and third, and finally in two major shells for all three. Our coordinates include not only the usual axial deformation parameter β , but also the triaxiality angle γ and neutron-proton pairing amplitudes. In the smaller model spaces our matrix elements agree well with those of full shell-model diagonalization, suggesting that our Hamiltonian-based GCM captures most of the important valence-space correlations. In two major shells, where exact diagonalization is not currently possible, our matrix elements are only slightly different from those in a single shell.

  18. Bessel equation as an operator identity's matrix element in quantum mechanics

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    We study the well-known Bessel equation itself in the framework of quantum mechanics. We show that the Bessel equation is a spontaneous result of an operator identity's matrix element in some definite entangled state representations, which is a fresh look. Application of this operator formalism in the Hankel transform of Laplace equation is presented

  19. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  20. Lattice calculation of hadronic weak matrix elements: the ΔI = 1/2 rule

    International Nuclear Information System (INIS)

    Bernard, C.

    1984-01-01

    A lattice Monte Carlo technique for calculating the matrix elements of weak operators is described. Emphasis is placed on the ΔI = 1/2 rule, which is such a large effect that the significant errors associated with current lattice methods (statistics, finite size, finite lattice spacing, extrapolations in quark mass, etc.) should not disguise the important qualitative features. A detailed exposition of the analytic bases for the calculation is given, and an attempt is made to avoid the questionable phenomenological assumptions (such as some of those inherent in the Penguin approach) which were necessary when matrix elements could not be calculated. The current state of the calculation-in-progress is described. This work is being done in collaboration with A. Soni, T. Draper, G. Hockney, and M. Rushton

  1. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched Nf = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.

  2. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  3. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  4. Weak matrix elements efforts on the lattice: Status and prospects

    International Nuclear Information System (INIS)

    Soni, A.

    1995-01-01

    Lattice approach to weak matrix elements is reviewed. Recent progress in treating heavy quarks on the lattice is briefly discussed. Illustrative sample of results obtained so far is given. Among them I elaborate on B K , line-integral B and B → K* γ . Experimental implications especially with regard to constraints on the Standard Model (i.e. Wolfenstein) parameters, V td measurements and expectations for B s -bar B s , oscillations are briefly discussed

  5. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)

  6. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  7. Research on Modified Root-MUSIC Algorithm of DOA Estimation Based on Covariance Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Changgan SHU

    2014-09-01

    Full Text Available In the standard root multiple signal classification algorithm, the performance of direction of arrival estimation will reduce and even lose effect in circumstances that a low signal noise ratio and a small signals interval. By reconstructing and weighting the covariance matrix of received signal, the modified algorithm can provide more accurate estimation results. The computer simulation and performance analysis are given next, which show that under the condition of lower signal noise ratio and stronger correlation between signals, the proposed modified algorithm could provide preferable azimuth estimating performance than the standard method.

  8. Development of a diffuse element matrix in 'planar' technology. A particular application: logical gate with coupled emitter

    International Nuclear Information System (INIS)

    Rousseau, P.

    1968-01-01

    In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [fr

  9. Calculation of the Cholesky factor directly from the stiffness matrix of the structural element

    International Nuclear Information System (INIS)

    Prates, C.L.M.; Soriano, H.L.

    1978-01-01

    The analysis of the structures of nuclear power plants requires the evaluation of the internal forces. This is attained by the solution of a system of equations. This solution takes most of the computing time and memory. One of the ways it can be achieved is based on the Cholesky factor. The structural matrix of the coeficients is transformed into an upper triangular matrix by the Cholesky decomposition. Cholesky factor can be obtained directly from the stiffness matrix of the structural element. The result can thus be obtained in a more precise and quick way. (Author)

  10. 1ST-ORDER NONADIABATIC COUPLING MATRIX-ELEMENTS FROM MULTICONFIGURATIONAL SELF-CONSISTENT-FIELD RESPONSE THEORY

    DEFF Research Database (Denmark)

    Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.

    1992-01-01

    A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....

  11. Generating matrix elements of the hamiltonian of the algebraic version of resonating group method on intrinsic wave functions with various oscillator lengths

    International Nuclear Information System (INIS)

    Badalov, S.A.; Filippov, G.F.

    1986-01-01

    The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known

  12. Finite element electromagnetic field computation on the Sequent Symmetry 81 parallel computer

    International Nuclear Information System (INIS)

    Ratnajeevan, S.; Hoole, H.

    1990-01-01

    Finite element field analysis algorithms lend themselves to parallelization and this fact is exploited in this paper to implement a finite element analysis program for electromagnetic field computation on the Sequent Symmetry 81 parallel computer with three processors. In terms of waiting time, the maximum gains are to be made in matrix solution and therefore this paper concentrates on the gains in parallelizing the solution part of finite element analysis. An outline of how parallelization could be exploited in most finite element operations is given in this paper although the actual implemention of parallelism on the Sequent Symmetry 81 parallel computer was in sparsity computation, matrix assembly and the matrix solution areas. In all cases, the algorithms were modified suit the parallel programming application rather than allowing the compiler to parallelize on existing algorithms

  13. Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.

    2007-06-15

    The O({alpha}{sup 2}{sub s}) massive operator matrix elements for unpolarized and polarized heavy flavor production at asymptotic values Q{sup 2} >> m{sup 2} are calculated in Mellin space without applying the integration-by-parts method. (orig.)

  14. JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.

    Science.gov (United States)

    Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim

    2014-12-30

    The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .

  15. Diagrammatic technique for calculating matrix elements of collective operators in superradiance

    International Nuclear Information System (INIS)

    Lee, C.T.

    1975-01-01

    Adopting the so-called ''genealogical construction,'' one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) -atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-Schwendimann approach to the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field

  16. Single top quark production and Vtb CKM matrix element measurement in high energy e+e- collisions

    International Nuclear Information System (INIS)

    Dokholyan, N.V.; Jikia, G.V.

    1993-01-01

    The new method of determination of CKM mixing matrix element V tb has been proposed. It has been shown, that at the future colliders one will measure the tb-mixing element with the accuracy 12 - 28%. 16 refs., 6 figs., 1 tab

  17. Measurements of the CKM matrix element V(cb)

    CERN Document Server

    Di Ciaccio, L

    1996-01-01

    A review of the measurements of the element V ch of the CabibboKobayashi-Maskawa matrix is presented. The experimental results discussed here are based on the selection of the decays B -t D' lv and on the study of the differential decay rate as a function of the momentum transfer from the B to D' particle. This method allows to measure IV chi with a reduced model dependence. This review describes mainly the most recent analyses which have been performed by the LEP Collaborations. The IVcbl determination based on the inclusive semileptonic decay width of the B hadrons is also shortly presented. The results obtained with these two methods are averaged and prospects for the future are discussed

  18. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel

    International Nuclear Information System (INIS)

    Liu, Chao; Revilla, Reynier I.; Liu, Zhiyong; Zhang, Dawei; Li, Xiaogang; Terryn, Herman

    2017-01-01

    Highlights: •The initial stages of the pitting corrosion of Q460NH steel in a marine environment was studied. •Two different types of inclusions formed in the Q460NH steel after adding rare earth. •Both types of inclusions showed a lower Volta potential than the matrix. •Pitting corrosion was induced by the dissolution of inclusions rather than the matrix. •Inclusions containing (RE)AlO 3 dissolved completely as a result of the acidic solution formed in the pits. -- Abstract: In this work the initial stages of the pitting corrosion in Q460NH weathering steel in a marine environment was studied. To elucidate the effects of inclusions modified by rare earth (RE) elements on pitting corrosion, field emission-scanning electron microscopy-energy dispersive spectrometry (FE-SEM-EDS) analyses, scanning Kelvin probe force microscopy (SKPFM) tests, and a series of immersion tests were conducted. Two main types of inclusions were formed in the steel, and different pit morphologies were observed. The pitting corrosion was initiated by the dissolution of (RE) 2 O 2 S-(RE)xSy in both types of inclusions due to the lower potential of this phase compared to the matrix, which indicated that the inclusions in the Q460NH weathering steel had a lower pitting corrosion resistance than the matrix.

  19. Structure of the two-neutrino double-β decay matrix elements within perturbation theory

    Science.gov (United States)

    Štefánik, Dušan; Šimkovic, Fedor; Faessler, Amand

    2015-06-01

    The two-neutrino double-β Gamow-Teller and Fermi transitions are studied within an exactly solvable model, which allows a violation of both spin-isospin SU(4) and isospin SU(2) symmetries, and is expressed with generators of the SO(8) group. It is found that this model reproduces the main features of realistic calculation within the quasiparticle random-phase approximation with isospin symmetry restoration concerning the dependence of the two-neutrino double-β decay matrix elements on isovector and isoscalar particle-particle interactions. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix elements on the like-nucleon pairing, particle-particle T =0 and T =1 , and particle-hole proton-neutron interactions is obtained. It is found that double-β decay matrix elements do not depend on the mean field part of Hamiltonian and that they are governed by a weak violation of both SU(2) and SU(4) symmetries by the particle-particle interaction of Hamiltonian. It is pointed out that there is a dominance of two-neutrino double-β decay transition through a single state of intermediate nucleus. The energy position of this state relative to energies of initial and final ground states is given by a combination of strengths of residual interactions. Further, energy-weighted Fermi and Gamow-Teller sum rules connecting Δ Z =2 nuclei are discussed. It is proposed that these sum rules can be used to study the residual interactions of the nuclear Hamiltonian, which are relevant for charge-changing nuclear transitions.

  20. Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Universidad Simon Bolivar, Caracas; Neerven, W.L. van

    2011-11-01

    We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O(α 2 ) initial state corrections to e + e - annihilation into a virtual boson for large cms energies s >>m 2 e into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m 2 e ) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)

  1. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  2. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  3. Three loop contributions to the matrix elements in the variable flavor number scheme

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes; Hasselhuhn, Alexander [DESY (Germany); Schneider, Carsten [RISC, JKU Linz (Austria)

    2012-07-01

    The variable flavor number scheme may be used to describe parton distributions in the transition region in which one heavy quark gradually becomes a light flavor. We present first three-loop results to the massive operator matrix elements A{sub gg} and A{sub gq} for the contributions due to bubble topologies {proportional_to}T{sub F}{sup 2} n{sub f} at general values of the Mellin variable N. The calculation has been performed using higher transcendental functions and by applying modern summation technologies encoded in the package Sigma. These massive operator matrix elements describe the universal contributions in the matching of different flavor sectors, which are the logarithmic and constant contributions in the ratio of m{sup 2}{sub H}/Q{sup 2}, with Q{sup 2} the virtuality and m{sub H} the respective heavy quark mass. The framework allows to derive heavy quark parton distributions which are of relevance for calculating specific processes at hadron-hadron colliders.

  4. Determination of arsenic and cadmium in shellfish samples by graphite furnace atomic absorption spectrometry using matrix modifier

    International Nuclear Information System (INIS)

    Villalobos Aranda, Juan; Cortez Diaz, Mirella

    2003-01-01

    Serious problems of environmental contamination due to the activity of the man exist at the present time. Where the greater impact is the produced one by heavy metals that go to the sea. Where the shellfish can collect some of them, the highly toxic ones, since these are bioaccumulation of these metals. Therefore one becomes necessary to count with the reliable analytical procedures to determine these elements. The purpose of this work is to present the determination of arsenic and cadmium in shellfish, by spectroscopy of atomic absorption with graphite furnace. For each determined element, solutions of nickel and phosphate like matrix modifiers were used respectively The validation was made using a Reference Certified Material, Oyster ' Tissue 156 (National Institute of Standards and Technology). The sample previously was digested in triplicate by two consecutive days, with nitric acid in a pressure digestion system DAB 11. For each element it was evaluated: limit of detection and quantification, sensitivity, repeatability, linear, slope rank and uncertainty. In addition, the obtained results were compared with the certified values of the certified material of reference using like statistical tools the tests of Student and Fisher. In both tests the calculated values were smaller to the shown ones in table, for degrees of freedom with 95% of confidence. Thus it was verified that it does not exist significant differences between the precision and the average values of the results obtained with respect to the values of the certified material. In addition, the obtained parameters are appropriate for the determination of these trace elements in this type of environmental sample (author)

  5. Something different - caching applied to calculation of impedance matrix elements

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-09-01

    Full Text Available of the multipliers, the approximating functions are used any required parameters, such as input impedance or gain pattern etc. The method is relatively straightforward but, especially for small to medium matrices, requires spending time on filling... of the computing the impedance matrix for the method of moments, or a similar method, such as boundary element method (BEM) [22], with the help of the flowchart shown in Figure 1. Input Parameters (a) Search the cached data for a match (b) A match found...

  6. Energy diffusion in strongly driven quantum chaotic systems: the role of correlations of the matrix elements

    International Nuclear Information System (INIS)

    Elyutin, P V; Rubtsov, A N

    2008-01-01

    The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence

  7. IMPACT OF MATRIX INVERSION ON THE COMPLEXITY OF THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    M. Sybis

    2016-04-01

    Full Text Available Purpose. The development of a wide construction market and a desire to design innovative architectural building constructions has resulted in the need to create complex numerical models of objects having increasingly higher computational complexity. The purpose of this work is to show that choosing a proper method for solving the set of equations can improve the calculation time (reduce the complexity by a few levels of magnitude. Methodology. The article presents an analysis of the impact of matrix inversion algorithm on the deflection calculation in the beam, using the finite element method (FEM. Based on the literature analysis, common methods of calculating set of equations were determined. From the found solutions the Gaussian elimination, LU and Cholesky decomposition methods have been implemented to determine the effect of the matrix inversion algorithm used for solving the equations set on the number of computational operations performed. In addition, each of the implemented method has been further optimized thereby reducing the number of necessary arithmetic operations. Findings. These optimizations have been performed on the use of certain properties of the matrix, such as symmetry or significant number of zero elements in the matrix. The results of the analysis are presented for the division of the beam to 5, 50, 100 and 200 nodes, for which the deflection has been calculated. Originality. The main achievement of this work is that it shows the impact of the used methodology on the complexity of solving the problem (or equivalently, time needed to obtain results. Practical value. The difference between the best (the less complex and the worst (the most complex is in the row of few orders of magnitude. This result shows that choosing wrong methodology may enlarge time needed to perform calculation significantly.

  8. Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.

  9. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  10. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  11. Controlling inclusive cross sections in parton shower + matrix element merging

    International Nuclear Information System (INIS)

    Plaetzer, Simon

    2012-11-01

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  12. Analysis of smart beams with piezoelectric elements using impedance matrix and inverse Laplace transform

    International Nuclear Information System (INIS)

    Li, Guo-Qing; Miao, Xing-Yuan; Hu, Yuan-Tai; Wang, Ji

    2013-01-01

    A comprehensive study on smart beams with piezoelectric elements using an impedance matrix and the inverse Laplace transform is presented. Based on the authors’ previous work, the dynamics of some elements in beam-like smart structures are represented by impedance matrix equations, including a piezoelectric stack, a piezoelectric bimorph, an elastic straight beam or a circular curved beam. A further transform is applied to the impedance matrix to obtain a set of implicit transfer function matrices. Apart from the analytical solutions to the matrices of smart beams, one computation procedure is proposed to obtained the impedance matrices and transfer function matrices using FEA. By these means the dynamic solution of the elements in the frequency domain is transformed to that in Laplacian s-domain and then inversely transformed to time domain. The connections between the elements and boundary conditions of the smart structures are investigated in detail, and one integrated system equation is finally obtained using the symbolic operation of TF matrices. A procedure is proposed for dynamic analysis and control analysis of the smart beam system using mode superposition and a numerical inverse Laplace transform. The first example is given to demonstrate building transfer function associated impedance matrices using both FEA and analytical solutions. The second example is to verify the ability of control analysis using a suspended beam with PZT patches under close-loop control. The third example is designed for dynamic analysis of beams with a piezoelectric stack and a piezoelectric bimorph under various excitations. The last example of one smart beam with a PPF controller shows the applicability to the control analysis of complex systems using the proposed method. All results show good agreement with the other results in the previous literature. The advantages of the proposed methods are also discussed at the end of this paper. (paper)

  13. Massive 3-loop ladder diagrams for quarkonic local operator matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes; Hasselhuhn, Alexander; Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik

    2012-06-15

    3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} element of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} >> m{sup 2}.

  14. Massive 3-loop ladder diagrams for quarkonic local operator matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Research Institut fuer Theoretische Physik E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2012-11-01

    3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} Element-Of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} Much-Greater-Than m{sup 2}.

  15. 3-Loop massive O(T{sub 2}{sup F}) contributions to the DIS operator matrix element A{sub gg}

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2014-09-15

    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A{sup (3)}{sub gg,Q} is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.

  16. Effect of the Heat Treatment on the Graphite Matrix of Fuel Element for HTGR

    International Nuclear Information System (INIS)

    Lee, Chungyong; Lee, Seungjae; Suh, Jungmin; Jo, Youngho; Lee, Youngwoo; Cho, Moonsung

    2013-01-01

    In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength for the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and Phenol as a binder were chosen and mixed with each other, formed and heated for the compressive strength test. The objective of this research is to optimize the kinds and composition of the mixed graphite and the forming process by evaluating the compressive strength before/after heat treatment (carbonization of binder). In this study, the effect of heat treatment on graphite matrix was studied in terms of the density and the compressive strength. The size (diameter and length) of pellet is increased by heat treatment. Due to additional weight reduction and swelling (length and diameter) of samples the density of graphite pellet is decreased from about 2.0 to about 1.7g/cm 3 . From the mechanical test results, the compressive strength of graphite pellets was related to the various conditions such as the contents of binder, the kinds of graphite and the heat treatment. Both the green pellet and the heat treated pellet, the compressive strength of G+S+P pellets is relatively higher than that of R+S+P pellets. To optimize fuel element matrix, the effect of Phenol and other binders, graphite composition and the heat treatment on the mechanical properties will be deeply investigated for further study

  17. Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements

    International Nuclear Information System (INIS)

    Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters

  18. Heavy flavor operator matrix elements at O({alpha}{sub s}{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella; Buemlein, Johannes; Klein, Sebastian

    2008-12-15

    The heavy quark effects in deep.inelastic scattering in the asymptotic regime Q{sup 2}>>m{sup 2} can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to NLO. We present first results for fixed moments at NNLO. This involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions, which we thereby confirm. (orig.)

  19. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-14

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  20. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-01

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  1. Assesment On The Possibility To Modify Fabrication Equipment For Fabrication Of HWR And LWR Fuel Elements

    International Nuclear Information System (INIS)

    Tri-Yulianto

    1996-01-01

    Based on TOR BATAN for PELITA VI. On of BATAN program in the fuel element production technology section is the acquisition of the fuel element fabrication technology for research reactor as well as power reactor. The acquisition can be achieved using different strategies, e.g. by utilizing the facility owned for research and development of the technology desired or by transferring the technology directly from the source. With regards to the above, PEBN through its facility in BEBE has started the acquisition of the fuel element fabrication technology for power reactor by developing the existing equipment initially designed to fabricate HWR Cinere fuel element. The development, by way of modifying the equipment, is intended for the production of HWR (Candu) and LWR (PWR and BWR) fuel elements. To achieve above objective, at the early stage of activity, an assesment on the fabrication equipment for pelletizing, component production and assembly. The assesment was made by comparing the shape and the size of the existing fuel element with those used in the operating reactors such as Candu reactors, PWR and BWR. Equipment having the potential to be modified for the production of HWR fuel elements are as followed: For the pelletizing equipment, the punch and dies can be used of the pressing machine for making green pellet can be modified so that different sizes of punch and dies can be used, depending upon the size of the HWR and LWR pellets. The equipment for component production has good potential for modification to produce the HWR Candu fuel element, which has similar shape and size with those of the existing fuel element, while the possibility of producing the LWR fuel element component is small because only a limited number of the required component can be made with the existing equipment. The assembly equipment has similar situation whit that of the component production, that is, to assemble the HWR fuel element modification of few assembly units very probable

  2. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...

  3. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    Science.gov (United States)

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  4. A New Triangular Hybrid Displacement Function Element for Static and Free Vibration Analyses of Mindlin-Reissner Plate

    Directory of Open Access Journals (Sweden)

    Jun-Bin Huang

    Full Text Available Abstract A new 3-node triangular hybrid displacement function Mindlin-Reissner plate element is developed. Firstly, the modified variational functional of complementary energy for Mindlin-Reissner plate, which is eventually expressed by a so-called displacement function F, is proposed. Secondly, the locking-free formulae of Timoshenko’s beam theory are chosen as the deflection, rotation, and shear strain along each element boundary. Thirdly, seven fundamental analytical solutions of the displacement function F are selected as the trial functions for the assumed resultant fields, so that the assumed resultant fields satisfy all governing equations in advance. Finally, the element stiffness matrix of the new element, denoted by HDF-P3-7β, is derived from the modified principle of complementary energy. Together with the diagonal inertia matrix of the 3-node triangular isoparametric element, the proposed element is also successfully generalized to the free vibration problems. Numerical results show that the proposed element exhibits overall remarkable performance in all benchmark problems, especially in the free vibration analyses.

  5. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  6. Fluid element in SAP IV

    International Nuclear Information System (INIS)

    Yilmaz, C.; Akkas, N.

    1979-01-01

    In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)

  7. Efficient improvement of virtual crack extension method by a derivative of the finite element stiffness matrix

    International Nuclear Information System (INIS)

    Ishikawa, H.; Nakano, S.; Yuuki, R.; Chung, N.Y.

    1991-01-01

    In the virtual crack extension method, the stress intensity factor, K, is obtained from the converged value of the energy release rate by the difference of the finite element stiffness matrix when some crack extension are taken. Instead of the numerical difference of the finite element stiffness, a new method to use a direct dirivative of the finite element stiffness matrix with respect to crack length is proposed. By the present method, the results of some example problems, such as uniform tension problems of a square plate with a center crack and a rectangular plate with an internal slant crack, are obtained with high accuracy and good efficiency. Comparing with analytical results, the present values of the stress intensity factors of the problems are obtained with the error that is less than 0.6%. This shows the numerical assurance of the usefulness of the present method. A personal computer program for the analysis is developed

  8. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  9. Improved determination of hadron matrix elements using the variational method

    International Nuclear Information System (INIS)

    Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.

    2015-11-01

    The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  10. Matrix-assisted laser desorption/ionization mass spectrometry for the structural characterization of modified oligonucleotides

    International Nuclear Information System (INIS)

    Hurst, G.B.; Hettich, R.L.; Buchanan, M.V.; Stemmler, E.A.

    1993-01-01

    Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry (FTMS) and MALDI time-of-flight mass spectrometry (TOFMS) are being used to characterize conditions for the efficient desorption and ionization of normal and modified nucleic acid components. Basic and acidic matrix materials have been evaluated on the components. Basic and acidic matrix materials have been evaluated on the FTMS and TOFMS. Using MALDI-FTMS at 355 nm, less fragmentation has been observed using 2,5-dihydroxybenzoic acid, while more extensive fragmentation is observed for basic matrices, such as 1,5-diaminonaphthalene and 9-aminophenanthrene. Elevation of the cell pressure by the addition of Ar or CO 2 provides collisional cooling of desorbed ions, resulting in an enhancement of [M--H] - and structurally significant high-mass fragment ions. Using MALDI-TOFMS at 337 nm, fragmentation is significantly reduced relative to that observed on the FTMS, perhaps as a consequence of the longer times required for FTMS detection. On the FTMS and TOFMS, cluster ions have been observed in the negative ion mode when metal ions are present in the 2,5-dihydroxybenzoic acid matrix. Metal ion additions and clusters with matrix salts have also been observed for dinucleotides. Applications of MALDI-FTMS and MALDI-TOF to the detection of hydroxylated PAH nucleoside adducts are presented

  11. Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong; PAN Feng

    2001-01-01

    The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.

  12. Matrix elements of the relativistic electron-transition operators

    International Nuclear Information System (INIS)

    Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.

    1976-01-01

    The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given

  13. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  14. Two-loop massive fermionic operator matrix elements and intial state QED corrections to e{sup +}e{sup -}{yields}{gamma}{sup *}/Z{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, W. van [Leiden Univ. (Netherlands). Lorentz Institute

    2008-12-15

    We describe the calculation of the two-loop massive operator matrix elements for massive external fermions. These matrix elements are needed for the calculation of the O({alpha}{sup 2}) initial state radiative corrections to e{sup +}e{sup -} annihilation into a neutral virtual gauge boson, based on the renormalization group technique. (orig.)

  15. Thermal durability of modified Synroc material as reactor fuel matrix

    International Nuclear Information System (INIS)

    Kikuchi, Akira; Kanazawa, Hiroyuki; Togashi, Yoshihiro; Matumoto, Seiichiro; Nishino, Yasuharu; Ohwada, Isao; Nakata, Masahito; Amano, Hidetoshi; Mitamura, Hisayoshi

    1994-08-01

    A Synroc, a polyphase titanate ceramics composed of three mineral phases (perovskite, hollandite and zirconolite), has an excellent performance of immobilization of high level nuclear waste. A working group in the Department of Hot Laboratories paid special attention to this merit and started a development study on a LWR fuel named 'Waste Disposal Possible (WDP) Fuel', which has the two functions of a reactor fuel and a waste form. The present paper mainly describes thermal durability of a modified Synroc material, which is essentially important for applying the material to a fuel matrix. The two kinds of Synroc specimens, designated 'SM' as modified and 'SB' as a reference, were prepared by hot-pressing and annealed at 1200degC to 1500degC for 30 min in air. Unexpected and peculiar spherical voids were observed in the specimen SM at 1400degC and 1500degC, which caused the specimen swelling. The formation of the voids depends significantly on the existence of spherical precipitates seen in the as-fabricated specimen including latent micropores with high pressure. On the other hand, the heat treatment at 1500degC formed additional new phases, designated 'Phase A' for the specimen SB and 'Phase X' for SM. Phase A is a decomposition product of hollandite and Phase X a reaction product of Phase A and perovskite in the spherical voids. Furthermore, additional information and thermal properties examined are presented in Appendix 1 and Appendix 2, respectively. It was recognized that the modified Synroc specimen SM had excellent thermal properties. (author)

  16. The matrix element for radiative Bhabha scattering in the forward direction

    International Nuclear Information System (INIS)

    Kleiss, R.

    1993-09-01

    We present an approximation to the matrix element for the process e + e - →e + e - γ, appropriate to the situation where one or both of the fermions are scattered over very small angles. The leading terms in the situation where all scattering angles are small contains not only terms quadratic in the electron mass, but also quartic and even sextic terms must be included. Special attention is devoted to the numerical stability of the resultant expression. Its relation to several existing formulae is discussed. (orig.)

  17. Separation of soft and collinear infrared limits of QCD squared matrix elements

    CERN Document Server

    Nagy, Zoltan; Trócsányi, Z L; Trocsanyi, Zoltan; Somogyi, Gabor; Trocsanyi, Zoltan

    2007-01-01

    We present a simple way of separating the overlap between the soft and collinear factorization formulae of QCD squared matrix elements. We check its validity explicitly for single and double unresolved emissions of tree-level processes. The new method makes possible the definition of helicity-dependent subtraction terms for regularizing the real contributions in computing radiative corrections to QCD jet cross sections. This implies application of Monte Carlo helicity summation in computing higher order corrections.

  18. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  19. Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.

    2018-01-17

    We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v18 two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.

  20. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  1. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  2. Anatomy of double beta decay nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr, E-mail: pxv@caltech.ed [Kellogg Radiation Laboratory 106-38 Caltech. Pasadena, CA 91125 (United States)

    2009-06-01

    The necessary ingredients for a realistic evaluation of the 0vbetabeta nuclear matrix elements are reviewed. It is argued that the short range nucleon correlations, nucleon finite size, and higher order nuclear currents need to be included in the calculation, even though a consensus on the best way to treat all of these effects has not been reached. Another positive development is the realization that the two alternative and complementary methods, the Quasiparticle Random Phase Approximation and the Nuclear Shell Model, agree on many aspects of the calculation, in particular on the competition, or cancelation, between the contribution of nuclear pairing on one hand, and the other pieces of interaction that result in admixtures of broken pairs or higher seniority states on the other hand. The relatively short range (r <= 2-3 fm) of the effective 0vbetabeta operator found in both methods is a consequence of that competition.

  3. The matrix elements of the potential energy operator between the Sp(2,R) basis generating functions. Near-magic nuclei

    International Nuclear Information System (INIS)

    Filippov, G.F.; Ovcharenko, V.I.; Teryoshin, Yu.V.

    1980-01-01

    For near-magnetic nuclei, the matrix elements of the central exchange nucleon-nucleon interaction potential energy operator between the generating functions of the total basis of the Sn are obtained. The basis states are highest weigt vectorsp(2,R) irreducible representatio of the SO(3) irredicible representation and in addition, have a definite O(A-1) symmetry. The Sp(2,R) basis generating matrix elements simplify essentially the problem of calculating the spectrum of collective excitations of the atomic nucleus over an intrinsic function of definite O(A-1) symmetry

  4. Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Duca, Vittorio Del [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Torino (Italy)

    2005-06-01

    We describe how to disentangle the singly- and doubly-unresolved (soft and/or collinear) limits of tree-level QCD squared matrix elements. Using the factorization formulae presented in this paper, we outline a viable general subtraction scheme for computing next-to-next-to-leading order corrections for electron-positron annihilation into jets.

  5. Off-diagonal helicity density matrix elements for vector mesons produced at LEP

    International Nuclear Information System (INIS)

    Anselmino, M.; Bertini, M.; Quintairos, P.

    1997-05-01

    Final state q q-bar interactions may give origin to non zero values of the off-diagonal element ρ 1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ and D * 's. Predictions are given for ρ1,-1 of several mesons produced at large z and small PT, collinear with the parent jet; the values obtained for θ and D * are in agreement with data. (author)

  6. On- and off-resonance radiation-atom-coupling matrix elements involving extended atomic wave functions

    Science.gov (United States)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2014-01-01

    In continuation of our earlier works, we present results concerning the computation of matrix elements of the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule) interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders, for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides [Phys. Rev. A 71, 023410 (2005), 10.1103/PhysRevA.71.023410]. This development allows the much faster and more accurate computation of such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable to the general case where a pair of orbitals with angular parts |ℓ1,m1> and |ℓ2,m2> are coupled radiatively. As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on- and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large distances from the nucleus), the validity of the electric dipole approximation in various applications where the off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular state with n = 20 to that with n = 21, for which ≈400 a.u., the dipole approximation starts to fail already at XUV wavelengths (λ <125nm).

  7. Kaon matrix elements and CP violation from quenched lattice QCD: The 3-flavor case

    International Nuclear Information System (INIS)

    Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Mawhinney, R.; Siegert, G.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.

    2003-01-01

    We report the results of a calculation of the K→ππ matrix elements relevant for the ΔI=1/2 rule and ε ' /ε in quenched lattice QCD using domain wall fermions at a fixed lattice spacing a -1 ∼2 GeV. Working in the three-quark effective theory, where only the u, d, and s quarks enter and which is known perturbatively to next-to-leading order, we calculate the lattice K→π and K→|0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K→ππ matrix elements, which we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of isospin amplitudes vertical bar A 0 vertical bar/vertical bar A 2 vertical bar we find a value of 25.3±1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10%-20% below the experimental values. For ε ' /ε, using known central values for standard model parameters, we calculate (-4.0±2.3)x10 -4 (statistical error only) compared to the current experimental average of (17.2±1.8)x10 -4 . Because we find a large cancellation between the I=0 and I=2 contributions to ε ' /ε, the result may be very sensitive to the approximations employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum perturbation theory below 1.3 GeV. We also calculate the kaon B parameter B K and find B K,MS (2 GeV)=0.532(11). Although currently unable to give a reliable systematic error, we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities

  8. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  9. Measurement of single top quark production at D0 using a matrix element method

    International Nuclear Information System (INIS)

    Mitrevski, Jovan Pavle

    2007-01-01

    Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |V tb |, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb -1 of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of σ s /σ t = 0.44, we measure the single top quark production cross section: σ(p(bar p) → tb + X, tqb + X) = 4.8 -1.4 +1.6 pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance

  10. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    International Nuclear Information System (INIS)

    Škeren, M; Svoboda, J; Kveton, M; Fiala, P

    2013-01-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ∼ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  11. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    Science.gov (United States)

    Škereň, M.; Svoboda, J.; Květoň, M.; Fiala, P.

    2013-02-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ~ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  12. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  13. Lepton mixing matrix element U13 and new assignments of universal texture for quark and lepton mass matrices

    International Nuclear Information System (INIS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2004-01-01

    We reanalyze the mass matrix model of quarks and leptons that gives a unified description of quark and lepton mass matrices with the same texture form. By investigating possible types of assignment for the texture components of the lepton mass matrix, we find that a different assignment for neutrinos than for charged leptons can also lead to consistent values of the Maki-Nakagawa-Sakata-Pontecorv (MNSP) lepton mixing matrix. We also find that the predicted value for the lepton mixing matrix element U 13 of the model depends on the assignment. A proper assignment will be discriminated by future experimental data for U 13

  14. K-M matrix elements and decays of the B meson to J/Psi

    International Nuclear Information System (INIS)

    Wilson, Richard

    2002-01-01

    This talk discusses some of the last work on B meson decays of the CLEO collaboration, which work is, in fact, improvements in precision of much earlier work of the same collaboration. New theoretical developments have enabled us to present much improved numbers on the matrix elements Vcb, and Vub. Also some recent work on the decay of B mesons to J/Psi plus other particles will be briefly presented

  15. Matrix elements of the potential energy operator for the six nucleon system between the generating invariants

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.

    1993-01-01

    The matrix elements of the potential energy operator (which includes central, spin-orbit and tensor components) are calculated between the generating invariants of the cluster basis describing α + d and t+h configurations of the six-nucleon system. (author). 12 refs

  16. Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements

    International Nuclear Information System (INIS)

    Dong Shihai; Chen Changyuan; Lozada-Cassou, M

    2005-01-01

    Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied

  17. Measurement of the top quark mass in the dilepton final state using the matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Grohsjean, Alexander [Ludwig Maximilian Univ., Munich (Germany)

    2008-12-15

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb-1. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be mtopRun IIa = 170.6 ± 6.1(stat.)-1.5+2.1(syst.)GeV; mtopRun IIb = 174.1 ± 4.4(stat.)-1.8+2.5(syst.)GeV; m

  18. Matrix elements for the anti B→Xsγ decay at NNLO

    International Nuclear Information System (INIS)

    Schutzmeier, Thomas Paul

    2009-01-01

    In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B→ X s γ decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B→X s γ decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B→X s γ decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the effective theory at NNLO. For the first time, the

  19. A new Eulerian-Lagrangian finite element simulator for solute transport in discrete fracture-matrix systems

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-07-01

    Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.

  20. First unitarity-independent determination of the CKM matrix elements $V_{td}$, $V_{ts}$, and ${V_{tb}$ and the implications for unitarity

    OpenAIRE

    Swain, John; Taylor, Lucas

    1997-01-01

    The magnitudes of the CKM matrix elements $V_{td}$, $V_{ts}$, and $V_{tb}$ are determined for the first time without any assumptions of unitarity. The implications for the unitarity of the CKM matrix as a whole are discussed.

  1. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, René; Schad, Ariane; Roth, Markus [Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, D-79104 Freiburg (Germany)

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  2. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  3. Computationally efficient analytic representations of relativistic bound-bound, bound-unbound and unbound-unbound transition matrix elements of hydrogenic atoms

    International Nuclear Information System (INIS)

    Soldatov, A.; Seke, J.; Adam, G.; Polak, M.

    2008-01-01

    Full text: A closed analytic form for relativistic transition matrix elements between bound-bound, bound-unbound and unbound-unbound relativistic eigenstates of hydrogenic atoms by using the plane-wave expansion for the electromagnetic-field vector potential was derived in a form convenient for large-scale numerical calculations in QED. By applying the obtained formulae, these transition matrix elements can be evaluated analytically and numerically. These exact matrix elements, which to our knowledge have not been calculated as yet, are of great importance in the analysis of various atom-field interaction processes where retardation effects cannot be ignored. The ultimate goal of the ongoing research is to develop a general universal calculation technique for Seke's approximation and renormalization method in QED, for which the usage of the plane vector expansion for the vector potential is a preferable choice. However, our primary interest lies in the Lamb-shift calculation. Our nearest objective is to carry out the plain-style relativistic calculations of the Lamb shift of the energy levels of hydrogen-like atoms and ions from first principles in the second and higher perturbative orders, using the corresponding convenient as well as novel expressions for the magnitude in question as they stand, i.e. without any additional approximations. Due to that there is no way to achieve all the above-declared goals without recourse to large-scale laborious and time-consuming high-precision numerical calculations, having the transition matrix elements of all possible types in an analytic, convenient for their efficient numerical evaluation form, would be highly advantageous and even unavoidable, especially for calculations of various QED effects in higher perturbative orders be it, equally, in traditional or novel approach. (author)

  4. Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination.

    Science.gov (United States)

    Zhang, Bochao; He, Miaohong; Hang, Wei; Huang, Benli

    2013-05-07

    Matrix effect is unavoidable in direct solid analysis, which usually is a leading cause of the nonstoichiometric effect in quantitative analysis. In this research, experiments were carried out to study the overall characteristics of atomization and ionization in laser-solid interaction. Both nanosecond (ns) and femtosecond (fs) lasers were applied in a buffer-gas-assisted ionization source coupled with an orthogonal time-of-flight mass spectrometer. Twenty-nine solid standards of ten different matrices, including six metals and four dielectrics, were analyzed. The results indicate that the fs-laser mode offers more stable relative sensitivity coefficients (RSCs) with irradiance higher than 7 × 10(13) W·cm(-2), which could be more reliable in the determination of element composition of solids. The matrix effect is reduced by half when the fs-laser is employed, owing to the fact that the fs-laser ablation and ionization (fs-LAI) incurs an almost heat-free ablation process and creates a dense plasma for the stable ionization.

  5. CNTs Modified and Enhanced Cu Matrix Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Wen-zhong

    2016-12-01

    Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.

  6. Matching Matrix Elements and Parton Showers with HERWIG and PYTHIA

    CERN Document Server

    Mrenna, S; Mrenna, Stephen; Richardson, Peter

    2004-01-01

    We report on our exploration of matching matrix element calculations with the parton-shower models contained in the event generators HERWIG and Pythia. We describe results for e+e- collisions and for the hadroproduction of W bosons and Drell--Yan pairs. We compare methods based on (1) a strict implementation of ideas proposed by Catani, et al., (2) a generalization based on using the internal Sudakov form factors of HERWIG and Pythia, and (3) a simpler proposal of M. Mangano. Where appropriate, we show the dependence on various choices of scales and clustering that do not affect the soft and collinear limits of the predictions, but have phenomenological implications. Finally, we comment on how to use these results to state systematic errors on the theoretical predictions.

  7. Quenching of the Gamow-Teller matrix element in closed LS-shell-plus-one nuclei

    International Nuclear Information System (INIS)

    Towner, I.S.

    1989-06-01

    It is evident that nuclear Gamow-Teller matrix elements determined from β-decay and charge-exchange reactions are significantly quenched compared to simple shell-model estimates based on one-body operators and free-nucleon coupling constants. Here we discuss the theoretical origins of this quenching giving examples from light nuclei near LS-closed shells, such as 16 0 and 40 Ca. (Author) 12 refs., 2 tabs

  8. An exploratory study of matrix elements of triangle I=3/2 K→ππ decays at next-to-leading order in the chiral expansion

    International Nuclear Information System (INIS)

    Boucaud, P.; Gimenez, V.; Lin, C.J.D.; Washington Univ., Seattle, WA; Lubicz, V.; Martinelli, G.; Papinutto, M.; Sachrajda, C.T.

    2004-12-01

    We present the first direct evaluation of ΔI=3/2 K → ππ matrix elements with the aim of determining all the low-energy constants at NLO in the chiral expansion. Our numerical investigation demonstrates that it is indeed possible to determine the K → ππ matrix elements directly for the masses and momenta used in the simulation with good precision. In this range however, we find that the matrix elements do not satisfy the predictions of NLO chiral perturbation theory. For the chiral extrapolation we therefore use a hybrid procedure which combines the observed polynomial behaviour in masses and momenta of our lattice results, with NLO chiral perturbation theory at lower masses. In this way we find stable results for the quenched matrix elements of the electroweak penguin operators ( I=2 left angle ππ vertical stroke O 8 vertical stroke K 0 right angle =(0.68±0.09) GeV 3 and I=2 left angle ππ vertical stroke O 7 vertical stroke K 0 right angle =(0.12±0.02) GeV 3 ), but not for the matrix elements of O 4 (for which there are too many low-energy constants at NLO for a reliable extrapolation). For all three operators we find that the effect of including the NLO corrections is significant (typically about 30%). We present a detailed discussion of the status of the prospects for the reduction of the systematic uncertainties. (orig.)

  9. Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation

    Science.gov (United States)

    Bakker, Mark; Kuhlman, Kristopher L.

    2011-09-01

    Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks.

  10. Study of electron-molecule collision via finite-element method and r-matrix propagation technique: Exact exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Perez, L.; Gomez, P.

    1995-01-01

    The authors have applied the finite-element method to electron-molecule collision with the exchange effect implemented rigorously. All the calculations are done in the body-frame within the fixed-nuclei approximation, where the exact treatment of exchange as a nonlocal effect results in a set of coupled integro-differential equations. The method is applied to e-H 2 and e-N 2 scatterings and the cross sections obtained are in very good agreement with the corresponding results the authors have generated from the linear-algebraic approach. This confirms the significant difference observed between their results generated by linear-algebraic method and the previously published e-N 2 cross sections. Their studies show that the finite-element method is clearly superior to the linear-algebraic approach in both memory usage and CPU time especially for large systems such as e-N 2 . The system coefficient matrix obtained from the finite-element method is often sparse and smaller in size by a factor of 12 to 16, compared to the linear-algebraic technique. Moreover, the CPU time required to obtain stable results with the finite-element method is significantly smaller than the linear-algebraic approach for one incident electron energy. The usage of computer resources in the finite-element method can even be reduced much further when (1) scattering calculations involving multiple electron energies are performed in one computer run and (2) exchange, which is a short range effect, is approximated by a sparse matrix. 17 refs., 7 figs., 5 tabs

  11. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  12. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  13. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  14. Construction of LDPC codes over GF(q) with modified progressive edge growth

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; MEN Ai-dong; YANG Bo; QUAN Zi-yi

    2009-01-01

    A parity check matrix construction method for constructing a low-density parity-check (LDPC) codes over GF(q) (q>2) based on the modified progressive edge growth (PEG) algorithm is introduced. First, the nonzero locations of the parity check matrix are selected using the PEG algorithm. Then the nonzero elements are defined by avoiding the definition of subcode. A proof is given to show the good minimum distance property of constructed GF(q)-LDPC codes. Simulations are also presented to illustrate the good error performance of the designed codes.

  15. An experimental determination of the parameters describing the K/sup + / to pi /sup +/ pi /sup 0/ pi /sup 0/ decay matrix element

    CERN Document Server

    Braun, H; Erriquez, O; Martyn, H U; Renton, P B; Romano, F; Vilain, P; Waldren, D

    1976-01-01

    The matrix element of the three pion decay mode of the kaon is expressed in terms of Mandelstam variables. An analysis of the Dalitz plot density distribution gives information on the parameters of the expression. From an analysis of the decays of stopping K/sup +/ mesons involving neutral pions in the CERN heavy-liquid bubble chamber filled with a propane ethane mixture, it is concluded that the energy dependence of the decay matrix element is compatible with a linear behaviour. (3 refs).

  16. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    A framework of finite element equations for strain gradient plasticity is presented. The theoretical framework requires plastic strain degrees of freedom in addition to displacements and a plane strain version is implemented into a commercial finite element code. A couple of different elements...... of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...... to fiber size is captured but strengthening due to fiber shape is not. A few modelling aspects of this problem are discussed as well. An analytic solution is also presented which illustrates similarities to other theories....

  17. Spin Density Matrix Elements in exclusive production of ω mesons at Hermes

    Directory of Open Access Journals (Sweden)

    Marianski B.

    2014-03-01

    Full Text Available Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and –t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.

  18. Nucleon distribution apmlitudes and proton decay matrix elements on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Vladimir M.; Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (GB). School of Physics] (and others)

    2008-11-15

    Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MS scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)

  19. Massive 3-loop ladder diagrams for quarkonic local operator matrix elements

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Blümlein, Johannes; Hasselhuhn, Alexander; Klein, Sebastian; Schneider, Carsten; Wißbrock, Fabian

    2012-01-01

    3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with ξ∈{1,1/2,2} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q 2 ≫m 2 .

  20. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  1. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  2. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    Science.gov (United States)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  3. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    Science.gov (United States)

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  4. Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.

    Science.gov (United States)

    Faraji, M; Katgerman, L

    2010-08-01

    The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Three-loop contributions to the gluonic massive operator matrix elements at general values of N

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Hasselhuhn, Alexander [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); De Freitas, Abilio; Round, Mark; Schneider, Carsten; Wissbrock, Fabian [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Klein, Sebastian [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik E

    2012-12-15

    Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(n{sub f}T{sup 2}{sub F}C{sub F,A}) and O(T{sup 2}{sub F}C{sub F,A}) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.

  6. Matrix elements and transition probabilities of interaction of electromagnetic field with a hydrogen-like atom

    International Nuclear Information System (INIS)

    Rajput, B.S.

    1977-01-01

    Using the reduced expansions of second quantized electromagnetic vector potential operator in terms of irreducible representations of Pioncare group in the interaction Hamiltonian, the exact matrix elements of interaction of electromagnetic field with a hydrogenic atom have been derived and the contributions of transitions for different combinations of angular momentum quantum numbers to the transition probabilities of various lines in Lyman-, Balmer-, and Paschen-series have been computed. (author)

  7. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    Science.gov (United States)

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  8. Neutrino mass matrix: Inverted hierarchy and CP violation

    International Nuclear Information System (INIS)

    Frigerio, Michele; Smirnov, Alexei Yu.

    2003-01-01

    We reconstruct the neutrino mass matrix in the flavor basis, in the case of an inverted mass hierarchy (ordering), using all available experimental data on neutrino masses and oscillations. We analyze the dependence of the matrix elements m αβ on the CP violating Dirac δ and Majorana ρ and σ phases, for different values of the absolute mass scale. We find that the present data admit various structures of the mass matrix: (i) hierarchical structures with a set of small (zero) elements; (ii) structures with equalities among various groups of elements: e-row and/or μτ-block elements, diagonal and/or off-diagonal elements; (iii) 'democratic' structure. We find the values of phases for which these structures are realized. The mass matrix elements can anticorrelate with flavor: inverted partial or complete flavor alignment is possible. For various structures of the mass matrix we identify the possible underlying symmetry. We find that the mass matrix can be reconstructed completely only in particular cases, provided that the absolute scale of the mass is measured. Generally, the freedom related to the Majorana phase σ will not be removed, thus admitting various types of mass matrix

  9. A Modified Model Reference Adaptive Control for a Single Motor of Latch Type Control Element Drive Mechanism

    International Nuclear Information System (INIS)

    Park, Bae Jeong

    2016-01-01

    A modified Model Reference Adaptive Control (MRAC) for a single motor of latch type Control Element Drive Mechanism (CEDM) is described herein. The CEDM has complicated dynamic characteristics including electrical, mechanical, and magnetic effects. The previous control system has utilized a Proportional-Integral (PI) controller, and the control performance is limited according to nonlinear dynamic characteristics and environmental conditions. The modified MRAC using system identification (ID) technique improves the control performance in the operating condition such as model parameter variation and environmental condition change. The modified MRAC using the identified reference model with feed-forward gain and 180Hz noise reduction filter presents better performance under normal and/or abnormal condition. The simplified reference model can make H/W implementation more practical on the viewpoint of less computation and good performance. Actually, the CEDM controller shall be capable of controlling 101 control element assemblies (CEAs) individually in the nuclear power plant. Because the load conditions and the environmental condition around the 101 CEAs are all different minutely, the proposed modified MRAC can be a good practice. The modified MRAC controller will be applied in the real nuclear power plant later and this will overcome some weak point of PI controller

  10. Development of modified rational buyer auction for procurement of ancillary services utilizing participation matrix

    International Nuclear Information System (INIS)

    Jamalzadeh, R.; Ardehali, M.M.; Rashidinejad, M.

    2008-01-01

    The rational buyer auction is based on a simultaneous auction that is the redesigned auction mechanism for ancillary services by the California independent system operator (CAISO). The incentive for the rational buyer auction is CAISO's intent to adopt a common sense rule of substituting higher-quality lower-cost services for lower-quality higher-cost services, when it results in reduced total procurement cost. For the purposes of designing a desirable auction where the minimum cost for the objective function as well as prevention of price reversal are achieved, either the payment cost in marginal pricing auction must be lowered or price reversal in rational buyer auction must be avoided. The objectives of this study are (a) to develop a newly proposed 'modified rational buyer' auction that does not allow price reversal and (b) to propose and validate a solution procedure that is based on participation matrix and discrete programming. The validation of the proposed solution procedure is accomplished through examination of two case studies available in the literature. Based on the first case study data, it is shown that the newly developed modified rational buyer auction avoids price reversal occurrence, while the total payment of ISO is increased by 5.8%, as compared with rational buyer auction. Also in comparison with marginal pricing auction, the ISO payment is lowered by 38.8%, when the newly developed modified rational buyer auction is utilized. For future work, it is recommended that the application of the modified rational buyer auction to joint dispatch of energy and ancillary services is investigated

  11. First determination of the quark mixing matrix element $V_{tb}$ from electroweak corrections to Z decays and implications for CKM matrix unitarity

    CERN Document Server

    Swain, J D

    1999-01-01

    We present a new method for the determination of the Cabibbo- Kobayashi-Maskawa quark mixing matrix element V/sub tb/ from electroweak loop corrections, in particular those affecting the process Z to bb. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine V /sub tb/=0.77/sub -0.24//sup +18/. We comment briefly on the implications of this measurement for the mass of the top quark and Higgs boson, alpha /sub s/, and CKM unitarity. (19 refs).

  12. An experimentalist's guide to the matrix element in angle resolved photoemission

    International Nuclear Information System (INIS)

    Moser, Simon

    2017-01-01

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  13. An experimentalist's guide to the matrix element in angle resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Simon, E-mail: skmoser@lbl.gov [Advanced Light Source (ALS), Berkeley, CA 94720 (United States); Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2017-01-15

    Highlights: • An introduction to the art of angle resolved photoemission is presented. • Matrix element effects are described by a nearly free electron final state model. • ARPES spectral weight of a Bloch band can be calculated from the Fourier transform of its Wannier orbital. • Experimental handedness and improper polarization introduce dichroism. • Instructive showcases from modern ARPES are discussed in detail. - Abstract: Angle resolved photoemission spectroscopy (ARPES) is commonly known as a powerful probe of the one-electron removal spectral function in ordered solid state. With increasing efficiency of light sources and spectrometers, experiments over a wide range of emission angles become more and more common. Consequently, the angular variation of ARPES spectral weight – often times termed “matrix element effect” – enters as an additional source of information. In this tutorial, we develop a simple but instructive free electron final state approach based on the three-step model to describe the intensity distribution in ARPES. We find a compact expression showing that the ARPES spectral weight of a given Bloch band is essentially determined by the momentum distribution (the Fourier transform) of its associated Wannier orbital – times a polarization dependent pre-factor. While the former is giving direct information on the symmetry and shape of the electronic wave function, the latter can give rise to surprising geometric effects. We discuss a variety of modern and instructive experimental showcases for which this simplistic formalism works astonishingly well and discuss the limits of this approach.

  14. Periodontal Disease, Matrix Metalloproteinases and Chemically Modified Tetracyclines

    OpenAIRE

    Steinsvoll, Svein

    2011-01-01

    Matrix metalloproteinases (MMPs) are crucial in the degradation of the main components in the extracellular matrix and thereby play important roles in cell migration, wound healing and tissue remodelling. MMPs have pathogenic roles in arthritis, periodontitis, hepatitis, glomerulonephritis, atherosclerosis and cancer cell invasion. MMPs are activators of pro-inflammatory mediators that occur in latent forms, such as interleukin (IL)-1β, membrane-bound tumour necrosis factor (TNF) and dif...

  15. Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Donati, George L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Santos, Luana N. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil); Jones, Bradley T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Nóbrega, Joaquim A. [Group of Applied Instrumental Analysis, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, São Carlos, SP 13560-970 (Brazil)

    2013-05-30

    Graphical abstract: -- Highlights: •Charge transfer reactions increase the population of Cr{sup +}. •Chromium ions and electrons recombine to form excited-state Cr atoms. •A 10-fold improvement in LOD is observed for Cr emission measurements. •The two-step ionization/excitation mechanism improves sensitivity and accuracy. •High concentrations of Co also minimize matrix effects. -- Abstract: Cobalt is used as chemical modifier to improve sensitivity and minimize matrix effects in Cr determinations by tungsten coil atomic emission spectrometry (WCAES). The atomizer is a tungsten filament extracted from microscope light bulbs. A solid-state power supply and a handheld CCD-based spectrometer are also used in the instrumental setup. In the presence of 1000 mg L{sup −1} Co, WCAES limit of detection for Cr (λ = 425.4 nm) is calculated as 0.070 mg L{sup −1}; a 10-fold improvement compared to determinations without Co modifier. The mechanism involved in such signal enhancement is similar to the one observed in ICP OES and ICP-MS determinations of As and Se in the presence of C. Cobalt increases the population of Cr{sup +} by charge transfer reactions. In a second step, Cr{sup +}/e{sup −} recombination takes place, which results in a larger population of excited-state Cr atoms. This alternative excitation route is energetically more efficient than heat transfer from atomizer and gas phase to analyte atoms. A linear dynamic range of 0.25–10 mg L{sup −1} and repeatability of 3.8% (RSD, n = 10) for a 2.0 mg L{sup −1} Cr solution are obtained with this strategy. The modifier high concentration also contributes to improving accuracy due to a matrix-matching effect. The method was applied to a certified reference material of Dogfish Muscle (DORM-2) and no statistically significant difference was observed between determined and certified Cr values at a 95% confidence level. Spike experiments with bottled water samples resulted in recoveries between 93% and

  16. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  17. Elimination of matrix effect in quantitative analysis of elements using x-ray fluorescence

    International Nuclear Information System (INIS)

    Sampaio, R.V.

    1973-07-01

    The emission-transmission method of Leroux and Mahmud, an experimental technique for compensating matrix effects in photon excited X-ray fluorescence analysis, was used to determine the concentration of lead and antimony in pellets of galalith. The effect of interfering elements was studied by adding various concentrations of mercury and tin to the respective pellets. To illustrate possible environmental applications, a number of pellets was prepared from leaves of almond trees located in different regions of Rio de Janeiro. Lead concentrations were determined for the dried leaf material and showed values ranging from 50 to 145 parts per million [pt

  18. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO Radar Based on the Elements of the Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Zhengyan Zhang

    2018-03-01

    Full Text Available In this paper, we consider the problem of tracking the direction of arrivals (DOA and the direction of departure (DOD of multiple targets for bistatic multiple-input multiple-output (MIMO radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  19. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    Science.gov (United States)

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  20. Phenomenology of the CKM matrix

    International Nuclear Information System (INIS)

    Nir, Y.

    1989-01-01

    The way in which an exact determination of the CKM matrix elements tests the standard Model is demonstrated by a two-generation example. The determination of matrix elements from meson semileptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of the knowledge of the CKM matrix is presented. 19 refs., 2 figs

  1. Matrix effect studies with empirical formulations in maize saplings

    International Nuclear Information System (INIS)

    Bansal, Meenakshi; Deep, Kanan; Mittal, Raj

    2012-01-01

    In X-ray fluorescence, the earlier derived matrix effects from fundamental relations of intensities of analyte/matrix elements with basic atomic and experimental setup parameters and tested on synthetic known samples were found empirically related to analyte/matrix elemental amounts. The present study involves the application of these relations on potassium and calcium macronutrients of maize saplings treated with different fertilizers. The novelty of work involves a determination of an element in the presence of its secondary excitation rather than avoiding the secondary fluorescence. Therefore, the possible utility of this process is in studying the absorption for some intermediate samples in a lot of a category of samples with close Z interfering constituents (just like Ca and K). Once the absorption and enhancement terms are fitted to elemental amounts and fitted coefficients are determined, with the absorption terms from the fit and an enhancer element amount known from its selective excitation, the next iterative elemental amount can be directly evaluated from the relations. - Highlights: ► Empirical formulation for matrix corrections in terms of amounts of analyte and matrix element. ► The study applied on K and Ca nutrients of maize, rice and potato organic materials. ► The formulation provides matrix terms from amounts of analyte/matrix elements and vice versa.

  2. A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis

    Science.gov (United States)

    Lane, John

    2009-01-01

    A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.

  3. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    Nozawa, Tomohiro; Arakawa, Yasuhiko

    2014-01-01

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)

  4. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  5. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  6. Relativistic atomic matrix elements of rq for arbitrary states in the quantum-defect approximation

    International Nuclear Information System (INIS)

    Owono Owono, L.C.; Owona Angue, M.L.C.; Kwato Njock, M.G.; Oumarou, B.

    2004-01-01

    Recurrence relations used in the calculation of matrix elements of r q for arbitrary q and states of the relativistic one-electron atom with a point-like ionic core are obtained with Dirac and quasirelativistic effective radial Hamiltonians. The phenomenological and supersymmetry-inspired quantum-defect approaches introduced in previous works to model the electron-core interactions are employed. The formulas worked out on the basis of a hypervirial inspired method may be viewed as a generalization to off-diagonal cases of our recently reported results on the evaluation of expectation values of r q

  7. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  8. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    Science.gov (United States)

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  9. Eigenvalue Decomposition-Based Modified Newton Algorithm

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2013-01-01

    Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.

  10. Authorship matrix: a rational approach to quantify individual contributions and responsibilities in multi-author scientific articles.

    Science.gov (United States)

    Clement, T Prabhakar

    2014-06-01

    We propose a rational method for addressing an important question-who deserves to be an author of a scientific article? We review various contentious issues associated with this question and recommend that the scientific community should view authorship in terms of contributions and responsibilities, rather than credits. We propose a new paradigm that conceptually divides a scientific article into four basic elements: ideas, work, writing, and stewardship. We employ these four fundamental elements to modify the well-known International Committee of Medical Journal Editors (ICMJE) authorship guidelines. The modified ICMJE guidelines are then used as the basis to develop an approach to quantify individual contributions and responsibilities in multi-author articles. The outcome of the approach is an authorship matrix, which can be used to answer several nagging questions related to authorship.

  11. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  12. Formulation and evaluation of sustained release matrix tablets of pioglitazone hydrochloride using processed Aloe vera mucilage as release modifier

    Directory of Open Access Journals (Sweden)

    Manoj Choudhary

    2015-01-01

    Full Text Available Background: Natural gums and mucilage which hydrates and swells on contact with aqueous media are used as additives in the formulation of hydrophilic drug delivery system. Aim: The purpose of this study was to develop a new monolithic matrix system for complete delivery of Pioglitazone hydrochloride (HCl, in a zero-order manner over an extended time period using processed Aloe vera gel mucilage (PAG as a release modifier. Materials and Methods: The matrices were prepared by dry blending of selected ratios of polymer and ingredients using direct compression technique. Physicochemical properties of dried powdered mucilage of A. vera were studied. Various formulations of pioglitazone HCl and A. vera mucilage were prepared using different drug: Polymer ratios viz., 1:1, 1:2, 1:3, 1:4, 1:5 for PAG by direct compression technique. Results: The formulated matrix tablets were found to have better uniformity of weight and drug content with low statistical deviation. The swelling behavior and in vitro release rate characteristics were also studied. Conclusion: The study proved that the dried A. vera mucilage can be used as a matrix forming material for controlled release of Pioglitazone HCl matrix tablets.

  13. Modified benchmarking study of program management within a matrix structure

    OpenAIRE

    Fuller, Robin S.

    1996-01-01

    This thesis sought to identify several organizations representing both the government and commercial industry that were successful in implementing program management within a matrix structure to isolate best-practices that lead to superior performance. Research data were gathered from current and former program managers from these organizations. These managers were queried about their experiences with the matrix structure: the matrix implementation process, benefits, pitfalls, and lessons lea...

  14. Radiochemical separation and ICP-AES determination of some common metallic elements in ThO2 matrix

    International Nuclear Information System (INIS)

    Adya, V.C.; Hon, N.S.; Bangia, T.R.; Sastry, M.D.; Iyer, R.H.

    1997-01-01

    Radioactive tracer and also ICP-AES studies have been carried out to determine Al, Cd, Ca, Cr, Co, Cu, Mn, Mo and Pd in ThO 2 matrix after chemical separation. Di-2-ethyl-hexyl phosphoric acid/xylene/HNO 3 extraction system was used for quantitative separation of thorium. The recovery of elements as determined by tracers and ICP-AES was found to be quantitative within experimental error. (author). 3 refs., 1 tab

  15. Preparation of spherical fuel elements for HTR-PM in INET

    International Nuclear Information System (INIS)

    Xiangwen, Zhou; Zhenming, Lu; Jie, Zhang; Bing, Liu; Yanwen, Zou; Chunhe, Tang; Yaping, Tang

    2013-01-01

    Highlights: • Modifications and optimizations in the manufacture of spherical fuel elements (SFE) for HTR-PM are presented. • A newly developed overcoater exhibits good stability and high efficiency in the preparation of overcoated particles. • The optimized carbonization process reduces the process time from 70 h in the period of HTR-10 to 20 h. • Properties of the prepared SFE and matrix graphite balls meet the design specifications for HTR-PM. • In particular the mean free uranium fraction of 5 consecutive batches is only 8.7 × 10 −6 . -- Abstract: The spherical fuel elements were successfully manufactured in the period of HTR-10. In order to satisfy the mass production of fuel elements for HTR-PM, several measures have been taken in modifying and optimizing the manufacture process of fuel elements. The newly developed overcoater system and its corresponding parameters exhibited good stability and high efficiency in the preparation of overcoated particles. The optimized carbonization process could reduce the carbonization time from more than 70 h to 20 h and improve the manufacturing efficiency. Properties of the manufactured spherical fuel elements and matrix graphite balls met the design specifications for HTR-PM. The mean free uranium fraction of 5 consecutive batches was 8.7 × 10 −6 . The optimized fuel elements manufacturing process could meet the requirements of design specifications of spherical fuel elements for HTR-PM

  16. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  17. Finite-element blunt-crack propagation: a modified J-integral approach

    International Nuclear Information System (INIS)

    Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is the behavior of concrete structures subjected to high temperatures. The potential of concrete cracking is an important parameter which could significantly influence the safety assessment of thermally attacked concrete. A new modified J-integral approach for the blunt crack model has been derived to provide a general procedure to accurately predict the direction of crack growth. This formulation has been incorporated into the coupled heat transfer-stress analysis finite element code TEMP-STRESS. A description of the formulation is presented in this paper. Results for the problems of a Mode I and mixed mode crack in a plate using regular and slanted meshes subjected to uniaxial and shear loading are presented

  18. Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)

    2012-03-19

    We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.

  19. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  20. Neutron-proton matrix element ratios of 21+ states in 58,60,62,64Ni

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    The neutron-proton matrix element ratios (η) for 2 1 + states of even Ni isotopes are investigated within the framework of the shell model quasiparticle random-phase approximation. The special attention is devoted to the dependence of η ratios on the radial neutron and proton ground-state density-distribution differences (Δ np ). This dependence is found to be about 0.5Δ np . The theoretical η ratios are 14-23% greater than the hydrodynamical limit. The theoretical Δ np dependence of η ratios enable us to understand the empirical η ratio results. 20 refs.; 2 figs.; 2 tabs

  1. HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2013-01-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code \\mtt{HELAC} to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub \\mtt{HELAC-Onia}. We rewrote the original \\mtt{HELAC} to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, \\mtt{HELAC-Onia} is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. $h_{c,b},\\chi_{c,b}$) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  2. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  3. Matrix elements for the anti B{yields}X{sub s}{gamma} decay at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Schutzmeier, Thomas Paul

    2009-12-17

    In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B{yields} X{sub s}{gamma} decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B{yields}X{sub s}{gamma} decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B{yields}X{sub s}{gamma} decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the

  4. Matrix elements of four-quark operators relevant to life time difference ΔΓBs from QCD sum rules

    International Nuclear Information System (INIS)

    Huang, C.S.; Zhang Ailin; Zhu, S.L.

    2001-01-01

    We extract the matrix elements of four-quark operators O L,S relevant to the B s and anti B s life time difference from QCD sum rules. We find that the vacuum saturation approximation works reasonably well, i.e., within 10%. We discuss the implications of our results and compare them with a recent lattice QCD determination. (orig.)

  5. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  6. Phenomenological renormalization of free nucleon-nucleon interaction. [Sussex matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M; Waghmare, Y R [Indian Inst. of Tech., Kanpur. Dept. of Physics; Mehrotra, I [Allahabad Univ. (India). Dept. of Physics

    1976-08-01

    Low-lying spectra of /sup 6/Li, /sup 18/F, /sup 18/O, /sup 42/Sc, /sup 42/Ca, /sup 58/Ni and /sup 92/Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the /sup 3/S/sub 1/ relative state are made (1+..cap alpha..) times their bare interaction value, where ..cap alpha.. is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME.

  7. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  8. Refractive index inversion based on Mueller matrix method

    Science.gov (United States)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  9. Modified emission-transmission method for determining trace elements in solid samples using the XRF techniques

    International Nuclear Information System (INIS)

    Poblete, V.; Alvarez, M.; Hermosilla, M.

    2000-01-01

    This is a study of an analysis of trace elements in medium thick solid samples, by the modified transmission emission method, using the energy dispersion X-ray fluorescence technique (EDXRF). The effects of absorption and reinforcement are the main disadvantages of the EDXRF technique for the quantitative analysis of bigger elements and trace elements in solid samples. The implementation of this method and its application to a variety of samples was carried out using an infinitely thick multi-element white sample that calculates the correction factors by absorbing all the analytes in the sample. The discontinuities in the masic absorption coefficients versus energies association for each element, with medium thick and homogenous samples, are analyzed and corrected. A thorough analysis of the different theoretical and test variables are proven by using real samples, including certified material with known concentration. The simplicity of the calculation method and the results obtained show the method's major precision, with possibilities for the non-destructive routine analysis of different solid samples, using the EDXRF technique (author)

  10. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    Science.gov (United States)

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The O({alpha}{sup 3}{sub s}n{sub f}T{sup 2}{sub F}C{sub A,F}) contributions to the gluonic massive operator matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes; Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2012-05-15

    The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.

  12. Adinkras from ordered quartets of BC4 Coxeter group elements and regarding another Gadget’s 1,358,954,496 matrix elements

    Science.gov (United States)

    Gates, S. James; Kang, Lucas; Kessler, David S.; Korotkikh, Vadim

    2018-04-01

    A Gadget, more precisely a scalar Gadget, is defined as a mathematical calculation acting over a domain of one or more adinkra graphs and whose range is a real number. A 2010 work on the subject of automorphisms of adinkra graphs, implied the existence of multiple numbers of Gadgets depending on the number of colors under consideration. For four colors, this number is two. In this work, we verify the existence of a second such Gadget and calculate (both analytically and via explicit computer-enabled algorithms) its 1,358,954,496 matrix elements over 36,864 minimal valise adinkras related to the Coxeter Group BC4.

  13. The Comparison Analysis of Thermalhydraulic Behavior Between A Reference 37-element Bundle and A Modified 37-element Bundle

    International Nuclear Information System (INIS)

    Ryu, Eui-Seung; You, Sung-Chang

    2014-01-01

    As pressure tube diameter creep increase, the coolant flows through some of the interior subchannels of the fuel bundle are reduced and consequently reduces the Critical Heat Flux (CHF). For this reason, Canadian Utilities have performed the project that developing the new fuel design (modified 37-element bundle) to increase critical heat flux. The modified 37-element (37M) bundle has the same overall geometry as the reference 37-element (37R) bundle that is using in the Wolsong units now but the center element diameter has been reduced from 13.06mm to 11.5mm. The reduction in center element diameter of the 37M bundle design increase the flow of center areas to improve the cooling and thus to enhance CHF. The CHF experiments with 37M bundle string simulator in un-crept and crept (3.3%, 5.1% peak creep) flow channels were completed at Stern Laboratories in 2008. A substantially large increase in dryout-power was observed for the 37M bundle compared to the 37R bundle, particularly in the 5.1% crept channel. As a result of the experiments, Ontario Power Generation (OPG) and Bruce Power (BP) have increased the operational margin with this CHF correlation and has fully refueled the 37M fuel on some units or almost done on the other units. KHNP also has performed the project to refuel the 37M bundle which is the same design with OPG and BP recently. This paper summarizes the comparison assessment of Thermalhydraulic (T/H) behavior for 37M bundle and 37R bundle with their own correlations and geometry parameters. This analysis performed with the thermal hydraulic code (NUCIRC) and the site measured data at the Wolsong Unit2. Tests to evaluate the CHF performance with the 37M fuel bundle have been conducted in 2008 using the un-crept, 3.3% crept and 5.1% crept flow channels in the CHF Test facility at Stern Laboratories. In addition pressure drop tests have been performed at the same time. The changes of geometry from 37R bundle to 37M bundle reduced the center element

  14. Study of electron-molecule collisions via the finite-element method and R-matrix propagation technique: Model exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Gomez, P.

    1994-01-01

    We have applied the finite-element method to electron-molecule collisions. All the calculations are done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the static and polarization potential, has been used to represent the exchange effect. The method is applied to electron-H 2 scattering and the eigenphase sums and the cross sections obtained are in very good agreement with the corresponding results from the linear-algebraic approach. Finite-element calculations of the R matrix in the region where the static and exchange interactions are strong, however, has about one-half to one-fourth of the memory requirement of the linear-algebraic technique

  15. Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2002-01-01

    We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.

  16. The transition matrix element Agq(N) of the variable flavor number scheme at O(α3s)

    International Nuclear Information System (INIS)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C.; Manteuffel, A. von

    2014-01-01

    We calculate the massive operator matrix element A (3) gq (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α 3 s ). A fist independent recalculation is performed for the contributions ∝ N F of the 3-loop anomalous dimension γ (2) gq (N).

  17. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3)

    International Nuclear Information System (INIS)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Manteuffel, A. von; Round, M.; Schneider, C.; Wißbrock, F.

    2014-01-01

    We calculate the massive unpolarized operator matrix element A gq (3) (N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α s 3 ). A first independent recalculation is performed for the contributions ∝N F of the 3-loop anomalous dimension γ gq (2) (N)

  18. Simulation of sparse matrix array designs

    Science.gov (United States)

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  19. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  20. Multiphonon K/sup π/+ states in even-even deformed nuclei. II. Calculation of matrix elements of a general Hamiltonian

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1978-01-01

    Matrix elements of a general Hamiltonian H in a subspace spanned by collective K/sup π/+ deformed phonons are derived with the help of recursion formulas. Various approximations are discussed both in the fermion space and in the boson space. Careful comparisons are made in the framework of a simple solvable model

  1. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  2. Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79108 Freiburg (Germany); Fraunhofer Institute for Applied Solid State Physics (IAF), Tullastrasse 72, 79108 Freiburg (Germany); Wernicke, T. [Institute of Solid State Physics, Technical University, Hardenbergstrasse 36, 10623 Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technical University, Hardenbergstrasse 36, 10623 Berlin (Germany); Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany)

    2011-03-15

    Partial or full linear polarization is characteristic for the spontaneous emission of light from semipolar and nonpolar InGaN quantum wells. This property is an implication of the crystalline anisotropy as a basic property of the wurtzite structure. The influence of this anisotropy on the band structure and the transition matrix elements was calculated by a k.p-method for arbitrary quantum well orientations with respect to the c-axis; results are shown here in detail. Optical polarization is a direct consequence of a broken symmetry, mainly affecting the transition matrix elements from the conduction to the valence bands. Furthermore, the strain of the InGaN quantum well strongly depends on the crystal orientation of the substrate, resulting in a valence band mixing. The composition of the eigenfunctions has emerged to be most important for the polarization dependence of strained semipolar and nonpolar InGaN QW. The matrix elements, in combination with the thermal occupation of the bands, determine the polarization of the spontaneously emitted light. Our photoluminescence measurements of nonpolar QW match well with this model. However, in contrast to calculations with standard band parameters, the two topmost subbands show a larger separation in the emitted energy. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) contributions to the gluonic massive operator matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Klein, Sebastian [Institute for Theoretical Physics E, RWTH Aachen University, D-52056 Aachen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria)

    2013-01-11

    The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N using a new summation technique. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.

  4. The O(αs3TF2) contributions to the gluonic operator matrix element

    International Nuclear Information System (INIS)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Manteuffel, A. von; Round, M.; Schneider, C.

    2014-01-01

    The O(α s 3 T F 2 C F (C A )) contributions to the transition matrix element A gg,Q relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines

  5. Integrated optic vector-matrix multiplier

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  6. FEMWATER: a finite-element model of water flow through saturated-unsaturated porous media

    International Nuclear Information System (INIS)

    Yeh, G.T.; Ward, D.S.

    1980-10-01

    Upon examining the Water Movement Through Saturated-Unsaturated Porous Media: A Finite-Element Galerkin Model, it was felt that the model should be modified and expanded. The modification is made in calculating the flow field in a manner consistent with the finite element approach, in evaluating the moisture-content increasing rate within the region of interest, and in numerically computing the nonlinear terms. With these modifications, the flow field is continuous everywhere in the flow regime, including element boundaries and nodal points, and the mass loss through boundaries is much reduced. Expansion is made to include four additional numerical schemes which would be more appropriate for many situations. Also, to save computer storage, all arrays pertaining to the boundary condition information are compressed to smaller dimension, and to ease the treatment of different problems, all arrays are variably dimensioned in all subroutines. This report is intended to document these efforts. In addition, in the derivation of finite-element equations, matrix component representation is used, which is believed more readable than the matrix representation in its entirety. Two identical sample problems are simulated to show the difference between the original and revised models

  7. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  8. Extraction of the CKM matrix element Vus from the hyperon semileptonic decays

    International Nuclear Information System (INIS)

    Sharma, N.; Dahiya, H.; Chatley, P.K.

    2010-01-01

    The chiral constituent quark model with configuration mixing (χCQM config ), which is successful in explaining the weak vector and axial-vector form factors for the strangeness-changing as well as strangeness-nonchanging hyperon semileptonic decays at Q 2 =0, has been extended to determine the CKM matrix element V us for the strangeness-changing decays. The implications of the effect of the SU(3) symmetry breaking, Q 2 -dependence and radiative corrections on the form factors and V us have also been investigated. It is found that the results with SU(3) symmetry breaking show considerable improvement over the SU(3) symmetric results when compared with the existing experimental data. The inclusion of the Q 2 -dependence and radiative corrections in form factors have only a small effect on the prediction of V us as is expected from the theory. (orig.)

  9. Bio-corrosion in synthetic and natural sea water of modified stainless steels by poison elements

    International Nuclear Information System (INIS)

    Hernandez Duque, G.

    1989-09-01

    In seawater, bacteria can modify the behaviour of stainless steels towards corrosion. It can be then considered to control this type of degradation by a better adjustment of the chemical composition of the steels used. In this work, has been studied the influence of the addition of 'poisons' elements for bacteria on the bio-corrosion resistance of an austenitic 316L steel. The added elements were copper, tin and arsenic. After a bibliographic study and a description of the metallographic, electrochemical and surface analyses methods used, the results obtained in the considered media are given: synthetical seawater, natural, or sterilized and then inoculated. The specific role of each addition elements has then been revealed as well as the alteration of the protecting films and of the induced bio-film, and the behaviour differences in aerobic and anaerobic conditions. (O.M.)

  10. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2010-01-01

    be written as linear combinations of the elements in the exponential of a matrix. For this reason we shall refer to multivariate distributions with rational Laplace transform as multivariate matrix-exponential distributions (MVME). The marginal distributions of an MVME are univariate matrix......-exponential distributions. We prove a characterization that states that a distribution is an MVME distribution if and only if all non-negative, non-null linear combinations of the coordinates have a univariate matrix-exponential distribution. This theorem is analog to a well-known characterization theorem...

  11. Investigations on thermal properties, stress and deformation of Al/SiC metal matrix composite based on finite element method

    Directory of Open Access Journals (Sweden)

    K. A. Ramesh Kumar

    2014-09-01

    Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.

  12. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  13. Neutral kaon mixing beyond the Standard Model with nf=2+1 chiral fermions. Part 1: bare matrix elements and physical results

    International Nuclear Information System (INIS)

    Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.

    2016-01-01

    We compute the hadronic matrix elements of the four-quark operators relevant for K 0 −K̄ 0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f =2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.

  14. Measurement of the matrix elements for the decays η'→η π+π- and η'→η π0π0

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Magnoni, A. S.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-01-01

    Based on a sample of 1.31 ×109 J /ψ events collected with the BESIII detector, the matrix elements for the decays η'→η π+π- and η'→η π0π0 are determined using 351,016 η'→(η →γ γ )π+π- and 56,249 η'→(η →γ γ )π0π0 events with background levels less than 1%. Two commonly used representations are used to describe the Dalitz plot density. We find that an assumption of a linear amplitude does not describe the data well. A small deviation of the obtained matrix elements between η'→η π+π- and η'→η π0π0 is probably caused by the mass difference between charged and neutral pions or radiative corrections. No cusp structure in η'→η π0π0 is observed.

  15. Numerical Methods Application for Reinforced Concrete Elements-Theoretical Approach for Direct Stiffness Matrix Method

    Directory of Open Access Journals (Sweden)

    Sergiu Ciprian Catinas

    2015-07-01

    Full Text Available A detailed theoretical and practical investigation of the reinforced concrete elements is due to recent techniques and method that are implemented in the construction market. More over a theoretical study is a demand for a better and faster approach nowadays due to rapid development of the calculus technique. The paper above will present a study for implementing in a static calculus the direct stiffness matrix method in order capable to address phenomena related to different stages of loading, rapid change of cross section area and physical properties. The method is a demand due to the fact that in our days the FEM (Finite Element Method is the only alternative to such a calculus and FEM are considered as expensive methods from the time and calculus resources point of view. The main goal in such a method is to create the moment-curvature diagram in the cross section that is analyzed. The paper above will express some of the most important techniques and new ideas as well in order to create the moment curvature graphic in the cross sections considered.

  16. Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Energy Technology Data Exchange (ETDEWEB)

    M. Williams, D. Applegate, M. Bellis, C.A. Meyer

    2009-12-01

    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

  17. Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes

    International Nuclear Information System (INIS)

    Anselmino, M.; Murgia, F.; Quintairos, P.

    1999-04-01

    Final state q q-bar interactions give origin to non zero values of the off-diagonal element ρ 1,-1 of the helicity density matrix of vector mesons produced in e + e - annihilations, as confirmed by recent OPAL data on φ, D * and K * 's. New predictions are given for ρ 1,-1 of several mesons produced at large x E and small p T - i.e. collinear with the parent jet - in the annihilation of polarized 3 + and 3 - , the results depend strongly on the elementary dynamics and allow further non trivial tests of the standard model. (author)

  18. Strain Rate Dependent Deformation of a Polymer Matrix Composite with Different Microstructures Subjected to Off-Axis Loading

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2014-01-01

    Full Text Available This paper aims to investigate the comprehensive influence of three microstructure parameters (fiber cross-section shape, fiber volume fraction, and fiber off-axis orientation and strain rate on the macroscopic property of a polymer matrix composite. During the analysis, AS4 fibers are considered as elastic solids, while the surrounding PEEK resin matrix exhibiting rate sensitivities are described using the modified Ramaswamy-Stouffer viscoplastic state variable model. The micromechanical method based on generalized model of cells has been used to analyze the representative volume element of composites. An acceptable agreement is observed between the model predictions and experimental results found in the literature. The research results show that the stress-strain curves are sensitive to the strain rate and the microstructure parameters play an important role in the behavior of polymer matrix.

  19. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils

    International Nuclear Information System (INIS)

    Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; Lopez-Sanchez, J.F.; Rauret, G.

    2008-01-01

    The modified BCR three-step sequential extraction procedure was used to examine the temporal dynamics of trace elements in soils contaminated by an accidental spill from an opencast mine in south-west Spain. Soils were mainly contaminated with pyritic sludge and acidic wastewater, whereas some soils were affected only by acidic wastewater. The distributions obtained for both some major (Ca, Fe and Mn) and trace elements (As, Cd, Cu, Pb and Zn) in the sludge and soil samples taken at different times after the accident, 1-3 months and 21 months, were compared. Sequential extractions were useful in identifying different sources of contamination, and in obtaining additional information on the solubility of secondary minerals formed by pyrite oxidation. Thus, the effectiveness of the BCR procedure has proved to be a useful tool for predicting short- and long-term mobility of trace elements, even in complex environmental scenarios. - The modified BCR three-step sequential extraction procedure has proved a useful prediction tool for short- and long-term mobility of trace elements in contaminated soils

  20. Hadronic matrix elements in lattice QCD

    International Nuclear Information System (INIS)

    Jaeger, Benjamin

    2014-01-01

    The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is

  1. Google matrix analysis of DNA sequences.

    Science.gov (United States)

    Kandiah, Vivek; Shepelyansky, Dima L

    2013-01-01

    For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW). At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  2. Google matrix analysis of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Vivek Kandiah

    Full Text Available For DNA sequences of various species we construct the Google matrix [Formula: see text] of Markov transitions between nearby words composed of several letters. The statistical distribution of matrix elements of this matrix is shown to be described by a power law with the exponent being close to those of outgoing links in such scale-free networks as the World Wide Web (WWW. At the same time the sum of ingoing matrix elements is characterized by the exponent being significantly larger than those typical for WWW networks. This results in a slow algebraic decay of the PageRank probability determined by the distribution of ingoing elements. The spectrum of [Formula: see text] is characterized by a large gap leading to a rapid relaxation process on the DNA sequence networks. We introduce the PageRank proximity correlator between different species which determines their statistical similarity from the view point of Markov chains. The properties of other eigenstates of the Google matrix are also discussed. Our results establish scale-free features of DNA sequence networks showing their similarities and distinctions with the WWW and linguistic networks.

  3. A Modified Computational Scheme for the Stochastic Perturbation Finite Element Method

    Directory of Open Access Journals (Sweden)

    Feng Wu

    Full Text Available Abstract A modified computational scheme of the stochastic perturbation finite element method (SPFEM is developed for structures with low-level uncertainties. The proposed scheme can provide second-order estimates of the mean and variance without differentiating the system matrices with respect to the random variables. When the proposed scheme is used, it involves finite analyses of deterministic systems. In the case of one random variable with a symmetric probability density function, the proposed computational scheme can even provide a result with fifth-order accuracy. Compared with the traditional computational scheme of SPFEM, the proposed scheme is more convenient for numerical implementation. Four numerical examples demonstrate that the proposed scheme can be used in linear or nonlinear structures with correlated or uncorrelated random variables.

  4. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    International Nuclear Information System (INIS)

    Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Raab, Clemens; Wissbrock, Fabian

    2014-02-01

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a N , a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  5. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)

    2014-02-15

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  6. Grassmann integral and Balian–Brézin decomposition in Hartree–Fock–Bogoliubov matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro, E-mail: mizusaki@isc.senshu-u.ac.jp [Institute of Natural Sciences, Senshu University, 3-8-1 Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-8425 (Japan); Oi, Makito [Institute of Natural Sciences, Senshu University, 3-8-1 Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-8425 (Japan); Chen, Fang-Qi [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sun, Yang [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-08-09

    We present a new formula to calculate matrix elements of a general unitary operator with respect to Hartree–Fock–Bogoliubov states allowing multiple quasi-particle excitations. The Balian–Brézin decomposition of the unitary operator [R. Balian, E. Brézin, Il Nuovo Cimento B 64 (1969) 37] is employed in the derivation. We found that this decomposition is extremely suitable for an application of Fermion coherent state and Grassmann integrals in the quasi-particle basis. The resultant formula is compactly expressed in terms of the Pfaffian, and shows the similar bipartite structure to the formula that we have previously derived in the bare-particles basis [T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219].

  7. Calculations of the properties of superconducting alloys via the average T-matrix approximation

    International Nuclear Information System (INIS)

    Chatterjee, P.

    1980-01-01

    The theoretical formula of McMillan, modified via the multiple-scattering theory by Gomersall and Gyorffy, has been very successful in computing the electron-phonon coupling constant (lambda) and the transition temperature (Tsub(c)) of many superconducting elements and compounds. For disordered solids, such as substitutional alloys, however, this theory fails because of the breakdown of the translational symmetry used in the multiple-scattering theory. Under these conditions the problem can still be solved if the t-matrix is averaged in the random phase approximation (average T-matrix approximation). Gomersall and Gyorffy's expression is reformulated for lambda in the random phase approximation. This theory is applied to calculate lambda and Tsub(c) of the binary substitutional NbMo alloy system at different concentrations. The results appear to be in fair agreement with experiments. (author)

  8. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  9. Spatially dependent burnup implementation into the nodal program based on the finite element response matrix method

    International Nuclear Information System (INIS)

    Yoriyaz, H.

    1986-01-01

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt

  10. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  11. Development of a diffuse element matrix in 'planar' technology. A particular application: logical gate with coupled emitter; Etude et realisation d'une matrice d'elements diffuses selon la technologie 'planar'. Application particuliere: porte logique a emetteurs couples

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-01

    In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [French] Dans uns premiere partie, apres un bref rappel de la technologie 'planar' nous etudions les divers elements parasites associes a tout composant d'un circuit integre. Un developpement sommaire des expressions mathematiques de ces elements est propose. Dans une seconde partie nous presentons la matrice de 22 transistors et 12 resistances que nous avons realisee. Cette matrice repond aux principaux besoins de l'electronique nucleaire. Nous proposons ensuite quelques exemples de circuits realises a partir de cette matrice dont notamment une porte logique a emetteurs couples de performances tres interessantes. (auteur)

  12. Stability of wavelet frames with matrix dilations

    DEFF Research Database (Denmark)

    Christensen, Ole; Sun, Wenchang

    2006-01-01

    (j,k) are perturbed. As a special case of our result, we obtain that if {Tau(A(j), A(j)Bn)psi} (j is an element of Z, n is an element of Zd) is a frame for an expansive matrix A and an invertible matrix B, then {Tau(A'(j), A(j)B lambda(n))psi}(j is an element of Z,) (n is an element of) (Zd) is a frame if vertical...... bar vertical bar A(-j)A'(j) - I vertical bar vertical bar(2) lambda(n) - n vertical bar vertical bar infinity 0....

  13. Determination of several trace elements in silicate rocks by an XRF method with background and matrix corrections

    International Nuclear Information System (INIS)

    Pascual, J.

    1987-01-01

    An X-ray fluorescence method for determining trace elements in silicate rock samples was studied. The procedure focused on the application of the pertinent matrix corrections. Either the Compton peak or the reciprocal of the mass absorption coefficient of the sample was used as internal standard for this purpose. X-ray tubes with W or Cr anodes were employed, and the W Lβ and Cr Kα Compton intensities scattered by the sample were measured. The mass absorption coefficients at both sides of the absorption edge for Fe (1.658 and 1.936 A) were calculated. The elements Zr, Y, Rb, Zn, Ni, Cr and V were determined in 15 international reference rocks covering wide ranges of concentration. Relative mean errors were in many cases less than 10%. (author)

  14. On the evaluation of the U(3) content of the matrix elements of one-and two-body operators

    International Nuclear Information System (INIS)

    Vanagas, V.; Alcaras, J.A.C.

    1991-09-01

    An expression for the U(3) content of the matrix elements of one- and two-body operators in Elliott's basis is obtained. Three alternative ways of evaluating this content with increasing performance in computing time are presented. All of them allow an exact representation of that content in terms of integers, avoiding rounding errors in the computer codes. The role of dual bases in dealing with non-orthogonal bases is also clarified. (author)

  15. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  16. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation

    Science.gov (United States)

    Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd

    2017-10-01

    Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.

  17. Automated evaluation of matrix elements between contracted wavefunctions: A Mathematica version of the FRODO program

    Science.gov (United States)

    Angeli, C.; Cimiraglia, R.

    2013-02-01

    A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2

  18. The temporal Fresnel number in terms of ray matrix elements

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Dianyuan

    1993-01-01

    By using the analogy between temporal ray matrix and the well known ray matrix, the temporal Fresnel number, which gives the qualitative and quasiquantitative characteristics (shape, width and chirp) of optical pulses, is derived. A concept of effective propagation time is introduced. Several typical examples are discussed. 6 refs

  19. Matrix multiplication operations with data pre-conditioning in a high performance computing architecture

    Science.gov (United States)

    Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A

    2013-11-05

    Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.

  20. Search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-06-09

    A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 fb$^{-1}$ collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger $\\mathrm{t \\bar{t}}$+jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, $\\mu$, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is $\\mu$ lower than 4.2 (3.3), corresponding to a best fit value $\\hat{\\m...

  1. The determination of light elements in heavy matrix using proton induced X-ray emission

    International Nuclear Information System (INIS)

    Levenets, V.V.; Omel'nik, A.P.; Shchur, A.A.; Chernov, A.E.; Usikov, N.P.; Zats, A.V.

    2007-01-01

    In this report the possibility of determination of light impurities in heavy matrixes is studied using proton induced X-Ray emission. The wide-band X-ray emission filter made from pyrolytic graphite was used in spectrometric scheme of experiment. The results of studying of filter features in energy range of X-ray emission from 4 to 12 keV were presented. The possibilities were examined of application of pyrolytic graphite filter to modify the X-rays spectrum for determination of iron, using characteristic emission of K-series, and hafnium, using L-series, in substances on base of zirconium (glasses, alloys etc.). It was shown, that the using of similar filter allows to reach the significant improving of metrological characteristics of analysis of mentioned impurities: the limits of detection of iron and hafnium were lowered single-order of magnitude. (authors)

  2. The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity

    International Nuclear Information System (INIS)

    Ablinger, J.; Bluemlein, J.; Klein, S.; Schneider, C.; Wissbrock, F.

    2011-01-01

    The contributions ∝n f to the O(α s 3 ) massive operator matrix elements describing the heavy flavor Wilson coefficients in the limit Q 2 >>m 2 are computed for the structure function F 2 (x,Q 2 ) and transversity for general values of the Mellin variable N. Here, for two matrix elements, A qq,Q PS (N) and A qg,Q (N), the complete result is obtained. A first independent computation of the contributions to the 3-loop anomalous dimensions γ qg (N), γ qq PS (N), and γ qq NS,(TR) (N) is given. In the computation advanced summation technologies for nested sums over products of hypergeometric terms with harmonic sums have been used. For intermediary results generalized harmonic sums occur, while the final results can be expressed by nested harmonic sums only.

  3. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  4. Development and study the performance of PBA cladding modified fiber optic intrinsic biosensor for urea detection

    Energy Technology Data Exchange (ETDEWEB)

    Botewad, S. N.; Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati, Maharashtra, India-444602 (India)

    2016-05-06

    The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.

  5. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    Science.gov (United States)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  6. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  7. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry of friction modifier additives analyzed directly from base oil solutions.

    Science.gov (United States)

    Widder, Lukas; Brennerb, Josef; Huttera, Herbert

    2014-01-01

    To develop new products and to apply measures of quality control quick and simple accessibility of additive composition in automo- tive lubrication is important. The aim of this study was to investigate the possibility of analyzing organic friction modifier additives by means of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [AP-MALDI-MS] from lubricant solu- tions without the use of additional separation techniques. Analyses of selected friction modifier ethoxylated tallow amines and oleic acid amide were compared using two ionization methods, positive-ion electrospray ionization (ESI) and AP-MALDI, using a LTQ Orbitrap mass spectrometer. Pure additives were characterized from solvent solutions, as well as from synthetic and mineral base oil mixtures. Detected ions of pure additive samples consisted mainly of [M + H]+, but also alkaLi metal adducts [M + Na]+ and [M + K]+ could be seen. Characterizations of blends of both friction modifiers from the base oil mixtures were carried out as well and showed significant inten- sities for several additive peaks. Thus, this work shows a method to directly analyze friction modifier additives used in the automotive industry from an oil blend via the use of AP-MALDI without any further separation steps. The method presented will further simplify the acquisition of data on lubricant composition and additives. Furthermore, it allows the perspective of analyzing additive reaction products directly from formulated oil blends.

  8. Effect of sample matrix on the fundamental properties of the inductively coupled plasma

    International Nuclear Information System (INIS)

    Lehn, Scott A.; Warner, Kelly A.; Huang Mao; Hieftje, Gary M.

    2003-01-01

    In the inductively coupled plasma (ICP), the emission intensities of atomic and ionic spectral lines are controlled by fundamental parameters such as electron temperature, electron number density, gas-kinetic temperature, analyte atom and ion number densities, and others. Accordingly, the effect of a sample matrix on the analyte emission intensity in an ICP might be attributable to changes in these fundamental parameters caused by the matrix elements. In the present study, a plasma imaging instrument that combines Thomson scattering, Rayleigh scattering, laser-induced fluorescence and computed tomography has been employed to measure the above-mentioned parameters in the presence and absence of matrix elements. The data thus obtained were all collected on a spatially resolved basis and without the need for Abel inversion. Calcium, strontium and barium served as analytes, while lithium, copper and zinc were introduced as matrix elements. Comparing the data with and without the matrix elements allows us to determine the extent to which each fundamental parameter changes in the presence of a matrix element, and to better understand the nature of the matrix effects that occur in the ICP. As has been seen in previous studies with different matrix elements, ion emission and ion number densities follow opposite trends when matrix interferents are introduced into the plasma: ion emission is enhanced by the presence of matrix interferents while ion concentrations are lowered. These changes are consistent with a shift from collisional deactivation to radiative decay of excited-state analyte species

  9. Spectrofluorimetric determination of rare earth elements using solidmatrix

    International Nuclear Information System (INIS)

    Suh, I.S.; Chi, K.Y.

    1982-01-01

    In this experiment, rare earth elements are separated from uranium by using the alumina column, anion exchange resin column, and 20% TOA in xylene and fluorescence characteristics were found in the solid matrix to analyze these elements without preseparation from each other. It becomes clear that the YVO 4 matrix is more sensitive than the Y 2 O 3 matrix when the red filter is used to minimized the second order peak intensity. And micro quantity of the rare earth elements in the yellow cake are analyzed by the using of the YVO 4 soid matrix. (Author)

  10. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal

    1989-01-01

    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  11. Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

    CERN Document Server

    Abazov, Victor Mukhamedovich

    2016-08-18

    We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

  12. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    Science.gov (United States)

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Minimal parameter solution of the orthogonal matrix differential equation

    Science.gov (United States)

    Bar-Itzhack, Itzhack Y.; Markley, F. Landis

    1990-01-01

    As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.

  14. Study on thermal conductivity of HTR spherical fuel element matrix graphite

    International Nuclear Information System (INIS)

    Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe

    2014-01-01

    Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)

  15. Statistical evaluation of characteristic SDDLV-induced stress resultants to discriminate between undamaged and damaged elements

    DEFF Research Database (Denmark)

    Hansen, Lasse Majgaard; Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard

    2015-01-01

    of modified characteristic stress resultants, which are compared to a pre-defined tolerance value, without any thorough statistical evaluation. In the present paper, it is tested whether three widely-used statistical pattern-recognition-based damage-detection methods can provide an effective statistical...... evaluation of the characteristic stress resultants, hence facilitating general discrimination between damaged and undamaged elements. The three detection methods in question enable outlier analysis on the basis of, respectively, Euclidian distance, Hotelling’s statistics, and Mahalanobis distance. The study...... alternately to an undamaged reference model with known stiffness matrix, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. At present, the discrimination between potentially damaged elements and undamaged ones is typically conducted on the basis...

  16. The matrix-elements of two-particle residual interaction in the shell-model formalism with the M.S.D.I. approximation. Part 2

    International Nuclear Information System (INIS)

    Jasielska, A.; Wiktor, S.

    1977-01-01

    The table of two-particle matrix elements calculated according to the formalism of MSDI approximation for the orbits 1fsub(7/2), 2psub(3/2), 2psub(1/2) and 1fsub(5/2) and published previously is now supplemented by inclusion of the 1gsub(9/2) orbit. (author)

  17. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  18. Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste

    International Nuclear Information System (INIS)

    Dakroury, A. M.

    2007-01-01

    This paper discussed the mechanical and chemical properties of polyvinyl alcohol - modified cement mortar with silica fume to assess the safety for disposal of radioactive waste. The modified cement mortars containing polyvinyl alcohol (PVA) in the presence of 10 % silica fume (SF) .The chemical reaction between polymer and cement - hydrated product were investigated by the Infrared Spectral Technology, Differential Thermal Analysis and X-ray diffraction. The leaching of 137Cs from a waste composite into a surrounding fluid has been studied .The results shown that PVA increases the strength and decreases the porosity. The increase in strength duo to the interaction of PVA with cement , may be forming some new compound that fill the pores or improve the bond between the cement . The pozzolanic reaction of the SF increases the calcium silicate hydrates in the hardening matrix composites. There is distinct change in the refinement of the pore structure in cement composites giving fewer capillary pores and more of the finer gel pores

  19. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  20. Matrix effect on the detection limit and accuracy in total reflection X-ray fluorescence analysis of trace elements in environmental and biological samples

    International Nuclear Information System (INIS)

    Karjou, J.

    2007-01-01

    The effect of matrix contents on the detection limit of total reflection X-ray fluorescence analysis was experimentally investigated using a set of multielement standard solutions (500 ng/mL of each element) in variable concentrations of NH 4 NO 3 . It was found that high matrix concentration, i.e. 0.1-10% NH 4 NO 3 , had a strong effect on the detection limits for all investigated elements, whereas no effect was observed at lower matrix concentration, i.e. 0-0.1% NH 4 NO 3 . The effect of soil and blood sample masses on the detection limit was also studied. The results showed decreasing the detection limit (in concentration unit, μg/g) with increasing the sample mass. However, the detection limit increased (in mass unit, ng) with increasing sample mass. The optimal blood sample mass of ca. 200 μg was sufficient to improve the detection limit of Se determination by total reflection X-ray fluorescence. The capability of total reflection X-ray fluorescence to analyze different kinds of samples was discussed with respect to the accuracy and detection limits based on certified and reference materials. Direct analysis of unknown water samples from several sources was also presented in this work

  1. Quarkonium polarization and the long distance matrix elements hierarchies using jet substructure

    Science.gov (United States)

    Dai, Lin; Shrivastava, Prashant

    2017-08-01

    We investigate the quarkonium production mechanisms in jets at the LHC, using the fragmenting jet functions (FJF) approach. Specifically, we discuss the jet energy dependence of the J /ψ production cross section at the LHC. By comparing the cross sections for the different NRQCD production channels (1S0[8], 3S1[8], 3PJ[8], and 3cripts>S1[1]), we find that at fixed values of energy fraction z carried by the J /ψ , if the normalized cross section is a decreasing function of the jet energy, in particular for z >0.5 , then the depolarizing 1S0[8] must be the dominant channel. This makes the prediction made in [Baumgart et al., J. High Energy Phys. 11 (2014) 003, 10.1007/JHEP11(2014)003] for the FJF's also true for the cross section. We also make comparisons between the long distance matrix elements extracted by various groups. This analysis could potentially shed light on the polarization properties of the J /ψ production in high pT region.

  2. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    Science.gov (United States)

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Matrix diffusion user guide (release 2)

    International Nuclear Information System (INIS)

    Herbert, A.W.; Preece, T.E.

    1989-04-01

    This report presents an introduction to the use of the matrix diffusion option of the finite-element package NAMMU. The facilities available in the package are described; and the process of preparing the necessary input data is illustrated with an example. The matrix diffusion option of NAMMU models the transport of radionuclides in groundwater in a flow field governed by Darcy's Law. A detailed description of the mathematical model used for this option is given. The package uses the finite-element method. This allows the easy modelling of complex geological structures. (author)

  4. Neutral kaon mixing beyond the Standard Model with n{sub f}=2+1 chiral fermions. Part 1: bare matrix elements and physical results

    Energy Technology Data Exchange (ETDEWEB)

    Garron, Nicolas [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,Brownlow Hill, Liverpool, L69 3BX (United Kingdom); Hudspith, Renwick J. [Department of Physics and Astronomy, York University,4700 Keele Street, Toronto, Ontario, M3J 1P3 (Canada); Lytle, Andrew T. [SUPA, School of Physics and Astronomy, University of Glasgow,University Avenue, Glasgow, G12 8QQ (United Kingdom); Collaboration: The RBC/UKQCD collaboration

    2016-11-02

    We compute the hadronic matrix elements of the four-quark operators relevant for K{sup 0}−K̄{sup 0} mixing beyond the Standard Model. Our results are from lattice QCD simulations with n{sub f}=2+1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing (a∼0.08 and a∼0.11 fm) and with lightest unitary pion mass ∼300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ∼5% or better.

  5. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    Science.gov (United States)

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  6. SU(2) X SU(2) X U(1) basis for symmetric SO(6) representations: matrix elements of the generators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.

    1987-01-01

    Matrix elements of the group generators for the symmetric irreducible representations of SO(6) are explicitly calculated in a closed form employing thedecomposition chain SO(6) is contained in SU(2) X SU(2) X U(1) (which is different from the well known Wigner supermultiplet scheme). The relation to the Gel'fand Tsetlin method using SO(6) contained in SO(5) up to ... SO(2) is indicated. An example of a physical application is given

  7. The Modified Embedded Atom Method

    Energy Technology Data Exchange (ETDEWEB)

    Baskes, M.I.

    1994-08-01

    Recent modifications have been made to generalize the Embedded Atom Method (EAM) to describe bonding in diverse materials. By including angular dependence of the electron density in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce the basic energetic and structural properties of 45 elements. This method is ideal for examining interfacial behavior of dissimilar materials. This paper explains in detail the derivation of the method, shows how parameters of MEAM are determined directly from experiment or first principles calculations, and examine the quality of the reproduction of the database. Materials with fcc, bcc, hcp, and diamond cubic crystal structure are discussed. A few simple examples of the application of the MEAM to surfaces and interfaces are presented. Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show nonuniform deformation of the fiber.

  8. Matrix modification for determination of microimpurities in complex samples by electrothermal atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Bejzel', N.F.; Daaman, F.I.; Fuks-Pol', G.R.; Yudelevich, I.G.

    1993-01-01

    The review covers publications of primarily last 5 years and is devoted to the use of matrix modifiers (MM) for the determinations of trace impurities in complex samples by electrothermal atomic-absorption analysis. The role of MM in analytical process has been discussed as well as MM influence on all the elements of analytical system; factors, determining the effectiveness of MM action, the basis types of MM have been described. A great body of information is tabulated on the use of different MM for the determination of particular analysis in geological, medicobiological, technological, ecological samples and in pure materials and chemicals

  9. Multi-scale damage modelling in a ceramic matrix composite using a finite-element microstructure meshfree methodology

    Science.gov (United States)

    2016-01-01

    The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308

  10. Two-loop massive operator matrix elements for unpolarized heavy flavor production to O({epsilon})

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, I.; Bluemlein, J.; Klein, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2008-02-15

    We calculate the O({alpha}{sup 2}{sub s}) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}, up to the O({epsilon}) contributions. These terms contribute through the renormalization of the O({alpha}{sup 3}{sub s}) heavy flavor Wilson coefficients of the structure function F{sub 2}(x,Q{sup 2}). The calculation has been performed using light-cone expansion techniques without using the integration-by-parts method. We represent the individual Feynman diagrams by generalized hypergeometric structures, the {epsilon}-expansion of which leads to infinite sums depending on the Mellin variable N. These sums are finally expressed in terms of nested harmonic sums using the general summation techniques implemented in the Sigma package. (orig.)

  11. Two new modified Gauss-Seidel methods for linear system with M-matrices

    Science.gov (United States)

    Zheng, Bing; Miao, Shu-Xin

    2009-12-01

    In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.

  12. Effect of Fiber Poisson Contraction on Matrix Multicracking Evolution of Fiber-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Longbiao, Li

    2015-12-01

    An analytical methodology has been developed to investigate the effect of fiber Poisson contraction on matrix multicracking evolution of fiber-reinforced ceramic-matrix composites (CMCs). The modified shear-lag model incorporated with the Coulomb friction law is adopted to solve the stress distribution in the interface slip region and intact region of the damaged composite. The critical matrix strain energy criterion which presupposes the existence of an ultimate or critical strain energy limit beyond which the matrix fails has been adopted to describe matrix multicracking of CMCs. As more energy is placed into the composite, matrix fractures and the interface debonding occurs to dissipate the extra energy. The interface debonded length under the process of matrix multicracking is obtained by treating the interface debonding as a particular crack propagation problem along the fiber/matrix interface. The effects of the interfacial frictional coefficient, fiber Poisson ratio, fiber volume fraction, interface debonded energy and cycle number on the interface debonding and matrix multicracking evolution have been analyzed. The theoretical results are compared with experimental data of unidirectional SiC/CAS, SiC/CAS-II and SiC/Borosilicate composites.

  13. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  14. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  15. Survey of reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    Parr, R.M.; Stone, S.F.; Bel-Amakeletch, T.; Zeisler, R.

    1998-01-01

    The International Atomic Energy Agency (IAEA), in co-operation with the United Nations Environment Programme (UNEP), has recently prepared a survey on internationally available analytical reference materials for trace elements, nuclides and organic contaminants in biological, environmental and related matrices. The purpose is to help analysts to select reference materials for quality assurance that match as closely as possible, with respect to matrix type and concentrations of the measurands of interest, the ''real'' samples that are to be measured. The present version of the survey, which is available in the form of two cost-free printed volumes [1], contains over 10,000 certified and information values in 650 reference materials from 27 different producers. The 455 measurands listed include trace elements, major and minor elements, organic contaminants, organometallic compounds, radionuclides and stable isotopes. Currently, the database from which the survey has been produced is being modified and extended so as to make the data available in electronic form via the Internet. (orig.)

  16. Application of dot matrix LCD in multi-element portable X-ray fluorescence spectrometry The LCD is stated for Liquid Crystal Display

    CERN Document Server

    Lin Yan Chang; Lai Wan Chang; Zhou Si Chun

    2002-01-01

    Dot matrix LCD based on T6963C is a low power supply module. It needs no complex interface circuits connecting with MCU. Application in text and graphics is easy. Application of this LCD in multi-element portable XRF spectrometry is show. How to use it in Chinese, pull-down menu, spectrum and how to design the interface circuits with embedded computer are shown as well

  17. Overall determination of the CKM matrix

    International Nuclear Information System (INIS)

    Plaszczynski, S.; Schune, M.H.

    1999-11-01

    We discuss the problem of theoretical uncertainties in the combination of observables related to the CKM matrix elements and propose a statistically sensible method for combining them. The overall fit is performed on present data, and constraints on the matrix elements are presented as well as on ∫ B d √B B d . We then explore the implications of recent measurements and developments: J/ψK 0 s asymmetry, ε'/ε and B → Kπ branching fractions. Finally, we extract from the overall fit the Standard Model expectations for the rare kaon decays K → πνν-bar. (authors)

  18. Modified Huo-Luo-Xiao-Ling Dan Suppresses Adjuvant Arthritis by Inhibiting Chemokines and Matrix-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease affecting the joints that can lead to deformities and disability. The prolonged use of conventionally used drugs is associated with severe adverse reactions. Therefore, safer and less expensive therapeutic products are continually being sought. Huo-Luo-Xiao-Ling dan (HLXL, a traditional Chinese herbal mixture, and its modified versions possess anti-arthritic activity. In this paper, we examined the influence of modified HLXL on two of the key mediators of arthritic inflammation and tissue damage, namely, chemokines and matrix-metalloproteinases (MMPs in the rat adjuvant-induced arthritis (AA model of RA. We treated arthritic Lewis rats with HLXL (2.3 g/kg by daily gavage beginning at the onset of AA. The control rats received the vehicle. At the peak phase of AA, rats were sacrificed and their draining lymph node cells (LNC and spleen adherent cells (SAC were tested. The HLXL-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC, MMPs (MMP 2 and 9, as well as cytokines (IL-6 and IL-17 that induce them, compared to the control vehicle-treated rats. Thus, HLXL controls arthritis in part by suppressing the mediators of immune pathology, and it might offer a promising alternative/adjunct treatment for RA.

  19. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  20. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

    2010-07-01

    An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

  1. Standard error propagation in R-matrix model fitting for light elements

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin

    2003-01-01

    The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)

  2. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  3. Adherence of extracellular matrix components to modified surfaces of titanium alloys

    International Nuclear Information System (INIS)

    Stelzer, C; Uhlmann, E; Meinke, M; Lademann, J; Hansen, U

    2009-01-01

    The adherence of biological materials on metal surfaces is of special importance in biology and medicine. The underlying interactions between surface and biological materials (e.g. extracellular matrix components or cells) are responsible for the application as a medical device. Numerous products are made of pure titanium and titanium alloys. This paper shows the influence of a laser production technology on machined surfaces of TiAl 6 V 4 and the resulting adherence of biological material on the basis of the surface characterisation. In this study, different machined TiAl 6 V 4 surfaces were used for coatings with extracellular matrix components. For this process, different coating with collagen I monomers and a complex mixture of extracellular matrix proteins derived from the dermal-epidermal basement membrane zone were analysed. The efficiency of the coating was analysed by different methods and the results are presented in this paper

  4. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1992-04-01

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  5. Statistical theory of nuclear cross section fluctuations with account s-matrix unitarity

    International Nuclear Information System (INIS)

    Kun, S.Yu.

    1985-01-01

    Statistical properties of the S-matrix fluctuating part delta S=S- sub(T) in the T/D>>1, N>>1 Ericoson fluctuations mode are investigated. A unitary representation is used for the investigation of statistical properties of the S-matrix. The problem on correlation of fluctuating elements of the S-matrix is discussed. The S-matrix unitary representation allows one to strictly substantiates the assumptions of the Ericson fluctuations theory: a) the real and imaginary parts of the deltaS-matrix have identical dispersions, do not correlate and are distributed according to the normal law; 2) various deltaS-matrix elements do not correlate

  6. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  7. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: II. Performance characterization under contaminated feed conditions

    KAUST Repository

    Ward, Jason K.

    2011-07-01

    Mixed matrix membranes (MMMs) composed of the crosslinkable polyimide PDMC and surface modified (SM) SSZ-13 have recently been shown to enhance carbon dioxide permeability and carbon dioxide/methane selectivity versus neat PDMC films by as much as 47% and 13%, respectively (Part I). The previous film characterization, however, was performed using ideal, clean mixed gas feeds. In this paper, PDMC/SSZ-13 MMMs are further characterized using more realistic mixed gases containing low concentrations (500 or 1000. ppm) of toluene as a model contaminant. Mixed matrix membranes are shown to outperform pure PDMC films in the presence of toluene with 43% greater carbon dioxide permeability and 12% greater carbon dioxide/selectivity at 35 °C and 700 psia feed pressure. These results suggest that MMMs-in addition to exhibiting enhanced transport properties-may mitigate performance degradation due to antiplasticization effects. Moreover, the analyses presented here show that the reduction in separation performance by trace contaminant-accelerated physical aging can be suppressed greatly with MMMs. © 2011 Elsevier B.V.

  8. Improvement of characteristics of diffraction gratings in Dot-matrix holograms

    International Nuclear Information System (INIS)

    ZHUMALIEV, K.M.; ISMAILOV, D.A.; ZHEENBEKOV, A.A.; SARYBAEVA, A.A.; KAZAKBAEVA, Z.M.

    2014-01-01

    This paper describes the results of research of the formation and recording of matrix hologram by Dot-matrix (dot-matrix hologram) technology on the photosensitive material of the photoresist. The principle of creating and modifying the characteristics of diffraction gratings of each pixel based on the diffraction efficiency, and recovery of colors and dynamic visual effects in dot-matrix holograms are discussed. An optical schematic diagram of the device and the process of recording dot-matrix holograms are presented. (authors)

  9. GENERALIZED MATRIXES OF GALOIS PROTOCOLS EXCHANGE ENCRYPTION KEYS

    Directory of Open Access Journals (Sweden)

    Anatoly Beletsky

    2016-03-01

    Full Text Available The methods of construction of matrix formation the secret protocols legalized subscribers of public communications networks encryption keys. Based key exchange protocols laid asymmetric cryptography algorithms. The solution involves the calculation of one-way functions and is based on the use of generalized Galois arrays of isomorphism relationship with forming elements, and depending on the selected irreducible polynomial generating matrix. A simple method for constructing generalized Galois matrix by the method of filling the diagonal. In order to eliminate the isomorphism of Galois arrays and their constituent elements, limiting the possibility of building one-way functions, Galois matrix subjected to similarity transformation carried out by means of permutation matrices. The variant of the organization of the algebraic attacks on encryption keys sharing protocols and discusses options for easing the consequences of an attack.

  10. Gradient-based stochastic estimation of the density matrix

    Science.gov (United States)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  11. Analytical solutions to matrix diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Kekäläinen, Pekka, E-mail: pekka.kekalainen@helsinki.fi [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)

    2014-10-06

    We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.

  12. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells.

    Science.gov (United States)

    Bierbaum, Susanne; Douglas, Timothy; Hanke, Thomas; Scharnweber, Dieter; Tippelt, Sonja; Monsees, Thomas K; Funk, Richard H W; Worch, Hartmut

    2006-06-01

    Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM), utilizing the natural self-assembly potential of collagen in combination with further ECM components in close analogy to the situation in vivo. Aiming at load-bearing applications in bone contact, collagen type I in combination with the proteoglycan decorin and the glycosaminoglycan chondroitin sulfate (CS) was used; fibrillogenesis, fibril morphology, and adsorption of differently composed fibrils onto titanium were assessed. Both decorin and CS could be integrated into the fibrils during fibrillogenesis, the amount bound respectively desorbed depending on the ionic strength of fibrillogenesis buffer. Including decorin always resulted in a significant decrease of fibril diameter, CS in only a slight decrease or even increase, depending on the collagen preparation used. No significant changes in adsorption to titanium could be detected. Osteoblastic cells showed different reactions for cytoskeletal arrangement and osteopontin expression depending on the composition of the ECM, with CS enhancing the osteoblast phenotype.

  13. Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Marcin; Hameren, Andreas van; Kutak, Krzysztof; Sapeta, Sebastian [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Jung, Hannes [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); DESY, Hamburg (Germany); Serino, Mirko [Polish Academy of Sciences, Institute of Nuclear Physics, Cracow (Poland); Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2018-02-15

    A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p{sub t} dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization. (orig.)

  14. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  15. Exact and approximate exchange potentials investigated in terms of their matrix elements with the Kohn-Sham orbitals

    International Nuclear Information System (INIS)

    Holas, A.; Cinal, M.

    2005-01-01

    Three approximate exchange potentials of high accuracy v x Y (r), Y=A,B,C, for the density-functional theory applications are obtained by replacing the matrix elements of the exact potential between the Kohn-Sham (KS) orbitals with such elements of the Fock exchange operator (within the virtual-occupied subset only) in three representations found for any local potential. A common identity is the base of these representations. The potential v x C happens to be the same as that derived by Harbola and Sahni, and v x A as that derived by Gritsenko and Baerends, and Della Sala and Goerling. The potentials obtained can be expressed in terms of occupied KS orbitals only. At large r, their asymptotic form -1/r is the same as that of the exact potential. The high quality of these three approximations is demonstrated by direct comparison with the exact potential and using various consistency tests. A common root established for the three approximations could be helpful in finding new and better approximations via modification of identities employed in the present investigation

  16. Optical phonons in cubic AlxGa1-xN approached by the modified random element isodisplacement model

    International Nuclear Information System (INIS)

    Liu, M.S.; Bursill, L.A.; Prawer, S.

    1998-01-01

    The behaviour of longitudinal and transverse optical phonons in cubic Al x Ga l-x N are derived theoretically as a function of the concentration x (0≤x≤1). The calculation is based on a Modified Random Element Isodisplacement model which considers the interactions from the nearest neighbor and second neighbor atoms. We find one-mode behavior in Al x Ga l-x N where the phonon frequency in general varies continuously and approximately linearly with x. (author)

  17. General-transformation matrix for Dirac spinors and the calculation of spinorial amplitudes

    International Nuclear Information System (INIS)

    Nam, K.; Moravcsik, M.J.

    1983-01-01

    A general transformation matrix T(p's';p,s) is constructed which transforms a Dirac spinor psi(p,s) into another Dirac spinor psi(p',s') with arbitrarily given momenta and polarization states by expoloting the so-called Stech operator as one of generators for those transformations. This transformation matrix is then used in a calculation to yield the spinorial matrix element M = anti psi(p',s')GAMMApsi(p,s) for any spin polarization state. The final expressions of these matrix elements show the explicit structure of spin dependence for the process described by these spinorial amplitudes. The kinematical limiting cases such as very low energy or high energy of the various matrix elements can also be easily displayed. Our method is superior to the existing one in the following points. Since we have a well-defined transformation operator between two Dirac spinor states, we can evaluate the necessary phase factor of the matrix elements in an unambiguous way without introducing the coordinate system. This enables us to write down the Feynman amplitudes of complicated processes in any spin basis very easily in terms of previously calculated matrix elements of anti psiGAMMApsi which are building blocks of those Feynman amplitudes. The usefulness of the results is illustrated on Compton scattering and on the elastic scattering of two identical massive leptons where the phase factor is important. It is also shown that the Stech operator as a polarization operator is simply related to the operator K = #betta#(polarized μ . polarized L + 1)/2 which is often used in bound state problems

  18. 2-variable Laguerre matrix polynomials and Lie-algebraic techniques

    International Nuclear Information System (INIS)

    Khan, Subuhi; Hassan, Nader Ali Makboul

    2010-01-01

    The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.

  19. Multiphonon states in even-even spherical nuclei. Pt. 2. Calculation of the matrix elements of one and two body operators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    Matrix elements of one and two body operators, which appear in a general hamiltonian and in electromagnetic transitions are derived in a subspace spanned by multiphonon states. The method is illustrated for a single j-shell, where phonons built with one type of particles are introduced. The eigenvalues obtained within the space spanned by the phonons of lowest angular momentum are compared to those of the full space. In such a method, the Pauli principle is fully and properly taken into account. ((orig.))

  20. Efficient sparse matrix-matrix multiplication for computing periodic responses by shooting method on Intel Xeon Phi

    Science.gov (United States)

    Stoykov, S.; Atanassov, E.; Margenov, S.

    2016-10-01

    Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.

  1. Simultaneous remote measurement of CO2 concentration, humidity and temperature with a matrix of optical fiber sensors

    Science.gov (United States)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-10-01

    A matrix of optical fiber sensors eligible for remote measurements is reported in this paper. The aim of work was to monitor the air quality with a device, which does not need any electricity on site of the measurement. The matrix consists of several sensors detecting carbon dioxide concentration, relative humidity and temperature. Sensors utilize active optical materials, which change their color when exposed to varied conditions. All the sensors are powered with standard light emitting diodes. Light is transmitted by an optical fiber from the light source and then it reaches the active layer which changes its color, when the conditions change. This results in a change of attenuation of light passing through the active layer. Modified light is then transmitted by another optical fiber to the detector, where simple photoresistor is used. It is powered by a stabilized DC power supply and the current is measured. Since no expensive elements are needed to manufacture such a matrix of sensors, its price may be competitive to the price of the devices already available on the market, while the matrix also exhibits other valuable properties.

  2. Reducing Data Size Inequality during Finite Element Model Separation into Superelements

    Directory of Open Access Journals (Sweden)

    Yu. V. Berchun

    2015-01-01

    Full Text Available The work considers two methods of automatic separation of final element model into super-elements to decrease computing resource demand when solving the linearly - elastic problems of solid mechanics. The first method represents an algorithm to separate a final element grid into simply connected sub-regions according to the set specific number of nodes in the super-element. The second method is based on the generation of a super-element with the set specific data size of the coefficient matrix of the system of equations of the internal nodes balance, which are eliminated during super-element transformation. Both methods are based on the theory of graphs. The data size of a matrix of coefficients is assessed on the assumption that the further solution of a task will use Holetsky’s method. Before assessment of data size, a KatkhillaMackey's (Cuthill-McKee algorithm renumbers the internal nodes of a super-element both to decrease a profile width of the appropriate matrix of the system of equations of balance and to reduce the number of nonzero elements. Test examples show work results of abovementioned methods compared in terms of inequality of generated super-element separation according to the number of nodes and data size of the coefficient matrix of the system of equations of the internal nodes balance. It is shown that the offered approach provides smaller inequality of data size of super-element matrixes, with slightly increasing inequality by the number of tops.

  3. General 4–zero texture mass matrix parametrizations

    International Nuclear Information System (INIS)

    Barranco, J; Delepine, D; Lopez-Lozano, L

    2014-01-01

    It is performed the diagonalization of a non–Hermitian four–zero texture Yukawa matrix with a general formalism. This procedure leads to 3 possibilities to parametrize the relation between the fermion masses and the elements of the corresponding Yukawa matrix. Then, the matrices that diagonalize each Yukawa mass matrix are combined in order to obtain 9 different theoretical CKM or PMNS mixing matrices [1]. Through a χ 2 analysis, we have constrained the values of the remaining free parameters such as the theoretical mixing matrix matches the latest experimental measurements of the mixing matrices. This analysis was done without assuming any approximations. In the case of the quark sector, it is found that only four different theoretical mixing matrices are compatible with the actual high precision experimental measurement of the CKM matrix elements. For the lepton sector, where the masses of neutrinos are not known, we found that independently of the parametrization that have been chosen, the updated experimental measurements of the mixing angles in the PMNS matrix, imply a mass for the heaviest left–handed neutrino to be ∼ 0.05eV

  4. NLTE steady-state response matrix method.

    Science.gov (United States)

    Faussurier, G.; More, R. M.

    2000-05-01

    A connection between atomic kinetics and non-equilibrium thermodynamics has been recently established by using a collisional-radiative model modified to include line absorption. The calculated net emission can be expressed as a non-local thermodynamic equilibrium (NLTE) symmetric response matrix. In the paper, this connection is extended to both cases of the average-atom model and the Busquet's model (RAdiative-Dependent IOnization Model, RADIOM). The main properties of the response matrix still remain valid. The RADIOM source function found in the literature leads to a diagonal response matrix, stressing the absence of any frequency redistribution among the frequency groups at this order of calculation.

  5. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Stebih, Dejan; Dreo, Tanja; Zel, Jana; Gruden, Kristina

    2006-08-14

    Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to

  6. The summation of the matrix elements of Hamiltonian and transition operators. The variance of the emission spectrum

    International Nuclear Information System (INIS)

    Karaziya, R.I.; Rudzikajte, L.S.

    1988-01-01

    The general method to obtain the explicit expressions for sums of the matrix elements of Hamiltonian and transition operators has been extended. It can be used for determining the main characteristics of atomic spectra, such as the mean energy, the variance, the asymmetry coefficient, etc., as well as for the average quantities which describe the configuration mixing. By mean of this method the formula for the variance of the emission spectrum has been derived. It has been shown that this quantity of the emission spectrum can be expressed by the variances of the energy spectra of the initial and final configurations and by additional terms, caused by the distribution of the intensity in spectrum

  7. The logarithmic contributions to the O(α{sub s}{sup 3}) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)

    2014-09-15

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)

  8. Characterization of modified clinoptilolite

    International Nuclear Information System (INIS)

    Novosad, J.; Jandl, J.; Woollins, J.D.

    1992-01-01

    Samples of clinoptilolite were modified using insoluble hexacyanoferrate from aqueous solution. The modified samples were characterized by elemental analysis, powder X-ray diffraction, solid state NMR and vibrational spectroscopy. The sorption properties of modified clinoptilolite were studied, too. Higher affinity for 137 Cs sorption in comparison with the natural clinoptilolite has been proved. (author) 5 refs.; 3 figs.; 2 tabs

  9. A search for the ttH (H → bb) channel at the Large Hadron Collider with the ATLAS detector using a matrix element method

    CERN Document Server

    Basye, Austin Thomas

    A matrix element method analysis of the Standard Model Higgs boson, produced in association with two top quarks decaying to the lepton-plus-jets channel is presented. Based on 20.3 fb−1 of √s=8 TeV data, produced at the Large Hadron Collider and collected by the ATLAS detector, this analysis utilizes multiple advanced techniques to search for tt ̄H signatures with a 125 GeV Higgs boson decaying to two b-quarks. After categorizing selected events based on their jet and b-tag multiplicities, signal rich regions are analyzed using the matrix element method. Resulting variables are then propagated to two parallel multivariate analyses utilizing Neural Networks and Boosted Decision Trees respectively. As no significant excess is found, an observed (expected) limit of 3.4 (2.2) times the Standard Model cross-section is determined at 95% confidence, using the CLs method, for the Neural Network analysis. For the Boosted Decision Tree analysis, an observed (expected) limit of 5.2 (2.7) times the Standard Model cr...

  10. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

    Science.gov (United States)

    Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.

    2013-01-01

    The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784

  11. Measurement of the t-channel single-top-quark-production cross section and the CKM-matrix element Vtb with the CMS experiment

    International Nuclear Information System (INIS)

    Klingebiel, Dennis

    2014-01-01

    The electroweak production of single top quarks offers a unique access to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V tb , which is a fundamental parameter of the Standard Model of particle physics (SM). In this thesis, measurements of the inclusive t-channel single-top-quark-production cross section, the CKM-matrix element V tb , and the ratio of t-channel top-quark-production and top-antiquark-production cross sections are presented. Proton-proton collisions with a center-of-mass energy of 7 TeV are analyzed. These collisions were recorded with the Compact Muon Solenoid (CMS) experiment at the particle-accelerator complex Large Hadron Collider (LHC), which is operated by the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The analyzed data correspond to an integrated luminosity of 1.6/fb. This analysis uses events with at least two jets and either an electron or muon. Each event is classified according to the flavor and charge of the electron or muon, the number of jets, and the number of b-tagged jets. Signal and background processes are discriminated using Boosted Decision Trees (BDTs). The signal cross section is simultaneously measured in twelve orthogonal categories. A Bayesian approach is used to infer the signal cross section from data. Particular emphasis is placed on the modeling of systematic uncertainties and the evaluation of their impact on the measurement. Systematic uncertainties are incorporated as additional nuisance parameters into the likelihood function. Marginalization is used to eliminate the nuisance parameters. The single-top-quark t-channel production cross section is measured to be (66.6 +6.7 -6.2 ) pb. The measured value is in agreement with the next-to-next-to-leading order SM prediction. With a relative uncertainty of -9.3% +10.1%, this measurement is significantly more precise than previous measurements in proton-proton und proton-antiproton collisions. The absolute value of the CKM-matrix element

  12. Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1984-01-01

    The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction. (orig.)

  13. Radial Matrix Elements of Hydrogen Atom and the Correspondence ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Hydrogen excited states—radial matrix element—corres- ... atoms, its availability, production, its spectras, and importance in astrophysics (Dupree ... far away revolving lazily around in a slow orbit like a distant planet in the solar system. As the electron orbit diameter grows rapidly, its energy also decreases rapidly. Currently ...

  14. The transition matrix element A{sub gq}(N) of the variable flavor number scheme at O(α{sub s}{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Manteuffel, A. von [PRISMA Cluster of Excellence and Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, F. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2014-05-15

    We calculate the massive unpolarized operator matrix element A{sub gq}{sup (3)}(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α{sub s}{sup 3}). A first independent recalculation is performed for the contributions ∝N{sub F} of the 3-loop anomalous dimension γ{sub gq}{sup (2)}(N)

  15. K →π matrix elements of the chromomagnetic operator on the lattice

    Science.gov (United States)

    Constantinou, M.; Costa, M.; Frezzotti, R.; Lubicz, V.; Martinelli, G.; Meloni, D.; Panagopoulos, H.; Simula, S.; ETM Collaboration

    2018-04-01

    We present the results of the first lattice QCD calculation of the K →π matrix elements of the chromomagnetic operator OCM=g s ¯ σμ νGμ νd , which appears in the effective Hamiltonian describing Δ S =1 transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOK π=0.273 (69 ) , while in the SU(3) chiral limit we obtain BCMO=0.076 (23 ) . Our findings are significantly smaller than the model-dependent estimate BCMO˜1 - 4 , currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.

  16. A measurement of the top quark mass with a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Adam Paul [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb-1 dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t$\\bar{t}$ and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb-1 dataset they extract a top quark mass of 172.0 ± 2.6(stat) ± 3.3(syst) GeV/c2 from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c2 for m $\\bar{t}$ = 178 GTeV/c2 and 3.1 GeV/c2 for m $\\bar{t}$ = 172.5 GeV/c2. The systematic error is dominated by the uncertainty of the jet energy scale.

  17. Consolidation effects on tensile properties of an elemental Al matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, F. [Building 4515, MS 6064, Metals and Ceramics Division, Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)]. E-mail: tangf@ornl.gov; Meeks, H. [Ceracon Inc., 5150 Fairoaks Blvd. 01-330, Carmichael, CA 95628 (United States); Spowart, J.E. [UES Incorporated, AFRL/MLLM Building 655, 2230 Tenth St. Suite 1, Wright-Patterson AFB, OH 45433 (United States); Gnaeupel-Herold, T. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Prask, H. [NIST Center for Neutron Research, 100 Bureau Dr. Stop 8562, Gaithersburg, MD 20899-8562 (United States); Anderson, I.E. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)

    2004-11-25

    In a simplified composite design, an unalloyed Al matrix was reinforced by spherical Al-Cu-Fe alloy particles (30 vol.%), using either commercial purity (99.7%) or high purity (99.99%) fine powders (diameter < 10 {mu}m). This composite material was consolidated by either vacuum hot pressing (VHP) or quasi-isostatic forging. The spatial distribution of reinforcement particles in both VHP and forged samples was shown to be almost the same by quantitative characterization with a multi-scale area fraction analysis technique. The tensile properties of all composite samples were tested and the forged materials showed significantly higher strength, while the elastic modulus values of all composite materials were close to the upper bound of theoretical predictions. Neutron diffraction measurements showed that there were high compressive residual stresses in the Al matrix of the forged samples and relatively low Al matrix residual stresses (predominantly compressive) in the VHP samples. By tensile tests and neutron diffraction measurements of the forged samples after annealing, it was shown that the high compressive residual stresses in the Al matrix were relieved and that tensile strength was also reduced to almost the same level as that of the VHP samples. Therefore, it was deduced that increased compressive residual stresses and enhanced dislocation densities in the forged composites raised the tensile strength to higher values than those of the VHP composites.

  18. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    Science.gov (United States)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  19. The role of the tunneling matrix element and nuclear reorganization in the design of quantum-dot cellular automata molecules

    Science.gov (United States)

    Henry, Jackson; Blair, Enrique P.

    2018-02-01

    Mixed-valence molecules provide an implementation for a high-speed, energy-efficient paradigm for classical computing known as quantum-dot cellular automata (QCA). The primitive device in QCA is a cell, a structure with multiple quantum dots and a few mobile charges. A single mixed-valence molecule can function as a cell, with redox centers providing quantum dots. The charge configuration of a molecule encodes binary information, and device switching occurs via intramolecular electron transfer between dots. Arrays of molecular cells adsorbed onto a substrate form QCA logic. Individual cells in the array are coupled locally via the electrostatic electric field. This device networking enables general-purpose computing. Here, a quantum model of a two-dot molecule is built in which the two-state electronic system is coupled to the dominant nuclear vibrational mode via a reorganization energy. This model is used to explore the effects of the electronic inter-dot tunneling (coupling) matrix element and the reorganization energy on device switching. A semi-classical reduction of the model also is made to investigate the competition between field-driven device switching and the electron-vibrational self-trapping. A strong electron-vibrational coupling (high reorganization energy) gives rise to self-trapping, which inhibits the molecule's ability to switch. Nonetheless, there remains an expansive area in the tunneling-reorganization phase space where molecules can support adequate tunneling. Thus, the relationship between the tunneling matrix element and the reorganization energy affords significant leeway in the design of molecules viable for QCA applications.

  20. Matrix correlations for high-dimensional data: The modified RV-coefficient

    NARCIS (Netherlands)

    Smilde, A.K.; Kiers, H.A.L.; Bijlsma, S.; Rubingh, C.M.; Erk, M.J. van

    2009-01-01

    Motivation: Modern functional genomics generates high-dimensional datasets. It is often convenient to have a single simple number characterizing the relationship between pairs of such high-dimensional datasets in a comprehensive way. Matrix correlations are such numbers and are appealing since they

  1. Integrable boundary conditions and modified Lax equations

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2008-01-01

    We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix

  2. Assessment of the influence of anthropogenic factors on elements of the ecological network in Vojvodina (Serbia using the Leopold matrix

    Directory of Open Access Journals (Sweden)

    Kicošev Vesna

    2015-01-01

    Full Text Available Salt steppes and marshes represent the most valuable ecosystems in the world, providing numerous ecosystem services that are extremely vulnerable to anthropogenic influences. These types of habitat in the territory of Serbia are most dominant in Banat and a significant portion of them is under protection or in the process of becoming protected. The section surrounding the protected areas of Slano Kopovo Special Nature Reserve, Rusanda Nature Park and Okanj Bara Special Nature Reserve with the non-building area of Novi Bečej, Kumane, Melenci, Elemir and Taraš cadastral municipalities, has been chosen for the analysis. The aim of this paper was to assess the influence of specific anthropogenic factors on the elements of an ecological network using the analytical method that can generate the required results in a manner suitable for presentation to various stakeholders. To achieve this aim, the Leopold matrix model, used for assessing anthropogenic influence on the environment, has been chosen. The specificity of this issue of protecting and preserving elements of an ecological network resulted in the need to isolate and evaluate the factors affecting the preservation of habitats and functionality of ecosystems, unlike the concept of Leopold matrix, which treats all factors as equally important in the process of evaluation. Evaluation results indicate significant effects of historical, perennial manner of using the area and other resources in the non-building area.

  3. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  4. Explicit Covariance Matrix for Particle Measurement Precision

    CERN Document Server

    Karimäki, Veikko

    1997-01-01

    We derive explicit and precise formulae for 3 by 3 error matrix of the particle transverse momentum, direction and impact parameter. The error matrix elements are expressed as functions of up to fourth order statistical moments of the measured coordinates. The formulae are valid for any curvature and track length in case of negligible multiple scattering.

  5. Orbifold matrix models and fuzzy extra dimensions

    CERN Document Server

    Chatzistavrakidis, Athanasios; Zoupanos, George

    2011-01-01

    We revisit an orbifold matrix model obtained as a restriction of the type IIB matrix model on a Z_3-invariant sector. An investigation of its moduli space of vacua is performed and issues related to chiral gauge theory and gravity are discussed. Modifications of the orbifolded model triggered by Chern-Simons or mass deformations are also analyzed. Certain vacua of the modified models exhibit higher-dimensional behaviour with internal geometries related to fuzzy spheres.

  6. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  7. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  8. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    Science.gov (United States)

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  9. Development program for fuel elements with low enriched uranium for high temperature reactors

    International Nuclear Information System (INIS)

    1987-12-01

    The results of HTR fuel development taking place at the THTR's can be summarized as follows for the main points of core manufacture coating matrix and fuel emenent manufacture: 1. The well known gel precipitation process was modified for the manufacture of UO 2 cores. 2. The TRISO coating (additional SiC layer between two very dense PyC layers) can be applied with the required quality on an economical 10 kg scale. 3. The particle fracture in the complete fuel element due to manufacture was lowered during the course of the project to below the target values of -6 U/U total. For testing fuel elements, the required irradiation samples were designed in agreement with the reactor constructors, were prepared and the first phase of the irradiation program was successfully completed in the context of the HBK project. (orig./HP) [de

  10. Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Philipp [Ludwig Maximilian Univ. of Munich (Germany)

    2005-08-05

    The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb-1 of D0 Run II data, the mass of the top quark is measured to be: m$ℓ+jets\\atop{top}$ = 169.5 ± 4.4(stat. + JES)$+1.7\\atop{-1.6}$(syst.) GeV; m$e+jets\\atop{top}$ = 168.8 ± 6.0(stat. + JES)$+1.9\\atop{-1.9}$(syst.) GeV; m$μ+jets\\atop{top}$ = 172.3 ± 9.6(stat.+JES)$+3.4\\atop{-3.3}$(syst.) GeV. The jet energy scale measurement in the ℓ+jets sample yields JES = 1.034 ± 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

  11. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  12. In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts

    DEFF Research Database (Denmark)

    Perentes, Jean Y; McKee, Trevor D; Ley, Carsten D

    2009-01-01

    Here we integrated multiphoton laser scanning microscopy and the registration of second harmonic generation images of collagen fibers to overcome difficulties in tracking stromal cell-matrix interactions for several days in live mice. We show that the matrix-modifying hormone relaxin increased...... tumor-associated fibroblast (TAF) interaction with collagen fibers by stimulating beta1-integrin activity, which is necessary for fiber remodeling by matrix metalloproteinases....

  13. Block fuel element for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.F.

    1978-01-01

    The invention concerns a block fuel element consisting of only one carbon matrix which is almost isotropic of high crystallinity into which the coated particles are incorporated by a pressing process. This block element is produced under isostatic pressure from graphite matrix powder and coated particles in a rubber die and is subsequently subjected to heat treatment. The main component of the graphite matrix powder consists of natural graphite powder to which artificial graphite powder and a small amount of a phenol resin binding agent are added

  14. Shifted-modified Chebyshev filters

    OpenAIRE

    ŞENGÜL, Metin

    2013-01-01

    This paper introduces a new type of filter approximation method that utilizes shifted-modified Chebyshev filters. Construction of the new filters involves the use of shifted-modified Chebyshev polynomials that are formed using the roots of conventional Chebyshev polynomials. The study also includes 2 tables containing the shifted-modified Chebyshev polynomials and the normalized element values for the low-pass prototype filters up to degree 6. The transducer power gain, group dela...

  15. Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

    International Nuclear Information System (INIS)

    Kim, Byungjoo; Bae, Kyongmin; An, Kayhyeok; Park, Soojin

    2012-01-01

    Aluminum oxide (Al 2 O 3 ) nanofibers were treated thermally under an ammonia (NH 3 ) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of Al 2 O 3 /epoxy nanocomposites. The micro-structural and morphological properties of the NH 3 -assisted thermally-treated Al 2 O 3 nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and N 2 /77 K isothermal adsorptions. From the results, the formation of AlN on Al 2 O 3 nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified Al 2 O 3 nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated Al 2 O 3 /epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers

  16. Finite Element Formulation for Stability and Free Vibration Analysis of Timoshenko Beam

    Directory of Open Access Journals (Sweden)

    Abbas Moallemi-Oreh

    2013-01-01

    Full Text Available A two-node element is suggested for analyzing the stability and free vibration of Timoshenko beam. Cubic displacement polynomial and quadratic rotational fields are selected for this element. Moreover, it is assumed that shear strain of the element has the constant value. Interpolation functions for displacement field and beam rotation are exactly calculated by employing total beam energy and its stationing to shear strain. By exploiting these interpolation functions, beam elements' stiffness matrix is also examined. Furthermore, geometric stiffness matrix and mass matrix of the proposed element are calculated by writing governing equation on stability and beam free vibration. At last, accuracy and efficiency of proposed element are evaluated through numerical tests. These tests show high accuracy of the element in analyzing beam stability and finding its critical load and free vibration analysis.

  17. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali

    2017-05-01

    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  18. Study of K/sup -/p. -->. anti K*(890)n at 13GeV. [Differential cross sections, density matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, G W; Dunwoodie, W M; Lasinski, T A; Leith, D W.G.S.; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA); Carnegie, R K [Carleton Univ., Ottawa, Ontario (Canada). Dept. of Physics; Cashmore, R J [Oxford Univ. (UK). Dept. of Physics; Davier, M [Lab. de l' Accelerateur Lineaire, Orsay, France; Matthews, J A.J. [Michigan State Univ., East Lansing (USA). Dept. of Physics; Walden, P [British Columbia Univ., Vancouver (Canada). TRIUMF Facility

    1975-11-24

    The results of a wire chamber spectrometer experiment studying anti K*(890) production in the reaction K/sup -/p..-->..K/sup -/..pi../sup +/n at 13 GeV are presented. Strong forward structure is observed for mod(t)matrix elements and differential cross section. These features are similar to those observed in ..pi../sup -/p..-->..rho/sup 0/n data and are characteristic of ..pi.. exchange. In contrast in the intermediate, mod(t)approximately 0.2 GeV/sup 2/, and large momentum transfer regions anti K*(890) production is dominated by the natural parity rho-A/sub 2/ exchange contribution.

  19. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  20. Non-Hermitian Extensions of Wishart Random Matrix Ensembles

    International Nuclear Information System (INIS)

    Akemann, G.

    2011-01-01

    We briefly review the solution of three ensembles of non-Hermitian random matrices generalizing the Wishart-Laguerre (also called chiral) ensembles. These generalizations are realized as Gaussian two-matrix models, where the complex eigenvalues of the product of the two independent rectangular matrices are sought, with the matrix elements of both matrices being either real, complex or quaternion real. We also present the more general case depending on a non-Hermiticity parameter, that allows us to interpolate between the corresponding three Hermitian Wishart ensembles with real eigenvalues and the maximally non-Hermitian case. All three symmetry classes are explicitly solved for finite matrix size N x M for all complex eigenvalue correlations functions (and real or mixed correlations for real matrix elements). These are given in terms of the corresponding kernels built from orthogonal or skew-orthogonal Laguerre polynomials in the complex plane. We then present the corresponding three Bessel kernels in the complex plane in the microscopic large-N scaling limit at the origin, both at weak and strong non-Hermiticity with M - N ≥ 0 fixed. (author)

  1. The massive 3-loop operator matrix elements with two masses and the generalized variable flavor number scheme

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Goedicke, A. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)

    2017-12-15

    We report on our latest results in the calculation of the two-mass contributions to 3-loop operator matrix elements (OMEs). These OMEs are needed to compute the corresponding contributions to the deep-inelastic scattering structure functions and to generalize the variable flavor number scheme by including both charm and bottom quarks. We present the results for the non-singlet and A{sub gq,Q} OMEs, and compare the size of their contribution relative to the single mass case. Results for the gluonic OME A{sub gg,Q} are given in the physical case, going beyond those presented in a previous publication where scalar diagrams were computed. We also discuss our recently published two-mass contribution to the pure singlet OME, and present an alternative method of calculating the corresponding diagrams.

  2. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  3. Efficient computation method of Jacobian matrix

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1995-05-01

    As well known, the elements of the Jacobian matrix are complex trigonometric functions of the joint angles, resulting in a matrix of staggering complexity when we write it all out in one place. This article addresses that difficulties to this subject are overcome by using velocity representation. The main point is that its recursive algorithm and computer algebra technologies allow us to derive analytical formulation with no human intervention. Particularly, it is to be noted that as compared to previous results the elements are extremely simplified throughout the effective use of frame transformations. Furthermore, in case of a spherical wrist, it is shown that the present approach is computationally most efficient. Due to such advantages, the proposed method is useful in studying kinematically peculiar properties such as singularity problems. (author)

  4. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    Science.gov (United States)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  5. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  6. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  7. Finite-element time evolution operator for the anharmonic oscillator

    Science.gov (United States)

    Milton, Kimball A.

    1995-01-01

    The finite-element approach to lattice field theory is both highly accurate (relative errors approximately 1/N(exp 2), where N is the number of lattice points) and exactly unitary (in the sense that canonical commutation relations are exactly preserved at the lattice sites). In this talk I construct matrix elements for dynamical variables and for the time evolution operator for the anharmonic oscillator, for which the continuum Hamiltonian is H = p(exp 2)/2 + lambda q(exp 4)/4. Construction of such matrix elements does not require solving the implicit equations of motion. Low order approximations turn out to be extremely accurate. For example, the matrix element of the time evolution operator in the harmonic oscillator ground state gives a results for the anharmonic oscillator ground state energy accurate to better than 1 percent, while a two-state approximation reduces the error to less than 0.1 percent.

  8. Matrix effects for calcium and potassium K-X-rays, in fenugreek plants grown in iron rich soils

    International Nuclear Information System (INIS)

    Deep, Kanan; Rao, Preeti; Bansal, Himani; Mittal, Raj

    2014-01-01

    The present work comprises the matrix effects study of the plant system (plant and soil) for macronutrients Ca and K with elevated levels of iron in the soil. The earlier derived matrix effect terms from fundamental relations of intensities of analyte and substrate elements with basic atomic and experimental setup parameters had led to iterative determination of enhanced elements rather than avoiding their enhancement. The relations also facilitated the evaluations of absorption for close Z interfering constituents (like Ca and K) in samples of a lot of particular category with interpolation of matrix terms with elemental amounts. The process has already been employed successfully for potato, radish, rice and maize plants. On similar lines, the observed prominent change in interpolation parameters for the plants in the present experiment serves as a tool to check the toxicity/contamination of the growing medium. - Highlights: • Matrix effects for Ca and K in Fenugreek plant and its soil with elevated iron level. • Fenugreek plants grown in iron rich soil and treated with K/Ca fertilizers. • The matrix terms correlated to analyte and enhancer element amounts. • Interpolation of matrix terms with elemental amounts points to Fe toxicity of soil

  9. Constraints on parity-mixing matrix elements from hard-pion exchange corrections to first-forbidden beta decays

    International Nuclear Information System (INIS)

    Kirchbach, M.

    1986-01-01

    In this paper the experience in extracting the value of the weak pion-nucleon coupling constant f/sub π//sup l/ from the parity-mixing matrix element + , T = 1; 1.042 MeV | V/sub PNC/ | O - , T = 0; 1.081 MeV> in 18 F is summarized with the aim to reveal some sources of uncertainties of the models exploited. We show that beyond of the long wavelenth approximation and in treating non-soft pion corrections to the two-body nuclear chiral charge density an upper bound for f/sub π//sup l/ is obtained which is about two times smaller as compared to results of previous analyses of similar character. Finally, we accentuate on the importance of the heavy-meson exchanges in the weak NN-potential for understanding recent measurement results of f/sub π//sup l/ which strongly deviate from earlier data. (author)

  10. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    Science.gov (United States)

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  11. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2006-08-01

    Full Text Available Abstract Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was

  12. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Science.gov (United States)

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary

  13. preconditioning the modified conjugate gradient method

    African Journals Online (AJOL)

    Admin

    steepest descent method, the number of matrix-vector products per iteration .... modified CGM algorithm is used for large class of problems that is not ..... New Trends in the Mathematical and Computer Sciences with Applications to Real World.

  14. General factorization relations and consistency conditions in the sudden approximation via infinite matrix inversion

    International Nuclear Information System (INIS)

    Chan, C.K.; Hoffman, D.K.; Evans, J.W.

    1985-01-01

    Local, i.e., multiplicative, operators satisfy well-known linear factorization relations wherein matrix elements (between states associated with a complete set of wave functions) can be obtained as a linear combination of those out of the ground state (the input data). Analytic derivation of factorization relations for general state input data results in singular integral expressions for the coefficients, which can, however, be regularized using consistency conditions between matrix elements out of a single (nonground) state. Similar results hold for suitable ''symmetry class'' averaged matrix elements where the symmetry class projection operators are ''complete.'' In several cases where the wave functions or projection operators incorporate orthogonal polynomial dependence, we show that the ground state factorization relations have a simplified structure allowing an alternative derivation of the general factorization relations via an infinite matrix inversion procedure. This form is shown to have some advantages over previous versions. In addition, this matrix inversion procedure obtains all consistency conditions (which is not always the case from regularization of singular integrals)

  15. Direct determination of scattering time delays using the R-matrix propagation method

    International Nuclear Information System (INIS)

    Walker, R.B.; Hayes, E.F.

    1989-01-01

    A direct method for determining time delays for scattering processes is developed using the R-matrix propagation method. The procedure involves the simultaneous generation of the global R matrix and its energy derivative. The necessary expressions to obtain the energy derivative of the S matrix are relatively simple and involve many of the same matrix elements required for the R-matrix propagation method. This method is applied to a simple model for a chemical reaction that displays sharp resonance features. The test results of the direct method are shown to be in excellent agreement with the traditional numerical differentiation method for scattering energies near the resonance energy. However, for sharp resonances the numerical differentiation method requires calculation of the S-matrix elements at many closely spaced energies. Since the direct method presented here involves calculations at only a single energy, one is able to generate accurate energy derivatives and time delays much more efficiently and reliably

  16. Study of theophylline stability on polymer matrix

    International Nuclear Information System (INIS)

    Rodrigues, Kiriaki M.S.; Parra, Duclerc F.; Oliveira, Maria Jose A.; Bustillos, Oscar V.; Lugao, Ademar B.

    2007-01-01

    Theophylline is a bronchodilator, commonly known and used as a drug model in the development of pharmaceutical formulations. The stability of the drug and the matrix, scope of this study, was evaluated in the solid formulation. Polymeric matrix based on PHB containing the drug (theophylline) was prepared and submitted to radiation sterilization at different doses of: 5, 10, 20 and 25 kGy using a Cobalt- 60 source. The modified drug release of theophylline sterilized tablets has been studied. Modern techniques of HPLC (High Pressure Liquid Chromatography), DSC (Differential scanning calorimetry) and TGA (Thermogravimetry analysis) were employed. The results have shown the influence of sterilization by radiation process in both the theophylline and the polymeric drug delivery matrix samples. The increasing of polymeric matrix crosslinking under radiation conditions retards the drug release while the theophylline structure is stable under the radiation (author)

  17. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  18. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z.T., E-mail: sxyzt@126.com [College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, T. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Li, H.Y. [Zhoushan Ocean Research Institute, Zhejiang University, Zhoushan 316021 (China); Xia, M.S., E-mail: msxia@zju.edu.cn [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Ye, Y.; Zheng, H. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China)

    2013-11-15

    Highlights: • Adding modified shell powder could significantly increase the properties of PP. • The modified shell powder could act as a nucleating agent in PP matrix. • The modified shell powder has a potential to be used as a bio-filler. -- Abstract: Shell waste, with its high content of calcium carbonate (CaCO{sub 3}) plus organic matrix, has a potential to be used as a bio-filler. In this work, shell waste was modified by furfural and then incorporated to reinforce polypropylene (PP). The shell waste and modified powder were characterized by means of X-ray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), X-ray photoelectronic spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR). The mechanical and thermal properties of neat PP and PP composites were investigated as well. Thermal gravimetric (TG) analyses confirmed the reinforcing role of modified powder in PP composites. The mechanical properties studied showed that adding modified powder could significantly increase the impact strength, elongation at break point and flexural modulus of composites. The maximum incorporation content could reach 15 wt.% with a good balance between toughness and stiffness of PP composites. Differential scanning calorimetry (DSC) results showed that the modified powder could act as a nucleating agent and thus increase the crystallization temperature of PP. Polarized optical microscopy (POM) observation also indicated that the introduction of modified powder could promote the heterogeneous nucleation of PP matrix.

  19. Study of the Analytical Conditions for the Determination of Cadmium in Coal Fly Ashes by GFAAS with evaluation of several matrix modifiers

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Petit, M.D.

    1998-01-01

    A new method for the determination of cadmium in coal fly ash samples by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) has been developed. Analytical conditions and different instrumental parameters have been optimized. In a first step, several types of matrix modifiers have been tested and a mixture of 2% NH 4 H 2 PO 4 with 0.4%Mg(NO 3 ) 2 in 0.5N HNO 3 has been selected, since it provides the highest sensitivity. In a second step, an optimization of several conditions, using the selected modifier, has been carried out, such as ashing and atomization temperatures, heating rate, etc. The influence of the use of a L' vov platform on the analytical and background signals has been studied, showing a significative decrease on the background signal, being the net absorbance similar to those obtained in absence of the platform. Using the optimal conditions, the direct method with standard samples provides cadmium concentration consistent with those obtained using the standard addition method. (Author) 18 refs

  20. Algebraic manipulation of the states associated with the U(5)containsO(5)containsO(3) chain of groups: Orthonormalization and matrix elements

    International Nuclear Information System (INIS)

    Yannouleas, C.; Pacheco, J.M.

    1989-01-01

    A collection of procedures able to perform algebraic manipulations for the orthonormalization and for the calculation of matrix elements between the states associated with the U(5)containsO(5)containsO(3) chain of groups is presented. These procedures combine both the exact- and the bigfloat-arithmetic modes and thus return arbitrarily accurate results; this is particulary relevant to the Gram-Schmidt orthonormalization, where strong cancellations usually pose serious problems in all floating-point implementations. (orig.)

  1. The O(α{sub s}{sup 3}T{sub F}{sup 2}) contributions to the gluonic operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Manteuffel, A. von [PRISMA Cluster of Excellence, Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria)

    2014-08-15

    The O(α{sub s}{sup 3}T{sub F}{sup 2}C{sub F}(C{sub A})) contributions to the transition matrix element A{sub gg,Q} relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.

  2. A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, Kevin Alexander; /Bonn U.

    2004-04-01

    Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

  3. The extracellular matrix - the under-recognized element in lung disease?

    NARCIS (Netherlands)

    Burgess, Janette K.; Mauad, Thais; Tjin, Gavin; Karlsson, Jenny C.; Westergren-Thorsson, Gunilla

    2016-01-01

    The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has

  4. Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Bauer, Mathieu; Broekaert, Jose A.C.

    2007-01-01

    The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L -1 Na, K, Rb and Ba as matrix elements and 300 μg L -1 Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers

  5. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  6. ICP Mass and Optical Emission Spectrometry of Ore Samples Containing Rare Earth Elements

    International Nuclear Information System (INIS)

    Mohammed, A.E.W.M.

    2013-01-01

    Inductively Coupled Plasma Optical Emission and Mass Spectrometry (ICP-OES and ICPMS) are widely accepted as a rapid and sensitive techniques for Rare Earth Elements (REEs) analysis of geological samples. However, the achievable accuracy of these techniques are seriously limited by the problem of matrix interferences. In this study, matrix effects in ICP-AES were addressed using two approaches. In the first approach, the mechanisms of matrix interferences and analyte excitation were elucidated fundamentally. First, matrix effects from a comprehensive list of thirty-nine elements were investigated. It was confirmed that matrix elements with low second (instead of the widely reported first) ionization potentials (IP) produce a stronger matrix effect in all cases. Another critical parameter defining the severity of the matrix effect was found to be the availability of low-lying energy levels in the doubly charged matrix ion. Penning ionization followed by ion electron recombination through successive cycles is proposed as the mechanism for the more severe matrix effects caused by low second-IP matrices. In the second approach ICP-OES and ICP-MS are applied in this study for the analysis of Rare Earth Elements of two selected standard reference samples namely AGV-2 and BCR-2 beside a fluorspar geological sample (G-9 sample). Effective procedures are developed to avoid the spectral interference from matrix elements by using ion exchange resin Amberlite IR-120 before determination of REEs using ICP-OES and ICPMS. The potential of the method is evaluated by analysis of Certified Reference Materials (AGV-2 and BCR-2). Results obtained by ICP-MS show that experimental data are in agreement with the certified values and their values could be used as a quantitative data. The results obtained using ICP-OES were compared and discussed.

  7. Correlation between eigenvalues and sorted diagonal matrix elements of a large dimensional matrix

    International Nuclear Information System (INIS)

    Arima, A.

    2008-01-01

    Functional dependences of eigenvalues as functions of sorted diagonal elements are given for realistic nuclear shell model (NSM) hamiltonian, the uniform distribution hamiltonian and the GOE hamiltonian. In the NSM case, the dependence is found to be linear. We discuss extrapolation methods for more accurate predictions for low-lying states. (author)

  8. Studies Involving Immobilization Of Hazardous Wastes In Cement-ilmenite Matrix

    International Nuclear Information System (INIS)

    El-Dakrory, A.M.; Sayed, M.S.; Adham, K.

    1999-01-01

    Ilmenite was added to Ordinary Portland Cement to Modify the characteristic properties of the matrix as density, compressive strength and thermal stability . Coal tar and radiocesium were solidified as hazardous waste in cement-ilmenite matrix. The physical properties as density, sitting times and porosity were studied. The mechanical properties as compressive strength values and the chemical properties as leaching were measured

  9. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  10. Complex Modified Hybrid Projective Synchronization of Different Dimensional Fractional-Order Complex Chaos and Real Hyper-Chaos

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-11-01

    Full Text Available This paper introduces a type of modified hybrid projective synchronization with complex transformationmatrix (CMHPS for different dimensional fractional-order complex chaos and fractional-order real hyper-chaos. The transformationmatrix in this type of chaotic synchronization is a non-square matrix, and its elements are complex numbers. Based on the stability theory of fractional-order systems, by employing the feedback control technique, necessary and sufficient criteria on CMHPS are derived. Furthermore, CMHPS between fractional-order real hyper-chaotic Rössler system and other two different dimensional fractional-order complex Lorenz-like chaotic systems is provided as two examples to discuss reduced order and increased order synchronization, respectively.

  11. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  12. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  13. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, pN, and dN configurations and the SL-jj transformation

    International Nuclear Information System (INIS)

    Childs, W.J.

    1997-01-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs

  14. PULLOUT BEHAVIOR OF OXYGEN PLASMA TREATED POLYMER FIBERS FROM CEMENT MATRIX

    Directory of Open Access Journals (Sweden)

    Jan Trejbal

    2017-11-01

    Full Text Available The aim of this work is to describe bonding properties between surface treated polymer fibers and a cement matrix. In order to increase an interaction between the matrix and fiber surfaces, two fiber types having approx. 0.5 mm in diameter were modified by mean of oxygen plasma treatment. Surface physical changes of treated fibers were examined using SEM morphology observation and interfacial adhesion mechanical tests. The principle of mechanical tests rested on a single fiber pulling out from the matrix (cement paste, CEM I 42.5 R, w/c 0.4. The embedded length was equal to 50 % of original fiber length (50 mm, where the fiber free-end displacement and force resisting to the displacement were monitored. It was pointed out that interfacial shear stress needed to break the bond between the modified fibers and the matrix increased almost by 15–65 % if compared to reference fibers. When the fiber free-end displacement reached to 3.5 mm, the shear strength increased almost twice.

  15. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, Katarzyna; Levisson, M.; Stamatialis, Dimitrios

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 μm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  16. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  17. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Roelofs, Kimball S.; Hirth, Thomas; Schiestel, Thomas

    2011-01-01

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 ± 2.6 kJ mol -1 . High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  18. Matrix kernels for MEG and EEG source localization and imaging

    International Nuclear Information System (INIS)

    Mosher, J.C.; Lewis, P.S.; Leahy, R.M.

    1994-01-01

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell's equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ''gain'' or ''transfer'' matrices used in multiple dipole and source imaging models

  19. Wavelet analysis of biological tissue's Mueller-matrix images

    Science.gov (United States)

    Tomka, Yu. Ya.

    2008-05-01

    The interrelations between statistics of the 1st-4th orders of the ensemble of Mueller-matrix images and geometric structure of birefringent architectonic nets of different morphological structure have been analyzed. The sensitivity of asymmetry and excess of statistic distributions of matrix elements Cik to changing of orientation structure of optically anisotropic protein fibrils of physiologically normal and pathologically changed biological tissues architectonics has been shown.

  20. Fast Output-sensitive Matrix Multiplication

    DEFF Research Database (Denmark)

    Jacob, Riko; Stöckel, Morten

    2015-01-01

    We consider the problem of multiplying two $U \\times U$ matrices $A$ and $C$ of elements from a field $\\F$. We present a new randomized algorithm that can use the known fast square matrix multiplication algorithms to perform fewer arithmetic operations than the current state of the art for output...

  1. FBG_SiMul V1.0: Fibre Bragg grating signal simulation tool for finite element method models

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-01-01

    Full Text Available FBG_SiMul V1.0 is a tool to study and design the implementation of fibre Bragg grating (FBG sensors solutions in any arbitrary loaded structure or application. The software removes the need for a fibre optic expert user and makes the sensor response of a structural health monitoring solution using FBG sensors more simple and fast. The software uses a modified T-Matrix method to simulate the FBG reflected spectrum based on the stress and strain from a finite element method model. The article describes the theory and algorithm implementation, followed by an empirical validation.

  2. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  3. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  4. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    Science.gov (United States)

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The

  5. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  6. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Paredes, Eduardo; Maestre, Salvador E.; Todoli, Jose L.

    2006-01-01

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l -1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l -1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min

  7. Corrections to the free-nucleon values of the single-particle matrix elements of the M1 and Gamow-Teller operators, from a comparison of shell-model predictions with sd-shell data

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1983-01-01

    The magnetic dipole moments of states in mirror pairs of the sd-shell nuclei and the strengths of the Gamow-Teller beta decays which connect them are compared with predictions based on mixed-configuration shell-model wave functions. From this analysis we extract the average effective values of the single-particle matrix elements of the l, s, and [Y/sup( 2 )xs]/sup( 1 ) components of the M1 and Gamow-Teller operators acting on nucleons in the 0d/sub 5/2/, 1s/sub 1/2/, and 0d/sub 3/2/ orbits. These results are compared with the recent calculations by Towner and Khanna of the corrections to the free-nucleon values of these matrix elements which arise from the effects of isobar currents, mesonic-exchange currents, and mixing with configurations outside the sd shell

  8. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorge, Susan Elizabeth [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  9. Uncertainties in elemental quantitative analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.

    1979-01-01

    The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)

  10. Some remarks on unilateral matrix equations

    International Nuclear Information System (INIS)

    Cerchiai, Bianca L.; Zumino, Bruno

    2001-01-01

    We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials

  11. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    Science.gov (United States)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  12. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  13. Matrix-reinforcement reactivity in P/M titanium matrix composites

    International Nuclear Information System (INIS)

    Amigo, V.; Romero, F.; Salvador, M. D.; Busquets, D.

    2007-01-01

    The high reactivity of titanium and the facility of the same one to form intermetallics makes difficult obtaining composites with this material and brings the need in any case of covering the principal fibres used as reinforcement. To obtain composites of titanium reinforced with ceramic particles ins proposed in this paper, for this reason it turns out to be fundamental to evaluate the reactivity between the matrix and reinforcement. Both titanium nitride and carbide (TiN and TiC) are investigated as materials of low reactivity whereas titanium silicide (TiSi 2 ) is also studied as materials of major reactivity, already stated by the scientific community. This reactivity will be analysed by means of scanning electron microscopy (SEM) there being obtained distribution maps of the elements that allow to establish the possible influence of the sintering temperature and time. Hereby the matrix-reinforcement interactions are optimized to obtain suitable mechanical properties. (Author) 39 refs

  14. Optical properties of polarization-dependent geometrical phase elements with partially polarized light

    International Nuclear Information System (INIS)

    Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.

    2005-01-01

    Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength

  15. Solid-phase extraction method for preconcentration of trace amounts of some metal ions in environmental samples using silica gel modified by 2,4,6-trimorpholino-1,3,5-triazin

    International Nuclear Information System (INIS)

    Madrakian, Tayyebeh; Zolfigol, Mohammad Ali; Solgi, Mohammad

    2008-01-01

    A method was proposed for the preconcentration of some transition elements at trace levels using a column packed with silica gel modified by a synthetic ligand. Metal ions were adsorbed on 2,4,6-trimorpholino-1,3,5-triazin modified silica gel, then analytes retained on the adsorbent were eluted by 1 mol L -1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The influences of some experimental parameters including pH of the sample solution, weight of adsorbent, type, concentration and volume of eluent, flow rates of the sample solution and eluent, and sample volume on the preconcentration efficiency have been investigated. The influences of some matrix elements were also examined. The method also was used for simultaneous preconcentration of these elements and the method was successfully applied to the preconcentration and determination of them. The detection limits of the method for Ni 2+ , Co 2+ , Cd 2+ and Zn 2+ were 0.29, 0.20, 0.23 and, 0.30 ng mL -1 , respectively. The application of this modified silica gel to preconcentration of investigated cation from tap water, lake water, urine and apple leaves gave high accuracy and precision (relative standard deviation (R.S.D.) <3%)

  16. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Cavallaro, M.; Carbone, D.; Tudisco, S.; Lo Presti, D.; Oliveira, J. R. B.; Finocchiaro, P.; Colonna, M.; Rifuggiato, D.; Calabretta, L.; Calvo, D.; Pandola, L.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Brunasso, O.; Burrello, S.; Calabrese, S.; Calanna, A.; Chávez Lomelí, E. R.; D'Agostino, G.; De Faria, P. N.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; Ferreira, J. L.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia-Tecocoatzi, H.; Greco, V.; Hacisalihoglu, A.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lay, J. A.; La Via, F.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lubian, J.; Medina, N. H.; Mendes, D. R.; Moralles, M.; Muoio, A.; Pakou, A.; Petrascu, H.; Pinna, F.; Reito, S.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Santos, R. B. B.; Sgouros, O.; da Silveira, M. A. G.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Magana Vsevolodovna, R.; Yildirim, A.; Zagatto, V. A. B.

    2018-05-01

    The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements entering the expression of the lifetime of the double beta decay by cross section measurements of heavy-ion induced Double Charge Exchange (DCE) reactions. Despite the fact that the two processes, namely neutrinoless double beta decay and DCE reactions, are triggered by the weak and strong interaction respectively, important analogies are suggested. The basic point is the coincidence of the initial and final state many-body wave functions in the two types of processes and the formal similarity of the transition operators. First experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270MeV give an encouraging indication on the capability of the proposed technique to access relevant quantitative information. The main experimental tools for this project are the K800 Superconducting Cyclotron and MAGNEX spectrometer. The former is used for the acceleration of the required high resolution and low emittance heavy-ion beams and the latter is the large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the experimental resolution and sensitivity required for the accurate measurement of the DCE cross sections at forward angles. However, the tiny values of such cross sections and the resolution requirements demand beam intensities much larger than those manageable with the present facility. The on-going upgrade of the INFN-LNS facilities in this perspective is part of the NUMEN project and will be discussed in the article.

  17. The linear parameters and the decoupling matrix for linearly coupled motion in 6 dimensional phase space

    International Nuclear Information System (INIS)

    Parzen, G.

    1997-01-01

    It will be shown that starting from a coordinate system where the 6 phase space coordinates are linearly coupled, one can go to a new coordinate system, where the motion is uncoupled, by means of a linear transformation. The original coupled coordinates and the new uncoupled coordinates are related by a 6 x 6 matrix, R. It will be shown that of the 36 elements of the 6 x 6 decoupling matrix R, only 12 elements are independent. A set of equations is given from which the 12 elements of R can be computed form the one period transfer matrix. This set of equations also allows the linear parameters, the β i , α i , i = 1, 3, for the uncoupled coordinates, to be computed from the one period transfer matrix

  18. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  19. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  20. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    Energy Technology Data Exchange (ETDEWEB)

    Pangilinan, Monica [Brown Univ., Providence, RI (United States)

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the