WorldWideScience

Sample records for modified magnetic microspheres

  1. Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment

    Czech Academy of Sciences Publication Activity Database

    Novotná, L.; Emmerová, T.; Horák, Daniel; Kučerová, Z.; Tichá, M.

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 8032-8040 ISSN 0021-9673 R&D Projects: GA AV ČR(CZ) KAN401220801; GA ČR GA203/09/0857; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : IMAC phosphopeptide separation * IDA-modified magnetic microspheres * Porcine pepsin A Subject RIV: EE - Microbiology, Virology Impact factor: 4.194, year: 2010

  2. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei, E-mail: climentjw@126.co [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun Zhendong; Li Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen Kai; Liu Tianyu; Liu Jialing [Department of Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhou Tianle [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guo Rui [Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-03-15

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  3. A novel approach to preparing magnetic protein microspheres with core-shell structure

    International Nuclear Information System (INIS)

    Jiang Wei; Sun Zhendong; Li Fengsheng; Chen Kai; Liu Tianyu; Liu Jialing; Zhou Tianle; Guo Rui

    2011-01-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: → Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method.→ The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA).→ 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  4. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  5. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  6. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Science.gov (United States)

    Jiang, Wei; Sun, Zhendong; Li, Fengsheng; Chen, Kai; Liu, Tianyu; Liu, Jialing; Zhou, Tianle; Guo, Rui

    2011-03-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.

  7. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    Science.gov (United States)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-11-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu2+-modified magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe3O4@SiO2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol-gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost.

  8. Simple and efficient synthesis of copper(II)-modified uniform magnetic Fe3O4@SiO2 core/shell microspheres for immobilization of cellulase

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Hou, Xiao-Cheng; Huang, Fang-Zhi; Li, Chuan-Hao; Kang, Wen-Juan; Xie, An-Jian; Shen, Yu-Hua

    2013-01-01

    In this paper, we reported a simple and efficient protocol for preparation of Cu 2+ -modified magnetic Fe 3 O 4 @SiO 2 core/shell microspheres for immobilization of cellulase. The uniform magnetic Fe 3 O 4 @SiO 2 core/shell microspheres with a thin shell of 20 nm were synthesized through a solvothermal method followed by a sol–gel process. An amino-terminated silane coupling agent of (3-aminopropyl)triethoxysilane (APTS) was then grafted on them for capturing Cu 2+ ions. The reaction process is very simple, efficient, and economical. Noticeably, the content of Cu 2+ ions on the magnetic core/shell microspheres can reach 4.6 Wt%, endowing them possess as high immobilization capacity as 225.5 mg/g for cellulase. And the immobilized cellulase can be retained over 90 % on the magnetic microspheres after six cycles. Meanwhile, the magnetic microspheres decorated with Cu 2+ ions show a superparamagnetic character with a high magnetic saturation of 58.5 emu/g at room temperature, suggesting conveniently and rapidly recycle the enzyme from solution. This facile, recyclable, high immobilization capacity and activity strategy may find potential applications in enzyme catalytic reactions with low cost

  9. Magnetic susceptibility characterisation of superparamagnetic microspheres

    Science.gov (United States)

    Grob, David Tim; Wise, Naomi; Oduwole, Olayinka; Sheard, Steve

    2018-04-01

    The separation of magnetic materials in microsystems using magnetophoresis has increased in popularity. The wide variety and availability of magnetic beads has fuelled this drive. It is important to know the magnetic characteristics of the microspheres in order to accurately use them in separation processes integrated on a lab-on-a-chip device. To investigate the magnetic susceptibility of magnetic microspheres, the magnetic responsiveness of three types of Dynabeads microspheres were tested using two different approaches. The magnetophoretic mobility of individual microspheres is studied using a particle tracking system and the magnetization of each type of Dynabeads microsphere is measured using SQUID relaxometry. The magnetic beads' susceptibility is obtained at four different applied magnetic fields in the range of 38-70 mT for both the mobility and SQUID measurements. The susceptibility values in both approaches show a consistent magnetic field dependence.

  10. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  11. Study on Magnetic Responsibility of Rare Earth Ferrite/Polyacrylamide Magnetic Microsphere

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Wang Zhifeng; Zhang Hong; Dai Shaojun; Qiu Guanming; Okamoto Hiroshi

    2005-01-01

    In inverse microemulsion, rare earth ferrite/polyacrylamide magnetic microsphere were prepared and their magnetic responsibility were studied by magnetic balance. Results indicate that the magnetic responsibility of microsphere relates to magnetic moment of rare earth ion, and it can be improved by the addition of dysprosium ion of high magnetic moment. Dysprosium content has an effect on magnetic responsibility of dysprosium ferrite/polyacrylamide magnetic microsphere. The microsphere displays strong magnetic responsibility when the molar ratio of Dy3+/iron is 0.20.

  12. Application of magnetic poly(styrene-glycidyl methacrylate) microspheres for immunomagnetic separation of bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T.-H.; Chang, J.-Y. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China); Lee, W.-C. [Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan (China)], E-mail: chmwcl@ccu.edu.tw

    2009-05-15

    Surface-functionalized magnetic poly(styrene-glycidyl methacrylate) (PS-GMA) microspheres were prepared and coupled with Sca-1 antibody for cell selection from murine bone marrow mononuclear cells (MNCs). Biotinylated Sca-1 antibody could be directly coupled to avidin-bound magnetic microspheres. Alternatively, oxidized goat anti-mouse antibody was covalently bound onto the amino group-containing magnetic microspheres in a site-directed manner, and the resultant conjugate was coupled with non-modified Sca-1 antibody. Using the indirect antibody-bound magnetic microspheres, the purity of isolated Sca-1{sup +} cells increased with bead-to-cell ratio. Using a bead-to-cell ratio of 10 beads/cell, a purity of 85% Sca-1{sup +} cells corresponding to a 17-fold enrichment was achieved.

  13. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ping; Su, Weiguang, E-mail: weiguangsu@nxu.edu.cn; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-15

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N′-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application. - Highlights: • The magnetic poly(GMA-MBAA-NVP) microspheres were successfully synthesized. • Formamide served as a modifier, a dispersant and a porogen to form microspheres. • The magnetic microspheres were highly efficient carriers for immobilizing PGA. • Immobilized PGA

  14. A review on target drug delivery: magnetic microspheres

    Directory of Open Access Journals (Sweden)

    Amit Chandna

    2013-01-01

    Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional radiation methods which use highly penetrating radiation that is absorbed throughout the body. Its use is limited by toxicity and side effects. The aim of the specific targeting is to enhance the efficiency of drug delivery & at the same time to reduce the toxicity & side effects. This kind of delivery system is very much important which localises the drug to the disease site. In this larger amount of freely circulating drug can be replaced by smaller amount of magnetically targeted drug. Magnetic carriers receive magnetic responses to a magnetic field from incorporated materials that are used for magnetic microspheres are chitosan, dextran etc. magnetic microspheres can be prepared from a variety of carrier material. One of the most utilized is serum albumin from human or other appropriate species. Drug release from albumin microspheres can be sustained or controlled by various stabilization procedures generally involving heat or chemical cross-linking of the protein carrier matrix.

  15. Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery

    Science.gov (United States)

    Wang, Guangshuo; Zhao, Dexing; Li, Nannan; Wang, Xuehan; Ma, Yingying

    2018-06-01

    In this study, poly (ε-caprolactone) (PCL) microspheres loading magnetic Fe3O4 nanoparticles and anti-cancer drug of doxorubicin hydrochloride (DOX) were successfully prepared by a modified solvent-evaporation method. The obtained magnetic composite microspheres exhibited dual features of magnetic resonance imaging and controlled drug delivery. The morphology, structure, thermal behavior and magnetic properties of the drug-loaded magnetic microspheres were investigated in detail by SEM, XRD, DSC and SQUID. The obtained composite microspheres showed superparamagnetic behavior and T2-weighted enhancement effect. The drug loading, encapsulation efficiency, releasing behavior and in vitro cytotoxicity of the drug-loaded composite microspheres were systematically investigated. It was found that the values of drug loading and encapsulation efficiency were 36.7% and 25.8%, respectively. The composite microspheres were sensitive to pH and released in a sustained way, and both the release curves under various pH conditions (4.0 and 7.4) were well satisfied with the biphase kinetics function. In addition, the magnetic response of the drug-loaded microspheres was studied and the results showed that the composite microspheres had a good magnetic stability and strong targeting ability.

  16. Magnetic poly(glycidyl methacrylate) microspheres for protein capture.

    Science.gov (United States)

    Koubková, Jana; Müller, Petr; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, Bořivoj; Horák, Daniel

    2014-09-25

    The efficient isolation and concentration of protein antigens from complex biological samples is a critical step in several analytical methods, such as mass spectrometry, flow cytometry and immunochemistry. These techniques take advantage of magnetic microspheres as immunosorbents. The focus of this study was on the development of new superparamagnetic polymer microspheres for the specific isolation of the tumor suppressor protein p53. Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres measuring approximately 5 μm and containing carboxyl groups were prepared by multistep swelling polymerization of glycidyl methacrylate (GMA), 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA) and ethylene dimethylacrylate (EDMA) as a crosslinker in the presence of cyclohexyl acetate as a porogen. To render the microspheres magnetic, iron oxide was precipitated within their pores; the Fe content in the particles received ∼18 wt%. Nonspecific interactions between the magnetic particles and biological media were minimized by coating the microspheres with poly(ethylene glycol) (PEG) terminated by carboxyl groups. The carboxyl groups of the magnetic PGMA microspheres were conjugated with primary amino groups of mouse monoclonal DO-1 antibody using conventional carbodiimide chemistry. The efficiency of protein p53 capture and the degree of nonspecific adsorption on neat and PEG-coated magnetic microspheres were determined by western blot analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Magnetic propulsion of microspheres at liquid-glass interfaces

    Science.gov (United States)

    Helgesen, Geir

    2018-02-01

    Bio-coated, magnetic microspheres have many applications in biotechnology and medical technology as a tool to separate and extract cells or molecules in a water solution by applying external strong magnetic field gradients. However, magnetic microspheres with or without attached cargo can also be separated in the liquid solution if they are exposed to alternating or rotating, relatively weak magnetic fields. Microspheres that have a higher density than the liquid will approach the bottom surface of the sample cell, and then a combination of viscous and surface frictional forces can propel the magnetic microspheres along the surface in a direction perpendicular to the axis of field rotation. Experiments demonstrating this type of magnetic propulsion are shown, and the forces active in the process are discussed. The motion of particles inside sample cells that were tilted relative to the horizontal direction was studied, and the variation of propulsion velocity as a function of tilt angle was used to find the values of different viscous and mechanical parameters of motion. Propulsion speeds of up to 5 μm/s were observed and were found to be caused by a partly rolling and partly slipping motion of rotating microspheres with a slipping coefficient near 0.6.

  18. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  19. A review on target drug delivery: magnetic microspheres

    OpenAIRE

    Amit Chandna; Deepa Batra; Satinder Kakar; Ramandeep Singh

    2013-01-01

    Novel drug delivery system aims to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the active entity to the site of action. A number of novel drug delivery systems have emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery, magnetic micro carriers being one of them. Magnetic microsphere is newer approach in pharmaceutical field. Magnetic microspheres as an alternative to traditional ra...

  20. A sonochemical route for the encapsulation of drug in magnetic microspheres

    International Nuclear Information System (INIS)

    Wu Shixi; Jiang Wei; Zhang Xiaojuan; Sun Huan; Zhang Wenyao; Dai Junjun; Liu Li; Chen Xiaolong; Li Fengsheng

    2012-01-01

    This study focused on the preparation and characterization of magnetic targeted antibiotic microspheres (MTAMs). MTAMs were prepared by a sonochemical method in the presence of hydrophobic Fe 3 O 4 nanoparticles and tetracycline. The properties of MTAMs were characterized by transmission electron microscopy, Fourier-transform infrared spectrum, thermogravimetric analysis, vibration sample magnetometry, and bacteriostatic experiment. The results indicated that the superparamagnetic microspheres have ultrafine size (below 230 nm), high saturation magnetization (80.90 emu/g), high biocompatibility, biodegradability, controlled-release, and antibiotic effect. It has been proved that MTAMs can carry out the function of magnetic targeted drugs delivery system by putting together magnetic materials and antibiotics. The possible formation mechanism of MTAMs was also discussed. In summary, MTAMs had potential in medical imaging, drug targeting, and catalysis. - Highlights: → Microspheres carry out the function of magnetic targeted drugs delivery system. → Microspheres exhibit high saturation magnetization and antibiotic effect. → Microspheres have a potential application in the biomedical field. → The sonochemical method is well controlled for the synthesis.

  1. Interaction between dimethyldioctadecylammonium bromide-modified PLGA microspheres and hyaluronic acid

    Science.gov (United States)

    Mulia, Kamarza; Devi, Krisanti, Elsa

    2017-02-01

    In application of intravitreal injection, an extended drug delivery system is desired so that the frequency of injection to treat diabetic retinopathy may be reduced. Poly(lactic-co-glycolic acid) polymer (PLGA) was used to encapsulate a model drug in the form of microspheres. The zeta potential of dimethyldioctadecylammonium bromide (DDAB)-modified PLGA microspheres in water was proportional to the DDAB concentration used in the preparation step, up to +57.8 mV. The scanning electron microscope pictures and the zeta potential data (SEM) confirmed that the surface of the PLGA has been modified by the cationic surfactant and that electrostatic interaction between the positively charged microspheres and the negatively charged vitreous were present.

  2. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase

    Science.gov (United States)

    Xue, Ping; Su, Weiguang; Gu, Yaohua; Liu, Haifeng; Wang, Julan

    2015-03-01

    Magnetic hydrophilic polymeric microspheres containing oxirane groups were prepared by inverse suspension polymerization of glycidyl methacrylate (GMA), N, N‧-methylene bisacrylamide (MBAA) and N-vinyl pyrrolidone (NVP) in the existence of formamide, which were denoted as magnetic poly(GMA-MBAA-NVP) microspheres. The magnetic poly(GMA-MBAA-NVP) microspheres were characterized by scanning electron microscopy (SEM), FT-IR spectroscopy, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and so on. The results showed that poly(GMA-MBAA-NVP) microspheres possessed well spherical shape, narrow size distribution, abundant porous structure, reactive oxirane groups and superparamagnetic properties. Formamide used in the present work served as a modifier, a dispersant and a porogen to form final porous polymer microspheres. The penicillin G acylase (PGA) was covalently immobilized onto the magnetic microspheres through the reaction between the amino groups of enzyme and the oxirane groups on the microspheres for producing 6-aminopenicillanic acid (6-APA). The effects of GMA/NVP ratio and crosslink density on the activity of immobilized PGA were investigated. The highest apparent activity, enzyme loading and coupling yield of immobilized PGA were 821 IU/g, 65.3 mg/g and 42.3% respectively when the mass ratio of GMA/NVP was 1:1 and crosslink density was 60%. Compared with the free PGA, immobilized PGA showed a wider range of pH value and reaction temperature. The relative activity and reaction rate of immobilized PGA remained almost constant after 20 recycles. The magnetic poly(GMA-MBAA-NVP) microspheres would be very promising carriers for immobilizing enzymes in industrial application.

  3. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Li Fengxia [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Xiaoli, E-mail: lixiaoli0903@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China); Li Bin, E-mail: libinzh62@163.com [Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Science, Northeast Forestry University, Harbin 150040 (China)

    2011-11-15

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 {mu}m. Magnetic Fe{sub 3}O{sub 4} was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: > We prepare magnetic polylactic acid microspheres loading curcumin. > The classical oil-in-water emulsion solvent-evaporation method is used. > The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 {mu}m. > They show a certain sustained release effect on in vitro drug releasing.

  4. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    International Nuclear Information System (INIS)

    Li Fengxia; Li Xiaoli; Li Bin

    2011-01-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3 O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h. - Highlights: → We prepare magnetic polylactic acid microspheres loading curcumin. → The classical oil-in-water emulsion solvent-evaporation method is used. → The magnetic microspheres are regularly spherical with a diameter of 0.55-0.75 μm. → They show a certain sustained release effect on in vitro drug releasing.

  5. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  6. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  7. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    International Nuclear Information System (INIS)

    Fan, Lili; Wang, Yan; Zhao, Min; Song, Jinzhu; Wang, Jueyu; Jin, Zijing

    2016-01-01

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe_3O_4 nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe_3O_4 nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe_3O_4 nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  8. Magnetic Ganoderma lucidum spore microspheres: A novel material to immobilize CotA multicopper oxidase for dye decolorization

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Lili [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yan, E-mail: wangy_msn@hit.edu.cn [School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhao, Min [College of Life Science, Northeast Forestry University, Harbin 150040 (China); Song, Jinzhu [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Wang, Jueyu; Jin, Zijing [College of Life Science, Northeast Forestry University, Harbin 150040 (China)

    2016-08-05

    Highlights: • Hollow microspheres were obtained from Ganoderma lucidum spores. • Novel magnetic microspheres were prepared by load hollow spore microspheres with Fe{sub 3}O{sub 4} nanoparticles. • CotA multicopper oxidase was immobilized on the magnetic spore microspheres for indigo carmine decolorization. • The immobilized CotA displayed higher decolorization capability and reusability. - Abstract: In this study, hollow microspheres were obtained from Ganoderma lucidum spores. Then the hollow microspheres were loaded with Fe{sub 3}O{sub 4} nanoparticles to prepare novel magnetic spore microspheres. TEM images and X-ray diffractometry demonstrated that the Fe{sub 3}O{sub 4} nanoparticles were incorporated throughout the spore microsphere. CotA multicopper oxidase was chosen as biomacromolecule to study the loading ability of the magnetic spore microspheres. The combination of the CotA enzyme with the microsphere was observed by laser scanning confocal microscope. The loaded amount of CotA on the microspheres was 75 mg/g when the CotA concentration was 1.2 mg/mL and the activity recovery of the immobilized CotA was 81%. The magnetic microspheres loaded with CotA, which can be easily and quickly recovered by an external magnetic field, were used for dye decolorization. After 1 h decolorization, 99% of the indigo carmine has been removed by 10 mg microspheres. In addition, the immobilized CotA retained 75% of activity after 10 consecutive cycles, which indicated that the magnetic spore microspheres are good support material for immobilization of the enzyme.

  9. Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols

    Czech Academy of Sciences Publication Activity Database

    Salih, T.; Ahlford, A.; Nilsson, M.; Plichta, Zdeněk; Horák, Daniel

    2016-01-01

    Roč. 61, 1 April (2016), s. 362-367 ISSN 0928-4931 R&D Projects: GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : rolling circle amplification * DNA * magnetic microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.164, year: 2016

  10. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    International Nuclear Information System (INIS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-01-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO_2–NH_2 shell. Thus, metal particles were easily adsorbed into the SiO_2–NH_2 shell and in-situ reduced by NaBH_4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu_2(OH)_3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu_2(OH)_3Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  11. Magnetic microspheres as magical novel drug delivery system: A review

    Directory of Open Access Journals (Sweden)

    Satinder Kakar

    2013-01-01

    Full Text Available Magnetic microspheres hold great promise for reaching the goal of controlled and site specific drug delivery. Magnetic microspheres as an alternative to traditional radiation methods which uses highly penetrating radiations that is absorbed throughout the body. Its use is limited by toxicity and side effects. Now days, several targeted treatment systems including magnetic field, electric field, ultrasound, temperature, UV light and mechanical force are being used in many disease treatments (e.g. cancer, nerve damage, heart and artery, anti-diabetic, eye and other medical treatments. Among them, the magnetic targeted drug delivery system is one of the most attractive and promising strategy for delivering the drug to the specified site. Magnetically controlled drug targeting is one of the various possible ways of drug targeting. This technology is based on binding establish anticancer drug with ferrofluid that concentrate the drug in the area of interest (tumor site by means of magnetic fields. There has been keen interest in the development of a magnetically target drug delivery system. These drug delivery systems aim to deliver the drug at a rate directed by the needs of the body during the period of treatment, and target the activity entity to the site of action. Magnetic microspheres were developed to overcome two major problems encountered in drug targeting namely: RES clearance and target site specificity.

  12. Preparation of magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for fast extraction and analysis of phthalates in water samples.

    Science.gov (United States)

    Li, Zhongbo; Huang, Danni; Fu, Chinfai; Wei, Biwen; Yu, Wenjia; Deng, Chunhui; Zhang, Xiangmin

    2011-09-16

    In this study, core-shell magnetic mesoporous microspheres with C18-functionalized interior pore-walls were synthesized through coating Fe(3)O(4) microspheres with a mesoporous inorganic-organic hybrid layer with a n-octadecyltriethoxysilane (C18TES) and tetraethyl orthosilicate (TEOS) as the silica source and cetyltrimethylammonia bromide (CTAB) as a template. The obtained C18-functionalized Fe(3)O(4)@mSiO(2) microspheres possess numerous C18 groups anchored in the interior pore-walls, large surface area (274.7 m(2)/g, high magnetization (40.8 emu/g) and superparamagnetism, uniform mesopores (4.1 nm), which makes them ideal absorbents for simple, fast, and efficient extraction and enrichment of hydrophobic organic compounds in water samples. Several kinds of phthalates were used as the model hydrophobic organic compounds to systematically evaluate the performance of the C18-functionalized Fe(3)O(4)@mSiO(2) microspheres in extracting hydrophobic molecules by using a gas chromatography-mass spectrometry. Various parameters, including eluting solvent, the amounts of absorbents, extraction time and elution time were optimized. Hydrophobic extraction was performed in the interior pore of magnetic mesoporous microspheres, and the materials had the anti-interference ability to macromolecular proteins, which was also investigated in the work. Under the optimized conditions, C18-functionalized Fe(3)O(4)@mSiO(2) microspheres were successfully used to analyze the real water samples. The results indicated that this novel method was fast, convenient and efficient for the target compounds and could avoid being interfered by macromolecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  14. Synthesis of BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres for adsorption of antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baoliang; Zhang, Hepeng; Li, Xiangjie; Lei, Xingfeng; Li, Chunmei; Yin, Dezhong; Fan, Xinlong; Zhang, Qiuyu, E-mail: qyzhang@nwpu.edu.cn

    2013-10-01

    BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres with high saturation magnetization and paramagnetic property were prepared via inverse emulsion technology at room temperature, bovine serum albumin (BSA, 60 KD), magnetic nanoparticles (Fe{sub 3}O{sub 4}) and glutaraldehyde as macromonomer, inorganic particles and cross-linking agent, respectively. Fourier transform infrared (FTIR), scanning electron microscope (SEM), metalloscope, and particle size analyzer were used to characterize morphology and structure of composite microspheres. Vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) were used to test magnetic properties of the synthesized samples, adsorption capacity of microspheres was determined by ultraviolet spectrophotometer (UV). The results showed that BSA/Fe{sub 3}O{sub 4} microspheres were 43 μm with relatively narrow particle size distribution, perfect sphere-shaped morphologies, superparamagnetism with a saturation magnetization of 11 emu/g, and high magnetic content with a value of 57.29%. The main factors influencing properties of microspheres including raw material ratio, the amount of emulsifier and cross-linking agent, agitation speed were investigated and optimized. Furthermore, these microspheres accompanying with high separable and reusable efficient may have great potential application in the field of separation, in particular, removal of antibiotics. Adsorption capacities of the microspheres of four different kinds of antibiotics (erythromycin, streptomycin, tetracycline and chloramphenicol) ranging from 69.35 mg/g to 147.83 mg/g were obtained, and Langmuir isotherm model coincided with equilibrium data than that of the Freundlich model. - Highlights: • BSA/Fe{sub 3}O{sub 4} microspheres with high saturation magnetization were prepared. • BSA/Fe{sub 3}O{sub 4} microspheres for the removal of antibiotics are proposed. • The obtained results have significant importance in environmental processes.

  15. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying; Zhang, Kun, E-mail: kun4219@njtech.edu.cn; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol–gel method, and subsequently with surface modifying with amino in the purpose to form SiO{sub 2}–NH{sub 2} shell. Thus, metal particles were easily adsorbed into the SiO{sub 2}–NH{sub 2} shell and in-situ reduced by NaBH{sub 4} solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu{sub 2}(OH){sub 3}Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water. - Graphical abstract: Surface loaded metal particles magnetic catalyst microspheres MCM-MPs for rapid decolorizing dye-contaminated water: Synthesis, characterization and possible mechanisms. - Highlights: • A simple and high yield synthetic method for fabricate multi MCM-MPs is proposed with adequately optimize. • The highest reusability of MCM-Cu is attribute to the coordination compounds Cu{sub 2}(OH){sub 3}Br. • MCM-MPs show excellent catalytic properties under different situations for various dyes • The catalytic mechanism of MCM-MPs is presented.

  16. A facile method for preparing porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres.

    Science.gov (United States)

    Liu, Dong; Deng, Jianping; Yang, Wantai

    2014-01-01

    The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    OpenAIRE

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g?1 at room temperature and a Brunauer?Emmett?Teller specific surface area of 48.8 m2 g?1 with an a...

  18. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia

    International Nuclear Information System (INIS)

    Li Zhixia; Kawashita, Masakazu; Araki, Norio; Mitsumori, Michihide; Hiraoka, Masahiro; Doi, Masaaki

    2010-01-01

    We have prepared magnetic SiO 2 microspheres with a diameter of 20-30 μm as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO 2 gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH 3 OH) as a dispersant and ammonia (NH 4 OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO 2 gel microspheres with a diameter of approximately 20 μm were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH 3 OH/H 2 O/NH 4 OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe 3 O 4 and showed a higher specific absorption rate (SAR = 27.9-43.8 W g -1 ) than that of the starting IONPs (SAR = 25.3 W g -1 ) under an alternating current magnetic field of 300 Oe and 100 kHz.

  19. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  20. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    Podzus, P.E.; Daraio, M.E.; Jacobo, S.E.

    2009-01-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  1. Fabrication of Alkoxyamine-Functionalized Magnetic Core-Shell Microspheres via Reflux Precipitation Polymerization for Glycopeptide Enrichment

    Directory of Open Access Journals (Sweden)

    Meng Yu

    2016-03-01

    Full Text Available As a facile method to prepare hydrophilic polymeric microspheres, reflux precipitation polymerization has been widely used for preparation of polymer nanogels. In this article, we synthesized a phthalamide-protected N-aminooxy methyl acrylamide (NAMAm-p for preparation of alkoxyamine-functionalized polymer composite microspheres via reflux precipitation polymerization. The particle size and functional group density of the composite microspheres could be adjusted by copolymerization with the second monomers, N-isopropyl acrylamide, acrylic acid or 2-hydroxyethyl methacrylate. The resultant microspheres have been characterized by TEM, FT-IR, TGA and DLS. The experimental results showed that the alkoxyamine group density of the microspheres could reach as high as 1.49 mmol/g, and these groups showed a great reactivity with ketone/aldehyde compounds. With the aid of magnetic core, the hybrid microspheres could capture and magnetically isolate glycopeptides from the digested mixture of glycopeptides and non-glycopeptides at a 1:100 molar ratio. After that, we applied the composite microspheres to profile the glycol-proteome of a normal human serum sample, 95 unique glycopeptides and 64 glycoproteins were identified with these enrichment substrates in a 5 μL of serum sample.

  2. Fluorocarbon-bonded magnetic mesoporous microspheres for the analysis of perfluorinated compounds in human serum by high-performance liquid chromatography coupled to tandem mass spectrometry

    International Nuclear Information System (INIS)

    Liu, Xiaodan; Yu, Yingjia; Li, Yan; Zhang, Haiying; Ling, Jin; Sun, Xueni; Feng, Jianan; Duan, Gengli

    2014-01-01

    Highlights: • New SPE method was developed for analysis of PFCs in human serum. • Fluorocarbon-bonded magnetic mesoporous microspheres were used as SPE absorbents. • PFCs in serum were directly extracted without any other pretreatment procedure. • The PFCs-adsorbed microspheres were simply and rapidly isolated by using a magnet. - Abstract: We report herein an extraction method for the analysis of perfluorinated compounds in human serum based on magnetic core–mesoporous shell microspheres with decyl-perfluorinated interior pore-walls (Fe 3 O 4 @mSiO 2 -F 17 ). Thanks to the unique properties of the Fe 3 O 4 @mSiO 2 -F 17 microspheres, macromolecules like proteins could be easily excluded from the mesoporous channels due to size exclusion effect, and perfluorinated compounds (PFCs) in protein-rich biosamples such as serum could thus be directly extracted with the fluorocarbon modified on the channel wall without any other pretreatment procedure. The PFCs adsorbed Fe 3 O 4 @mSiO 2 -F 17 microspheres could then be simply and rapidly isolated by using a magnet, followed by being identified and quantified by LC–MS/MS (high-performance liquid chromatography coupled to tandem mass spectrometry). Five perfluorinatedcarboxylic acids (C6, C8–C11) and perfluorooctane sulfonate (PFOS) were selected as model analytes. In order to achieve the best extraction efficiency, some important factors including the amount of Fe 3 O 4 @mSiO 2 -F 17 microspheres added, adsorption time, type of elution solvent, eluting solvent volume and elution time were investigated. The ranges of the LOD were 0.02–0.05 ng mL −1 for the six PFCs. The recovery of the optimized method varies from 83.13% to 92.42% for human serum samples

  3. Reorientation response of magnetic microspheres attached to gold electrodes under an applied magnetic field

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W.; Bustamante Dominguez, A.; Aguiar, J. Albino; Majima, Y.

    2013-01-01

    In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C 8 H 18 S 2 ), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)

  4. Reorientation response of magnetic microspheres attached to gold electrodes under an applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W., E-mail: luis_d_v@hotmail.com [Cavendish Laboratory, Department of Physics, University of Cambridge Materials and Structures Laboratory (United Kingdom); Bustamante Dominguez, A. [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Lima (Peru); Aguiar, J. Albino [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Fisica; Azuma, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama (Japan); Majima, Y. [CREST, Japan Science and Technology Agency (JST), Midori-ku, Yokohama (Japan)

    2013-08-15

    In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C{sub 8}H{sub 18}S{sub 2}), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)

  5. Preparation of magnetic nanoparticles embedded in polystyrene microspheres

    International Nuclear Information System (INIS)

    Nguyen Hoang Hai; Nguyen Hoang Luong; Nguyen Chau; Ngo Quy Tai

    2009-01-01

    Superparamagnetic particles are widely used for biological applications such as cell separation. The size of the particles is normally in the range of 10 - 20 nm which is much smaller than the size of a cell. Therefore small particles create small force which is not strong enough to separate the cells from solution. Superparamagnetic nanoparticles embedded in Polystyrene microspheres (magnetic beads) are very useful for cell separation. Magnetic beads have been prepared by solvent evaporation of an emulsion. The beads with size of 0.2 μm - 1.0 μm have a saturation magnetization of 10 - 25 emu/g. The change of the amount of surfactants, volatile solvent, magnetic particles resulted to the change of size, magnetic properties of the magnetic beads.

  6. Magnetic restricted-access microspheres for extraction of adrenaline, dopamine and noradrenaline from biological samples

    International Nuclear Information System (INIS)

    Xiao, Deli; Liu, Shubo; Liang, Liyun; Bi, Yanping

    2016-01-01

    Epoxy propyl bonded magnetic microspheres were prepared by atomic layer deposition using Fe 3 O 4 -SiO 2 microspheres as a core support material. Then, a restricted-access magnetic sorbent was prepared that contains diol groups on the external surface and m-aminophenylboronic acid groups on the internal surface. This kind of microspheres achieved excellent specific adsorption of the ortho-dihydroxy compounds (dopamine, adrenaline and noradrenaline). Following desorption with sorbitol, the ortho-dihydroxy compounds were quantified by HPLC. The limits of detection for dopamine, adrenaline and noradrenaline were 0.074, 0.053 and 0.095 μg mL −1 , respectively. Recoveries from spiked mice serum samples range from 80.2 to 89.1 %. (author)

  7. Magnetic SiO{sub 2} gel microspheres for arterial embolization hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhixia; Kawashita, Masakazu [Graduate School of Biomedical Engineering, Tohoku University, 6-6-11-1306-1, Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Araki, Norio [National Hospital Organization Kyoto Medical Center, Kyoto 612-8555 (Japan); Mitsumori, Michihide; Hiraoka, Masahiro [Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Doi, Masaaki, E-mail: zhixia@ecei.tohoku.ac.j, E-mail: zhixiali@hotmail.co [Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2010-12-15

    We have prepared magnetic SiO{sub 2} microspheres with a diameter of 20-30 {mu}m as thermoseeds for hyperthermia of cancer. These were prepared by directly introducing preformed magnetic iron oxide nanoparticles (IONPs) into microspheres of a SiO{sub 2} gel matrix derived from the hydrolysis of tetramethoxysilane (TMOS) in a water-in-oil (W/O) emulsion. Dimethylformamide (DMF) was used as a stabilizer, methanol (CH{sub 3}OH) as a dispersant and ammonia (NH{sub 4}OH) as the catalyst for the formation of the spherical particles in the aqueous phase of the W/O emulsion. The magnetic IONPs were synthesized hydrochemically in an aqueous system composed of ferrous chloride, sodium nitrate and sodium hydroxide. Mono-dispersed magnetic SiO{sub 2} gel microspheres with a diameter of approximately 20 {mu}m were successfully obtained by adding a determined amount of solution with a molar ratio of TMOS/DMF/CH{sub 3}OH/H{sub 2}O/NH{sub 4}OH = 1:1.4:9:20:0.03 to kerosene with a surfactant (sorbitan monooleate/sorbitan monostearate = 3:1 by weight ratio) that was 30 wt% of the total amount of the oil phase. These were estimated to contain up to 60 wt% of IONPs that consisted mainly of Fe{sub 3}O{sub 4} and showed a higher specific absorption rate (SAR = 27.9-43.8 W g{sup -1}) than that of the starting IONPs (SAR = 25.3 W g{sup -1}) under an alternating current magnetic field of 300 Oe and 100 kHz.

  8. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  9. Photocatalytic degradation of p-phenylenediamine with TiO2-coated magnetic PMMA microspheres in an aqueous solution

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S.

    2009-01-01

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO 2 /mPMMA) microspheres. The TiO 2 /mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO 2 /mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO 2 nanoparticles. The BET-specific surface area and saturation magnetization of the TiO 2 /mPMMA microspheres are observed as 2.21 m 2 /g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO 2 /mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO 2 /mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO 2 /mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented

  10. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  11. Photocatalytic degradation of p-phenylenediamine with TiO{sub 2}-coated magnetic PMMA microspheres in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-H. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Chung-Hsiao E. Road, Taipei 106, Taiwan (China)], E-mail: yhchen1@ntu.edu.tw; Liu, Y.-Y.; Lin, R.-H.; Yen, F.-S. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China)

    2009-04-30

    This study investigates the photocatalytic degradation of p-phenylenediamine (PPD) with titanium dioxide-coated magnetic poly(methyl methacrylate) (TiO{sub 2}/mPMMA) microspheres. The TiO{sub 2}/mPMMA microspheres are employed as novel photocatalysts with the advantages of high photocatalytic activity, magnetic separability, and good durability. The scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and transmission electron microscopy (TEM) images of the TiO{sub 2}/mPMMA microspheres are used to characterize the morphology, element content, and distribution patterns of magnetite and TiO{sub 2} nanoparticles. The BET-specific surface area and saturation magnetization of the TiO{sub 2}/mPMMA microspheres are observed as 2.21 m{sup 2}/g and 4.81 emu/g, respectively. The photocatalytic degradation of PPD are performed under various experimental conditions to examine the effects of initial PPD concentration, TiO{sub 2}/mPMMA microsphere dosage, and illumination condition on the eliminations of PPD and chemical oxygen demand (COD) concentrations. Good repeatability of photocatalytic performance with the use of the TiO{sub 2}/mPMMA microspheres has been demonstrated in the multi-run experiments. The photocatalytic kinetics for the reductions of PPD and COD associated with the initial PPD concentration, UV radiation intensity, and TiO{sub 2}/mPMMA microsphere dosage are proposed. The relationships between the reduction percentages of COD and PPD are clearly presented.

  12. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Wang Yiping; Liu Zhirong; Huang Qunwu

    2009-01-01

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg 2+ , Cu 2+ , and Ni 2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3 mg/g for Hg 2+ , Cu 2+ , and Ni 2+ ions, respectively. TMCS displayed higher adsorption capacity for Hg 2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1 M ethylendiamine tetraacetic acid (EDTA)

  13. Solid-phase DNA isolation from food matrices using hydrophilic magnetic microspheres

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Španová, A.; Tóth, J.; Prettl, Z.; Horák, Daniel; Gyenis, J.; Rittich, B.

    2015-01-01

    Roč. 94, April (2015), s. 375-381 ISSN 0960-3085 R&D Projects: GA ČR GAP206/12/0381 Institutional support: RVO:61389013 Keywords : DNA compaction * magnetic microspheres * DNA isolation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.687, year: 2015

  14. Facile Synthesis of Magnetic Copolymer Microspheres Based on Poly(glycidyl methacrylate-co-N-isopropylacrylamide/Fe3O4 by Suspension Photopolymerization

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2014-01-01

    Full Text Available Magnetic copolymer based on poly(glycidyl methacrylate-co-N-isopropylacrylamide microspheres was prepared by 2,2-dimethoxy-2-phenylacetophenone- (DMPP- photo initiated and poly(vinyl alcohol- (PVA- stabilized single step suspension photopolymerization. The effect of chemical interaction, morphology, and thermal properties by adding 0.1% w/v Fe3O4 in the copolymer was investigated. Infrared analysis (FTIR showed that (C=C band disappeared after copolymerization, indicating that the magnetic copolymer microspheres were successfully synthesized and two important bands at 908 cm−1 and 1550 cm−1 appear. These are associated with the epoxy group stretching of GMA and secondary amide (N–H/C–H deformation vibration of NIPAAm in magnetic microspheres. The X-ray diffraction (XRD result proved the incorporation of Fe3O4 nanoparticles with copolymer microspheres as peak of Fe3O4 was observed. Morphology study revealed that magnetic copolymer exhibited uniform spheres and smoother appearance when entrapped with Fe3O4 nanoparticles. The lowest percentage of Fe3O4 nanoparticles leached from the copolymer microspheres was obtained at pH 7. Finally, thermal property of the copolymer microspheres was improved by adding a small amount of Fe3O4 nanoparticles that has been shown from the thermogram.

  15. A modified procedure for the labelling of human serum albumin microspheres with 99m Tc for lung scanning

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; Amin, A.; Raieh, M.; El-Mohty, A.

    1996-01-01

    A modified procedure is reported for the labelling of human serum albumin microspheres (HSAM) with 99m Tc. Albumin microspheres were first soaked in Sn-methylene diphosphonate (Sn-MDP) solution, then heated in a boiling water both for 10-15 minutes. The Sn-MDP coated HSAM were washed twice with saline containing poly sorbate-80 to remove the excess Sn-MDP solution. The coated albumin microspheres were then labelled with 99m Tc. More than 95% labelling yield are achieved by using the following quantities: 10 mg dry albumin microspheres, 5 mg MDP, 0.05 mg Sn Cl 2 .2 H 2 O, 0.1 mg ascorbic acid. The biological distribution of the labelled microspheres in mice has been studied and more than 85% lung uptake is achieved after 10 min of injection and the lung/liver ratio was 62. 8 tabs

  16. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  17. UV-assisted synthesis of surface modified mesoporous TiO{sub 2}/G microspheres and its electrochemical performances in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xiaoling; Zeng, Min, E-mail: zengmin@swust.edu.cn; Li, Jing; Li, Fuyun

    2017-01-15

    Highlights: • We synthesize the surface modified mesoporous TiO{sub 2}/G microspheres, which possess high surface area with 258 m{sup 2} g{sup −1} and narrow pore size at about 7.8 nm. • The surface reaction mechanism of the UV-assisted synthesis mesoporous TiO{sub 2}/G microspheres has been explored. • The as-made TiO{sub 2}/G microspheres exhibit excellent electrochemical performances and deliver a capacity of 141 mAh g{sup −1} upon 100 cycles even at 1 C. - Abstract: Three-dimensional mesoporous TiO{sub 2}/graphene (TiO{sub 2}/G) microspheres have been successfully synthesized through a simple UV-assisted method of reduced graphene oxide with hydrazine. The as-made surface modified mesoporous TiO{sub 2}/G microspheres possess large surface area and exhibit a high initial discharge capacity of 220 mAh g{sup −1} and retain 84% (∼185 mAh g{sup −1}) of reversible capacity over 100 cycles at a rate of 0.2C. In addition, TiO{sub 2}/G microspheres display improved cyclic performance, excellent rate capability and enhanced electrical conductivity, which are superior to the bare TiO{sub 2} microspheres. Furthermore, TiO{sub 2}/G microspheres can achieve a reversible capacity of 141 mAh g{sup −1} upon 100 cycles even at the 1C rate. We believe that the mesoporous TiO{sub 2}/G microspheres are expected to be a promising high performance anode material for the next generation lithium ion batteries.

  18. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hong; Saatchi, Katayoun [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, 6T 1Z3 (Canada); Haefeli, Urs O. [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3 (Canada)], E-mail: uhafeli@interchange.ubc.ca

    2009-05-15

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  19. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    International Nuclear Information System (INIS)

    Zhao Hong; Saatchi, Katayoun; Haefeli, Urs O.

    2009-01-01

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  20. Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres

    Directory of Open Access Journals (Sweden)

    Yanan Yin

    2017-02-01

    Full Text Available A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr2+ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr2+adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr2+ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (qm was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr2+ removal from aqueous solution.

  1. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Alula, Melisew Tadele; Yang, Jyisy

    2015-01-01

    Magnetic microspheres decorated with gold nanoparticles (AuNPs) were prepared and used for the determination of adenine by surface-enhanced Raman scattering (SERS). Magnetic particles were first synthesized by coprecipitation of solutions containing iron(II) and iron(III) ions with ammonium hydroxide. Subsequently, the magnetic particles were suspended into a solution of poly(divinylbenzene-co-methyl methacrylate) to yield polymer-stabilized magnetic microspheres. These were further decorated with AuNPs via a new photochemical reduction method. The magnetic microspheres were characterized by XRD patterns and SEM images. They are shown to represent highly SERS-active substrates by giving an enhancement by almost 7 orders of magnitude compared to conventional Raman spectroscopy. Several factors that affect the photochemical reduction to form the AuNPs were examined. It is found that the concentration of gold ion, UV irradiation time, and citrate concentration have more impact on the reaction rate than on the morphologies of the AuNPs. The gold-decorated magnetic microspheres are highly stable in aqueous solution and capable of concentrating nucleobases. A linear response of the SERS signal to adenine in concentrations up to 10 μM is found, with a linear regression coefficient of 0.997. The detection limit is estimated to a few hundreds of nM (at an SNR of 3). Based on its specific Raman peak at 734 cm −1 , adenine can be selectively determined without interference by other nucleobases, and a recovery higher than 95 % could be obtained. (author)

  2. PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl methacrylate) microspheres by murine J774.2 macrophages

    Science.gov (United States)

    Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav

    2017-12-01

    The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.

  3. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    Science.gov (United States)

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO 2 modified reduced graphene oxide microspheres (hollow TiO 2 -rGO microspheres or H-TiO 2 -rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO 2 -rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO 2 -rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO 2 -rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H 2 O 2 detection performance-the wide linear range of 0.1-360μM for H 2 O 2 (sensitivity of 417.6 μA mM -1 cm -2 ) and the extremely low detection limit of 10nM for H 2 O 2 . Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H 2 O 2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO 2 -rGO microspheres will find wide potential applications in environmental analysis and biomedical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hochel, I.

    061, - (2005), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR(CZ) GA525/05/0311; GA ČR(CZ) GA525/02/0287 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic * microspheres * glycidyl methacrylate Subject RIV: GM - Food Processing Impact factor: 0.926, year: 2005 http://www.e-polymers.org

  5. Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanan; Wang, Jian Long; Yang, Xiao Yong; Li, Weihua [Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2017-02-15

    A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr{sup 2+} from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr{sup 2+}adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr{sup 2+} adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (q{sub m}) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr{sup 2+} removal from aqueous solution.

  6. Synthesis and characterization of Supeparamagnetics Microspheres (PMMA via suspension polymerization

    Directory of Open Access Journals (Sweden)

    Paulo Emilio Feuser

    2014-02-01

    Full Text Available Magnetics nanoparticles (NPMs has found many applications in biomedical and technological areas. The objective of this work is the preparation and characterization of PMMA microspheres containing NPMs coated with oleic acid (NPMs-AO. For the preparation of MNPs-AO was used the coprecipitation method in an aqueous medium. For the preparation of the superparamagnetic microspheres used in suspension polymerization technique. The microspheres showed a size distribution particles of approximately 150um and a spherical morphology. From the analysis of gel permeation chromatography (GPC determined the number average molecular weight (Mw of the magnetics microspheres and there was a variation in the Mw depending on the concentration of MNPs-AO in this reaction. To analyze the magnetic properties used the vibrating sample magnetometer (MAV. The microspheres showed superparamagnetic properties and a value of saturation magnetization (Ms of about 8 emu/g MNPs. Therefore you can conclude that it is possible to obtain superparamagnetics microspheres for a particular application, either, biomedical or technological.

  7. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  8. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  9. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization.

    Science.gov (United States)

    Grumezescu, V; Holban, A M; Grumezescu, A M; Socol, G; Ficai, A; Vasile, B S; Truscă, R; Bleotu, C; Lazar, V; Chifiriuc, C M; Mogosanu, G D

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering.

  10. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    International Nuclear Information System (INIS)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S; Holban, A M; Lazar, V; Chifiriuc, C M; Socol, G; Truscă, R; Bleotu, C; Mogosanu, G D

    2014-01-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  11. Usnic acid-loaded biocompatible magnetic PLGA-PVA microsphere thin films fabricated by MAPLE with increased resistance to staphylococcal colonization

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, V; Grumezescu, A M; Ficai, A; Vasile, B S [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street no 1-7, 011061 Bucharest (Romania); Holban, A M; Lazar, V; Chifiriuc, C M [Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, Sector 5, 77206-Bucharest (Romania); Socol, G [Lasers Department, Plasma and Radiation Physics, National Institute for Lasers, PO Box MG-36, Bucharest-Magurele (Romania); Truscă, R [Metav SA - CD SA, 31 Rosetti Str., 020015 Bucharest (Romania); Bleotu, C [Stefan S Nicolau Institute of Virology, Bucharest (Romania); Mogosanu, G D, E-mail: grumezescu@yahoo.com [Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 PetruRareş Street, 200349 Craiova (Romania)

    2014-09-01

    Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering. (paper)

  12. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Preparation of microspheres containing methyl methacrylate (MMA) with magnetic nanoparticles; Preparacao de microesferas contendo metacrilato de metila (PMMA) com nanoparticulas magneticas

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, P.E.; Souza, M.N. de, E-mail: paulofeuser@hotmail.co, E-mail: nele@eq.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Quimica

    2010-07-01

    Magnetic nanoparticles have found many technological applications and has been intensively studied due to its special magnetic properties. In most biomedical applications, microspheres containing magnetic nanoparticles is used as a vehicle for transporting drugs, presenting several advantages when compared to other conventional methods. PMMA is a polymer which has biocompatibility and can be used for the encapsulation of magnetic nanoparticles, showing a great degree of saturation magnetization. PMMA microparticles containing magnetic nanoparticles were prepared by suspension polymerization. Polymers containing magnetic nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetization, thermogravimetric analysis, optical microscopy, chromatography gel permeation, analysis of particle size - malversizer 2000 (Malvern Instruments). The average size of magnetic nanoparticles was approximately 150 {mu}m and depending on the amount of magnetic nanoparticles in the reaction medium Mw of microspheres can be altered. (author)

  14. Temperature influence in crystallinity of polymer microspheres

    International Nuclear Information System (INIS)

    Rezende, Cristiane de P.; Novack, Katia M.

    2011-01-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  15. Preparation of porous zirconia microspheres by internal gelation method

    International Nuclear Information System (INIS)

    Pathak, Sachin S.; Pius, I.C.; Bhanushali, R.D.; Rao, T.V. Vittal; Mukerjee, S.K.

    2008-01-01

    A modified internal gelation process for the preparation of porous zirconia microspheres has been developed. The conventional method has been modified by adding a surfactant in the feed broth. The effects of variation of surfactant concentration, washing techniques and temperature of calcination on the pore volume and the surface area of the microspheres have been studied. The conditions were optimized to obtain porous stable microspheres suitable for various applications. The microspheres were characterized by surface area analysis, pore volume analysis, thermogravimetric analysis and X-ray diffraction. The ion exchange behavior was studied using pH titration

  16. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  17. In vitro Evaluation of Nateglinide-Loaded Microspheres Formulated ...

    African Journals Online (AJOL)

    Keywords: Nateglinide, Microspheres, Micromeritics, Drug release, Ionic ... Oral drug delivery systems (DDS) are commonly divided into immediate release and modified release systems. ..... Albumin Microspheres for Potential Intramuscular.

  18. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.

    Directory of Open Access Journals (Sweden)

    S Dutz

    Full Text Available Magnetic forces and curvature-induced hydrodynamic drag have both been studied and employed in continuous microfluidic particle separation and enrichment schemes. Here we combine the two. We investigate consequences of applying an outwardly directed magnetic force to a dilute suspension of magnetic microspheres circulating in a spiral microfluidic channel. This force is realized with an array of permanent magnets arranged to produce a magnetic field with octupolar symmetry about the spiral axis. At low flow rates particles cluster around an apparent streamline of the flow near the outer wall of the turn. At high flow rates this equilibrium is disrupted by the induced secondary (Dean flow and a new equilibrium is established near the inner wall of the turn. A model incorporating key forces involved in establishing these equilibria is described, and is used to extract quantitative information about the magnitude of local Dean drag forces from experimental data. Steady-state fractionation of suspensions by particle size under the combined influence of magnetic and hydrodynamic forces is demonstrated. Extensions of this work could lead to new continuous microscale particle sorting and enrichment processes with improved fidelity and specificity.

  19. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of Ho-166 Microspheres in Liver Radioembolization

    NARCIS (Netherlands)

    Seevinck, Peter R.; van de Maat, Gerrit H.; de Wit, Tim C.; Vente, Maarten A. D.; Nijsen, Johannes F. W.; Bakker, Chris J. G.

    2012-01-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional Ho-166 activity distribution to estimate radiation-absorbed dose distributions in Ho-166-loaded poly (L-lactic acid) microsphere (Ho-166-PLLA-MS) liver radioembolization.

  20. Antifouling peptide dendrimer surface of monodisperse magnetic poly(glycidyl methacrylate) microspheres

    Czech Academy of Sciences Publication Activity Database

    Hlídková, Helena; Kotelnikov, Ilya; Pop-Georgievski, Ognen; Proks, Vladimír; Horák, Daniel

    2017-01-01

    Roč. 50, č. 4 (2017), s. 1302-1311 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GC16-01128J; GA ČR(CZ) GA16-02702S; GA ČR(CZ) GJ15-09368Y Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : poly(glycidyl methacrylate) * magnetic microspheres * peptides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  1. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rittich, Bohuslav [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic)], E-mail: rittich@sci.muni.cz; Spanova, Alena [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Salek, Petr [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Nemcova, Petra [Masaryk University, Faculty of Science, Institute of Experimental Biology, Tvrdeho 14, CZ-611 37 Brno (Czech Republic); Trachtova, Stepanka [Brno University of Technology, Faculty of Chemistry, Institute of Food Science and Biotechnology, Purkynova 464/118, CZ-612 00 Brno (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, CZ-162 06 Prague (Czech Republic)

    2009-05-15

    Carboxyl group-containing magnetic nonporous poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (P(HEMA-co-GMA)) and magnetic glass microspheres were used for the isolation of bacterial DNA. P(HEMA-co-GMA) microspheres were prepared by the dispersion polymerization in toluene/2-methylpropan-1-ol mixture in the presence of magnetite nanoparticles obtained by coprecipitation of Fe(II) and Fe(III) salts with ammonium hydroxide. Carboxyl groups were then introduced by oxidation of the microspheres with potassium permanganate. The most extensive DNA recovery was achieved at PEG 6000 concentrations of 12% or 16% and 2 M NaCl. The method proposed was used for bacterial DNA isolation from different dairy products containing Bifidobacterium and Lactobacillus cells. The presence of target DNA and the quality of isolated DNA were checked by polymerase chain reaction (PCR) amplification with specific primers.

  2. Studies in the Use of Magnetic Microspheres for Immunoaffinity Extraction of Paralytic Shellfish Poisoning Toxins from Shellfish

    Directory of Open Access Journals (Sweden)

    Christopher Elliott

    2011-01-01

    Full Text Available Paralytic shellfish poisoning (PSP is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20–300 ng/mL, incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.

  3. Zirconium-doped magnetic microspheres for the selective enrichment of cis-diol-containing ribonucleosides.

    Science.gov (United States)

    Fan, Hua; Chen, Peihong; Wang, Chaozhan; Wei, Yinmao

    2016-05-27

    Zirconium-doped magnetic microspheres (Zr-Fe3O4) for the selective enrichment of cis-diol-containing biomolecules were easily synthesized via a one-step hydrothermal method. Characterization of the microspheres revealed that zirconium was successfully doped into the lattice of Fe3O4 at a doping level of 4.0 at%. Zr-Fe3O4 possessed good magnetic properties and high specificity towards cis-diol molecules, as shown using 28 compounds. For ribonucleosides, the adsorbent not only has favorable anti-interferential abilities but also has a high adsorption capacity up to 159.4μmol/g. As an example of a real application, four ribonucleosides in urine were efficiently enriched and detected via magnetic solid-phase extraction coupled with high-performance liquid chromatography. Under the optimized extraction conditions, the detection limits were determined to be between 0.005 and 0.017μg/mL, and the linearities ranged from 0.02 to 5.00μg/mL (R≥0.996) for these analytes. The accuracy of the analytical method was examined by studying the relative recoveries of the analytes in real urine samples, with recoveries varying from 77.8% to 119.6% (RSDs<10.6%, n=6). The results indicate that Zr-Fe3O4 is a suitable adsorbent for the analysis of cis-diol-containing biomolecules in practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xixue [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Shen, Hong, E-mail: shenhong516@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Fei [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liang, Xinjie [CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190 (China); Wang, Shenguo, E-mail: wangsg@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Decheng, E-mail: dcwu@iccas.ac.cn [BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  5. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    International Nuclear Information System (INIS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-01-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion–solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  6. Glucose biosensor based on immobilization of glucose oxidase on a carbon paste electrode modified with microsphere-attached l-glycine.

    Science.gov (United States)

    Donmez, Soner; Arslan, Fatma; Sarı, Nurşen; Hasanoğlu Özkan, Elvan; Arslan, Halit

    2017-09-01

    In the present study, a novel biosensor that is sensitive to glucose was prepared using the microspheres modified with (4-formyl-3-methoxyphenoxymethyl)polystyrene (FMPS) with l-glycine. Polymeric microspheres having Schiff bases were prepared from FMPS using the glycine condensation method. Glucose oxidase enzyme was immobilized onto modified carbon paste electrode by cross-linking with glutaraldehyde. Oxidation of enzymatically produced H 2 O 2 (+0.5 V vs. Ag/AgCl) was used for determination of glucose. Optimal temperature and pH were found as 50 °C and 8.0, respectively. The glucose biosensor showed a linear working range from 5.0 × 10 -4 to 1.0 × 10 -2 M, R 2 = 0.999. Storage and operational stability of the biosensor were also investigated. The biosensor gave perfect reproducible results after 20 measurements with 3.3% relative standard deviation. It also had good storage stability. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  7. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    International Nuclear Information System (INIS)

    Danilin, Lev; Drozhzhin, Valery

    2007-01-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  8. Preparation and characterization of composite microspheres for brachytherapy and hyperthermia treatment of cancer

    International Nuclear Information System (INIS)

    Zhao Di; Huang Wenhai; Rahaman, Mohamed N.; Day, Delbert E.; Wang Deping; Gu Yifei

    2012-01-01

    Composite microspheres were prepared by coating yttrium–aluminum–silicate (YAS) glass microspheres (20–30 μm) with a layer of Fe 3 O 4 nanoparticles and evaluated for potential use in brachytherapy and hyperthermia treatment of cancer. After neutron activation to form the β-emitting 90 Y radionuclide, the composite microspheres can be injected into a patient to destroy cancerous tumors; at the same time, the composite microspheres can generate heat upon application of a magnetic field to also destroy the tumors. The results showed that the composite microspheres were chemically durable when immersed in a simulated body fluid (SBF), with ∼ 0.25% weight loss and ∼ 3.2% yttrium dissolved into the SBF after 30 days at 37 °C. The composite microspheres also showed ferromagnetic properties as a result of the Fe 3 O 4 coating; when immersed in water at 20 °C (20 mg in 1 mL of water), the application of an alternating magnetic field produced a temperature increase from 20 °C to 38−46 °C depending on the thickness of the Fe 3 O 4 coating. The results indicate that these composite microspheres have promising potential in combined brachytherapy and hyperthermia treatment of cancerous tumors. - Highlights: ► Composite microspheres for brachytherapy and hyperthermia treatment of cancer. ► Fe 3 O 4 nanoparticles coated on the yttrium–aluminum–silicate glass microspheres. ► Microspheres are chemically stable in SBF. ► Microspheres can generate heat for hyperthermia under an alternating magnetic field. ► Microspheres can emit β-rays for brachytherapy after neutron activation.

  9. Magnetic poly(N-propargylacrylamide) microspheres: preparation by precipitation polymerization and use in model click reactions

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Proks, Vladimír; Horák, Daniel; Kučka, Jan; Trchová, Miroslava

    2011-01-01

    Roč. 49, č. 22 (2011), s. 4820-4829 ISSN 0887-624X R&D Projects: GA AV ČR KJB400500904; GA AV ČR(CZ) KAN401220801; GA ČR GAP503/10/0664 Institutional research plan: CEZ:AV0Z40500505 Keywords : click chemistry * magnetic * microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.919, year: 2011

  10. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Kawashita, M, E-mail: zhixia@ecei.tohoku.ac.jp [Graduate School of Biomedical Engineering, Tohoku University (Japan)

    2011-10-29

    We attempted to prepare {alpha}-Fe-encapsulating silica ({alpha}FeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH{sub 2}CH{sub 3}OH), water and iron nitrate (Fe(NO{sub 3}){sub 3{center_dot}}9H{sub 2}O) with TMOS / CH{sub 2}CH{sub 3}OH/H{sub 2}O/Fe{sup 3+} in 1:7.4:16.2:0.4{approx}1.2 molar ratio. Fe{sup 3+}-containing silica gel (FeSiG) microspheres 5 to 30 {mu}m in size were successfully obtained by adding the water phase into the oil phase at 60 deg. C under stirring of 1500 rpm for 100 min. {alpha}FeSi microspheres was obtained by heating the FeSiG microspheres at 850deg. C in argon atmosphere. The obtained {alpha}FeSi microspheres have a saturation magnetization (Ms) up to 21 emu g{sup -1} and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  11. RAFT polymerization of N,N-dimethylacrylamide from magnetic poly(2-hydroxyethyl methacrylate) microspheres to suppress nonspecific protein adsorption

    Czech Academy of Sciences Publication Activity Database

    Cao, X.; Horák, Daniel; An, Z.; Plichta, Zdeněk

    2016-01-01

    Roč. 54, č. 8 (2016), s. 1036-1043 ISSN 0887-624X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic polymers * microspheres * N,N-dimethylacrylamide Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.952, year: 2016

  12. Magnetic hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for DNA isolation from faeces

    Czech Academy of Sciences Publication Activity Database

    Trachtová, Š.; Obermajer, T.; Španová, A.; Matijašić, B. B.; Rogelj, I.; Horák, Daniel; Rittich, B.

    2012-01-01

    Roč. 555, č. 1 (2012), s. 263-270 ISSN 1542-1406. [International Conference on Frontiers of Polymers and Advanced Materials /11./. Pretoria, 22.05.2011-27.05.2011] R&D Projects: GA MŠk 2B06053 Institutional research plan: CEZ:AV0Z40500505 Keywords : DNA isolation * magnetic microspheres * mouse faeces Subject RIV: EE - Microbiology, Virology Impact factor: 0.530, year: 2012

  13. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  14. Hydrophilic Nb{sup 5+}-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xueni; Liu, Xiaodan; Feng, Jianan [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Li, Yan, E-mail: yanli@fudan.edu.cn [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China); Deng, Chunhui [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Duan, Gengli [Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203 (China)

    2015-06-23

    Highlights: • A new IMAC material (Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) was synthesized. • The strong magnetic behaviors of the microspheres ensure fast and easy separation. • The enrichment ability was tested by human serum and nonfat milk. • The results were compared with other IMAC materials including the commercial kits. • All results proved the good enrichment ability, especially for multiphosphopeptides. - Abstract: Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe{sub 3}O{sub 4}@polydopamine-Nb{sup 5+} (denoted as Fe{sub 3}O{sub 4}@PD-Nb{sup 5+}) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe{sub 3}O{sub 4}@PD-Ti{sup 4+} microspheres, the Fe{sub 3}O{sub 4}@PD-Nb{sup 5+} microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.

  15. Fabrication of novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres and its application in the efficient removal of dye from aqueous phase by an environment-friendly and economical approach

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, R. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Zhu, H.-Y., E-mail: zhuhuayue@126.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, J.-B. [Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9 (Canada); Fu, F.-Q. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, J. [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, S.-T. [Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Zeng, G.-M., E-mail: zgming@hnu.cn [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-02-28

    Graphical abstract: Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres were prepared and acted as a high-performance and recyclable material for efficient water purification. - Highlights: • Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres have been fabricated. • BiOBr/CoFe{sub 2}O{sub 4} microsphere exhibited excellent photocatalytic activity. • BiOBr/CoFe{sub 2}O{sub 4} microsphere can be recovered easily from treated solution. - Abstract: Novel magnetically separable BiOBr/CoFe{sub 2}O{sub 4} microspheres assembled from nanoparticles were successfully fabricated by a facile solvothermal method at 160 °C for 12 h. Then, BiOBr/CoFe{sub 2}O{sub 4} microspheres were characterized via XRD, TEM, SEM, EDS and VSM. Congo red (CR) was selected as a pollutant model to evaluate the photocatalytic activities of BiOBr/CoFe{sub 2}O{sub 4} microspheres. The value of coercivity (232 Oe) and the saturation magnetization (33.79 emu g{sup −1}) were obtained, which indicated that BiOBr/CoFe{sub 2}O{sub 4} microspheres can be separated and recovered easily from the treated solution. What is more, by calculation, the initial rate constants of BiOBr/CoFe{sub 2}O{sub 4} microspheres is about 1.45 times higher than that of the pure BiOBr, which resulted from superior adsorption and transfer performance to organic contaminants in aqueous systems. Four consecutive regeneration cycles demonstrated that the BiOBr/CoFe{sub 2}O{sub 4} microspheres had high photostability under simulated solar light irradiation. According to the radical trapping experiments, the h{sup +} radicals and O{sub 2}·{sup −} radicals were the two main active species that drive the photocolorization of CR pollutant by BiOBr/CoFe{sub 2}O{sub 4} microspheres under simulated solar light irradiation. This work suggests that the BiOBr/CoFe{sub 2}O{sub 4} microspheres may be a promising photocatalyst for photodegrading organic pollutants and environmental remediation.

  16. Preparation of surface modified TiO2/rGO microspheres and application in the photocatalytic decomposition of oleic acid

    Science.gov (United States)

    Wu, Xin; Zeng, Min; Tong, Xiaoling; Li, Fuyun; Xu, Youyou

    2018-05-01

    The comprehensive utilization of waste cooking oil is an important research topic in food science. In this study, the surface modified mesoporous anatase TiO2/reduced graphene oxide (rGO) microspheres with a high specific surface area have been successfully synthesized, through hydrothermal routes and hydrazine reduced graphene oxide. The photocatalytic decomposition of waste rapeseed oil has also been studied using TiO2/rGO microspheres as photocatalyst. The result shows that the reduced graphene oxide in these nanocomposites can act as adsorbent and photocatalyst, and the temperature and the oxygen amount also are the most important factors affecting the oleic acid decomposition products. There interesting results not only helpful for the study of the mechanism of photocatalytic, but also useful for the rational use of waste cooking oil.

  17. Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)-NaCl water solutions

    Czech Academy of Sciences Publication Activity Database

    Rittich, B.; Španová, A.; Šálek, P.; Němcová, P.; Trachtová, Š.; Horák, Daniel

    2009-01-01

    Roč. 321, č. 10 (2009), s. 1667-1670 ISSN 0304-8853. [International Conference on Scientific and Clinical Applications of Magnetic Carriers /7./. Vancouver, 20.05.2008-24.05.2008] R&D Projects: GA ČR GA203/09/1242 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic microsphere * P(HEMA-co-GMA) * DNA isolation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.204, year: 2009

  18. A facile approach to fabricate of photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baolong; Shan, Yan, E-mail: shanyan@qust.edu.cn; Chen, Kezheng, E-mail: kchen@qust.edu.cn

    2017-06-01

    Photothermal functional Fe{sub 3}O{sub 4}@CuS microspheres have been prepared successfully by a simple chemical deposition method. The adsorption of cetyltrimethyl-ammonium bromide (CTAB) on the magnetic microspheres plays an important role in forming the structure of the composites. The present materials are characterized with XRD, TEM, SEM, FTIR, and UV-VIS-NIR spectrophotometer. The results show that Fe{sub 3}O{sub 4} microspheres are coated by CuS layer with thickness of 10 nm. The saturation magnetization value of Fe{sub 3}O{sub 4}@CuS core-shell microspheres is 27 emu/g at room temperature and the sample possesses excellent magnetic response in the presence of applied magnetic field. Moreover, these microspheres exhibit good dispersion, suitable size and significant photothermal conversion efficiency up to 20.7% at 808 nm laser irradiation. Fluctuation value of the highest temperature of Fe{sub 3}O{sub 4}@CuS dispersion over four times LASER ON/OFF indicates that photothermal stability of Fe{sub 3}O{sub 4}@CuS microspheres is good. - Highlights: • The Fe{sub 3}O{sub 4} microspheres have been coated with CuS and the thickness of CuS layer is about 10 nm. • The Fe{sub 3}O{sub 4}@CuS microspheres are ferromagnetism, and possess good photothermal conversion efficiency and photostability. • The materials have great potential application for photothermal therapy.

  19. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Trachtová, Š.; Šlouf, Miroslav; Rittich, B.; Španová, A.

    2015-01-01

    Roč. 68, July (2015), s. 687-696 ISSN 0014-3057 R&D Projects: GA ČR GAP206/12/0381; GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic microspheres * poly(ethylene glycol) * real-time PCR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  20. Microsphere estimates of blood flow: Methodological considerations

    International Nuclear Information System (INIS)

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L.

    1988-01-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 x 10 6 microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period

  1. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO{sub 2} microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yaocheng [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Dong, Haoran; Yan, Ming; Wang, Jingjing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Hu, Wei [College of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Wang, Jiajia; Zhou, Yaoyu; Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-11-30

    Highlights: • The mesoporous single crystal microsphere of PANI/MS-TiO{sub 2} improved the light absorption. • The mesoporous structure of MS-TiO{sub 2} can increase the loading amount of PANI. • The synergistic effect between PANI and MS-TiO{sub 2} promoted the separation of charges. • Improved photocatalysis was achieved via PANI modified mesoporous single crystal TiO{sub 2} microsphere. - Abstract: Polyaniline (PANI) modified mesoporous single crystal TiO{sub 2} microsphere (PANI/MS-TiO{sub 2}) with excellent photocatalytic activity was successfully prepared by a simple method of solution evaporation and chemisorption. The X-ray diffraction characterization demonstrated that the whole MS-TiO{sub 2} kept the crystal type of anatase. The nitrogen adsorption-desorption characterization coupled with scanning electron microscopy indicated that the MS-TiO{sub 2} possessed a unique mesoporous structure with high specific surface area, which resulted in the increased load of PANI on the surface of MS-TiO{sub 2} and multiple light reflection in the photocatalyst. The UV–vis diffuse reflectance spectra confirmed that PANI/MS-TiO{sub 2} presented more absorption ability in the visible light range than that of the pristine MS-TiO{sub 2}. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) indicated the high photo responses and fast photogenerated charge separation efficiency of PANI/MS-TiO{sub 2}. The photocatalytic activity of the PANI/MS-TiO{sub 2} was evaluated by the photodegradation of RhB and MB under visible light irradiation. MS-TiO{sub 2} photocatalyst with different molar ration of PANI had been prepared, and the results showed that the optimal photocatalyst (PANI/MS-TiO{sub 2} (1:40)) exhibited the highest photocatalytic efficiency which is nearly three times as great as that of pristine MS-TiO{sub 2} for the degradation of the RhB and MB under visible light irradiation. The remarkable performance of the PANI

  2. Silicon microspheres for near-IR communication applications

    International Nuclear Information System (INIS)

    Serpengüzel, Ali; Demir, Abdullah

    2008-01-01

    We have performed transverse electric and transverse magnetic polarized elastic light scattering calculations at 90° and 0° in the o-band at 1.3 µm for a 15 µm radius silicon microsphere with a refractive index of 3.5. The quality factors are on the order of 10 7 and the mode/channel spacing is 7 nm, which correlate well with the refractive index and the optical size of the microsphere. The 90° elastic light scattering can be used to monitor a dropped channel (drop port), whereas the 0° elastic scattering can be used to monitor the transmission channel (through port). The optical resonances of the silicon microspheres provide the necessary narrow linewidths that are needed for high-resolution optical communication applications. Potential telecommunication applications include filters, modulators, switches, wavelength converters, detectors, amplifiers and light sources. Silicon microspheres show promise as potential building blocks for silicon-based electrophotonic integration

  3. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    Science.gov (United States)

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  4. Synthesis and adsorption properties of hierarchical Fe{sub 3}O{sub 4}@MgAl-LDH magnetic microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoge; Li, Bo; Wen, Xiaogang, E-mail: wenxg@scu.edu.cn [Sichuan University, School of Materials Science and Engineering (China)

    2017-04-15

    In this study, Fe{sub 3}O{sub 4} microspheres were prepared by a hydrothermal method, and then the synthesized Fe{sub 3}O{sub 4} microspheres were used as template to prepare Fe{sub 3}O{sub 4}@MgAl-LDH composite microspheres by a coprecipitation process. Morphology, composition, and crystal structure of synthesized nanomaterials were characterized by X-ray powder diffractometry, scanning electron microscopy, and Fourier transform infrared spectroscopy technologies. The composite hierarchical microspheres are composed of inner Fe{sub 3}O{sub 4} core and outer MgAl-LDH-nanoflake layer, and the average thickness of MgAl-LDH-nanoflake is about 70 nm. The adsorption property of the products toward congo red was also measured using UV–vis spectrometer. The result demonstrated that the Fe{sub 3}O{sub 4}@MgAl-LDH composite adsorbent could remove 99.8% congo red in 30 min, and the maximum adsorption capacity is about 404.6 mg/g, while congo red removal rate of pure MgAl-LDH and Fe{sub 3}O{sub 4} are only 86.3 and 53.1% in 40 min, respectively, and their adsorption capacity are 345.72 and 220.56 mg/g, respectively. It indicates the composite Fe{sub 3}O{sub 4}@ MgAl-LDH nanomaterials have better adsorption performance than pure Fe{sub 3}O{sub 4} and MgAl-LDH nanomaterials. In addition, the magnetic nanocomposites could be separated easily, and it demonstrated good cycle performance.

  5. Alzheimer's disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles

    Czech Academy of Sciences Publication Activity Database

    de la Escosura-Muniz, A.; Plichta, Zdeněk; Horák, Daniel; Merkoci, A.

    2015-01-01

    Roč. 67, 15 May (2015), s. 162-169 ISSN 0956-5663 R&D Projects: GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : porous magnetic microspheres * gold nanoparticles * electrochemical immunoassay Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.476, year: 2015

  6. Temperature influence in crystallinity of polymer microspheres; Influencia da temperatura na cristalinidade de microesferas polimericas

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Cristiane de P.; Novack, Katia M., E-mail: knovack@iceb.ufop.br [Universidade Federal de Ouro Preto - UFOP, ICEB, DEQUI, Ouro Preto, MG (Brazil)

    2011-07-01

    Drug delivery technology is evolving through the creation of new techniques of drug delivery effectively. The new methods used in drugs administration are based in microencapsulation process. Microsphere encapsulation modifies drug delivery bringing benefits and efficiency. In this work has been evaluated the influence of temperature in microspheres preparation. Microspheres were obtained by PMMA-co-PEG (COP) copolymer with indomethacin inserted in polymer matrix. Samples were characterized by SEM, DSC and XRD. SEM micrographs confirmed the formation of different sizes of microspheres and it was verified that higher temperatures make more crystalline microspheres. (author)

  7. Real-time polymerase chain reaction as a tool for evaluation of magnetic poly(glycidyl methacrylate)-based microspheres in molecular diagnostics

    Czech Academy of Sciences Publication Activity Database

    Trachtová, S.; Španová, A.; Horák, Daniel; Kozáková, Hana; Rittich, B.

    2016-01-01

    Roč. 22, č. 5 (2016), s. 639-646 ISSN 1381-6128 R&D Projects: GA ČR GA15-07268S Institutional support: RVO:61389013 ; RVO:61388971 Keywords : magnetic microspheres * inhibitory effect * real-time polymerase chain Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (MBU-M) Impact factor: 2.611, year: 2016

  8. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  9. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    Science.gov (United States)

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  10. Effect of various polymers concentrations on physicochemical properties of floating microspheres.

    Science.gov (United States)

    Jagtap, Y M; Bhujbal, R K; Ranade, A N; Ranpise, N S

    2012-11-01

    Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit(®) RS and Eudragit(®) RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit(®) EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit(®) EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release.

  11. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Czech Academy of Sciences Publication Activity Database

    Kuan, W.-C.; Horák, Daniel; Plichta, Zdeněk; Lee, W.-C.

    2014-01-01

    Roč. 34, 1 January (2014), s. 193-200 ISSN 0928-4931 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : magnetic * poly(glycidyl methacrylate) * microspheres Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.088, year: 2014

  12. Removal mechanism of selenite by Fe{sub 3}O{sub 4}-precipitated mesoporous magnetic carbon microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianwei; Fu, Fenglian, E-mail: fufenglian2006@163.com; Ding, Zecong; Li, Na; Tang, Bing

    2017-05-15

    Highlights: • MCMSs were prepared via green hydrothermal carbonization and coprecipitation. • MCMSs displayed effective removal of Se(IV) from wastewater. • Se(IV) formed inner-sphere complexes with MCMSs and was reduced to insoluble Se{sup 0}. • MCMSs can be easily separated and recycled by an external magnetic field. - Abstract: A mesoporous composite of magnetic carbon microspheres (MCMSs) was synthesized via introducing Fe{sub 3}O{sub 4} nanoscale particles to the surface of carbon microspheres (CMSs) by coprecipitation. Scanning electron microscopy and transmission electron microscopy showed the Fe{sub 3}O{sub 4} nanoscale particles were dispersedly immobilized on the surface of CMSs. The MCMSs demonstrated effective removal of selenite (Se(IV)) from wastewater. MCMSs showed the regular pattern where the lower pH value, the lower residual Se(IV) concentration. The coexisting sulfate, nitrate, chloride, carbonate, and silicate had no significant effect on Se(IV) removal, whereas phosphate hindered the removal of Se(IV) by competing with Se(IV) and formed inner–sphere complexes with Fe{sub 3}O{sub 4} on the surface of MCMSs. Through X–ray photoelectron spectroscopy analysis, Se(IV) can not only form inner–sphere complexes with MCMSs, but also be reduced to insoluble elemental selenium (Se{sup 0}) by Fe{sub 3}O{sub 4} which was oxidized and formed γ–Fe{sub 2}O{sub 3}. Moreover, the superparamagnetic MCMSs can be easily separated from solution by means of an external magnetic field. The high removal efficiency for Se(IV) and rapid separability of MCMSs made them promising materials for the application in the practice.

  13. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    International Nuclear Information System (INIS)

    Butler, Kimberly S; Lovato, Debbie M; Larson, Richard S; Adolphi, Natalie L; Bryant, H C; Flynn, Edward R

    2014-01-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine–water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium. (paper)

  14. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    Science.gov (United States)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  15. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity

    OpenAIRE

    Musiał, Witold; Kokol, Vanja; Vončina, Bojana

    2012-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethac...

  16. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  17. Comparative assessment of in vitro release kinetics of calcitonin polypeptide from biodegradable microspheres.

    Science.gov (United States)

    Prabhu, Sunil; Sullivan, Jennifer L; Betageri, Guru V

    2002-01-01

    The objective of our study was to compare the in vitro release kinetics of a sustained-release injectable microsphere formulation of the polypeptide drug, calcitonin (CT), to optimize the characteristics of drug release from poly-(lactide-co-glycolide) (PLGA) copolymer biodegradable microspheres. A modified solvent evaporation and double emulsion technique was used to prepare the microspheres. Release kinetic studies were carried out in silanized tubes and dialysis bags, whereby microspheres were suspended and incubated in phosphate buffered saline, sampled at fixed intervals, and analyzed for drug content using a modified Lowry protein assay procedure. An initial burst was observed whereby about 50% of the total dose of the drug was released from the microspheres within 24 hr and 75% within 3 days. This was followed by a period of slow release over a period of 3 weeks in which another 10-15% of drug was released. Drug release from the dialysis bags was more gradual, and 50% CT was released only after 4 days and 75% after 12 days of release. Scanning electron micrographs revealed spherical particles with channel-like structures and a porous surface after being suspended in an aqueous solution for 5 days. Differential scanning calorimetric studies revealed that CT was present as a mix of amorphous and crystalline forms within the microspheres. Overall, these studies demonstrated that sustained release of CT from PLGA microspheres over a 3-week period is feasible and that release of drug from dialysis bags was more predictable than from tubes.

  18. Core/shell PLGA microspheres with controllable in vivo release profile via rational core phase design.

    Science.gov (United States)

    Yu, Meiling; Yao, Qing; Zhang, Yan; Chen, Huilin; He, Haibing; Zhang, Yu; Yin, Tian; Tang, Xing; Xu, Hui

    2018-02-27

    Highly soluble drugs tend to release from preparations at high speeds, which make them need to be taken at frequent intervals. Additionally, some drugs need to be controlled to release in vivo at certain periods, so as to achieve therapeutic effects. Thus, the objective of this study is to design injectable microparticulate systems with controllable in vivo release profile. Biodegradable PLGA was used as the matrix material to fabricate microspheres using the traditional double emulsification-solvent evaporation method as well as improved techniques, with gel (5% gelatine or 25% F127) or LP powders as the inner phases. Their physicochemical properties were systemically investigated. Microspheres prepared by modified methods had an increase in drug loading (15.50, 16.72, 15.66%, respectively) and encapsulation efficiencies (73.46, 79.42, 74.40%, respectively) when compared with traditional methods (12.01 and 57.06%). The morphology of the particles was characterized by optical microscope (OM) and scanning electron microscopy (SEM), and the amorphous nature of the encapsulated drug was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. To evaluate their release behaviour, the in vitro degradation, in vitro release and in vivo pharmacodynamics were subsequently studied. Traditional microspheres prepared in this study with water as the inner phase had a relatively short release period within 16 d when compared with modified microspheres with 5% gelatine as the inner phase, which resulted in a smooth release profile and appropriate plasma LP concentrations over 21 d. Thus this type of modified microspheres can be better used in drugs requiring sustained release. The other two formulations containing 25% F127 and LP micropowders presented two-stage release profiles, resulting in fluctuant plasma LP concentrations which may be suitable for drugs requiring controlled release. All the results suggested that drug release rates from

  19. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, Ruoyu, E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-12-01

    Graphical abstract: Schematic of the formation process of HTS. - Highlights: • Amino modified porous PS-DVB microspheres were used as templates to coat TiO{sub 2.} • The coating of TiO{sub 2} was conducted under regular changing atmospheric pressure. • The PS-DVB@TiO{sub 2} was calcinated first under nitrogen and then under air to get HTS. • The resultant products were provided with high surface area and excellent photocatalytic activity under UV irradiation. - Abstract: Hollow titania microspheres (HTS) were fabricated via a sol–gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (–NH{sub 2}) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO{sub 2} microspheres. Then the TiO{sub 2} particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m{sup 2}/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  20. Microradiographic microsphere manipulator

    International Nuclear Information System (INIS)

    Singleton, R.M.

    1980-01-01

    A method and apparatus are provided for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres

  1. Albumin-coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: application to the capture of epithelial cancer cells

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Svobodová, Z.; Autebert, J.; Coudert, B.; Plichta, Zdeněk; Královec, K.; Bílková, Z.; Viovy, J.-L.

    101A, č. 1 (2013), s. 23-32 ISSN 1549-3296 R&D Projects: GA ČR GA203/09/0857; GA ČR GCP207/12/J013; GA MŠk 7E09109 EU Projects: European Commission(XE) 228980 - CAMINEMS Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : magnetism * microsphere * cells Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.841, year: 2013

  2. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: wiseyanyan@jit.edu.cn [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Chen, Jiahua [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Wang, Wei [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing (China); Lu, GongXuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Hao, Lingyun [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Ni, Yaru; Lu, Chunhua; Xu, Zhongzi [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing (China)

    2017-03-15

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe{sub 3}O{sub 4}@SiO{sub 2}, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe{sub 3}O{sub 4}@SiO{sub 2} microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe{sub 3}O{sub 4}@SiO{sub 2} microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}@SiO{sub 2} suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  3. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    International Nuclear Information System (INIS)

    Zhang, Wenyan; Chen, Jiahua; Wang, Wei; Lu, GongXuan; Hao, Lingyun; Ni, Yaru; Lu, Chunhua; Xu, Zhongzi

    2017-01-01

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe_3O_4@SiO_2, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe_3O_4@SiO_2 microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe_3O_4@SiO_2 microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe_3O_4 and Fe_3O_4@SiO_2 suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  4. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity.

    Science.gov (United States)

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethacrylate crosslinker respectively, due to theirs thermosensitivity exhibit increase in protecting activity against UV radiation when heated to 45 degrees C. The MX microspheres have higher increase in terms of UV absorbance, comparing to DX microspheres, when heated in the 25 degrees C to 45 degrees C range. Studied microspheres have high potential for application as components of sun-screens used in elevated temperatures.

  5. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    International Nuclear Information System (INIS)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na; Lee, Jae Yung; Park, Se Yeon

    2016-01-01

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX

  6. Preparation of hydroxypropyl cyclosophoraose/dextran microspheres for the controlled release of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benel; Jeong, Da Ham; Joo, Sang Woo; Choi, Jae Min; Jung, Seung Ho; Cho, Eun Na [Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul (Korea, Republic of); Lee, Jae Yung [Dept. Biological Science, Mokpo National University, Mokpo (Korea, Republic of); Park, Se Yeon [Dept. Applied Chemistry, Dongduk Women' s University, Seoul (Korea, Republic of)

    2016-12-15

    Hydroxypropyl cyclosophoraose/dextran (HPCys/dextran) microspheres were prepared using an emulsion polymerization method for use as drug carriers to achieve the controlled release of a poorly water-soluble antibacterial drug, ciprofloxacin (CFX). Cyclosophoraoses are cyclic (1 → 2)-β-d-glucans isolated from the Rhizobium species. Characteristics of HPCys/dextran microspheres were investigated using Fourier transform infrared analysis, solid-state 13C nuclear magnetic resonance spectroscopy, and field emission scanning electron microscopy. The amount of CFX released from these microspheres at pH 7.4 (intestinal phase pH) was about two times higher than that released at pH 1.2 (gastric phase pH). Furthermore, HPCys/dextran microspheres did not show any toxicity in human embryonic kidney cells. We propose that HPCys/dextran microspheres could be used as an effective pH-dependent release system for poorly water-soluble drugs such as CFX.

  7. Synthesis of Fe3O4 poly(styrene-glycidyl methacrylate) magnetic porous microspheres and application in the immobilization of Klebsiella sp. FD-3 to reduce Fe(III)EDTA in a NO(x) scrubbing solution.

    Science.gov (United States)

    Wang, Xiaoyan; Zhou, Zuoming; Jing, Guohua

    2013-02-01

    Magnetic poly(styrene-glycidyl methacrylate) porous microspheres (MPPM) with high magnetic contents were prepared by surfactant reverse micelles and emulsion polymerization of monomers, in which the well-dispersed Fe(3)O(4) nanoparticles were modified by polyethylene glycol (PEG) and oleic acid (OA) respectively. The characterizations showed that both of the OA-MPPM and the PEG-MPPM were ferromagnetic, however, the OA-MPPM was used to immobilize the bacteria for more advantages. Therefore, the effects of monomer ratio, surfactant, crosslinker and amount of Fe(3)O(4) on the structure, morphology and magnetic contents of the OA-MPPM were investigated. Then, the OA-MPPM was utilized to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium for Fe(III)EDTA reduction applied in NO(x) removal. Compared with free bacteria, the immobilized FD-3 showed a better tolerance to the unbeneficial pH and temperature conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. UO2 microspheres obtainment through the internal gelation methods

    International Nuclear Information System (INIS)

    Sterba, M.E.; Gomez Constenla, A.

    1987-01-01

    UO 2 microspheres obtainment process through the internal gelation method which allows the spheres' obtainment of uniform size is detailed herein, varying the same among 0.3 and 1.7 mm of diameter. The sintered density reaches 10.78 g/cm 3 , permitting the fuels fabrication dispersed and vibro-compacted fuels. The trichloroethylene use implementation as gelation agent is described, thus reducing the number of stages in the microspheres fabrication. At the same time, the uranium sun composition has been modified so as to be compatible with the use solvent. (Author)

  9. Magnetic poly(glycidyl methacrylate) microspheres for protein capture

    Czech Academy of Sciences Publication Activity Database

    Koubková, Jana; Müller, P.; Hlídková, Helena; Plichta, Zdeněk; Proks, Vladimír; Vojtěšek, B.; Horák, Daniel

    2014-01-01

    Roč. 31, č. 5 (2014), s. 482-491 ISSN 1871-6784 R&D Projects: GA ČR GCP207/12/J013; GA MŠk 7E12053 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * microspheres * protein p53 Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.898, year: 2014

  10. Rapid and effective sample cleanup based on graphene oxide-encapsulated core–shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sheng-Dong; Chen, Xiao-Hong [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Shen, Hao-Yu [Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100 (China); Li, Xiao-Ping [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Cai, Mei-Qiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Zhao, Yong-Gang [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Jin, Mi-Cong, E-mail: jmcjc@163.com [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China)

    2016-05-05

    In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe{sub 3}O{sub 4}@SiO{sub 2} and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg{sup −1}, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. - Highlights: • Novel graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach. • The as-prepared material GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. • The cleanup mechanisms refer to π–π stacking interaction and hydrogen bond. • The developed MSPE–LC–MS/MS method was simple, fast, sensitive and accurate.

  11. Structuring of diamond films using microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Roč. 54, č. 5 (2014), s. 320-324 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : nanostructuring * diamond thin films * polystyrene microspheres * reactive ion etching * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-01-01

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica microspheres. • Fe 3 O 4 @SiO 2 -MPS@PDES showed higher extraction capacity

  13. Modified BEM calculations on magnetic systems

    International Nuclear Information System (INIS)

    Christoph, V.; Toepfer, J.

    1998-01-01

    A modified boundary element method is presented for the calculation of 3d magnetic fields of magnetic systems including any permanent and soft magnetic materials as well as current distributions. Using an automatic mesh generation inside the magnetic bodies the method is especially suited for the investigation of open air gap systems. The influence of eddy currents on the magnetisation process can be investigated. For illustration, the flux concentration by pole pieces and the generation of magnetic stripe structures in magnetic thick films by pulse fields are considered. (orig.)

  14. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  15. Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM).

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Yang, Huiqiang; Ge, Liming; Xiao, Jingwen; Zhou, Yifan

    2018-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in many products and materials. Because of the potential biologic toxicity on human beings, OPEs are regarded as a class of emerging pollutants. Dissolved organic matters (DOM) have significant effects on the bioavailability and toxicity of the pollutants in the environment. Negligible-depletion solid-phase microextraction (nd-SPME) is an efficient way for measuring the freely dissolved pollutants but suffers from long equilibrium time. Metal-organic frameworks (MOFs) are a class of porous crystalline materials with unique properties such as high pore volume, regular porosity, and tunable pore size, being widely used for the extraction of various organic compounds. Here we developed a novel method for quick determination the sorption coefficients of OPEs to DOM in aquatic phase using Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres. The mesoporous structures of the as-synthesized microspheres hindered the extraction of OPEs which associated with humic acid due to the volume exclusion effect. However, the freely dissolved OPEs can access into the mesoporous and then were extracted by MIL-100 (Fe). Due to the small pore size (4.81 nm), large surface area (141 m 2  g -1 ), high pore volume (0.17 g 3  g -1 ), and ultra-thin MOFs layers, Fe 3 O 4 @MIL-100 (Fe) core-shell magnetic microspheres have large contact area for the analytes in aqueous phase and therefore the diffusion distance was largely shortened. Besides, the microspheres can be collected conveniently after the extraction process by applying a magnetic field. Compared to the nd-SPME method with 35 h equilibration time (t 90% ), the proposed method for these studied OPEs only need 24 min to achieve equilibration. The sorption coefficients (logK DOC ) of the OPEs to humic acid were ranged from 3.84-5.28, which were highly consistent with the results by using polyacrylate-coated fiber and polydimethylsiloxane

  16. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    International Nuclear Information System (INIS)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun

    2016-01-01

    glucosyl microspheres. Thus, the thiol-ene modified polyphosphazene microspheres displayed chemical flexibility in post-functionalization. These microspheres can be potentially applicated in enzyme immobilization, protein adsorption and chromatographic separation.

  17. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    glucosyl microspheres. Thus, the thiol-ene modified polyphosphazene microspheres displayed chemical flexibility in post-functionalization. These microspheres can be potentially applicated in enzyme immobilization, protein adsorption and chromatographic separation.

  18. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    Science.gov (United States)

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  19. Highly efficient and porous TiO{sub 2}-coated Ag@Fe{sub 3}O{sub 4}@C-Au microspheres for degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mao, E-mail: shenmao19820808@163.com; Chen, Suqing, E-mail: 465060605@qq.com; Jia, Wenping, E-mail: tzcjwp@tzc.edu.cn [Taizhou University, College of Pharmaceutical and Chemical Engineering (China); Fan, Guodong, E-mail: fangd@sust.edu.cn [Shan xi University of Science and Technology, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education (China); Jin, Yanxian, E-mail: shirleyj@tzc.edu.cn; Liang, Huading, E-mail: shanjian8208@163.com [Taizhou University, College of Pharmaceutical and Chemical Engineering (China)

    2016-12-15

    In this paper, we reported a novel hierarchical porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe{sub 3}O{sub 4} magnetic embedded Ag core (Ag@Fe{sub 3}O{sub 4}), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe{sub 3}O{sub 4}@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe{sub 3}O{sub 4}@C-PEI (Ag@Fe{sub 3}O{sub 4}@C-Au), and an ordered porous TiO{sub 2} structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO{sub 2} and Ag@Fe{sub 3}O{sub 4}@C@TiO{sub 2} microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  20. A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres

    Directory of Open Access Journals (Sweden)

    Lee Yook Heng

    2010-11-01

    Full Text Available A new alcohol oxidase (AOX enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide [poly(nBA-NAS] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE. Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor’s analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3–316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R2 = 0.9776, n = 3. The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation and 1.11% RSD, respectively (n = 3. The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor’s performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.

  1. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  2. Process and equipment development for the preparation of UO2 microspheres using trichloroethylene as gelation medium (Paper No. AL-23)

    International Nuclear Information System (INIS)

    Suryanarayana, S.; Kumar, N.; Bamankar, Y.R.; Vaidya, V.N.; Sood, D.D.

    1990-02-01

    Uranium dioxide microspheres have been prepared by internal gelation process, one of the sol-gel routes for fuel fabrication. The process flow sheet for internal gelation has been modified by employing trichloroethylene(TCE) as an alternate gelation medium. Based on the modified flow sheet, a 5Kg/day assembly for the production of UO 2 microspheres has been developed and installed. (author). 1 fig

  3. Fabrication of polystyrene hollow microspheres as laser fusion ...

    Indian Academy of Sciences (India)

    free from preheating problems and have emerged as good alternative to .... carry a system over the energy barrier comes from the Brownian motion of the ... This increase implies an increase in the electrical contribution to the free energy of the .... microsphere is mainly determined by rotational speed of the magnetic stirrer.

  4. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    International Nuclear Information System (INIS)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  5. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Li, Yixue; Lin, Yunxuan; Zhang, Haibao [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica

  6. Preparation and Characterization of SiO2/SiCN Core-shell Ceramic Microspheres

    Directory of Open Access Journals (Sweden)

    ZHANG Hai-yuan

    2017-05-01

    Full Text Available The SiO2/PSN core-shell microspheres were prepared via an emulsion reaction combined with the polymer-derived ceramics (PDCs method using polysilazane (PSN in situ polymerization on the surface of SiO2 modified by silane coupling agents MPS, followed by pyrolysis process to obtain SiO2/SiCN core-shell ceramic microspheres. The effects of raw mass ratio, curing time and pyrolysis temperature on the formation and the morphology of core-shell microspheres were studied. The morphology, chemical composition and phase transformation were characterized by SEM, EDS, TEM, FT-IR and XRD. The results show that after reaction for 4h at 200℃, SiO2 completely coated PSN forms a core-shell microsphere with rough surface when the mass ratio of SiO2 and PSN is 1:4; when pyrolysis temperature is at 800-1200℃, amorphous SiO2/SiCN core-shell ceramic microspheres are prepared; at 1400℃, the amorphous phase partially crystallizes to produce SiO2, SiC and Si3N4 phase.

  7. Synthesis and effect of modification on methacylate - acrylate microspheres for Trametes versicolor laccase enzyme immobilization

    Science.gov (United States)

    Mazlan, Siti Zulaikha; Hanifah, Sharina Abu

    2014-09-01

    Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.

  8. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  9. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering.

    Science.gov (United States)

    Bagheri-Khoulenjani, Shadab; Mirzadeh, Hamid; Etrati-Khosroshahi, Mohammad; Shokrgozar, Mohammad Ali

    2013-06-01

    In this study, nanocomposite microspheres based on chitosan/gelatin/nanohydroxyapatite were fabricated, and effects of the nanohydroxyapatite/biopolymer (chitosan/gelatin) weight ratio (nHA/P), stirring rate, chitosan concentration and biopolymer concentration on the particle size, and morphology of nanocomposite microspheres were investigated. Particle size of microspheres was modeled by design of experiments using the surface response method. Particle size, morphology of microspheres, and distribution of nanoparticles within the composite microspheres were evaluated using an optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. X-ray diffraction and Fourier transform infrared spectroscopy were applied to study the physical and chemical characteristics of microspheres. Results showed that by modulating the nHA/P ratio, chitosan concentration, polymer concentration, and stirring rate, it is possible to fabricate microspheres in wide rages of particle size (5-150 μm). Analysis of variance confirmed that the modified quadratic model can be used to predict the particle size of nanocomposite microspheres within the design space. SEM studies showed that microspheres with different compositions had totally different morphologies from dense morphologies to porous ones. TEM images demonstrated that nanoparticles were distributed uniformly within the polymeric matrix. MTT assay and cell culture studies showed that microspheres with different compositions possessed good biocompatibility. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013. Copyright © 2012 Wiley Periodicals, Inc.

  10. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  11. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  12. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    Science.gov (United States)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  13. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Hlídková, Helena; Petrovský, Eduard; Myronovskij, S.; Nehrych, T.; Negrych, N.; Shorobura, M.; Antonyuk, V.; Stoika, R.; Kit, Y.; Horák, Daniel

    2018-01-01

    Roč. 185, č. 5 (2018), s. 1-7, č. článku 262. ISSN 0026-3672 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:67985530 Keywords : magnetic microspheres * functionalization * affinity chromatography Subject RIV: CD - Macromolecular Chemistry; DE - Earth Magnetism, Geodesy, Geography (GFU-E) OBOR OECD: Polymer science; Physical geography (GFU-E) Impact factor: 4.580, year: 2016

  14. Nanostructured magnetic particles with polystyrene and their magnetorheological applications.

    Science.gov (United States)

    Fang, Fei Fei; Choi, Hyoung Jin

    2011-03-01

    Magnetorheological (MR) fluids are known to be colloidal suspensions of magnetic particles in a non-magnetic fluid, and exposure to a magnetic field transforms the fluid into a plastic-like solid in milliseconds. To improve the stability against sedimentation and uniform dispersion, two different MR candidates, soft magnetic carbonyl iron (CI) microspheres and magnetite (Fe3O4) particles were modified with polystyrene to be applied for MR fluids in this study. After modification, their unique morphology, crystalline structure and magnetic properties were examined in addition to MR performance and sedimentation characteristics. It was found that this embedded morphology not only effectively prevents direct contact of the magnetic species thus improving particle dispersion but also leads to obvious change in their density, compared with the traditional polymer coating method with a core-shell structure.

  15. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  16. Fabrication of periodically ordered diamond nanostructures by microsphere lithography

    Czech Academy of Sciences Publication Activity Database

    Domonkos, Mária; Ižák, Tibor; Štolcová, L.; Proška, J.; Kromka, Alexander

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2587-2592 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : CVD growth * diamond * microsphere lithography * selective area deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2014

  17. Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-10-01

    Full Text Available Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4 nanoparticles within the pore. Then, we used diazo-resin (DR to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments.

  18. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    International Nuclear Information System (INIS)

    Hara, C.D.C.P.; Honorio-Frana, A.C.; Fagundes, D.L.G.; Guimares, P.C.L.; Franca, E.L.

    2013-01-01

    The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG) microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  19. Melatonin Nanoparticles Adsorbed to Polyethylene Glycol Microspheres as Activators of Human Colostrum Macrophages

    Directory of Open Access Journals (Sweden)

    Cristiane de Castro Pernet Hara

    2013-01-01

    Full Text Available The effectiveness of hormones associated with polymeric matrices has amplified the possibility of obtaining new drugs to activate the immune system. Melatonin has been reported as an important immunomodulatory agent that can improve many cell activation processes. It is possible that the association of melatonin with polymers could influence its effects on cellular function. Thus, this study verified the adsorption of the hormone melatonin to polyethylene glycol (PEG microspheres and analyzed its ability to modulate the functional activity of human colostrum phagocytes. Fluorescence microscopy and flow cytometry analyses revealed that melatonin was able to adsorb to the PEG microspheres. This system increased the release of superoxide and intracellular calcium. There was an increase of phagocytic and microbicidal activity by colostrum phagocytes when in the presence of melatonin adsorbed to PEG microspheres. The modified delivery of melatonin adsorbed to PEG microspheres may be an additional mechanism for its microbicidal activity and represents an important potential treatment for gastrointestinal infections of newborns.

  20. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  1. Facile synthesis of novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds for secretome study.

    Science.gov (United States)

    Li, Hong; Wang, Yi; Zhang, Lei; Lu, Haojie; Zhou, Zhongjun; Wei, Liming; Yang, Pengyuan

    2015-12-07

    Novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds (dNDs) were prepared by coating single submicron-size magnetite particles with silica and subsequently modified with dNDs. The resulting layer-by-layer dND functionalized magnetic silica microspheres (Fe3O4@SiO2@[dND]n) exhibit a well-defined magnetite-core-silica-shell structure and possess a high content of magnetite, which endow them with high dispersibility and excellent magnetic responsibility. Meanwhile, dNDs are known for their high affinity and biocompatibility towards peptides or proteins. Thus, a novel convenient, fast and efficient pretreatment approach of low-abundance peptides or proteins was successfully established with Fe3O4@SiO2@[dND]n microspheres. The signal intensity of low-abundance peptides was improved by at least two to three orders of magnitude in mass spectrometry analysis. The novel microsphere also showed good tolerance to salt. Even with a high concentration of salt, peptides or proteins could be isolated effectively from samples. Therefore, the convenient and efficient enrichment process of this novel layer-by-layer dND-functionalized microsphere makes it a promising candidate for isolation of protein in a large volume of culture supernatant for secretome analysis. In the application of Fe3O4@SiO2@[dND]n in the secretome of hepatoma cells, 1473 proteins were identified and covered a broad range of pI and molecular weight, including 377 low molecular weight proteins.

  2. Controlled Release of Lysozyme from Double-Walled Poly(Lactide-Co-Glycolide (PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Rezaul H. Ansary

    2017-10-01

    Full Text Available Double-walled microspheres based on poly(lactide-co-glycolide (PLGA are potential delivery systems for reducing a very high initial burst release of encapsulated protein and peptide drugs. In this study, double-walled microspheres made of glucose core, hydroxyl-terminated poly(lactide-co-glycolide (Glu-PLGA, and carboxyl-terminated PLGA were fabricated using a modified water-in-oil-in-oil-in-water (w1/o/o/w2 emulsion solvent evaporation technique for the controlled release of a model protein, lysozyme. Microspheres size, morphology, encapsulation efficiency, lysozyme in vitro release profiles, bioactivity, and structural integrity, were evaluated. Scanning electron microscopy (SEM images revealed that double-walled microspheres comprising of Glu-PLGA and PLGA with a mass ratio of 1:1 have a spherical shape and smooth surfaces. A statistically significant increase in the encapsulation efficiency (82.52% ± 3.28% was achieved when 1% (w/v polyvinyl alcohol (PVA and 2.5% (w/v trehalose were incorporated in the internal and external aqueous phase, respectively, during emulsification. Double-walled microspheres prepared together with excipients (PVA and trehalose showed a better control release of lysozyme. The released lysozyme was fully bioactive, and its structural integrity was slightly affected during microspheres fabrication and in vitro release studies. Therefore, double-walled microspheres made of Glu-PLGA and PLGA together with excipients (PVA and trehalose provide a controlled and sustained release for lysozyme.

  3. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study.

    Science.gov (United States)

    Singh, Deependra; Saraf, Swarnlata; Dixit, Vinod Kumar; Saraf, Shailendra

    2008-04-01

    Gentamicin-Eudragit RS100 microspheres were prepared by modified double emulsion method. A 3(2) full factorial experiment was designed to study the effects of the composition of outer aqueous phase in terms of amount of glycerol (viscosity effect) and sodium chloride (osmotic pressure gradient effect) on the entrapment efficiency and % yield and microsphere size. The results of analysis of variance test for responses measured indicated that the test is significant (p>0.05). The contribution of sodium chloride concentration was found to be higher on entrapment efficiency and % yield, whereas glycerol produced significant effect on the mean diameter of microspheres. Microspheres demonstrated spherical particles in the size range of 33.24-60.43 microm. In vitro release profile of optimized formulation demonstrated sustained release for 24 h following Higuchi kinetics. Finally, drug bioactivity was found to remain intact after microencapsulation. Response surface graphs are presented to examine the effects of independent variables on the responses studied. Thus, by formulation design important parameters affecting formulation characteristics of gentamicin loaded Eudragit RS100 microspheres can be identified for controlled delivery with desirable characters in terms of maximum entrapment and yield.

  4. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianqiao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Kaminski, Michael D. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Riffle, Judy S. [Department of Chemistry, Virginia Tech, Blacksburg, VA (United States); Chen Haitao [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Torno, Michael [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Finck, Martha R. [Chemical Engineering Division, Argonne National Laboratory, Argonne, IL (United States); Taylor, LaToyia [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States); Rosengart, Axel J. [Departments of Neurology and Surgery (Neurosurgery), University of Chicago Pritzker School of Medicine, Chicago, IL (United States)]. E-mail: arosenga@uchicago.edu

    2007-04-15

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 {mu}m) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.

  5. Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation

    International Nuclear Information System (INIS)

    Liu Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.

    2007-01-01

    This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly(D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres

  6. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  7. Magnetic SiO2/Fe3O4 colloidal crystals

    International Nuclear Information System (INIS)

    Huang, C-K; Hou, C-H; Chen, C-C; Tsai, Y-L; Chang, L-M; Wei, H-S; Hsieh, K-H; Chan, C-H

    2008-01-01

    We proposed a novel technique to fabricate colloidal crystals by using monodisperse SiO 2 coated magnetic Fe 3 O 4 (SiO 2 /Fe 3 O 4 ) microspheres. The magnetic SiO 2 /Fe 3 O 4 microspheres with a diameter of 700 nm were synthesized in the basic condition with ferric sulfate, ferrous sulfate, tartaric acid and tetraethyl orthosilicate (TEOS) in the reaction system. Monodisperse SiO 2 /Fe 3 O 4 superparamagnetic microspheres have been successfully used to fabricate colloidal crystals under the existing magnetic field

  8. Synthesis and magnetic properties of prussian blue modified Fe nanoparticles

    International Nuclear Information System (INIS)

    Arun, T.; Prakash, K.; Justin Joseyphus, R.

    2013-01-01

    Fe nanoparticles are prepared using a unique polyol process and modified with prussian blue (PB) at various concentrations. The presence of PB in the Fe nanoparticles are confirmed from thermal, Fourier transform infrared spectroscopy and electron microscopic analyses. The prussian blue existed on ;the surface of the nanoparticles when the concentration is 200 μM and in excess with 1000 μM. ;Fe nanoparticles are reduced in size using Pt as nucleating agent and modified with the optimum concentration of PB. The saturation magnetization decreases with the concentration of PB whereas the coercivity is influenced by the size of the Fe nanoparticles. The presence of oxide layer in Fe nanoparticles helps in the surface modification with PB. The Fe nanoparticles of particle size 53 nm modified with 200 μM of PB showed a saturation magnetization of 110 emu/g. The magnetic properties suggest that the PB modified Fe nanoparticles are better candidates for detoxification applications. - Highlights: • Fe nanoparticles surface modified with prussian blue (PB) were synthesized. • Optimum PB concentration on size reduced Fe showed better magnetic properties. • Coercivity decreased with increasing concentration of PB. • Fe-PB nanoparticles could be used for detoxification applications

  9. Magnetic polymer particles prepared by double crosslinking in reverse emulsion with potential biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Balaita, L.; Cadinoiu, A. N.; Postolache, P.; Šafaříková, Miroslava; Popa, M.

    2015-01-01

    Roč. 17, č. 7-8 (2015), s. 1198-1209 ISSN 1454-4164 Grant - others:Ministery of Education of the Czech Republic(CZ) MP0701 Institutional support: RVO:67179843 Keywords : acid-modified chitosan * drug-delivery * nanoparticles * release * microparticles * microspheres * stability * alcohol * complex * Chitosan * Poly(vinyl alcohol ) * Magnetic particles * Ionic crosslinking * Covalent crosslinking * Drug delivery Subject RIV: EH - Ecology, Behaviour Impact factor: 0.383, year: 2015

  10. Fluorine- and iron-modified hierarchical anatase microsphere photocatalyst for water cleaning: facile wet chemical synthesis and wavelength-sensitive photocatalytic reactivity.

    Science.gov (United States)

    Liu, Shaohong; Sun, Xudong; Li, Ji-Guang; Li, Xiaodong; Xiu, Zhimeng; Yang, He; Xue, Xiangxin

    2010-03-16

    High photocatalytic efficiency, easy recovery, and no biological toxicity are three key properties related to the practical application of anatase photocatalyst in water cleaning, but seem to be incompatible. Nanoparticles-constructed hierarchical anatase microspheres with high crystallinity and good dispersion prepared in this study via one-step solution processing at 90 degrees C under atmospheric pressure by using ammonium fluotitanate as the titanium source and urea as the precipitant can reconcile these three requirements. The hierarchical microspheres were found to grow via an aggregative mechanism, and contact recrystallization occurred at high additions of the FeCl(3) electrolyte into the reaction system. Simultaneous incorporation of fluorine and iron into the TiO(2) matrix was confirmed by combined analysis of X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV-vis absorption spectroscopy. Surface structure and morphology changes of the microspheres induced by high-temperature annealing were clearly observed by field-emission scanning electron microscopy, especially for the phase-transformed particles. The original nanoparticles-constructed rough surfaces partially became smooth, resulting in a sharp drop in photocatalytic efficiency. Interestingly, iron loading has detrimental effects on the visible-light photocatalytic activity of both the as-prepared and the postannealed anatase microspheres but greatly enhances the photocatalytic activity of the as-prepared anatase microspheres under UV irradiation. No matter under UV or visible-light irradiation, the fluorine-loaded anatase microspheres and especially the postannealed ones show excellent photocatalytic performance. The underlying mechanism of fluorine and iron loading on the photocatalytic efficacy of the anatase microspheres was discussed in detail. Beyond photocatalytic applications, this kind of material is of great importance to the assembling of

  11. Effect of microwell chip structure on cell microsphere production of various animal cells.

    Science.gov (United States)

    Sakai, Yusuke; Yoshida, Shirou; Yoshiura, Yukiko; Mori, Rhuhei; Tamura, Tomoko; Yahiro, Kanji; Mori, Hideki; Kanemura, Yonehiro; Yamasaki, Mami; Nakazawa, Kohji

    2010-08-01

    The formation of three-dimensional cell microspheres such as spheroids, embryoid bodies, and neurospheres has attracted attention as a useful culture technique. In this study, we investigated a technique for effective cell microsphere production by using specially prepared microchip. The basic chip design was a multimicrowell structure in triangular arrangement within a 100-mm(2) region in the center of a polymethylmethacrylate (PMMA) plate (24x24 mm(2)), the surface of which was modified with polyethylene glycol (PEG) to render it nonadhesive to cells. We also designed six similar chips with microwell diameters of 200, 300, 400, 600, 800, and 1000 microm to investigate the effect of the microwell diameter on the cell microsphere diameter. Rat hepatocytes, HepG2 cells, mouse embryonic stem (ES) cells, and mouse neural progenitor/stem (NPS) cells formed hepatocyte spheroids, HepG2 spheroids, embryoid bodies, and neurospheres, respectively, in the microwells within 5 days of culture. For all the cells, a single microsphere was formed in each microwell under all the chip conditions, and such microsphere configurations remained throughout the culture period. Furthermore, the microsphere diameters of each type of cell were strongly positively correlated with the microwell diameters of the chips, suggesting that microsphere diameter can be factitiously controlled by using different chip conditions. Thus, this chip technique is a promising cellular platform for tissue engineering or regenerative medicine research, pharmacological and toxicological studies, and fundamental studies in cell biology. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R.

    2017-01-01

    Roč. 37, č. 2 (2017), s. 1-10, č. článku BSR20160526. ISSN 0144-8463 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : poly(2-hydroxyethyl methacrylate) * magnetic microspheres * affinity purification Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.906, year: 2016

  13. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    Science.gov (United States)

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  14. Chitosan Microspheres as Radiolabeled Delivery Devices

    International Nuclear Information System (INIS)

    Permtermsin, Chalermsin; Ngamprayad, Tippanan; Phumkhem, Sudkanung; Srinuttrakul, Wannee; Kewsuwan, Prartana

    2007-08-01

    Full text: This study optimized conditions for preparing, characterizing, radiolabeled of chitosan microspheres and the biodistribution of 99mTc-Chitosan microspheres after intravenous administration. Particle size distribution of the microspheres was determined by light scattering. Zeta potential was studied by dynamic light scattering and electrophoresis technique. Biodistribution studies were performed by radiolabeling using 99mTc. The results shown that geometric mean diameter of the microspheres was found to be 77.26?1.96 ?m. Microsphere surface charge of chitosan microspheres was positive charge and zeta potential was 25.80 ? 0.46 mV. The labeling efficiency for this condition was more than 95% and under this condition was stable for at least 6 h. Radioactivity

  15. Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging

    Directory of Open Access Journals (Sweden)

    Jie L-Y

    2012-07-01

    Full Text Available Li-Yong Jie,1 Li-Li Cai,2 Le-Jian Wang,2 Xiao-Ying Ying,2 Ri-Sheng Yu,1 Min-Ming Zhang,1 Yong-Zhong Du21Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 2College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of ChinaBackground: Magnetic resonance imaging (MRI is widely used in modern clinical medicine as a diagnostic tool, and provides noninvasive and three-dimensional visualization of biological phenomena in living organisms with high spatial and temporal resolution. Therefore, considerable attention has been paid to magnetic nanoparticles as MRI contrast agents with efficient targeting ability and cellular internalization ability, which make it possible to offer higher contrast and information-rich images for detection of disease.Methods: LTVSPWY peptide-modified PEGylated chitosan (LTVSPWY-PEG-CS was synthesized by chemical reaction, and the chemical structure was confirmed by 1H-NMR. LTVSPWY-PEG-CS-modified magnetic nanoparticles were prepared successfully using the solvent diffusion method. Their particle size, size distribution, and zeta potential were measured by dynamic light scattering and electrophoretic mobility, and their surface morphology was investigated by transmission electron microscopy. To investigate their selective targeting ability, the cellular uptake of the LTVSPWY-PEG-CS-modified magnetic nanoparticles was observed in a cocultured system of SKOV-3 cells which overexpress HER2 and A549 cells which are HER2-negative. The in vitro cytotoxicity of these nanoparticles in SKOV-3 and A549 cells was measured using the MTT method. The SKOV-3-bearing nude mouse model was used to investigate the tumor targeting ability of the magnetic nanoparticles in vivo.Results: The average diameter and zeta potential of the LTVSPWY-PEG-CS-modified magnetic nanoparticles was 267.3 ± 23.4 nm and 30.5 ± 7.0 mV, respectively, with a narrow size distribution and

  16. Resistance to Internal Damage and Scaling of Concrete Air Entrained By Microspheres

    Science.gov (United States)

    Molendowska, Agnieszka; Wawrzenczyk, Jerzy

    2017-10-01

    This paper report the test results of high strength concrete produced with slag cement and air entrained with polymer microspheres in three diameters. The study focused on determining the effects of the microsphere size and quantity on the air void structure and resistance to internal cracking and scaling of the concrete. The resistance to internal cracking was determined in compliance with the requirements of the modified ASTM C666 A method on beam specimens. The scaling resistance in a 3% NaCl solution was determined using the slab test in accordance with PKN-CEN/TS 12390-9:2007. The air void structure parameters were determined to PN-EN 480-11:1998. The study results indicate that the use of microspheres is an effective air entrainment method providing very good air void structure parameters. The results show high freeze-thaw durability of polymer microsphere-based concrete in exposure class XF3. The scaling resistance test confirms that it is substantially more difficult to protect concrete against scaling in the presence of the 3% NaCl solution (exposure class XF4). Concrete scaling is a complex phenomenon controlled by a number of independent factors.

  17. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Suresh de, E-mail: suresh.desilva@unsw.edu.au [Southern Radiology Group, Radiology Department Sutherland Hospital (Australia); Mackie, Simon [Western General Hospital, Department of Urology (United Kingdom); Aslan, Peter [St George Hospital, Department of Urology (Australia); Cade, David [Sirtex Technology Pty Ltd (Australia); Delprado, Warick [Douglass Hanly Moir Pathology (Australia)

    2016-12-15

    BackgroundIntra-arterial brachytherapy with yttrium-90 ({sup 90}Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of {sup 90}Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with {sup 90}Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from {sup 90}Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with {sup 90}Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the {sup 90}Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10{sup 6}) of bland microspheres.ConclusionThis study showed that radioembolization with {sup 90}Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of {sup 90}Y resin microspheres for the localized treatment of kidney tumors.

  18. Histological Comparison of Kidney Tissue Following Radioembolization with Yttrium-90 Resin Microspheres and Embolization with Bland Microspheres

    International Nuclear Information System (INIS)

    Silva, Suresh de; Mackie, Simon; Aslan, Peter; Cade, David; Delprado, Warick

    2016-01-01

    BackgroundIntra-arterial brachytherapy with yttrium-90 ("9"0Y) resin microspheres (radioembolization) is a procedure to selectively deliver high-dose radiation to tumors. The purpose of this research was to compare the radioembolic effect of "9"0Y-radioembolization versus the embolic effect of bland microspheres in the porcine kidney model.MethodsIn each of six pigs, ~25–33 % of the kidney volume was embolized with "9"0Y resin microspheres and an equivalent number of bland microspheres in the contralateral kidney. Kidney volume was estimated visually from contrast-enhanced fluoroscopy imaging. Morphologic and histologic analysis was performed 8–9 weeks after the procedure to assess the locations of the microspheres and extent of tissue necrosis from "9"0Y-radioembolization and bland embolization. A semi-quantified evaluation of the non-acute peri-particle and perivascular tissue reaction was conducted. All guidelines for the care and use of animals were followed.ResultsKidneys embolized with "9"0Y-radioembolization decreased in mass by 30–70 % versus the contralateral kidney embolized with bland microspheres. These kidneys showed significant necrosis/fibrosis, avascularization, and glomerular atrophy in the immediate vicinity of the "9"0Y resin microspheres. By contrast, glomerular changes were not observed, even with clusters of bland microspheres in afferent arterioles. Evidence of a foreign body reaction was recorded in some kidneys with bland microspheres, and subcapsular scarring/infarction only with the highest load (4.96 × 10"6) of bland microspheres.ConclusionThis study showed that radioembolization with "9"0Y resin microspheres produces localized necrosis/fibrosis and loss of kidney mass in a porcine kidney model. This result supports the study of "9"0Y resin microspheres for the localized treatment of kidney tumors.

  19. Ketoprofen-loaded Eudragit RSPO microspheres: an influence of sodium carbonate on in vitro drug release and surface topology.

    Science.gov (United States)

    Pandit, Sachin S; Hase, Dinesh P; Bankar, Manish M; Patil, Arun T; Gaikwad, Naresh J

    2009-05-01

    Eudragit RSPO microspheres containing ketoprofen as model drug, prepared by solvent evaporation technique using acetone-liquid paraffin (heavy) solvent system were examined. Depending upon polymer concentration in the internal phase, microspheres of particle mean diameter (122.8, 213.6 and 309.5 μm) were obtained. The influence of surface washing of microspheres with n-hexane, i.e. untreated microspheres (UM) on the drug content, drug release and surface topology of microspheres were compared to those of microspheres washed with sodium carbonate, i.e. treated microspheres (TM) in order to make the non-encapsulated surface drug soluble. The significant reduction in encapsulation efficiency (p < 0.001) and drug content (p < 0.001) after treatment, in combination with the small crystalline peaks observed during XRD testing and lack of melting endotherm observed in DSC testing, suggests that the washing process actually removes a significant amount of drug (p < 0.001) from the surface and encapsulated near to the surface of the microsphere polymer matrix. Scanning electron microscopy (SEM) examination revealed that the removal of surface drug did not affect the size of microspheres but the topology of treated smallest microspheres was modified. The ketoprofen release profiles were examined in phosphate buffer pH 7.4, using USPXXIII paddle type dissolution apparatus. In general both UM and TM result in biphasic release patterns, but the initial burst effect (first release phase) of TM was lower than that of UM. The second release phase did not change for the bigger size but increased for the smallest microspheres, probably owing to the modification of matrix porosity.

  20. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2011-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  1. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2010-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  2. Ceramic microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The microspheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about 11 lbs/g. The resultant cement slurry may then be

  3. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  4. In-vitro evaluation of ion-exchange microspheres for the sustained release of liposomal-adenoviral conjugates.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel; Kalle, Wouter H J

    2004-03-24

    This study looks at the development of a novel combination vector consisting of adenovirus conjugated to liposomes (AL complexes) bound to cation-exchanging microspheres (MAL complexes). With adenovirus having a net negative charge and the liposomes a net positive charge it was possible to modify the net charge of the AL complexes by varying the concentrations of adenovirus to liposomes. The modification of the net charge resulted in altered binding and release characteristics. Of the complexes tested, the 5:1 and 2:1 ratio AL complexes were able to be efficiently bound by the microspheres and exhibited sustained release over 24 h. The 1:1 and 1:2 AL complexes, however, bound poorly to the microspheres and were rapidly released. In addition the MAL complexes also were able to reduce the toxicity of the AL complexes, which was seen with the 10:1 ratio. The AL complexes showed considerably more toxicity alone than in combination with microspheres, highlighting a potential benefit of this vector.

  5. PEGylation of magnetic poly(glycidyl methacrylate) microparticles for microfluidic bioassays

    International Nuclear Information System (INIS)

    Kucerova, Jana; Svobodova, Zuzana; Knotek, Petr; Palarcik, Jiri; Vlcek, Milan; Kincl, Miloslav; Horak, Daniel; Autebert, Julien; Viovy, Jean-Louis; Bilkova, Zuzana

    2014-01-01

    In this study, magnetic poly(glycidyl methacrylate) microparticles containing carboxyl groups (PGMA-COOH) were coated using highly hydrophilic polymer poly(ethylene glycol) (PEG). PEG was used to reduce nonspecific interactions with proteins and cells while decreasing adhesion of particles to the walls of a microfluidic devices from poly(dimethylsiloxane) (PDMS) and cyclic olefin copolymer (COC). Zeta potential measurement, infrared spectroscopy, scanning electron microscopy, anti-PEG ELISA assay, and bioaffinity interactions between biotin and streptavidin-HRP successfully proved the presence of PEG on the surface of microspheres. Both neat and PEGylated microspheres were then incubated with the inert protein bovine serum albumin or cells to evaluate the rate of nonspecific adsorption (NSA). PEG with Mr of 30,000 Da was responsible for 45% reduction in NSA of proteins and 74% for cells compared to neat particles. The microspheres' behavior in PDMS and COC microchannels was then evaluated. Aggregation and adhesion of PEGylated microspheres significantly decreased compared to neat particles. Finally, the model enzyme horseradish peroxidase was immobilized on the microspheres through the heterobifunctional PEG chain. The possibility for subsequent covalent coupling of the ligand of interest was confirmed. Such PEGylated microparticles can be efficiently used in PDMS microchips as a carrier for bioaffinity separation or of enzyme for catalysis. - Highlights: • Magnetic polymer microspheres with highly hydrophilic PEG coating were prepared. • PEG reduced microsphere adhesion in microchannels versus neat particles. • Suitability of methods for detecting PEG on magnetic microspheres was investigated. • PEG on microsphere surfaces decreased nonspecific adsorption of proteins and cells

  6. PEGylation of magnetic poly(glycidyl methacrylate) microparticles for microfluidic bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Kucerova, Jana; Svobodova, Zuzana [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Knotek, Petr [Joint Laboratory of Solid State Chemistry of IMC and University of Pardubice, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Palarcik, Jiri [Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Vlcek, Milan; Kincl, Miloslav; Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 16206 Prague 6 (Czech Republic); Autebert, Julien; Viovy, Jean-Louis [Macromolecules and Microsystems in Biology and Medicine, Institute Curie, UMR 168, 26 Rue d' Ulm, 75005 Paris (France); Bilkova, Zuzana, E-mail: zuzana.bilkova@upce.cz [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic)

    2014-07-01

    In this study, magnetic poly(glycidyl methacrylate) microparticles containing carboxyl groups (PGMA-COOH) were coated using highly hydrophilic polymer poly(ethylene glycol) (PEG). PEG was used to reduce nonspecific interactions with proteins and cells while decreasing adhesion of particles to the walls of a microfluidic devices from poly(dimethylsiloxane) (PDMS) and cyclic olefin copolymer (COC). Zeta potential measurement, infrared spectroscopy, scanning electron microscopy, anti-PEG ELISA assay, and bioaffinity interactions between biotin and streptavidin-HRP successfully proved the presence of PEG on the surface of microspheres. Both neat and PEGylated microspheres were then incubated with the inert protein bovine serum albumin or cells to evaluate the rate of nonspecific adsorption (NSA). PEG with Mr of 30,000 Da was responsible for 45% reduction in NSA of proteins and 74% for cells compared to neat particles. The microspheres' behavior in PDMS and COC microchannels was then evaluated. Aggregation and adhesion of PEGylated microspheres significantly decreased compared to neat particles. Finally, the model enzyme horseradish peroxidase was immobilized on the microspheres through the heterobifunctional PEG chain. The possibility for subsequent covalent coupling of the ligand of interest was confirmed. Such PEGylated microparticles can be efficiently used in PDMS microchips as a carrier for bioaffinity separation or of enzyme for catalysis. - Highlights: • Magnetic polymer microspheres with highly hydrophilic PEG coating were prepared. • PEG reduced microsphere adhesion in microchannels versus neat particles. • Suitability of methods for detecting PEG on magnetic microspheres was investigated. • PEG on microsphere surfaces decreased nonspecific adsorption of proteins and cells.

  7. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV-vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Morphology-controlled SWCNT/polymeric microsphere arrays by a wet chemical self-assembly technique and their application for sensors

    International Nuclear Information System (INIS)

    Huang Xingjiu; Li Yue; Im, Hyung-Soon; Yarimaga, Oktay; Kim, Ju-Hyun; Jang, Doon-Yoon; Cho, Sung-Oh; Cai Weiping; Choi, Yang-Kyu

    2006-01-01

    Large-scale morphology-controlled SWCNT/polymeric microsphere arrays can be obtained by a wet chemical self-assembly technique. The loading of SWCNTs, the length of SWCNTs, and the size and nature of polymeric microspheres can easily be controlled. Similar results can also be reached using this method for MWCNTs. In both types of CNTs, they form an interesting interactive 'net' structure on spheres and sphere joints. The SWCNT/PS-modified Au electrode was used for detection of uric acid by cyclic voltammetry and single-potential time-based techniques. The preliminary results show that the modified electrode presents good sensitivity and stability to uric acid

  10. Efficacy of magnetically controlled ethamsylate microspheres in targeting normal and bleeding rabbit stomach%止血敏磁控缓释微球对兔胃的靶向和止血功效

    Institute of Scientific and Technical Information of China (English)

    刘安重; 张兆林; 卢琦萍; 冯毓灵; 吴金生; 许自超

    2001-01-01

    Objective To demonstrate the efficacy of magnetically controlled ethamsylate microspheres in targeting normal and bleeding rabbit stomach. Methods X-ray photo was used to detect ethamsylate microspheres in targeting site tissue and spectrophotometry to test ethamsylate concentration in treatment of rabbit stomach bleeding. Results Ethamsylate microspheres accurately located in targeting site of the stomach.Microsphere,at magnet field intensity 0.49 T,gradinet 0.23 T/cm,produced 28 cm water column pressure.Ethamsylate concentration of the membrane layer in the site showed:magnetically controlled group,non magnetically controlled group and vein group (1 869±150) μg/g,(108±22) μg/g,(30±5) μg/g. Magnetically controlled group had demonstrated 17 fold increase over controlled group,62 fold increase over the injection group(P<0.01). The ethamsylate microshperes controlled by magnet could completely curb the active hemorrhage in rabbit stomach within 10 min,while the control within 30 min. Conclusion Ethamsylate microsphere is apparently superior to injection or oral administration of ethamsylate in treatment of upper gastrointestinal hemorrhage.%目的 对止血敏磁控缓释微球(止血敏微球)进行兔胃靶向试验,观察其靶向和止血效力。方法 用X线摄影观察止血敏微球在兔胃的分布情况,用分光光度测量法检测靶区的止血敏含量,观察其在兔胃的止血功效。结果 止血敏微球能有效地准确定位于胃靶区,微球在磁场强度0.49 T,梯度0.23 T/cm状态下可产生28 cm水柱的压力;胃靶区粘摸层止血敏含量检测结果:磁控组、非磁控组和静脉组的平均含量分别为(1 869±150)μg/g,(108±22)μg/g,(30±5)μg/g;磁控组是非磁控组的17倍,是静脉组的62倍。经统计学分析,P<0.01。可在10 min内明显控制兔胃小动脉活动性出血,对照组则需30 min以上。结论 止血敏磁控缓释微球有可能成为治疗上消化道大出血的理想药物和一种新的简便而有效的非手术疗法。

  11. Synthesis and characterization of porous microspheres bearing pyrrolidone units

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewska, M., E-mail: mmacieje@umcs.pl; Kołodyńska, D.

    2015-01-15

    Porous microspheres of glycydyl methacrylate (GMA) cross-linked with trimethylolpropane trimethacrylate (TRIM) were prepared with toluene as porogen by suspension-emulsion polymerization. With increasing molar ratio of the functional monomer to cross-linker, the epoxy group content increases significantly whereas the parameters of porous structure (specific surface area and total pore volume) decreases. In order to obtain adsorbents bearing functional groups the porous methacrylate network was modified by subsequent reaction with pyrrolidone. The materials were studied using elemental analysis, infrared spectroscopy, atomic force microscopy (AFM), attenuated total reflection (ATR) spectroscopy, Raman spectroscopy, thermal gravimetry. Additionally, polymers sorption capacity towards Cu(II) was investigated. - Highlights: • Porous microspheres with reactive epoxy group were synthesized. • Highly developed porous structure was created. • Pyrrolidone units were incorporated during ring–opening reaction. • Polymers sorption capacity towards Cu (II) was investigated.

  12. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  13. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  14. Rapid determination of iron oxide content in magnetically modified particulate materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Nýdlová, L.; Pospíšková, K.; Baldíková, E.; Maděrová, Z.; Šafaříková, Miroslava

    2016-01-01

    Roč. 26, June (2016), s. 114-117 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic iron oxide s * magnetic permeability meter * magnetically modified materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  15. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  16. Synthesis of polycaprolactone/nano hydroxyapatite microspheres; Sintese de microesferas de policaprolactona/nanohidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, Greyce Y.H.; Souza, Mairly K. da S.; Melo, Rafaela Q. da C.; Carrodeguas, Raul G.; Fook, Marcus V.L., E-mail: greycesampaio@gmail.com [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil)

    2015-07-01

    Polycaprolactone(PCL)/nano hydroxyapatite(nHA) microspheres are advantageous material for manufacturing tridimensional scaffolds and formulating drug delivery systems for bone regeneration. The work was aimed to study the effect of processing variables on the properties of PCL/nHA microspheres. nHA was produced by precipitation method and was obtained calcium deficient nanoparticles consisted of nanorods (∼47 nm x ∼8 nm), according to the results of XRD, FTIR and TEM. PCL/nHA microspheres was produced by solid-in-oil-in-water emulsion solvent evaporation method. The variables studied were concentration of PCL (5,7.5 and 10 % w/v), nHA addition (17, 23 and 28.5% m/m) and surface treatment of nHA with stearic acid (AE). PCL/nHA microspheres were characterized by XRD, FTIR, SEM and TGA. The best result was obtained with a PCL concentration of 10% (w/v) and 23 % (m/m) of modified nHA. Solid PCL/nHA particles ranging 30-70 μm and containing 14 % of nHA dispersed in the polymer matrix were obtained, with agglomerates of nHA raging 5 -15 μm. These results suggest the promising use of this material in bone regeneration devices. (author)

  17. PLGA/alginate composite microspheres for hydrophilic protein delivery

    International Nuclear Information System (INIS)

    Zhai, Peng; Chen, X.B.; Schreyer, David J.

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility

  18. PLGA/alginate composite microspheres for hydrophilic protein delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Peng [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Chen, X.B. [Department of Mechanical Engineering, University of Saskatchewan, S7N5A9 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada); Schreyer, David J., E-mail: david.schreyer@usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, S7N5E5 (Canada); Division of Biomedical Engineering, University of Saskatchewan, S7N5A9 (Canada)

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. - Highlights: • A double emulsion technique is used to prepare protein-loaded PLGA or PLGA/alginate microspheres. • PLGA, alginate and protein are distributed evenly within microsphere structure. • Addition of alginate improves loading efficiency and slows degradation and protein release. • PLGA/alginate microspheres have favorable biocompatibility.

  19. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  20. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1994-04-20

    New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

  1. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  2. A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption.

    Science.gov (United States)

    Yu, Jun-Xia; Wang, Li-Yan; Chi, Ru-An; Zhang, Yue-Fei; Xu, Zhi-Gao; Guo, Jia

    2013-01-01

    The purpose of this research is to use a simple method to prepare magnetic modified biomass with good adsorption performances for cationic ions. The magnetic modified biomass was prepared by two steps: (1) preparation of pyromellitic dianhydride (PMDA) modified biomass in N, N-dimethylacetamide solution and (2) preparation of magnetic PMDA modified biomass by a situ co-precipitation method under the assistance of ultrasound irradiation in ammonia water. The adsorption potential of the as-prepared magnetic modified biomass was analyzed by using cationic dyes: methylene blue and basic magenta as model dyes. Optical micrograph and x-ray diffraction analyses showed that Fe(3)O(4) particles were precipitated on the modified biomass surface. The as-prepared biosorbent could be recycled easily by using an applied magnetic field. Titration analysis showed that the total concentration of the functional groups on the magnetic PMDA modified biomass was calculated to be 0.75 mmol g(-1) by using the first derivative method. The adsorption capacities (q(m)) of the magnetic PMDA modified biomass for methylene blue and basic magenta were 609.0 and 520.9 mg g(-1), respectively, according to the Langmuir equation. Kinetics experiment showed that adsorption could be completed within 150 min for both dyes. The desorption experiment showed that the magnetic sorbent could be used repeatedly after regeneration. The as-prepared magnetic modified sorbent had a potential in the dyeing industry wastewater treatment.

  3. A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V_2O_3 microspheres

    International Nuclear Information System (INIS)

    Zhang, Yifu; Huang, Chi; Meng, Changgong; Hu, Tao

    2016-01-01

    Highly polydisperse V_2O_3 solid microspheres with large specific surface area were successfully synthesized via a facile hydrothermal decomposition of VOC_2O_4 solution. The morphology and composition were characterized by scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). V_2O_3 microspheres display an obvious Mott phase transition at −128.5 °C (cooling curve) and −114.5 °C (heating curve). Some parameters including the reaction temperature, concentration of VOC_2O_4, reaction time, surfactant, H_2C_2O_4 and precursor were briefly discussed to reveal the formation of V_2O_3 microspheres. It was found that the precursor is crucial for the fabrication of microsphere. A self-assembly growth mechanism was suggested to explain the growth process of microspheres and the autogenic CO and CO_2 gas served as the soft templates. Furthermore, this route was developed to synthesize different metal oxides microspheres, and it was found that AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. All the results showed this process was successfully explored as a methodology to synthesize different metal oxides microspheres using the gas as the templates by this facile hydrothermal route. - Highlights: • Highly uniform V_2O_3 solid microspheres were synthesized. • V_2O_3 microspheres display an obvious Mott phase transition. • The autogenic CO and CO_2 gas served as the soft templates for designed synthesis. • AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. • A methodology to synthesize different metal oxides microspheres was developed.

  4. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Amy [Case Western Reserve University, Cleveland, OH (United States); Cleveland Clinic, Cleveland, OH (United States); Moore, Lee R. [Cleveland Clinic, Cleveland, OH (United States); Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas [Phycal Inc., Cleveland, OH (United States); Xue, Wei; Chalmers, Jeffrey J. [The Ohio State University, Columbus, OH (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Cleveland Clinic, Cleveland, OH (United States)

    2015-04-15

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl{sub 3} EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical.

  5. Magnetic separation of algae genetically modified for increased intracellular iron uptake

    International Nuclear Information System (INIS)

    Buck, Amy; Moore, Lee R.; Lane, Christopher D.; Kumar, Anil; Stroff, Clayton; White, Nicolas; Xue, Wei; Chalmers, Jeffrey J.; Zborowski, Maciej

    2015-01-01

    Algae were investigated in the past as a potential source of biofuel and other useful chemical derivatives. Magnetic separation of algae by iron oxide nanoparticle binding to cells has been proposed by others for dewatering of cellular mass prior to lipid extraction. We have investigated feasibility of magnetic separation based on the presence of natural iron stores in the cell, such as the ferritin in Auxenochlorella protothecoides (A. protothecoides) strains. The A. protothecoides cell constructs were tested for inserted genes and for increased intracellular iron concentration by inductively coupled plasma atomic absorption (ICP–AA). They were grown in Sueoka’s modified high salt media with added vitamin B1 and increasing concentration of soluble iron compound (FeCl 3 EDTA, from 1× to 8× compared to baseline). The cell magnetic separation conditions were tested using a thin rectangular flow channel pressed against interpolar gaps of a permanent magnet forming a separation system of a well-defined fluid flow and magnetic fringing field geometry (up to 2.2 T and 1000 T/m) dubbed “magnetic deposition microscopy”, or MDM. The presence of magnetic cells in suspension was detected by formation of characteristic deposition bands at the edges of the magnet interpolar gaps, amenable to optical scanning and microscopic examination. The results demonstrated increasing cellular Fe uptake with increasing Fe concentration in the culture media in wild type strain and in selected genetically-modified constructs, leading to magnetic separation without magnetic particle binding. The throughput in this study is not sufficient for an economical scale harvest. - Highlights: • Auxenochlorella protothecoides algae were genetically modified for biofuel production. • Algal iron metabolism was sufficient for their label-less magnetic separation. • High magnetic field and low flow required make the separation scale-up uneconomical

  6. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Sangro, Bruno; Bilbao, Jose I.; Boan, Jose; Martinez-Cuesta, Antonio; Benito, Alberto; Rodriguez, Javier; Panizo, Angel; Gil, Belen; Inarrairaegui, Mercedes; Herrero, Ignacio; Quiroga, Jorge; Prieto, Jesus

    2006-01-01

    Purpose: To investigate the antitumor effect of resin microspheres loaded with 90-yttrium against hepatocellular carcinoma and their safety in the setting of liver cirrhosis. Patients and Methods: Data from 24 consecutive patients with hepatocellular carcinoma (HCC) treated by radioembolization in the period from September 2003 to February 2005 were reviewed. Patients received no further antineoplastic therapy. A comprehensive evaluation was performed to prevent the risk of damage due to microsphere misplacing. Patients were discharged the day after microspheres injection. Results: Serious liver toxicity observed among cirrhotic patients in a first period was subsequently prevented by modifying the selection criteria and the method for calculating the activity to be administered. Among 21 patients evaluable for response using Response Evaluation Criteria in Solid Tumors (RECIST) criteria, a reduction in size of target lesions was observed in all but 1 patient. When considering only target lesions, disease control rate and response rate were 100% and 23.8%, respectively. However, 43% of patients progressed in the liver in the form of new lesions appearing a median time of 3 months after radioembolization. Conclusion: Our experience in these series of patients indicates that radioembolization using resin microspheres has a significant antitumor effect against HCC and that using stringent selection criteria and conservative models for calculating Radiation activity to be administered, radioembolization can be performed safely even in cirrhotic patients

  7. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  8. In vitro evaluation of biodegradable microspheres with surface-bound ligands.

    Science.gov (United States)

    Keegan, Mark E; Royce, Sara M; Fahmy, Tarek; Saltzman, W Mark

    2006-02-21

    Protein ligands were conjugated to the surface of biodegradable microspheres. These microsphere-ligand conjugates were then used in two in vitro model systems to evaluate the effect of conjugated ligands on microsphere behavior. Microsphere retention in agarose columns was increased by ligands on the microsphere surface specific for receptors on the agarose matrix. In another experiment, conjugating the lectin Ulex europaeus agglutinin 1 to the microsphere surface increased microsphere adhesion to Caco-2 monolayers compared to control microspheres. This increase in microsphere adhesion was negated by co-administration of l-fucose, indicating that the increase in adhesion is due to specific interaction of the ligand with carbohydrate receptors on the cell surface. These results demonstrate that the ligands conjugated to the microspheres maintain their receptor binding activity and are present on the microsphere surface at a density sufficient to target the microspheres to both monolayers and three-dimensional matrices bearing complementary receptors.

  9. Fabrication of poly(o-anisidine) coated silica core-shell microspheres and their electrorheological response

    Science.gov (United States)

    Lee, Chul Joo; Choi, Hyoung Jin

    2017-11-01

    In this work, silica/poly(o-anisidine) (POA) core-shell structured microspheres were synthesized by coating the silica core surface with POA with a help of a chemical grafting agent, N-[(3-trimethoxylsilyl)-propyl] aniline. The synthesized silica microspheres were then applied as a polymer/inorganic composite particle-based electrorheological (ER) fluid. The morphology of the silica/POA microspheres was examined by using both transmission electron microscopy and scanning electron microscopy, while their thermal properties and chemical structure were checked by thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. The ER properties of the silica/POA particle-based ER fluid were examined by using a Couette-type rotational rheometer equipped with a high-voltage power supplier and analyzed by the Bingham model and modified Mason number. In order to obtain additional information about the electrical polarization properties, the dielectric spectra were measured by an LCR meter and fitted by using the Cole-Cole equation. Furthermore, suspension stability of the ER fluid was tested using Turbiscan.

  10. Review: microspheres for radioembolization therapy

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Xu Shuhe

    2007-12-01

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  11. Review: microspheres for radioembolization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mingqiang, Zhao; Shuhe, Xu [China Inst. of Atomic Energy, Beijing (China)

    2007-12-15

    Radioembolization of liver cancer has been proven to be an effective therapy in nuclear medicine. The yttrium-90 glass microspheres has been used to treat both primary and metastatic liver tumors in clinic which shown encouraging results. The preparation, stability, degradation and application for medical purpose of radioactive microspheres are reviewed. At first, the theory of radioem- bolization treating cancer is discussed; and then three major radiolabled micro- sphere materials are expounded: viz. glass, resin-based and polymer-based; Future improvements in the preparation and use of radioactive microspheres are prospected at last. (authors)

  12. Intestinal absorption of PLAGA microspheres in the rat.

    Science.gov (United States)

    Damgé, C; Aprahamian, M; Marchais, H; Benoit, J P; Pinget, M

    1996-12-01

    Rhodamine B-labelled poly (DL-lactide-co-glycolide) (PLAGA) microspheres of 2 different sizes, 1-5 microns and 5-10 microns, were administered as a single dose (1.44 x 10(9) and 1.83 x 10(8) particles, respectively) into the ileal lumen of adult rats. The content of rhodamine in the mesenteric vein and ileal lumen was analysed periodically from 10 min to 48 h as well as the distribution of microspheres in the intestinal mucosa and various other tissues. The concentration of rhodamine decreased progressively in the intestinal lumen and was negligible after 24 h. The number of microspheres in the mesenteric vein increased rapidly and reached a maximum after 4 h whatever the size of the particles. It then decreased progressively, but more rapidly with microspheres > 5 microns than with microspheres PLAGA microspheres mainly crossed the intestinal mucosa at the site of Peyer's patches where microspheres of 5 microns were retained in the ileal lumen. A few small microspheres were occasionally observed in the epithelial cells. Only the smallest particles were recovered in the liver, lymph nodes and spleen while basement membranes were always labelled. It is concluded that PLAGA microspheres could be useful for the oral delivery of antigens if their size is between 1 and 5 microns.

  13. Gastroretentive Floating Microspheres of Silymarin: Preparation and ...

    African Journals Online (AJOL)

    Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow ...

  14. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    Science.gov (United States)

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  15. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  16. Protein encapsulated magnetic carriers for micro/nanoscale drug delivery systems.

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.; Kaminski, M. D.; Mertz, C. J.; Finck, M. R.; Guy, S. G.; Chen, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago, Pritzker School of Medicine

    2005-01-01

    Novel methods for drug delivery may be based on nanotechnology using non-invasive magnetic guidance of drug loaded magnetic carriers to the targeted site and thereafter released by external ultrasound energy. The key building block of this system is to successfully synthesize biodegradable, magnetic drug carriers. Magnetic carriers using poly(D,L-lactide-co-glycolide) (PLGA) or poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) as matrix materials were loaded with bovine serum albumin (BSA) by a double-emulsion technique. BSA-loaded magnetic microspheres were characterized for size, morphology, surface charge, and magnetization. The BSA encapsulation efficiency was determined by recovering albumin from the microspheres using dimethyl sulfoxide and 0.05N NaOH/0.5% SDS then quantifying with the Micro-BCA protein assay. BSA release profiles were also determined by the Micro-BCA protein assay. The microspheres had drug encapsulation efficiencies up to 90% depending on synthesis parameters. Particles were spherical with a smooth or porous surface having a size range less than 5 {mu}m. The surface charge (expressed as zeta potential) was near neutral, optimal for prolonged intravascular survival. The magnetization of these BSA loaded magnetic carriers was 2 to 6 emu/g, depending on the specific magnetic materials used during synthesis.

  17. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-02-28

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. This analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers. This paper will describe the matching of current glass microspheres with the useful application in commercial hydrogen bulk transport and storage.

  18. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  20. Modified coulomb law in a strongly magnetized vacuum.

    Science.gov (United States)

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  1. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal

    International Nuclear Information System (INIS)

    Angelova, Ralitsa; Baldikova, Eva; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2017-01-01

    The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent. - Highlights: • Magnetic modification of Leptothrix sheaths using two methods is proposed. • Such magnetic material is an excellent adsorbent for Amido black 10B. • The magnetically modified sheaths can be easily separated by magnets.

  2. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Ralitsa [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd, 1164 Sofia (Bulgaria); Laboratory Microwave Magnetics, Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd, 1784 Sofia (Bulgaria); Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Branisovska 1457, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic)

    2017-04-01

    The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent. - Highlights: • Magnetic modification of Leptothrix sheaths using two methods is proposed. • Such magnetic material is an excellent adsorbent for Amido black 10B. • The magnetically modified sheaths can be easily separated by magnets.

  3. Tomographic measurement of cerebral blood flow by the /sup 68/Ga-labelled-microsphere and continuous-C/sup 15/O/sub 2/-inhalation methods

    Energy Technology Data Exchange (ETDEWEB)

    Steinling, M.; Baron, J.C.; Maziere, B.; Loc' h, C.; Lasjaunias, P.; Canabis, E.A.; Guillon, B.

    1985-05-01

    The measurement of cerebral blood flow (CBF) by continuous C/sup 15/O/sub 2/ inhalation has only been validated previously by indirect experimental protocols. In the present study using baboons, these measurements were compared directly with those obtained by injection of /sup 68/Ga-labelled serum-albumin microspheres in the left cardiac ventricle. Using a modified labelling technique, no elution of /sup 68/Ga occurred in vivo. Both methods provided similar regional CBF values, which could be described by a significant linear correlation (CBFsub(CO2) = 0.82 CBFsub(microspheres)+5.7; P < 0.001). The validity of the labelled-microsphere-injection method was verified. The feasibility of stable in vivo labelling of /sup 68/Ga to serum-albumin microspheres provides a reference method for organ blood-flow measurements using positron-emission tomography.

  4. Tomographic measurement of cerebral blood flow by the /sup 68/Ga-labelled-microsphere and continuous-C/sup 15/O/sub 2/-inhalation methods

    Energy Technology Data Exchange (ETDEWEB)

    Steinling, M.; Baron, J.C.; Maziere, B.; Loc' h, C.; Lasjaunias, P.; Canabis, E.A.; Guillon, B.

    1985-07-01

    The measurement of cerebral blood flow (CBF) by continuous C/sup 15/O/sub 2/ inhalation has only been validated previously by indirect experimental protocols. In the present study using baboons, these measurements were compared directly with those obtained by injection of /sup 68/Ga-labelled serum-albumin microspheres in the left cardiac ventricle. Using a modified labelling technique, no elution of /sup 68/Ga occurred in vivo. Both methods provided similar regional CBF values, which could be described by a significant linear correlation (CBFsub(CO2)=0.82 CBFsub(microspheres)+5.7; P < 0.001). The validity of the labelled-microsphere-injection method was verified. The feasibility of stable in vivo labelling of /sup 68/Ga to serum-albumin microspheres provides a reference method for organ blood-flow measurements using positron-emission tomography.

  5. Microsphere based improved sunscreen formulation of ethylhexyl methoxycinnamate.

    Science.gov (United States)

    Gogna, Deepak; Jain, Sunil K; Yadav, Awesh K; Agrawal, G P

    2007-04-01

    Polymethylmethacrylate (PMMA) microspheres of ethylhexyl methoxycinnamate (EHM) were prepared by emulsion solvent evaporation method to improve its photostability and effectiveness as sunscreening agent. Process parameters like stirring speed and aqueous polyvinyl alcohol (PVA) concentration were analyzed in order to optimize the formulations. Shape and surface morphology of the microspheres were examined using scanning electron microscopy. Particle size of the microspheres was determined using laser diffraction particle size analyzer. The PMMA microspheres of EHM were incorporated in water-removable cream base. The in vitro drug release of EHM in pH 7.4 was performed using dialysis membrane. Thin layer chromatography was performed to determine photostability of EHM inside the microspheres. The formulations were evaluated for sun protection factor (SPF) and minimum erythema dose (MED) in albino rats. Cream base formulation containing microspheres prepared using EHM:PMMA in ratio of 1:3 (C(3)) showed slowest drug (EHM) release and those prepared with EHM: PMMA in ratio of 1:1 showed fastest release. The cream base formulations containing EHM loaded microspheres had shown better SPF (more than 16.0) as compared to formulation C(d) that contained 3% free EHM as sunscreen agent and showed SPF 4.66. These studies revealed that the incorporation of EHM loaded PMMA microspheres into cream base had greatly increased the efficacy of sunscreen formulation approximately four times. Further, photostability was also shown to be improved in PMMA microspheres.

  6. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  7. Preparation of mesoporous zirconia microspheres as inert matrix

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ting [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Wang, Chen; Lv, Jinlong [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2016-12-01

    Mesoporous zirconia microspheres, with a diameter of 900 μm, were prepared as an inert accelerator driven system (ADS) transmutation element matrix by the sol-gel method. The purpose of mesopores is to improve the adsorption capacity of inert matrix fuel (IMF) for minor actinides. The study indicated that the mesoporous zirconia performance was improved after the microspheres were hydrothermally treated at 150 °C, the specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g, and hydrothermal treatment avoided the cracking of the microspheres. Pre-decomposition of the organics during the hydrothermal process stabilized the mesoporous structure. The average pore diameter of mesoporous microsphere was 14.3 nm. - Highlights: • Mesoporous zirconia microspheres with a diameter of 900 μm were prepared as ADS transmutation element inert matrix. • The mesoporous performance was improved after the microspheres were hydrothermally treated at 150 °C. • The specific surface area increased from 28.29 m{sup 2}/g to 61.28 m{sup 2}/g. • The hydrothermal treatment could avoid the cracking of the microspheres. • The specific surface area of mesoporous microsphere was 61.28 m{sup 2}/g and the average pore diameter was 14.3 nm.

  8. Insulin delivery through nasal route using thiolated microspheres.

    Science.gov (United States)

    Nema, Tarang; Jain, Ashish; Jain, Aviral; Shilpi, Satish; Gulbake, Arvind; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    The aim of the present study was to investigate the potential of developed thiolated microspheres for insulin delivery through nasal route. In the present study, cysteine was immobilized on carbopol using EDAC. A total of 269.93 µmol free thiol groups per gram polymer were determined. The prepared nonthiolated and thiolated microspheres were studied for particle shape, size, drug content, swellability, mucoadhesion and in vitro insulin release. The thiolated microspheres exhibited higher mucoadhesion due to formation of covalent bonds via disulfide bridges with the mucus gel layer. Drug permeation through goat nasal mucosa of nonthiolated and thiolated microspheres were found as 52.62 ± 2.4% and 78.85 ± 3.1% in 6 h, respectively. Thiolated microspheres bearing insulin showed better reduction in blood glucose level (BGL) in comparison to nonthiolated microspheres as 31.23 ± 2.12% and 75.25 ± 0.93% blood glucose of initial BGL were observed at 6 h after nasal delivery of thiolated and nonthiolated microspheres in streptozotocin-induced diabetic rabbits.

  9. Current knowledge on biodegradable microspheres in drug delivery.

    Science.gov (United States)

    Prajapati, Vipul D; Jani, Girish K; Kapadia, Jinita R

    2015-08-01

    Biodegradable microspheres have gained popularity for delivering a wide variety of molecules via various routes. These types of products have been prepared using various natural and synthetic biodegradable polymers through suitable techniques for desired delivery of various challenging molecules. Selection of biodegradable polymers and technique play a key role in desired drug delivery. This review describes an overview of the fundamental knowledge and status of biodegradable microspheres in effective delivery of various molecules via desired routes with consideration of outlines of various compendial and non-compendial biodegradable polymers, formulation techniques and release mechanism of microspheres, patents and commercial biodegradable microspheres. There are various advantages of using biodegradable polymers including promise of development with different types of molecules. Biocompatibility, low dosage and reduced side effects are some reasons why usage biodegradable microspheres have gained in popularity. Selection of biodegradable polymers and formulation techniques to create microspheres is the biggest challenge in research. In the near future, biodegradable microspheres will become the eco-friendly product for drug delivery of various genes, hormones, proteins and peptides at specific site of body for desired periods of time.

  10. Hydrogen transport and storage in engineered glass microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G.D.

    1995-04-18

    New, high strength glass microspheres filled with pressurized hydrogen exhibit densities which make them attractive for bulk hydrogen storage and transport. The membrane tensile stress at failure for our engineered glass microspheres is about 150,000 psi, permitting a threefold increase in pressure limit and storage capacity above commercial microspheres, which have been studied a decade ago and have been shown to fail at membrane stresses of 50,000 psi. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics, indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as pressurized tube transports and liquid hydrogen trailers.

  11. Evaluation of radiolabelled microspheres as digesta markers

    International Nuclear Information System (INIS)

    Young, B.A.; Turner, B.V.; Dixon, A.E.; Exley, D.M.; Young, S.B.; Abidin, Z.

    1991-01-01

    The suitability of microspheres as markers for measuring digesta kinetics in sheep was examined. Microspheres offer advantages of uniformity of size and density, and stability during passage through the gastrointestinal tract. They are commercially available labelled with the choice of one of eleven different radionuclides and can be easily measured in digesta and faecal material. Tests comparing several types of digesta markers gave different measures of kinetic parameters when the measurements were made concurrently in the same sheep. However, concurrent measurements derived from use of microspheres were consistent. Microspheres offer a new alternative for digestive studies. (author). 19 refs, 4 tabs

  12. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  13. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    International Nuclear Information System (INIS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-01-01

    Double-shelled sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 /Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe 3 O 4 /TiO 2 support by a in situ reduction of HAuCl 4 with NaBH 4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO 2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 microspheres. The sea urchin-like structure composed of TiO 2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe 3 O 4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe 3 O 4 /TiO 2 /Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min −1 and turnover frequency is 5457 h −1 . (paper)

  14. Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.

    Science.gov (United States)

    Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei

    2018-01-26

    A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparation of polystyrene microsphere with emulsion microencapsulation method

    International Nuclear Information System (INIS)

    Li Bo Zhang Lin; Zhang Zhganwen; You Dan; Wei Yun; Wang Chaoyang; Lin Bo; Shi Tao; Chu Qiaomei

    2003-01-01

    The preparation of hollow polystyrene microspheres that are used as inner shell of multi-shell plastic microspheres in the ICF experiments is focused on. The effects of surfactants, water-soluble polymer and electrolyte on the properties of resultant microspheres are studied. Based on these experiments, a fabricating procedure was established with which hollow microspheres were prepared with diameter about 150-3000 μm, wall thickness 0.8-15 μm and toughness Ra less than 4 nm. (authors)

  16. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  17. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  18. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  19. Controlling silk fibroin microspheres via molecular weight distribution

    International Nuclear Information System (INIS)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui; Zhang, Ke-Qin

    2015-01-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K 2 HPO 4 –KH 2 PO 4 ). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications

  20. Controlling silk fibroin microspheres via molecular weight distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Dong-Mei; Pan, Jue-Jing; Wang, Qun; Liu, Xin-Fang; Wang, Hui [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Zhang, Ke-Qin, E-mail: kqzhang@suda.edu.cn [National Engineering Laboratory for Modern Silk, College for Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123 (China); Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-05-01

    Silk fibroin (SF) microspheres were produced by salting out SF solution via the addition of potassium phosphate buffer solution (K{sub 2}HPO{sub 4}–KH{sub 2}PO{sub 4}). The morphology, size and polydispersity of SF microspheres were adjusted by changing the molecular weight (MW) distribution and concentration of SF, as well as the ionic strength and pH of the buffer solution. Changing the conditions under which the SF fiber dissolved in the Lithium Boride (LiBr) solution resulted in altering the MW distribution of SF solution. Under optimal salting-out conditions (ionic strength > 0.7 M and pH > 7) and using a smaller and narrower SF MW distribution, SF microspheres with smoother shapes and more uniform sizes were produced. Meanwhile, the size and polydispersity of the microspheres increased when the SF concentration was increased from 0.25 mg/mL to 20 mg/mL. The improved SF microspheres, obtained by altering the distribution of molecular weight, have potential in drug and gene delivery applications. - Highlights: • MW distribution was changed by applying different dissolving methods of SF fiber. • Smaller and narrower MW distribution improves the quality of SF microspheres. • Size and polydispersity of microspheres increase as SF concentration increases. • Improved SF microspheres have potential in drug and gene delivery applications.

  1. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    International Nuclear Information System (INIS)

    Fu Jianxi; Wang Huajie; Zhou Yanqing; Wang Jinye

    2009-01-01

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 μm. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  2. Antibacterial activity of ciprofloxacin-loaded zein microsphere films

    Energy Technology Data Exchange (ETDEWEB)

    Fu Jianxi [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Huajie [College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zhou Yanqing [Henan Normal University, 46 East Construction Road, Xinxiang, Henan 453007 (China); Wang Jinye, E-mail: jywang@mail.sioc.ac.cn [Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 (China); College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2009-05-05

    Our aim was to produce an antibiotic-emitting coating composed of zein microspheres for the prevention of bacterial infection on implanted devices. Ciprofloxacin-loaded zein microspheres were prepared using a phase separation procedure, with particle sizes between 0.5 and 2 {mu}m. Drug encapsulation and drug loading varied with the amount of both zein and ciprofloxacin, and the highest encapsulation efficiency was 8.27% (2 mg/ml ciprofloxacin and 20 mg/ml zein; n = 3). A ciprofloxacin-loaded zein microsphere film (CF-MS film) was generated via solvent evaporation. Continuous drug release from a trypsin-degraded microsphere film was observed for up to 28 days. The liberation of ciprofloxacin from the trypsin-degraded film and the biodegradation of the microsphere film were highly correlated. Proliferation assay of the growth of human umbilical vein endothelial cells (HUVECs) by the MTT method showed that the microsphere film had no toxicity when compared with cells grown on Corning culture plates alone and plates with a zein film alone. Quantification of bacteria adhesion showed that adhesion on the microsphere film is significantly suppressed. In addition, according to the results of bacterial growth tests, ciprofloxacin-loaded microsphere films maintained antibacterial activity for more than 6 days. In contrast, a control medium containing a zein film allowed constant bacterial growth. These results indicate that CF-MS films might be useful as antibacterial films on implanted devices.

  3. U3O8 microspheres sintering kinetics

    International Nuclear Information System (INIS)

    Godoy, A.L.E.

    1986-01-01

    U 3 O 8 microspheres sintering kinetics was determined using a hot-stage optical microscopy apparatus, able to reach temperature up to 1350 0 C in controlled atmospheres. The sintered material had its microstructure analysed by optical and electron microscopy. The microspheres were characterized initialy utilizing X-ray diffractometry and thermogravimetry. The equation which describes the microspheres shrinkage in function of the time was obtained using finite difference analysis X-ray diffractometry indicated hexagonal structure for the microspheres main starting material, ammonium diuranate thermogravimetric analysis showed reduction of this material to U 3 O 8 at 600 0 C. Ceramography results showed 5 hours sintered microspheres grain sizes G vary with the temperature. Sintered U 3 O 8 micrographs compared with published results for UO 2 , indicate similar homogeneity microstructural characteristics and suggest the processed micorspheres to be potentially useful as nuclear fuels. (Author) [pt

  4. Preparation and characterization of molecularly-imprinted magnetic microspheres for adsorption of 2,4,6-trichlorophenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ping; Pan, Jianming; Yan, Yongsheng [Jiangsu University, Zhenjiang (China); Sun, Qilong; Li, Jianfeng; Tan, Zhenjiang [Jilin Normal University, Siping (China)

    2015-04-15

    Magnetic molecularly imprinted microspheres (MMIS) were successfully prepared by suspension polymerization, and then as-prepared MMIS were used as adsorbents for selective recognition of 2,4,6-trichlorophenol (2,4,6-TCP) from aqueous solutions. The results composites were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The results demonstrated that MMIS possesses porous spherical morphology, and exhibits good thermal stability and magnetic property (Ms=10.14 emu g{sup -1}). Then batch mode of binding experiments was used to determine the equilibrium, kinetics and selectivity recognition. The Langmuir isotherm model fitted the equilibrium data better than did the Freundlich model, and the maximum adsorption capacity on MMIS was about 1.7 times higher than that of MNIS. Kinetics behaviors of MMIS were well described by the pseudo-second-order model. MMIS possessed outstanding selectivity recognition for 2,4,6-TCP in the presence of other competitive phenols (such as sesamol, 3-CP, thymol, 2,4-DCP). Furthermore, the reusability performance of MMIS showed about 17.53% loss after five repeated cycles. Finally, the MMIS were successfully applied to the selective extraction of 2,4,6-TCP from the vegetable samples.

  5. Preparation and drug controlled release of porous octyl-dextran microspheres.

    Science.gov (United States)

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  6. Low pressure gas filling of laser fusion microspheres

    International Nuclear Information System (INIS)

    Koo, J.C.; Dressler, J.L.; Hendricks, C.D.

    1979-01-01

    In our laser fusion microsphere production, large, thin gel-microspheres are formed before the chemicals are fused into glass. In this transient stage,, the gel-microspheres are found to be highly permeable to argon and many other inert gases. When the gel transforms to glass, the argon gas, for example, is trapped within to form argon filled, fusion target quality, glass microspheres. On the average, the partial pressure of the argon fills attained in this process is around 2 x 10 4 Pa at room temperature

  7. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  8. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li

    2014-01-01

    , cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated...

  9. Microencapsulation and microspheres for food applications

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    This book provides an update on the latest developments, challenges, and opportunities in the highly expanding field of microencapsulation and microspheres for food applications, examining the various types of microspheres and microcapsules essential to those who need to develop stable and

  10. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  12. Magnetic polymeric microspheres for protein adsorption

    International Nuclear Information System (INIS)

    Felinto, M.C.F.C.; Parra, D.F.; Lugao, A.B.; Batista, M.P.; Higa, O.Z.; Yamaura, M.; Camilo, R.L.; Ribela, M.T.C.P.; Sampaio, L.C.

    2005-01-01

    Magnetic beads consisting of polymer-coated manganese ferrite nanoparticles were prepared by the precipitation reaction of manganese ferrite into the channels of methyl methacrylate polymer beads by sodium hydroxide, resulting in MnMagBead. MnMagBead was characterized by infrared spectra (FTIR), thermogravimetric analysis of TGA/DTG and indicates the presence of -CO (carbonyl) groups and the MnFe 2 O 4 on the beads. Magnetization measurements were obtained at room temperature in magnetic fields up to 10 KOe using a vibrating sample magnetometer. Introductory Protein adsorption biological tests were processed using labeled I-125 albumin (BSA), and the activity was measured in a gamma counting spectrometer. These superparamagnetic beads exhibit the capacity to bind biological molecules such as proteins like albumin, with a good capability (5 x 10 -6 ) μg/100 mg of beads as compared with other magnetic resins studied in our group

  13. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Schlegel, P.

    1981-01-01

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 37 0 C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  14. Photoluminescence and lasing in whispering gallery mode glass microspherical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, D. [Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics, Bijenička c. 54, Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Research unit New Functional Materials, Bijenička c. 54, Zagreb (Croatia); Berneschi, S.; Camerini, M. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Farnesi, D.; Pelli, S. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Trono, C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Chiappini, A.; Chiasera, A.; Ferrari, M. [CSMFO Group, Istituto di Fotonica e Nanotecnologie, IFN-CNR, Via alla Cascata 56/C, 38050 Povo-Trento (Italy); Lukowiak, A. [Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, Wroclaw 50-950 (Poland); Dumeige, Y.; Féron, P. [Laboratoire d' Optronique, (CNRS-UMR 6082-Foton), ENSSAT, 6 rue de Kérampont, 22300 Lannion (France); Righini, G.C. [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); Soria, S., E-mail: s.soria@ifac.cnr.it [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Conti, G. Nunzi [IFAC-CNR Istituto di Fisica Applicata, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Centro Studi e Ricerche ' E. Fermi' , Piazza del Viminale 2, 00184 Roma (Italy)

    2016-02-15

    We report experimental results regarding the development of Er{sup 3+}-doped glass microspherical cavities for the fabrication of compact sources at 1.55 μm. We investigate several different approaches in order to fabricate the microspheres including direct melting of Er{sup 3+}-doped glass powders, synthesis of Er{sup 3+}-doped monolithic microspheres by drawing Er{sup 3+}-doped glass, and coating of silica microspheres with an Er{sup 3+}-doped sol–gel layer. Details of the different fabrication processes are presented together with the photoluminescence characterization in free space configuration of the microspheres and of the glass precursor. We have analyzed the photoluminescence spectra of the whispering gallery modes of the microspheres excited using evanescent coupling and we demonstrate tunable laser action in a wide range of wavelengths around 1.55 μm. As much as 90 μW of laser output power was measured in Er{sup 3+}-doped glass microspheres. - Highlights: • Different approaches in microsphere fabrication and various types of post-processing. • Trimming of photorefractive glass microsphere lasers with UV light. • Peak power record of 90 μW by pumping at 1480 nm.

  15. Development and implementation of computational geometric model for simulation of plate type fuel fabrication process with microspheres dispersed in metallic matrix

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Reis, Sergio C.; Braga, Daniel M.; Santos, Armindo; Ferraz, Wilmar B.

    2005-01-01

    In this report it is presented the development of a geometric model to simulate the plate type fuel fabrication process with fuels microspheres dispersed in metallic matrix, as well as its software implementation. The developed geometric model encloses the steps of pellets pressing and sintering, as well as the plate rolling passes. The model permits the simulation of structures, where the values of the various variables of the fabrication processes can be studied and modified. The following variables were analyzed: microspheres diameters, density of the powder/microspheres mixing, microspheres density, fuel volume fraction, sintering densification, and rolling passes number. In the model implementation, which was codified in DELPHI programming language, systems of structured analysis techniques were utilized. The structures simulated were visualized utilizing the AutoCAD applicative, what permitted to obtain planes sections in diverse directions. The objective of this model is to enable the analysis of the simulated structures and supply information that can help in the improvement of the dispersion microspheres fuel plates fabrication process, now in development at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) in cooperation with the CTMSP (Centro Tecnologico da Marinha em Sao Paulo). (author)

  16. Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater.

    Science.gov (United States)

    Ding, Baojun; Wang, Jie; Tao, Shengyang; Ding, Yunzhe; Zhang, Lijing; Gao, Ning; Li, Guangtao; Shi, Haonan; Li, Weijun; Ge, Shuo

    2018-07-15

    Water pollution control has become significant challenges in recent years because of their extensive species diversity. It is critical to developing general-purpose materials for environmental rehabilitation. In this paper, a novel module-assembly method is developed to prepare multi-functional materials for treating pollutants in water. Building blocks are porous nanoparticles with a different function. Microspheres (MS) with a diameter of 90 μm are prepared and have a coefficient of variation of 6.8%. The modular fashion of self-assembly process in a microfluidic chip is the crucial factor in fabricating the multifunction material. The assembled microspheres with different building modules still have a specific surface area larger than 400 m 2 g -1 , and exhibit excellent performance in adsorbing various pollutants in water, such as heavy metal ions and organic dyes. The adsorption capacities of them to Hg 2+ and orange II reach 150 mg g -1 and 333 mg g -1 , respectively. The integrated fluorescence probes in microspheres can detect low concentration (9.8 ppb) of Hg 2+ . Microspheres integrated with Fe 3 O 4 nanoparticles have a magnetic susceptibility of 6.01 emu g -1 and can be easily removed from wastewater by applying an external magnetic. Due to the stability of inorganic building blocks, each function in the assembled system is well performed, and multi-functional "All-in-One" materials can be easily fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A facile approach to fabricate Au nanoparticles loaded SiO{sub 2} microspheres for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-07-15

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO{sub 2}@Au composite particles. The influence of polymers on the morphology of SiO{sub 2}@Au particles with different size of SiO{sub 2} cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO{sub 2}@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO{sub 2} microspheres. The SiO{sub 2}@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO{sub 2} microspheres. SiO{sub 2}@Au particles can be also prepared from SiO{sub 2} microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO{sub 2} or other microspheres. The SiO{sub 2}@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres.

  18. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  19. Optically Levitated Microspheres as a Probe for New Interactions

    Science.gov (United States)

    Rider, Alexander; Moore, David; Blakemore, Charles; Lu, Marie; Gratta, Giorgio

    2016-03-01

    We are developing novel techniques to probe new interactions at micron distances using optically levitated dielectric microspheres. Levitated microspheres are an ideal probe for short-range interactions because they are suspended using the radiation pressure at the focus of a laser beam, which means that the microspheres can be precisely manipulated and isolated from the surrounding environment at high vacuum. We have performed a search for unknown charged particles bound within the bulk of the microspheres. Currently, we are searching for the presence of a Chameleon field postulated to explain the presence of dark energy in the universe. In the future we plan to use optically levitated microspheres to search for micron length-scale gravity like interactions that could couple between a microsphere and another mass. We will present resent results from these experiments and plans for future searches for new interactions.

  20. Silicon Microspheres Photonics

    International Nuclear Information System (INIS)

    Serpenguzel, A.

    2008-01-01

    Electrophotonic integrated circuits (EPICs), or alternatively, optoelectronic integrated circuit (OEICs) are the natural evolution of the microelectronic integrated circuit (IC) with the addition of photonic capabilities. Traditionally, the IC industry has been based on group IV silicon, whereas the photonics industry on group III-V semiconductors. However, silicon based photonic microdevices have been making strands in siliconizing photonics. Silicon microspheres with their high quality factor whispering gallery modes (WGMs), are ideal candidates for wavelength division multiplexing (WDM) applications in the standard near-infrared communication bands. In this work, we will discuss the possibility of using silicon microspheres for photonics applications in the near-infrared

  1. Organic dyes removal using magnetically modified rye straw

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva, E-mail: baldie@email.cz [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic)

    2015-04-15

    Rye straw, a very low-cost material, was employed as a biosorbent for two organic water-soluble dyes belonging to different dye classes, namely acridine orange (acridine group) and methyl green (triarylmethane group). The adsorption properties were tested for native and citric acid–NaOH modified rye straw, both in nonmagnetic and magnetic versions. The adsorption equilibrium was reached in 2 h and the adsorption isotherms data were analyzed using the Langmuir model. The highest values of maximum adsorption capacities were 208.3 mg/g for acridine orange and 384.6 mg/g for methyl green. - Highlights: • Rye derivatives can be considered as efficient adsorbents for organic dyes. • Magnetic modification of straw by microwave-synthesized magnetic iron oxides. • Citric acid–NaOH modification increased the maximum adsorption capacities.

  2. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Mao Wu

    2018-06-01

    Full Text Available The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles. The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.

  3. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  4. Preparation of UN microspheres by internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Shirasu, Yoshiro; Yamagishi, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    UN microspheres were prepared from (UO{sub 3}+C) microspheres internally gelled in a hot silicone oil column. The gel microspheres were calcined at 480degC in nitrogen, after washing and drying. The calcined ones were carbothermically nitrided at 1400-1800degC in a nitrogen-based atmosphere in two ways: one in N{sub 2} followed by N{sub 2}-8%H{sub 2}, and the other in N{sub 2}-8%H{sub 2} only. In both cases, highly pure UN microspheres around 500 ppm of both oxygen and carbon impurities were obtained, although their densities were still low. (author)

  5. Zanamivir immobilized magnetic beads for voltammetric measurement of neuraminidase at gold-modified boron doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wahyuni, Wulan Tri, E-mail: wulantriws@gmail.com [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Kampus IPB Darmaga, Bogor 16680 (Indonesia); Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Ivandini, Tribidasari A.; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Yokohama 223-8522 (Japan); CREST, JST, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)

    2016-04-19

    Biomolecule modified magnetic beads has been widely used in separation and sensing process. This study used streptavidin modified magnetic beads to immobilize biotin modified zanamivir. Biotin-streptavidin affinity facilitates immobilization of zanamivir on magnetic beads. Then interaction of zanamivir and neuraminidase was adopted as basic for enzyme detection. Detection of neuraminidase was performed at gold modified BDD using cyclic voltammetry technique. The measurement was carried out based on alteration of electrochemical signals of working electrode as neuraminidase response. The result showed that zanamivir was successfully immobilized on magnetic beads. The optimum amount of magnetic beads for zanamivir immobilization was 120 ug. Linear responses of neuraminidase were detected in concentration range of 0-15 mU. Detection limit (LOD) of measurement was 2.32 mU (R2 = 0.959) with precision as % RSD of 1.41%. Measurement of neuraminidase on magnetic beads could be also performed in the presence of mucin matrix. The linearity range was 0-8 mU with LOD of 0.64 mU (R2 = 0.950) and % RSD of 7.25%.

  6. Fast synthesis, formation mechanism, and control of shell thickness of CuS–polystyrene core–shell microspheres

    International Nuclear Information System (INIS)

    Zhao, Li-min; Shao, Xin; Yin, Yi-bin; Li, Wen-zhi

    2012-01-01

    Graphical abstract: Core–shell structure PSt/CuS were prepared using polystyrene which were modified by 3-methacryloxypropyltrimethoxysilane as template. The coating thickness of CuS can be controlled by the amount of 3-methacryloxypropyltrimethoxysilane and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. Highlights: ► Core–shell structure PSt/CuS were prepared using silanol-modified polystyrene microspheres as template. ► The coating thickness of core–shell structure PSt/CuS can be controlled by a simple method. ► The UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS. -- Abstract: The silanol-modified polystyrene microspheres were prepared through dispersion polymerization. Then copper sulfide particles were grown on silanol-modified polystyrene through sonochemical deposition in an aqueous bath containing copper acetate and sulfide, released through the hydrolysis of thioacetamide. The resulting particles were continuous and uniform as characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared, thermogravimetric analysis and UV–vis absorption spectroscopy were used to characterize the structure and properties of core–shell particles. The results showed the coating thickness of CuS shell can be controlled by the amount of silanol and the UV–vis absorption intensity of PSt/CuS composite also changed with the coating thickness of CuS.

  7. 188Re-microspheres of albumin - the potential preparation for radiotherapy

    International Nuclear Information System (INIS)

    Dyomin, D.N.; Petriev, V.M.

    2000-01-01

    In this paper author describe preparation the albumin microspheres labelled with rhenium-188. We undertake an attempt to develop kits to the generator of rhenium-188 on the basis of albumin microspheres for radiotherapy of both oncological and non-oncological diseases. Microspheres, rhenium-188 with sizes 1 0-20 micron for treatment of rheumatoid arthritis (damage of large and intermediate joints), intraperitoneal administration and intrapleural administration at metastases covering a cavity. Microspheres, Re-188 with sizes 40-60 micron for treatment of disseminated kidney cancer (intraarterial, selectively), intratumoral administration to damaged nodules less than 2-3 cm. Microspheres, Re-188 with sizes 80-100 micron for large neoplasms and metastases of liver (intraarterial, selectively), intratumoral administration to damaged nodules with sizes over 3 cm. Preparation of albumin microspheres is carried out by thermal denaturation of protein in vegetable oil. Microspheres are obtained with the necessary range of sizes by ultrasonic fractionation. At our laboratory the method of preparation of albumin microspheres with any sizes of particles (from 5 -10 up to 800 -1000 microns) has been developed. (authors)

  8. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  9. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  10. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  11. Dyes adsorption on magnetically modified Chlorella vulgaris cells

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Pona, B. M. R.; Mosiniewicz-Szablewska, E.; Weyda, František; Šafařík, Ivo

    2008-01-01

    Roč. 17, č. 4 (2008), s. 486-492 ISSN 1018-4619 R&D Projects: GA MŠk OC 108; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50070508 Keywords : Chlorella vulgaris * magnetically modified cells * dyes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.463, year: 2008

  12. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane-modified

  13. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles.

    Science.gov (United States)

    Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning

    2012-02-02

    In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.

  14. Preparation of nano-hydroxyapatite/poly(l-lactide) biocomposite microspheres

    International Nuclear Information System (INIS)

    Qiu Xueyu; Han Yadong; Zhuang Xiuli; Chen Xuesi; Li Yuesheng; Jing Xiabin

    2007-01-01

    Nano-hydroxyapatite (HA)/poly(l-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 μm were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM)

  15. Simulating three dimensional self-assembly of shape modified particles using magnetic dipolar forces

    NARCIS (Netherlands)

    Alink, Laurens; Marsman, G.H. (Mathijs); Woldering, L.A.; Abelmann, Leon

    2011-01-01

    The feasibility of 3D self-assembly of milli-magnetic particles that interact via magnetic dipolar forces is investigated. Typically magnetic particles, such as isotropic spheres, self-organize in stable 2D configurations. By modifying the shape of the particles, 3D self-assembly may be enabled. The

  16. Hydrothermal synthesis of 3D hierarchical flower-like MoSe{sub 2} microspheres and their adsorption performances for methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hua, E-mail: tanghua@mail.ujs.edu.cn; Huang, Hong; Wang, Xiaoshuai; Wu, Kongqiang; Tang, Guogang; Li, Changsheng

    2016-08-30

    Highlights: • 3D hierarchical flower-like MoSe{sub 2} microspheres have been fabricated via a hydrothermal method. • A possible evolution process of 3D hierarchical flower-like MoSe{sub 2} microspheres was discussed. • Flower-like MoSe{sub 2} microspheres exhibit excellent adsorption properties for dye methyl orange removal from aqueous solution. - Abstract: In this paper, we report a facile and versatile modified hydrothermal method for synthesis of three-dimensional (3D) hierarchical flower-like MoSe{sub 2} microspheres using selenium powders and sodium molybdate as raw materials. The as-prepared MoSe{sub 2} was investigated for application as an adsorbent for the removal of dye contaminants from water. Power X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N{sub 2} adsorption-desorption analysis were carried out to study the microstructure of the as-synthesized product. A possible growth mechanism of MoSe{sub 2} flower-like microspheres was preliminarily proposed on the basis of observation of a time-dependent morphology evolution process. Moreover, the MoSe{sub 2} sample exhibited good adsorption properties, with maximum adsorption capacity of 36.91 mg/g for methyl orange. The adsorption process of methyl orange on 3D hierarchical flower-like MoSe{sub 2} microspheres was systematically investigated, which was found to obey the pseudo-second-order rate equation and Langmuir adsorption model.

  17. Thermal analysis of iron hydroxide microspheres

    International Nuclear Information System (INIS)

    Turcanu, C.N.; Cornescu, M.

    1979-03-01

    The thermal treatment is an important step in the preparative technology of the iron oxids microspheres with well established mechanical, physical and chemical characteristics. The first indications on the heating procedure have been obtained from the thermal analysis on iron hydroxide microspheres prepared by the support precipitation and internal gelification methods. (author)

  18. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    Science.gov (United States)

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  19. Stability and magnetic tearing of finite-β modified drift waves

    International Nuclear Information System (INIS)

    Chen, L.; Hsu, J.; Kaw, P.K.; Rutherford, P.H.

    1977-10-01

    A new simplified approach to the analysis of radial eigenmodes of finite-β modified drift waves in a sheared magnetic field is described. Applying this approach to the universal drift mode, one recovers, for the lowest (n = 0) radial eigenmode, the previous result that finite-β effects are stabilizing. For the next (n = 1) radial eigenmode, however, one finds that finite-β effects further destabilize the mode. Moreover, the corresponding mode structure exhibits nonzero radial (tearing) magnetic perturbations around the mode-rational surface. The consequences of a structure of microscopic magnetic islands, created in this way, for plasma transport are also briefly discussed

  20. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei, E-mail: weidong@njust.edu.cn

    2016-11-30

    Highlights: • Fe{sub 3}O{sub 4}@SiO{sub 2}@EDPS with uniform size and good dispersity is prepared. • We fabricated MMSN@EDPS with distinct core-shell–shell triple-layer composition. • DNA adsorption capacity of MMSN@EDPS is considerable. - Abstract: We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  1. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  2. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  3. Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article.

    Science.gov (United States)

    Dasan, K Priya; Rekha, C

    2012-11-01

    The use of polymers and their microspheres in drug delivery is well known for they are being widely used in the field of drug delivery. The polymer entraps a drug which is to be released in a predesigned manner in the body through biodegradation. The blending of polymers is one way of modifying and enhancing the properties of polymer- based products which is also a cost effective procedure rather than developing a new product. The molecular weight of the polymer, the composition of the blend, the sphere porosity and size, and drug distribution are found to be controllable factors on which drug delivery depends. Polymer blends are obtained by allowing two polymers to combine as one material which has the advantage of two or more polymers. Polymer microspheres are small spherical particles with diameters in the micrometer range between 1μm to 1000μm which are manufactured from various natural and synthetic materials. Microspheres are used to administer medication in a rate- controlled manner and sometimes in a targeted manner. This review presents various polymer blend- combinations in different ratios, the different processing techniques adopted and the details of their characterization through examples found in a literature survey. The characterization of the different polymer blends or microspheres showed changes in structure, increase in drug loading, encapsulation efficiency, biocompatibility and low cytotoxicity.

  4. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  5. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  6. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles.

    Science.gov (United States)

    Satoh, H; Saito, Y; Yabu, H

    2014-12-07

    We describe a method for creating robust and stable core-shell polymer microspheres decorated with inorganic (IO) nanoparticles (NPs) by a self-organization process and heterocoagulation using a mussel-inspired polymer adhesive layer between the IO NPs and the microspheres.

  7. Microsphere erosion in outer hydrogel membranes creating macroscopic porosity to counter biofouling-induced sensor degradation.

    Science.gov (United States)

    Vaddiraju, S; Wang, Y; Qiang, L; Burgess, D J; Papadimitrakopoulos, F

    2012-10-16

    Biofouling and tissue inflammation present major challenges toward the realization of long-term implantable glucose sensors. Following sensor implantation, proteins and cells adsorb on sensor surfaces to not only inhibit glucose flux but also signal a cascade of inflammatory events that eventually lead to permeability-reducing fibrotic encapsulation. The use of drug-eluting hydrogels as outer sensor coatings has shown considerable promise to mitigate these problems via the localized delivery of tissue response modifiers to suppress inflammation and fibrosis, along with reducing protein and cell absorption. Biodegradable poly (lactic-co-glycolic) acid (PLGA) microspheres, encapsulated within a poly (vinyl alcohol) (PVA) hydrogel matrix, present a model coating where the localized delivery of the potent anti-inflammatory drug dexamethasone has been shown to suppress inflammation over a period of 1-3 months. Here, it is shown that the degradation of the PLGA microspheres provides an auxiliary venue to offset the negative effects of protein adsorption. This was realized by: (1) the creation of fresh porosity within the PVA hydrogel following microsphere degradation (which is sustained until the complete microsphere degradation) and (2) rigidification of the PVA hydrogel to prevent its complete collapse onto the newly created void space. Incubation of the coated sensors in phosphate buffered saline (PBS) led to a monotonic increase in glucose permeability (50%), with a corresponding enhancement in sensor sensitivity over a 1 month period. Incubation in serum resulted in biofouling and consequent clogging of the hydrogel microporosity. This, however, was partially offset by the generated macroscopic porosity following microsphere degradation. As a result of this, a 2-fold recovery in sensor sensitivity for devices with microsphere/hydrogel composite coatings was observed as opposed to similar devices with blank hydrogel coatings. These findings suggest that the use of

  8. 5-Fluorouracil:carnauba wax microspheres for chemoembolization: an in vitro evaluation.

    Science.gov (United States)

    Benita, S; Zouai, O; Benoit, J P

    1986-09-01

    5-Fluorouracil:carnauba wax microspheres were prepared using a meltable dispersion process with the aid of a surfactant as a wetting agent. It was noted that only hydrophilic surfactants were able to wet the 5-fluorouracil and substantially increased its content in the microspheres. No marked effect was observed in the particle size distribution of the solid microspheres as a function of the nature of the surfactant. Increasing the stirring rate in the preparation process decreased, first, the mean droplet size of the emulsified melted dispersion in the vehicle during the heating process, and, consequently, the mean particle size of the solidified microspheres during the cooling process. 5-Fluorouracil cumulative release from the microspheres followed first-order kinetics, as shown by nonlinear regression analysis. Although the kinetic results were not indicative of the true release mechanism from a single microsphere, it was believed that 5-fluorouracil release from the microspheres was probably governed by a dissolution process, rather than by a leaching process through the carnauba wax microspheres.

  9. Biocompatibility of Polyhydroxybutyrate Microspheres: in vitro and in vivo Evaluation

    OpenAIRE

    Shishatskaya, Ekaterina I.; Voinova, Olga N.; Goreva, Anastasya V.; Mogilnaya, Olga A.; Volova, Tatiana G.

    2008-01-01

    Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3Т3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist...

  10. Development of Risperidone PLGA Microspheres

    Directory of Open Access Journals (Sweden)

    Susan D’Souza

    2014-01-01

    Full Text Available The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25 were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.

  11. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Science.gov (United States)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-03-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  12. Measurement of thermal diffusivity of depleted uranium metal microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse-Helmreich, Carissa J., E-mail: carissahelmreich@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States); Corbin, Rob, E-mail: rcorbin@terrapower.com [TerraPower, LLC, 330 120th Ave NE, Suite 100, Bellevue, WA 98005 (United States); McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu [Texas A and M University, Department of Nuclear Engineering, 337 Zachry Engineering Center, 3133 TAMU, College Station, TX 77843 (United States)

    2014-03-15

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.

  13. Measurement of thermal diffusivity of depleted uranium metal microspheres

    International Nuclear Information System (INIS)

    Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.

    2014-01-01

    The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time–temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal

  14. Beat frequency ultrasonic microsphere contrast agent detection system

    Science.gov (United States)

    Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    1997-01-01

    A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.

  15. Microwave Irradiation Assisted Preparation of Chitosan Composite Microsphere for Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chen

    2017-01-01

    Full Text Available Chitosan-activated carbon composite microspheres were prepared by emulsion cross-linking method and its adsorption properties for methyl orange were studied. Chitosan solution was mixed with activated carbon powder and then chitosan was cross-linked by epichlorohydrin under microwave irradiation. SEM photos show that the composite microspheres have diameters of 200–400 μm and activated carbon powder dispersed on the surface of composite microsphere. FTIR spectrum indicates chitosan is successfully cross-linked. Microwave irradiation can effectively shorten the cross-linking time. Composite microspheres have enhanced dye adsorption capacity for methyl orange compared to chitosan microspheres. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Isotherm studies show that the isotherm adsorption equilibrium is better described by Freundlich isotherm. Regeneration results show that adsorption capacity of composite microsphere decreased about 5.51% after being reused for three times. These results indicated that chitosan-activated carbon composite microsphere has potential application in the removal of dye from wastewaters.

  16. Development and Evaluation of Isoniazid Loaded Silk Fibroin Microsphere

    Directory of Open Access Journals (Sweden)

    Narinder Singh

    Full Text Available Aim: Current experimental investigation is dedicated to prepare microspheres with small size and good sphericity by Phase Separation method using Isoniazid (INH as model drug. Silk fibroin has unique intrinsic qualities like biodegradability, biocompatibility or release properties and their tunable drug loading capacity. The delivery loading proficiency of the drug molecules in silk spheres be contingent on their charge, and hydrophobicity or subsequent in altered drug release profiles. Methods: In the present work Isoniazid loaded silk fibroin microsphere was prepared by using phase separation method. Microsphere was evaluated for Ultraviolet-visible spectroscopy, Fourier Transform infrared spectroscopy, Entrapment efficiency, Scanning electron microscopy Studies. Results: Scanning electron microscopy studies revealed that Isoniazid Loaded Silk Fibroin Microspheres were spherical. Entrapment Efficiency of Isoniazid loaded Microspheres of different Formulation from F1 to F5 was in range of 53 to 68 %. F3 showed 68.47 % entrapment Efficiency and the optimized formulation drug release was 93.56 % at 24 hours. Conclusion: Experimental report disclosed a new aqueous based formulation method for silk spheres with controllable shape or size and sphere. Isoniazid loaded silk microspheres may act as ideal nano formulation with elaborated studies.

  17. Fabrication and magnetic control of alginate-based rolling microrobots

    Directory of Open Access Journals (Sweden)

    Jamel Ali

    2016-12-01

    Full Text Available Advances in microrobotics for biological applications are often limited due to their complex manufacturing processes, which often utilize cytotoxic materials, as well as limitations in the ability to manipulate these small devices wirelessly. In an effort to overcome these challenges, we investigated a facile method for generating biocompatible hydrogel based robots that are capable of being manipulated using an externally generated magnetic field. Here, we experimentally demonstrate the fabrication and autonomous control of loaded-alginate microspheres, which we term artificial cells. In order to generate these microparticles, we employed a centrifuge-based method in which microspheres were rapidly ejected from a nozzle tip. Specifically, we used two mixtures of sodium alginate; one containing iron oxide nanoparticles and the other containing mammalian cells. This mixture was loaded into a needle that was fixed on top of a microtube containing calcium chloride, and then briefly centrifuged to generate hundreds of Janus microspheres. The fabricated microparticles were then magnetically actuated with a rotating magnetic field, generated using electromagnetic coils, prompting the particles to roll across a glass substrate. Also, using vision-based feedback control, a single artificial cell was manipulated to autonomously move in a programmed pattern.

  18. Popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} microsphere for photocatalytic degradation of 2,4-dinitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Liu, Yutang [Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Xia, Xinnian, E-mail: xnxia@hnu.edu.cn [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wang, Longlu [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2017-06-15

    Highlights: • Popcorn balls-like microsphere photocatalyst. • High photocatalytic activity toward 2,4-DNP degradation. • Degradation kinetics, mechanism, active species were analyzed. • Excellent stable recycling performance. - Abstract: In this paper, novel popcorn balls-like ZnFe{sub 2}O{sub 4}-ZrO{sub 2} composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe{sub 2}O{sub 4}-ZrO{sub 2} photocatalyst (mass ratio of ZnFe{sub 2}O{sub 4}/ZrO{sub 2} = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe{sub 2}O{sub 4} and ZrO{sub 2}. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  19. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    Science.gov (United States)

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration

  20. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  1. Enhanced microwave absorption properties of MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons synthesized by a facile hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Han, Bingqian; Chen, Nan; Deng, Dongyang; Guan, Hongtao [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-08-15

    MnO{sub 2} hollow microspheres consisted of nanoribbons were successfully fabricated via a facile hydrothermal method with SiO{sub 2} sphere templates. The crystal structure, morphology and microwave absorption properties in X and Ku band of the as-synthesized samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vector network analyzer. The results show that the three-dimensional (3D) hollow microspheres are assembled by ultra thin and narrow one-dimensional (1D) nanoribbons. A rational process for the formation of hollow microspheres is proposed. The 3D MnO{sub 2} hollow microspheres possess improved dielectric and magnetic properties than the 1D nanoribbons prepared by the same procedures with the absence of SiO{sub 2} hard templates, which are closely related to their special nanostructures. The MnO{sub 2} microspheres also show much better microwave absorption properties in X (8–12 GHz) and Ku (12–18 GHz) microwave band compared with 1D MnO{sub 2} nanoribbons. The minimum reflection loss of −40 dB for hollow microsphere can be observed at 14.2 GHz and reflection loss below −10 dB is 3.5 GHz with a thickness of only 4 mm. The possible mechanism for the enhanced microwave absorption properties is also discussed. - Graphical abstract: MnO{sub 2} hollow microspheres composed of nanoribbons show the excellent microwave absorption properties in X and Ku band. - Highlights: • MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons were successfully prepared. • MnO{sub 2} hollow microspheres possess good microwave absorption performances. • The excellent microwave absorption properties are in X and Ku microwave band. • Electromagnetic impedance matching is great contribution to absorption properties.

  2. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution.

    Science.gov (United States)

    Snovski, Ron; Grinblat, Judith; Margel, Shlomo

    2011-09-06

    Magnetic poly(divinyl benzene)/Fe(3)O(4) microspheres with a narrow size distribution were produced by entrapping the iron pentacarbonyl precursor within the pores of uniform porous poly(divinyl benzene) microspheres prepared in our laboratory, followed by the decomposition in a sealed cell of the entrapped Fe(CO)(5) particles at 300 °C under an inert atmosphere. Magnetic onionlike fullerene microspheres with a narrow size distribution were produced by annealing the obtained PDVB/Fe(3)O(4) particles at 500, 600, 800, and 1100 °C, respectively, under an inert atmosphere. The formation of carbon graphitic layers at low temperatures such as 500 °C is unique and probably obtained because of the presence of the magnetic iron nanoparticles. The annealing temperature allowed control of the composition, size, size distribution, crystallinity, porosity, and magnetic properties of the produced magnetic microspheres. © 2011 American Chemical Society

  3. Magnetic properties of co-modified Fe,N-TiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Zolnierkiewicz Grzegorz

    2015-01-01

    Full Text Available Iron and nitrogen co-modified titanium dioxide nanocomposites, nFe,N-TiO2 (where n = 1, 5 and 10 wt% of Fe, were investigated by detailed dc susceptibility and magnetization measurements. Different kinds of magnetic interactions were evidenced depending essentially on iron loading of TiO2. The coexistence of superparamagnetic, paramagnetic and ferromagnetic phases was identified at high temperatures. Strong antiferromagnetic interactions were observed below 50 K, where some part of the nanocomposite entered into a long range antiferromagnetic ordering. Antiferromagnetic interactions were attributed to the magnetic agglomerates of iron-based and trivalent iron ions in FeTiO3 phase,whereas ferromagnetic interactions stemmed from the F-center mediated bound magnetic polarons.

  4. Microsphere formation in droplets using antisolvent vapour precipitation technique

    OpenAIRE

    Chew, Sean Jun Liang

    2017-01-01

    In previous studies, the antisolvent vapour precipitation method has been proven to produce uniformly sized lactose microspheres (1.0 µm) from a single droplet (1.2 mm diameter) at atmospheric pressure. These types of particles have potential applications in the pharmaceutical industry, especially due to their high dissolution rate. This project looked into the possibility of using antisolvent vapour precipitation to produce microspheres from finely atomised droplets. Microspheres in the sub-...

  5. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  6. Simulation Model of Microsphere Distribution for Selective Internal Radiation Therapy Agrees With Observations

    Energy Technology Data Exchange (ETDEWEB)

    Högberg, Jonas, E-mail: jonas.hogberg@radfys.gu.se [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Rizell, Magnus [Department of Surgery, Sahlgrenska University Hospital, Gothenburg (Sweden); Hultborn, Ragnar; Svensson, Johanna [Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Henrikson, Olof [Department of Radiology, Sahlgrenska University Hospital, Gothenburg (Sweden); Mölne, Johan [Department of Pathology, Sahlgrenska University Hospital, Gothenburg (Sweden); Gjertsson, Peter [Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg (Sweden); Bernhardt, Peter [Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden)

    2016-10-01

    Purpose: To perform a detailed analysis of microsphere distribution in biopsy material from a patient treated with {sup 90}Y-labeled resin spheres and characterize microsphere distribution in the hepatic artery tree, and to construct a novel dichotomous bifurcation model for microsphere deposits and evaluate its accuracy in simulating the observed microsphere deposits. Methods and Materials: Our virtual model consisted of arteries that successively branched into 2 new generations of arteries at 20 nodes. The artery diameter exponentially decreased from the lowest generation to the highest generation. Three variable parameters were optimized to obtain concordance between simulations and measure microsphere distributions: an artery coefficient of variation (ACV) for the diameter of all artery generations and the microsphere flow distribution at the nodes; a hepatic tree distribution volume (HDV) for the artery tree; and an artery diameter reduction (ADR) parameter. The model was tested against previously measured activity concentrations in 84 biopsies from the liver of 1 patient. In 16 of 84 biopsies, the microsphere distribution regarding cluster size and localization in the artery tree was determined via light microscopy of 30-μm sections (mean concentration, 14 microspheres/mg; distributions divided into 3 groups with mean microsphere concentrations of 4.6, 14, and 28 microspheres/mg). Results: Single spheres and small clusters were observed in terminal arterioles, whereas large clusters, up to 450 microspheres, were observed in larger arterioles. For 14 microspheres/mg, the optimized parameter values were ACV=0.35, HDV = 50 cm{sup 3}, and ADR=6 μm. For 4.6 microspheres/mg, ACV and ADR decreased to 0.26 and 0 μm, respectively, whereas HDV increased to 130 cm{sup 3}. The opposite trend was observed for 28 microspheres/mg: ACV = 0.49, HDV = 20 cm{sup 3}, and ADR = 8 μm. Conclusion: Simulations and measurements reveal that microsphere clusters are

  7. XPS analysis of aluminosilicate microspheres bioactivity tested in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Todea, M.; Vanea, E. [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania); Bran, S. [University of Medicine and Pharmacy “Iuliu Haţieganu”, Department of Cranio-Maxillofacial Surgery, 400029 Cluj-Napoca (Romania); Berce, P. [Technical University of Cluj-Napoca, Faculty of Machine Building and National Centre of Rapid Prototyping, 400641 Cluj-Napoca (Romania); Simon, S., E-mail: simons@phys.ubbcluj.ro [Faculty of Physics and Institute of Interdisciplinary Research on Bio-Nano-Sciences, Babes Bolyai University, Cluj-Napoca 400084 (Romania)

    2013-04-01

    The study aims to characterize surface properties of aluminosilicate microspheres incorporating yttrium, with potential biomedical applications. Micrometric particles of spherical shape were obtained by spray drying method. The behavior of aluminosilicate microspheres without yttrium and with yttrium was investigated under in vitro conditions, by seven days incubation in simulated body fluid (SBF). The surface elemental composition and the atomic environments on outermost layer of the microspheres, prior to and after incubation in SBF were evaluated by X-ray photoelectron spectroscopy (XPS) in order to investigate their bioactivity. The results were analyzed to underline the effect of yttrium addition on surface properties of the aluminosilicate microspheres and implicitly on the behavior of the samples in simulated body environments.

  8. Microspheres with an ultra high holmium content for brachytherapy of malignancies

    International Nuclear Information System (INIS)

    Lira, Raphael A.; Myamoto, Douglas M.; Souza, Jaime R.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de; Osso Junior, Joao A.; Martinelli, Jose R.

    2011-01-01

    The overall objective of this work is to develop biodegradable microspheres intended for internal radiation therapy which provides an improved treatment for hepatic carcinomas. The most studied brachytherapy system employing microspheres made of holmium-biopolymer system is composed by poly(L-lactic acid) (PLLA) and holmium acetylacetonate (HoAcAc). The importance of the holmium high content in the microspheres can be interpreted as follow from a therapeutic standpoint, to achieve an effective use of microspheres loaded with HoAcAc, a high content of holmium is required to yield enough radioactivity with a relatively low amount of microspheres.The usual amounts of holmium that are incorporated in the microspheres composed by poly(L-lactic acid) and HoAcAc are 17.0 ± 0.5% (w/w) of holmium, which corresponds to a loading of about 50% of HoAcAc. Different approaches have been investigated to increase that value. One updated approach towards this direction is the production of microspheres with ultrahigh holmium as matrix using HoAcAc crystals as the sole starting material without the use of biopolymer. Likewise, in the search of microspheres with increased holmium content , it has been demonstrated that by changing the HoAcAc crystal structure by its recrystallization from crystal phase to the amorphous there is lost of acetylacetonate and water molecules causing the increasing of the holmium content. Microspheres were prepared by solvent evaporation, using holmium acetylacetonate (HoAcAc) crystals as the sole ingredient. Microspheres were characterized by using light and scanning electron microscopy, infrared and Raman spectroscopy, differential scanning calorimetry, X-rays diffraction, and confocal laser scanning microscopy. (author)

  9. Microspheres with an ultra high holmium content for brachytherapy of malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Lira, Raphael A.; Myamoto, Douglas M.; Souza, Jaime R.; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia; Martinelli, Jose R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencias e Tecnologia de Materiais

    2011-07-01

    The overall objective of this work is to develop biodegradable microspheres intended for internal radiation therapy which provides an improved treatment for hepatic carcinomas. The most studied brachytherapy system employing microspheres made of holmium-biopolymer system is composed by poly(L-lactic acid) (PLLA) and holmium acetylacetonate (HoAcAc). The importance of the holmium high content in the microspheres can be interpreted as follow from a therapeutic standpoint, to achieve an effective use of microspheres loaded with HoAcAc, a high content of holmium is required to yield enough radioactivity with a relatively low amount of microspheres.The usual amounts of holmium that are incorporated in the microspheres composed by poly(L-lactic acid) and HoAcAc are 17.0 {+-} 0.5% (w/w) of holmium, which corresponds to a loading of about 50% of HoAcAc. Different approaches have been investigated to increase that value. One updated approach towards this direction is the production of microspheres with ultrahigh holmium as matrix using HoAcAc crystals as the sole starting material without the use of biopolymer. Likewise, in the search of microspheres with increased holmium content , it has been demonstrated that by changing the HoAcAc crystal structure by its recrystallization from crystal phase to the amorphous there is lost of acetylacetonate and water molecules causing the increasing of the holmium content. Microspheres were prepared by solvent evaporation, using holmium acetylacetonate (HoAcAc) crystals as the sole ingredient. Microspheres were characterized by using light and scanning electron microscopy, infrared and Raman spectroscopy, differential scanning calorimetry, X-rays diffraction, and confocal laser scanning microscopy. (author)

  10. Preparation and Comparative Bioavailability Studies of Indomethacin-Loaded Cetyl Alcohol Microspheres

    Directory of Open Access Journals (Sweden)

    N. Vishal Gupta

    2013-01-01

    Full Text Available The purpose of the present study was to compare the in vitro release and to find out whether the bioavailability of a 75 mg indomethacin capsule (Microcid SR was equivalent to optimized formulation (indomethacin-loaded cetyl alcohol microspheres. Indomethacin-loaded cetyl alcohol microspheres were prepared by meltable emulsified cooling-induced technique. Surface morphology of microspheres has been evaluated using scanning electron microscopy. A single dose, randomized, complete cross over study of IM microspheres was carried out on 10 healthy male and female Albino sheep’s under fasting conditions. The plasma was separated and the concentrations of the drug were determined by HPLC-UV method. Plasma indomethacin concentrations and other pharmacokinetic parameters obtained were statistically analyzed. The SEM images revealed the spherical shape of fat microspheres, and more than 98.0% of the isolated microspheres were in the size range 12–32 μm. DSC, FTIR spectroscopy and stability studies indicated that the drug after encapsulation with fat microspheres was stable and compatible. Both formulations were found to be bioequivalent as evidenced by in vivo studies. Based on this study, it can be concluded that cetyl alcohol microspheres and Microcid SR capsule are bioequivalent in terms of the rate and extent of absorption.

  11. Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: electrophoretic characterisation of carboxyl- and amine-modified particles

    Czech Academy of Sciences Publication Activity Database

    Macková, Hana; Oukacine, F.; Plichta, Zdeněk; Hrubý, Martin; Kučka, Jan; Taverna, M.; Horák, Daniel

    2014-01-01

    Roč. 421, 1 May (2014), s. 146-153 ISSN 0021-9797 R&D Projects: GA MŠk 7E12053; GA ČR GAP503/10/0664 EU Projects: European Commission(XE) 246513 - NADINE Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * microspheres * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.368, year: 2014

  12. Development and Evaluation of Floating Microspheres of Curcumin ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in ...

  13. Microspheres of poly(ε-caprolactone) loaded Holmium-165: morphology and thermal degradation behavior

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Miyamoto, Douglas Massao; Lira, Raphael Arivar de; Osso Junior, Joao Alberto; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de

    2011-01-01

    Polycaprolactone (PCL), being one of the most important biocompatible and biodegradable aliphatic polyester, provides many potential biomedical. The preparation of biodegradable materials, polymer-based microspheres, is being developed by our group and the goal is to prepare and label with Ho-165 different polymer-based microspheres. The use of radionuclide-loaded microspheres is a promising treatment of liver malignancies. PCL microspheres can be loaded with holmium acetylacetonate (HoAcAc). PCL and PCL/HoAcAc microspheres were prepared by an emulsion solvent extraction/evaporation technique. The PCL/ HoAcAc microspheres were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP to radionuclide activation. Gamma irradiation was performed at 25 and 50 kGy doses. The microspheres were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and con focal laser scanning microscopy (CLSM). In the CLSM images were observed emission in 488 nm characteristic of holmium. The SEM surface image of PCL/HoAcAc microspheres showed more roughness than PCL microspheres. TG of PCL/HoAcAc microspheres showed a substantial weight loss above 200 degree C, indicating decomposition of HoAcAc. The residual weight indicates the presence of Ho 2 O 3 . Gamma irradiation at 25 and 50 kGy doses had no effect on the PCL/HoAcAc microspheres, which indicates that the chemical composition of the microspheres had not change. (author)

  14. Microspheres of poly({epsilon}-caprolactone) loaded Holmium-165: morphology and thermal degradation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Miyamoto, Douglas Massao; Lira, Raphael Arivar de; Osso Junior, Joao Alberto; Nascimento, Nanci; Azevedo, Mariangela de Burgos M. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polycaprolactone (PCL), being one of the most important biocompatible and biodegradable aliphatic polyester, provides many potential biomedical. The preparation of biodegradable materials, polymer-based microspheres, is being developed by our group and the goal is to prepare and label with Ho-165 different polymer-based microspheres. The use of radionuclide-loaded microspheres is a promising treatment of liver malignancies. PCL microspheres can be loaded with holmium acetylacetonate (HoAcAc). PCL and PCL/HoAcAc microspheres were prepared by an emulsion solvent extraction/evaporation technique. The PCL/ HoAcAc microspheres were irradiated in a nuclear reactor IEA-R1 at IPEN/CNEN-SP to radionuclide activation. Gamma irradiation was performed at 25 and 50 kGy doses. The microspheres were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and con focal laser scanning microscopy (CLSM). In the CLSM images were observed emission in 488 nm characteristic of holmium. The SEM surface image of PCL/HoAcAc microspheres showed more roughness than PCL microspheres. TG of PCL/HoAcAc microspheres showed a substantial weight loss above 200 degree C, indicating decomposition of HoAcAc. The residual weight indicates the presence of Ho{sub 2}O{sub 3}. Gamma irradiation at 25 and 50 kGy doses had no effect on the PCL/HoAcAc microspheres, which indicates that the chemical composition of the microspheres had not change. (author)

  15. Effect of Fabrication Process Parameters on the Size of Gelatin/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2009-12-01

    Full Text Available Nano-hydroxyapatite/gelatin (nHA/Ge microspheres are currently used in bone tissue engineering as bone filler. In this  study, the effect of fabrication process parameters on the particle size of nano-hydroxyapatite/gelatinmicrospheres was investigated. The nHA/Ge microspheres were fabricated using water in oil emulsion. In order to design an experimental design, a surface response model with 2 factors including the rate of shaking and water to oil volume ratio in 3 levels was applied. Particle size was evaluated by using an optical microscope. The morphology of microspheres and distribution of nano-particles within the microspheres were studied by using scanning electron microscope and Ca elemental map obtained from energy dispersive X-ray analysis (EDX, respectively. Statistical analysis of the results obtained from particle size measurements revealed that the rate of shaking has stronger influence on the particle size of microspheres. Morphological studies showed that the fabricated microspheres were spherical with smooth surface. Ca elemental map of the microspheres showed that nano-hydroxyapatite particles distributed uniformly within the microspheres.

  16. Preparation of hollow microspheres of Ce{sup 3+} doped NiCo ferrite with high microwave absorbing performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hong-zhen, E-mail: duanhz2000@163.com; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-15

    Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 µm and the particle size of the Ni{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was −18.8 dB at 5500 MHz. - Highlights: • Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method. • The influence of rare earth Ce{sup 3+} on the magnetic and absorbing properties of sample was studied. • When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively.

  17. Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs

    International Nuclear Information System (INIS)

    Hale, S.L.; Alker, K.J.; Kloner, R.A.

    1988-01-01

    Measurement of regional myocardial blood flow (RMBF) is crucial in experimental studies of myocardial ischemia and reperfusion in dogs. The standard measurement technique uses radioactive microspheres; however, not all institutions are able to dispose of radioactive waste and therefore cannot make use of this method. We tested a new, nonradioactive microsphere, labeled with colors instead of nuclides. Simultaneous blood flow measurements with two nuclide-labeled and two colored microspheres were performed after coronary occlusion in dogs. Both techniques show a within-method correlation of r greater than 0.98. Duplicate variability for paired RMBF values in 80 samples was 8.7 +/- 0.1% when computed with radioactive microspheres and 13.2 +/- 1.8% when computed with colored microspheres. There was a good correlation in the measurement of RMBF between the radioactive- and colored-microsphere methods (r = 0.98). The best-fitting linear regression line was expressed by the formula: Colored-microsphere RMBF = 1.11 (radioactive-microsphere RMBF)-0.02. When measured by colored microspheres, RMBF was approximately 8% higher than when computed with radioactive microspheres for blood flow values of 0-2 ml/min/g. When blood flow was increased pharmacologically to levels of 2-7.5 ml/min/g, colored microspheres yielded blood flow values 39% higher than the values computed by radioactive microspheres. We conclude that the nonradioactive, colored-microsphere method correlates with the radioactive technique, but at high flows, it yields values greater than those obtained with radioactive microspheres

  18. The synthesis and photocatalytic activity of ZnSe microspheres

    International Nuclear Information System (INIS)

    Cao Huaqiang; Xiao Yujiang; Zhang Sichun

    2011-01-01

    This paper reports the synthesis of semiconductor ZnSe microspheres composed of nanoparticles via a solvothermal route between the organic molecule selenophene (C 4 H 4 Se) and ZnCl 2 without adding any surfactant. The ZnSe microspheres were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), specific surface area measurement, and photoluminescence (PL) spectra. A strong and broad blue PL emission at 443 nm in wavelength (∼2.79 eV in photon energy) is attributed to the near-band-edge (NBE) emission of ZnSe, while the 530 nm peak is a defect-related (DL) emission. The photocatalytic activity of the as-prepared ZnSe microspheres was evaluated by photodegradation of methyl orange (MO) dye under ultraviolet (UV) light and visible light irradiation. The degradations of MO reach 94% or 95.1%, close to 100%, in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 7 or 10 h under UV irradiation, respectively. Meanwhile the degradations of MO reach 94.3% or 60.6% in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 12 h, respectively. The degradation rate of ZnSe microspheres is twice that of ZnSe commercial powder under UV light irradiation, and three times under visible light irradiation. The degradation process of MO dye on ZnSe microspheres under UV or visible light is also discussed.

  19. [Preparation of citrulline microspheres by spray drying technique for colonic targeting].

    Science.gov (United States)

    Bahri, S; Zerrouk, N; Lassoued, M-A; Tsapis, N; Chaumeil, J-C; Sfar, S

    2014-03-01

    Citrulline is an amino acid that becomes essential in situations of intestinal insufficiency such as short bowel syndrome. It is therefore interesting to provide the patients with dosage forms for routing citrulline to the colon. The aim of this work is to formulate microspheres of citrulline for colonic targeting by the technique of spray drying. Eudragit(®) FS 30D was selected as polymer to encapsulate citrulline using the spray drying technique. Citrulline and Eudragit(®) FS 30D were dissolved in water and ethanol, respectively. The aqueous and the ethanolic solutions were then mixed in 1:2 (v/v) ratio. Microspheres were obtained by nebulizing the citrulline-Eudragit(®) FS 30D solution using a Mini spray dryer equipped with a 0.7mm nozzle. The microspheres have been formulated using citrulline and Eudragit(®) FS 30D. The size distribution of microspheres was determined by light diffraction. The morphology of the microspheres was studied by electron microscopy. Manufacturing yields, encapsulation rate and dissolution profiles were also studied. The microspheres obtained had a spherical shape with a smooth surface and a homogeneous size except for the microspheres containing the highest concentration of polymer (90 %). The formulation showed that the size and morphology of the microspheres are influenced by the polymer concentration. Manufacturing yields were about 51 % but encapsulation rate were always very high (above 90 %). The in vitro dissolution study showed that the use of the Eudragit(®) FS 30D under these conditions is not appropriate to change the dissolution profile of the citrulline. This technique has led to the formulation of microspheres with good physical properties in terms of morphology and size. The compression of the microspheres should help to control citrulline release for colonic targeting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair.

    Science.gov (United States)

    Skop, Nolan B; Calderon, Frances; Cho, Cheul H; Gandhi, Chirag D; Levison, Steven W

    2016-10-01

    Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 µm, mean 64 µm) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Facile preparation of hierarchically porous polymer microspheres for superhydrophobic coating

    Science.gov (United States)

    Gao, Jiefeng; Wong, Julia Shuk-Ping; Hu, Mingjun; Li, Wan; Li, Robert. K. Y.

    2013-12-01

    A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during electrospraying influence the morphology of finally obtained products. In this paper, the influence of polymer concentration, the weight ratio between nonsolvent and polymer and the flowing rate on the morphology of the porous microsphere is carefully studied. The hierarchically porous microsphere significantly increases the surface roughness and thus the hydrophobicity, and the contact angle can reach as high as 152.2 +/- 1.2°. This nonsolvent assisted electrospraying opens a new way to fabricate superhydrophobic coating materials.A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during

  2. Preparation of chitosan/nano hydroxyapatite organic-inorganic hybrid microspheres for bone repair.

    Science.gov (United States)

    Chen, Jingdi; Pan, Panpan; Zhang, Yujue; Zhong, Shengnan; Zhang, Qiqing

    2015-10-01

    In this work, we encapsulated icariin (ICA) into chitosan (CS)/nano hydroxyapatite (nHAP) composite microspheres to form organic-inorganic hybrid microspheres for drug delivery carrier. The composition and morphology of composite microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and differential scanning calorimetry- thermogravimetric analysis (DSC-TGA). Moreover, we further studied the performance of swelling properties, degradation properties and drug release behavior of the microspheres. ICA, the extract of traditional Chinese medicine-epimedium, was combined to study drug release properties of the microspheres. ICA loaded microspheres take on a sustained release behavior, which can be not only ascribed to electrostatic interaction between reactive negative hydroxyl (OH) of ICA and positive amine groups (NH₂) of CS, but also depended on the homogeneous dispersion of HAP nanoparticles inside CS organic matrix. In addition, the adhesion and morphology of osteoblasts were detected by inverted fluorescence microscopy. The biocompatibility of CS/nHAP/ICA microspheres was evaluated by the MTT cytotoxicity assay, Hoechst 33258 and PI fluorescence staining. These studies demonstrate that composite microspheres provide a suitable microenvironment for osteoblast attachment and proliferation. It can be speculated that the ICA loaded CS-based organic-inorganic hybrid microspheres might have potential applications in drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigation of control conditions of uranium dioxide pellets sinterability through microspheres

    International Nuclear Information System (INIS)

    Assis, Gino de.

    1996-01-01

    Promotion or inhibition of ceramic powders sinterability, the decisive question in ceramic processing is approached in this dissertation. Each high density microsphere has been considered as a solid inclusion in a low density microspheres matrix, generating big pores. Such pores make it difficult for the pellets density due the fact that they are difficult to be eliminated. A master mixture, allowing the pellet densification in the projected range has been reached. Batches of microspheres have been observed sometimes with high apparent density and sometimes with low apparent density. This apparent density variation was attributed to changing the oxygen partial pressure during calcination under air atmosphere. It is evident that the control of the apparent density of the microspheres needs a further research in order to adjust the sinterability of the microspheres on the desired level.It was demonstrated that the produced microspheres do not have impurities levels that can promote its sinterability or avoid their use in nuclear area

  4. Recent advances in polymeric microspheres for parenteral drug delivery--part 1.

    Science.gov (United States)

    Mao, Shirui; Guo, Chunqiang; Shi, Yi; Li, Luk Chiu

    2012-09-01

    Polymeric microspheres have been established as a valuable parenteral drug delivery system for sustained release of therapeutic agents via subcutaneous or intramuscular injection. Biodegradable polymers which are either synthetic or from natural sources are reviewed with respect to recent advances in exploring their applications for microsphere fabrications. New information on the impact of formulation variables on the properties of microspheres formed by an emulsion method was also presented. The characterization of microspheres using advanced physical analytical techniques was also reviewed and the utilization of the information in assessing in vivo performance of the product was also highlighted. The broad clinical use of microspheres for delivery of therapeutic agents in particular biologics such as proteins has not been realized commercially. The limited availability of biodegradable polymers with a long history of regulatory approval and the challenges in gaining regulatory approval of a new polymer have hindered the development of microspheres for parenteral drug delivery.

  5. Formulation and characterization of ketoprofen embedded polycaprolactone microspheres using solvent evaporation method

    Directory of Open Access Journals (Sweden)

    Pankaj Wagh

    2015-07-01

    Full Text Available The purpose of this study was to prepare polymeric microspheres containing Ketoprofen (KFN by single emulsion [oil-in-water (o/w] solvent evaporation method. Polycaprolactone (PCL, biocompatible polymer, was used for the preparation of sustained released microspheres of KFN. A Plackett–Burman design was employed by using the Design-Expert® software (Version- 9.0.3.1, Stat-Ease Inc., Minneapolis, MN. Eleven factors out of six processing factors were investigated in order to enhance the encapsulation efficiency (EE of the microspheres. The resultant microspheres were characterized for their size, morphology, EE, and drug release. Imaging of particles was performed by field emission scanning electron microscopy. Interaction between the drug and polymers were investigated by Fourier transform infrared (FTIR spectroscopy, X-ray powder diffractometry (XRPD and Differential Scanning Calorimetry (DSC. Graphical and mathematical analyses of the design showed that concentration of factor PCL (B and varying speed (F, revolution per minute, rpm were significant negative effect on the EE and identified as the significant factor determining the EE of the microspheres. The microspheres showed high % EE (31.18 % to 96.81 %. The microspheres were found to be discrete, oval with porous surface. The FTIR analysis confirmed no interaction of KFN with the polymer. The XRPD revealed the dispersion of drug within microspheres formulation. Sustained drug release profile over 12 h was achieved by PCL polymer. In conclusion, polymeric microspheres containing KFN can be successfully prepared using the technique of experimental design, and these results helped in finding the optimum formulation variables for EE of microspheres.

  6. Formulation and Evaluation of Microspheres Based on Gelatin ...

    African Journals Online (AJOL)

    Formulation and Evaluation of Microspheres Based on Gelatin-Mucin Admixtures for the Rectal Delivery of Cefuroxime Sodium. K C Ofokansi, M U Adikwu. Abstract. Purpose: Swellable microspheres based on polymers or their admixtures are frequently employed as drug delivery systems to achieve a controlled release ...

  7. Polymer-coated albumin microspheres as carriers for intravascular tumour targeting of cisplatin.

    Science.gov (United States)

    Verrijk, R; Smolders, I J; McVie, J G; Begg, A C

    1991-01-01

    We used a poly-lactide-co-glycolide polymer (PLAGA 50:50) to formulate cisplatin (cDDP) into microspheres designed for intravascular administration. Two systems were developed. PLAGA-coated albumin microspheres and microspheres consisting of PLAGA only. PLAGA-coated microspheres displayed a mean diameter of 31.8 +/- 0.9 microns and a payload of 7.5% cDDP (w/w). Solid PLAGA microspheres exhibited a mean diameter of 19.4 +/- 0.6 microns and a payload of 20% cDDP. Release characteristics and in vitro effects on L1210 leukemia and B16 melanoma cell lines were investigated. Both types of microsphere overcame the initial rapid release of cDDP (burst effect), and PLAGA-coated albumin microspheres also showed a lag phase of approximately 30 min before cDDP release began. PLAGA-coated albumin microspheres released most of their payload through diffusion, and the coating eventually cracked after 7 days' incubation in saline supplemented with 0.1% Tween at 37 degrees C, enabling the release of any cDDP remaining. Effects of platinum, pre-released from PLAGA-coated albumin microspheres on the in vitro growth of L1210 cells were comparable with those of standard formulations (dissolved) of cDDP. Material released from non-drug-loaded PLAGA microspheres had no effect on L1210 cell growth, suggesting the absence of cytotoxic compounds in the matrix. The colony-forming ability of B16 cells was also equally inhibited by standard cDDP and pre-released drug. These studies show that formulation of cDDP in PLAGA-based microspheres prevents the rapid burst effect of cDDP seen in previous preparations and offers an improved system of administration for hepatic artery infusion or adjuvant therapy, enabling better clinical handling and the promise of a higher ratio of tumour tissue to normal tissue.

  8. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    Science.gov (United States)

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  9. Investigation of defects on PAMS microspheres fabricated with microencapsulation method

    International Nuclear Information System (INIS)

    Chen Sufen; Li Bo; Liu Yiyang; Zhang Zhanwen; Qi Xiaobo

    2012-01-01

    Poly-(α-methylstyrene) (PAMS) microspheres were fabricated with W1/O/W2 double emulsion microencapsulation method, and the effects of polyvinylalcohol (PVA) and CaCl 2 weight concentrations and the O/W2 phase ratio on the percentages of defected PAMS microspheres were studied. The weight concentrations of PVA and CaCl 2 and the O/W2 phase ratio in the fabrication process of PAMS microspheres were optimized. The results show that, for the three parameters being 1.0%, 1.5%, and 0.01, respectively, the percentage of the defect-free PAMS microspheres without vacuoles in the shell wall can be up to 60%. (authors)

  10. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2015-01-01

    functional PDMS microspheres were coated with poly(methyl methacrylate) (PMMA) by spin coating with different concentrations of PMMA solutions. The quality of the resulting PMMA shell is investigated using rheological measurements at 50 8C with a timesweep procedure. The results strongly suggest that PMMA-coated...... PDMS microspheres react around 20 times slower than the uncoated ones, and that the PMMA shell significantly hinders the reaction between the PDMS microsphere and cross-linker. Thus the thin PMMA shells are very efficient in protecting the reactive PDMS microspheres, since the PMMA shell forms...

  11. FEMIC (Fibromes Embolises aux MICrospheres calibrees): Uterine Fibroid Embolization using Tris-acryl Microspheres. A French Multicenter Study

    International Nuclear Information System (INIS)

    Joffre, Francis; Tubiana, Jean-Michel; Pelage, Jean-Pierre

    2004-01-01

    Purpose: A French multicenter registry was set up to confirm the safety and efficacy of large calibrated tris-acryl gelatin microspheres for embolization of symptomatic fibroids. Methods: Technical recommendations included embolization using large microspheres (>500 μm) with no secondary embolization agent. Postprocedural pain, clinical improvement and adverse events were prospectively evaluated during a follow-up period of at least 6 months.Results: Eighty-five women complaining of fibroid-related symptoms entered the study. In seven women, a secondary embolization agent was used in addition to microspheres. Complete resolution of menorrhagia was achieved in 84% of women at 24 months and significant uterine and fibroid volume reductions were noted after 6 months (37% and 73%, respectively). Three women experienced definitive amenorrhea (4%) and two women required hysteroscopic resection of a fibroid. Eight women were treated by hysterectomy because of treatment failure. In seven of these women, treatment failure was explained by an additional cause of symptoms including diffuse adenomyosis, endometrial hyperplasia or ovarian artery supply to the fibroids.Conclusion: Limited uterine artery embolization using large microspheres has good clinical success rate with low postprocedural pain and complications. Women can expect excellent midterm results with a high level of symptom control and significant fibroid volume reduction. Confidence in the end-point recommended here may require the experience of several cases

  12. Properties of dry masonry mixtures based on hollow aluminosilicate microspheres

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav

    2017-01-01

    Full Text Available At present, there is a steady increase in the volume of housing construction in the Russian Federation. The modern trends in the field of energy and resource saving determine the need of the use of efficient building materials that ensure the safety, comfort and minimum cost of housing construction. Among the materials, often used for erecting of fencing structures, it is possible to note effective small-piece elements (ceramic and light-weight concrete units, etc.. To ensure the solidity of such structures, it is necessary to use the masonry mortars whose properties correspond to those of the main wall material. The existing dry mixes for obtaining of such mortars are expensive and often do not meet the minimum physical-and-mechanical and exploitation requirements. The solution of this problem is the usage of the hollow ceramics (aluminosilicate microspheres as a filler for such mixes. The article presents the results of studies of the main physical-and-mechanical and exploitation characteristics of dry masonry mixes with hollow ceramics microspheres modified with various chemical additives. The effect of the compounding factors on the average density and strength of dry masonry mixes was studied. The compositions have been optimized by the methods of mathematical planning.

  13. Polymer based microspheres of aceclofenac as sustained release parenterals for prolonged anti-inflammatory effect

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet; Sharma, Sumit; Sinha, VR, E-mail: sinha_vr@rediffmail.com

    2017-03-01

    Poly(lactic-co-glycolic acid) (PLGA) (75:25) and polycaprolactone (PCL) microspheres were fabricated for prolonged release of aceclofenac by parenteral administration. Microspheres encapsulating aceclofenac were designed to release the drug at controlled rate for around one month. Biodegradable microspheres were prepared by solvent emulsification evaporation method in different polymer:drug ratios (1:1, 2:1 and 3:1). After drug loading, PLGA and PCL microspheres showed a controlled size distribution with an average size of 11.75 μm and 3.81 μm respectively and entrapment efficiency in the range of 90 ± 0.72% to 91.06 ± 4.01% with PLGA and 83.01 ± 2.13% to 90.4 ± 2.11% with PCL. Scanning electron microscopy has confirmed good spherical structures of microspheres. The percent yield of biodegradable polymeric microspheres ranged between 30.95 ± 10.14% to 92.84 ± 3.15% and 47.33 ± 4.72% to 80 ± 3.60% for PLGA and PCL microspheres respectively. PLGA microspheres followed Higuchi release pattern while Korsmeyer-Peppas explained the release pattern of PCL microspheres. Stability studies of microspheres were also carried out by storing the preparations at 2-8 °C for 30, 60 and 90 days and evaluating them for entrapment efficiency, residual drug content and polymer drug compatability. In-vivo studies showed significant anti-inflammatory activity of microspheres upto 48 hours using the carrageenan induced rat paw oedema model. - Highlights: • PLGA and PCL polymeric microspheres for parenteral prolonged drug delivery system were formulated. • Polymeric microspheres were characterized physically and drug excipient incompatability. • Three months accelerated stability studies were carried for drug loaded polymeric microspheres. • Pharmacodynamic studies prove the rationality of sustained therapeutic effect of designed drug delivery system.

  14. Controllable growth and photocatalytic activity of Cu{sub 2}O solid microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hong; Zhang, Junying, E-mail: zjy@buaa.edu.cn; Wang, Mei

    2013-09-01

    Graphical abstract: - Highlights: • 3 μm uniform Cu{sub 2}O solid microspheres with abundant nanopores are achieved. • NH{sub 2}OH·HCl and SDS are main factors that manipulate morphologies of Cu{sub 2}O particles. • Surface features of microspheres influenced the photocatalytic activity of Cu{sub 2}O. • Microspheres are transforming to polyhedrons with extended holding time. - Abstract: A series of Cu{sub 2}O solid microspheres with different surface features were prepared and their photocatalytic activities were studied. The experiment conditions were investigated and the formation mechanism was explored systematically. It was found that varying the amounts of NH{sub 2}OH·HCl reductant in alkaline solutions changed the reaction process and thus altered the surface features of Cu{sub 2}O microspheres. Sodium dodecyl sulfate (SDS) surfactant, introduced as a morphology directing agent, caused the nuclei aggregation and growth process of Cu{sub 2}O solid microspheres by precisely realizing the opposite charges’ directional attraction. This SDS-mediated method can be readily extended to synthesizing solid microspheres of other metal oxides. Meanwhile, it was found that Cu{sub 2}O solid microspheres with abundant nanopores on the surface showed much higher efficient catalytic activity for decoloring methyl orange (MO) aqueous solution than with other surface features under visible light irradiation. Furthermore, we found that prolonging the holding time made Cu{sub 2}O microspheres transform to polyhedrons.

  15. Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.

    Science.gov (United States)

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2015-01-01

    Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.

  16. A Comparative Study of Production of Glass Microspheres by using Thermal Process

    Science.gov (United States)

    Lee, May Yan; Tan, Jully; Heng, Jerry YY; Cheeseman, Christopher

    2017-06-01

    Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. Microspheres typical ranges from 1 to 200 μm in diameter. Microsphere are made from glass, ceramic, carbon or plastic depending on applications. Solid glass microsphere is manufactured by direct burning of glass powders while hollow glass microspheres is produced by adding blowing agent to glass powder. This paper presented the production of glass microspheres by using the vertical thermal flame (VTF) process. Pre-treated soda lime glass powder with particle sized range from 90 to 125μm was used in this work. The results showed that glass microspheres produced by two passes through the flame have a more spherical shape as compared with the single pass. Under the Scanning Electron Microscope (SEM), it is observed that there is a morphology changed from uneven surface of glass powders to smooth spherical surface particles. Qualitative analysis for density of the pre-burned and burned particles was performed. Burned particles floats in water while pre-burned particles sank indicated the change of density of the particles. Further improvements of the VTF process in terms of the VTF set-up are required to increase the transformation of glass powders to glass microspheres.

  17. Apparatus for manufacturing ceramics microspheres for cementing applications

    NARCIS (Netherlands)

    2012-01-01

    A method and apparatus for manufacturing ceramic microspheres from industrial slag. The micro spheres have a particle size of about 38 microns to about 150 microns. The microspheres are used to create a cement slurry having a density of at least about Illbs/g. The resultant cement slurry may then be

  18. DEGRADATION AND INTRAHEPATIC COMPATIBILITY OF ALBUMIN-HEPARIN CONJUGATE MICROSPHERES

    NARCIS (Netherlands)

    CREMERS, HFM; WOLF, RFE; BLAAUW, EH; SCHAKENRAAD, JM; LAM, KH; NIEUWENHUIS, P; VERRIJK, R; KWON, G; BAE, YH; KIM, SW; FEIJEN, J

    The in vitro degradation properties of glutaraldehyde cross-linked albumin and albumin-heparin conjugate microspheres (AMS and AHCMS respectively) were evaluated using light microscopy, turbidity measurements and heparin release determinations, showing that the microspheres are degraded by

  19. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  20. Preparation and evaluation of enrofloxacin microspheres and tissue distribution in rats.

    Science.gov (United States)

    Yang, Fan; Kang, Jijun; Yang, Fang; Zhao, Zhensheng; Kong, Tao; Zeng, Zhenling

    2015-01-01

    New enrofloxacin microspheres were formulated, and their physical properties, lung-targeting ability, and tissue distribution in rats were examined. The microspheres had a regular and round shape. The mean diameter was 10.06 µm, and the diameter of 89.93% of all microspheres ranged from 7.0 µm to 30.0 µm. Tissue distribution of the microspheres was evaluated along with a conventional enrofloxacin preparation after a single intravenous injection (7.5 mg of enrofloxacin/kg bw). The results showed that the elimination half-life (t1/2β) of enrofloxacin from lung was prolonged from 7.94 h for the conventional enrofloxacin to 13.28 h for the microspheres. Area under the lung concentration versus time curve from 0 h to ∞ (AUC00∞) was increased from 11.66 h·µg/g to 508.00 h·µg/g. The peak concentration (Cmax) in lung was increased from 5.95 µg/g to 93.36 µg/g. Three lung-targeting parameters were further assessed and showed that the microspheres had remarkable lung-targeting capabilities.

  1. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  2. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  3. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    Science.gov (United States)

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  4. ADRIAMYCIN-LOADED ALBUMIN-HEPARIN CONJUGATE MICROSPHERES FOR INTRAPERITONEAL CHEMOTHERAPY

    NARCIS (Netherlands)

    CREMERS, HFM; SEYMOUR, LW; LAM, K; LOS, G; KWON, G; BAE, YH; KIM, SW; FEIJEN, J

    1994-01-01

    Adriamycin-loaded albumin-heparin conjugate microspheres (ADR-AHCMS) were evaluated as possible intraperitoneal (i.p.) delivery systems for site-specific cytotoxic action. The biocompatibility of the microspheres after intraperitoneal injection was tested first. 1 day after i.p. administration of

  5. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Lu Zheng; Zhang Juan; Ma Yunzi; Song Siyue; Gu Wei

    2012-01-01

    Porous calcium carbonate/carboxymethylcellulose (CaCO 3 /CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO 3 /CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO 3 /CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO 3 /CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO 3 /CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO 3 /CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO 3 /CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  6. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  7. Formulation and Evaluation of Microsphere Based Oro Dispersible Tablets of Itopride Hcl

    Directory of Open Access Journals (Sweden)

    S.S Agrawal

    2012-09-01

    Full Text Available Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing.Methods:With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results:The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8 and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. ConclusionsEffective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  8. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl

    Directory of Open Access Journals (Sweden)

    Shah Sanjay

    2012-09-01

    Full Text Available Abstract Background The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. Methods With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. Results The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8 and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Conclusions Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  9. Formulation and evaluation of microsphere based oro dispersible tablets of itopride hcl.

    Science.gov (United States)

    Shah, Sanjay; Madan, Sarika; Agrawal, Ss

    2012-09-03

    The purpose of the present work is to mask the intensely bitter taste of Itopride HCl and to formulate an Oro dispersible tablet (ODT) of the taste-masked drug by incorporation of microspheres in the tablets for use in specific populations viz. pediatrics, geriatrics and patients experiencing difficulty in swallowing. With this objective in mind, microspheres loaded with Itopride HCl were prepared by solvent evaporation method using acetone as solvent for pH-sensitive polymer, Eudragit EPO and light liquid paraffin as the encapsulating medium. The prepared microspheres were characterized with regard to yield, drug content, flow properties, particle size and size distribution, surface features, in vitro drug release and taste. The ODTs so prepared from these microspheres were evaluated for hardness, thickness, weight variation, friability, disintegration time, drug content, wetting time, water absorption ratio, moisture uptake, in vitro dispersion, in vitro disintegration, in vitro drug release and stability. The average size of microspheres was found to be satisfactory in terms of the size and size distribution. Microspheres prepared were of a regular spherical shape. Comparison of the dissolution profiles of microspheres in different pH media showed that microspheres having drug: polymer ratio of 1:2 produced a retarding effect in simulated salivary fluid (pH 6.8) and were further used for formulation into ODTs after addition of suitable amounts of excipients such as superdisintegrant, diluent, sweetener and flavor of directly compressible grade. Effective taste-masking was achieved for Itopride HCl by way of preparation of microspheres and ODTs of acceptable characteristics.

  10. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  11. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  12. Dual Drug Loaded Biodegradable Nanofibrous Microsphere for Improving Anti-Colon Cancer Activity

    Science.gov (United States)

    Fan, Rangrang; Li, Xiaoling; Deng, Jiaojiao; Gao, Xiang; Zhou, Liangxue; Zheng, Yu; Tong, Aiping; Zhang, Xiaoning; You, Chao; Guo, Gang

    2016-06-01

    One of the approaches being explored to increase antitumor activity of chemotherapeutics is to inject drug-loaded microspheres locally to specific anatomic sites, providing for a slow, long term release of a chemotherapeutic while minimizing systemic exposure. However, the used clinically drug carriers available at present have limitations, such as their low stability, renal clearance and residual surfactant. Here, we report docetaxel (DOC) and curcumin (CUR) loaded nanofibrous microspheres (DOC + CUR/nanofibrous microspheres), self-assembled from biodegradable PLA-PEO-PPO-PEO-PLA polymers as an injectable drug carrier without adding surfactant during the emulsification process. The obtained nanofibrous microspheres are composed entirely of nanofibers and have an open hole on the shell without the assistance of a template. It was shown that these DOC + CUR/nanofibrous microspheres could release curcumin and docetaxel slowly in vitro. The slow, sustained release of curcumin and docetaxel in vivo may help maintain local concentrations of active drug. The mechanism by which DOC + CUR/nanofibrous microspheres inhibit colorectal peritoneal carcinomatosis might involve increased induction of apoptosis in tumor cells and inhibition of tumor angiogenesis. In vitro and in vivo evaluations demonstrated efficacious synergistic antitumor effects against CT26 of curcumin and docetaxel combined nanofibrous microspheres. In conclusion, the dual drug loaded nanofibrous microspheres were considered potentially useful for treating abdominal metastases of colorectal cancer.

  13. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  14. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; van het Schip, A.D.; Nijsen, J.F.W.

    2009-01-01

    The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  15. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    Science.gov (United States)

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes.

  16. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  17. Recovery of Small-Sized Blood Vessels in Ischemic Bone under Static Magnetic Field

    Directory of Open Access Journals (Sweden)

    Shenzhi Xu

    2007-01-01

    Full Text Available Effects of static magnetic field (SMF on the vascularization in bone were evaluated using an ischemic bone model, where rat femoral artery was ligated. Magnetized and unmagnetized samarium–cobalt rods were implanted transcortically into the middle diaphysis of the ischemic femurs. Collateral circulation was evaluated by injection of microspheres into the abdominal aorta at the third week after ligation. It was found that the bone implanted with a magnetized rod showed a larger amount of trapped microspheres than that with an unmagnetized rod at the proximal and the distal region (P < 0.05 proximal region. There were no significant differences at the middle and the distal region. This tendency was similar to that of the bone mineral density in the SMF-exposed ischemic bone.

  18. Evaluation of the Thermosensitive Release Properties of Microspheres Containing an Agrochemical Compound.

    Science.gov (United States)

    Terada, Takatoshi; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    The purpose of this study was to develop a deeper understanding of the key physicochemical parameters involved in the release profiles of microsphere-encapsulated agrochemicals at different temperatures. Microspheres consisting of different polyurethanes (PUs) were prepared using our previously reported solventless microencapsulation technique. Notably, these microspheres exhibited considerable differences in their thermodynamic characteristics, including their glass transition temperature (T g ), extrapolated onset temperature (T o ) and extrapolated end temperature (T e ). At test temperatures below the T o of the PU, only 5-10% of the agrochemical was rapidly released from the microspheres within 1 d, and none was released thereafter. However, at test temperatures above the T o of the PU, the rate of agrochemical release gradually increased with increasing temperatures, and the rate of release from the microspheres was dependent on the composition of the PU. Taken together, these results show that the release profiles of the microspheres were dependent on their thermodynamic characteristics and changes in their PU composition.

  19. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    Science.gov (United States)

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  20. Pharmacodynamics of diclofenac from novel Eudragit entrapped microspheres.

    Science.gov (United States)

    Momoh, M A; Kenechukwu, F C; Adedokun, M O; Odo, C E; Attama, A A

    2014-05-01

    Effective clinical utilization of non-steroidal anti-inflammatory drugs such as diclofenac sodium (DS) is significantly limited by their ulcerogenic potential and poor bioavailability after oral administration, thus necessitating the need for a better carrier to minimize these obvious limitations. The objective of this study was to evaluate Eudragit® RS100/RL100 microspheres formulated by the solvent-evaporation technique for improved delivery of diclofenac. Three batches of (DF1, DF2 and DF3) microspheres were prepared using different ratios of Eudragit RS-100 and RL-100 polymers based on the solvent-evaporation method. The microspheres were characterized based on morphological properties, particle size analysis and encapsulation efficiency (EE%). In vitro release of DS was investigated in both 0.1 N HCl (pH 1.2) and phosphate-buffered saline (pH 7.4), while anti-inflammatory studies were evaluated in the rat model. Maximum EE% of 86.61 ± 0.11, 88.14 ± 0.16 and 85.50 ± 0.21 was obtained for DF1, DF2 and DF3, respectively. Discrete, smooth and brownish microspheres of size range 437 ± 0.01-479 ± 0.21 µm were obtained. Release of DS from the formulation depends on the polymer ratio. All the batches exhibited good anti-inflammatory activities. Microsphere formulations based on Eudragit® polymers would likely offer a reliable and alternative means of delivering DS orally.

  1. Development and evaluation of floating microspheres of curcumin in ...

    African Journals Online (AJOL)

    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in ...

  2. Microspheres with ultrahigh holmium content for radioablation of malignancies

    NARCIS (Netherlands)

    Bult, W; Seevinck, P R; Krijger, G C; Visser, T; Kroon-Batenburg, L M J; Bakker, C J G; Hennink, W E; van het Schip, A D; Nijsen, J F W

    PURPOSE: The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  3. Microspheres with Ultrahigh Holmium Content for Radioablation of Malignancies

    NARCIS (Netherlands)

    Bult, W.; Seevinck, P.R.; Krijger, G.C.; Visser, T.; Kroon-Batenburg, L.M.J.; Bakker, C.J.G.; Hennink, W.E.; Van het Schip, A.D.; Nijsen, J.F.W.

    Purpose The aim of this study was to develop microspheres with an ultra high holmium content which can be neutron activated for radioablation of malignancies. These microspheres are proposed to be delivered selectively through either intratumoral injections into solid tumors or administered via an

  4. INVESTIGATION OF DRUG RELEASE FROM BIODEGRADABLE PLG MICROSPHERES: EXPERIMENT AND THEORY

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS, MALCOLM J. [Los Alamos National Laboratory; BERCHANE, NADER S. [Los Alamos National Laboratory; CARSON, KENNETH H. [Los Alamos National Laboratory; RICE-FICHT, ALLISON C. [Los Alamos National Laboratory

    2007-01-30

    Piroxicam containing PLG microspheres having different size distributions were fabricated, and in vitro release kinetics were determined for each preparation. Based on the experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the system size was increased. The mathematical model gave a good fit to the experimental release data.

  5. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  6. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  7. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Ke; Ye, Zhaoyang [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)

    2012-12-01

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 {mu}m to 80 {mu}m and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: Black-Right-Pointing-Pointer The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. Black-Right-Pointing-Pointer The microspheres exhibited porous surface and inter-connective pore structure. Black-Right-Pointing-Pointer The surface and internal pore size and porosity of microsphere could be controlled. Black-Right-Pointing-Pointer The porous microspheres exhibited an improved cell adhesion and proliferation. Black

  8. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  9. Occupational radiation exposure of medical staff performing 90Y-loaded microsphere radioembolization

    International Nuclear Information System (INIS)

    Laffont, Sophie; Ardisson, Valerie; Lenoir, Laurence; Rolland, Yan; Rohou, Tanguy; Edeline, Julien; Pracht, Marc; Sourd, Samuel Le; Lepareur, Nicolas; Garin, Etienne

    2016-01-01

    Radioembolization of liver cancer with 90 Y-loaded microspheres is increasingly used but data regarding hospital staff exposure are scarce. We evaluated the radiation exposure of medical staff while preparing and injecting 90 Y-loaded glass and resin microspheres especially in view of the increasing use of these products. Exposure of the chest and finger of the radiopharmacist, nuclear medicine physician and interventional radiologist during preparation and injection of 78 glass microsphere preparations and 16 resin microsphere preparations was monitored. Electronic dosimeters were used to measure chest exposure and ring dosimeters were used to measure finger exposure. Chest exposure was very low for both products used (<10 μSv from preparation and injection). In our experience, finger exposure was significantly lower than the annual limit of 500 mSv for both products. With glass microspheres, the mean finger exposure was 13.7 ± 5.2 μSv/GBq for the radiopharmacist, and initially 17.9 ± 5.4 μSv/GBq for the nuclear medicine physician reducing to 13.97 ± 7.9 μSv/GBq with increasing experience. With resin microspheres, finger exposure was more significant: mean finger exposure for the radiopharmacist was 295.1 ± 271.9 μSv/GBq but with a reduction with increasing experience to 97.5 ± 35.2 μSv/GBq for the six most recent dose preparations. For administration of resin microspheres, the greatest mean finger exposure for the nuclear medicine physician (the most exposed operator) was 235.5 ± 156 μSv/GBq. Medical staff performing 90 Y-loaded microsphere radioembolization procedures are exposed to safe levels of radiation. Exposure is lower than that from treatments using 131 I-lipiodol. The lowest finger exposure is from glass microspheres. With resin microspheres finger exposure is acceptable but could be optimized in accordance with the ALARA principle, and especially in view of the increasing use of radioembolization. (orig.)

  10. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  11. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  12. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  13. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  14. Preparation of berbamine loaded chitosan-agarose microspheres and in vitro release study

    Directory of Open Access Journals (Sweden)

    Zhang Hu

    2012-01-01

    Full Text Available Berbamine loaded chitosan-agarose microspheres were prepared using a water-in-oil emulsion technique. Optimum preparing parameters were determined by orthogonal experiments as follows: ratio of berbamine to chitosan (w/w is 1:10; percentage of emulsifier (span 80, v/v is 6%; volume of glutaraldehyde is 2 mL; and reaction temperature is 70 ºC. Under these optimal conditions, the encapsulation efficiency and loading capacity of microspheres are 84.57% and 8.44%, respectively. The swelling tests showed that the microspheres possessed higher swelling ratio at pH 7.4 than at pH 1.2. FTIR indicated that berbamine had been successfully loaded in the chitosan-agarose microspheres by physical entrapment. In vitro release studies showed that berbamine was released from microspheres in a significantly sustained fashion.

  15. Mucoadhesive microspheres: a promising tool in drug delivery.

    Science.gov (United States)

    Patil, Sanjay B; Sawant, Krutika K

    2008-10-01

    Mucoadhesive polymers have recently gained interest among pharmaceutical scientists as a means of improving drug delivery by promoting the residence time and contact time of the dosage form with the mucous membranes. Mucoadhesion is the process whereby synthetic and natural polymers adhere to mucosal surfaces in the body. If these materials are then incorporated into pharmaceutical formulations, drug absorption by mucosal cells may be enhanced or the drug will be released at the site for an extended period of time. Microspheres, in general, have the potential to be used for targeted and controlled release drug delivery; however, coupling of mucoadhesive properties to microspheres has additional advantages like, a much more intimate contact with the mucus layer, efficient absorption and enhanced bioavailability of the drugs due to a high surface to volume ratio. The present review describes the potential applications of mucoadhesive microspheres as a novel carrier system to improve drug delivery by various routes of administration like buccal, oral, nasal, ocular, vaginal and rectal, either for systemic or for local effects. The mucoadhesive polymers, methods of preparation of microspheres and their in vitro and in vivo evaluation are also described.

  16. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Levitation force on a permanent magnet over a superconducting plane: Modified critical-state model

    International Nuclear Information System (INIS)

    Yang, Z.J.

    1997-01-01

    The authors consider a model system of a permanent magnet above a semi-infinite superconductor. They introduce a modified critical-state model, and carry out derivations of the levitation force acting on the magnet. A key feature of the modification allows the current density to be less than the critical value. The theoretical results show an exponential relationship between the force and the distance. Analytical expressions are developed for permanent magnets in the form of a point dipole, a tip of a magnetic force microscope, and a cylindrical magnet. In the latter case, the exponential relationship has been observed in numerous experiments but without previous interpretation

  18. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  19. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition.

    Science.gov (United States)

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Hu, Shuzhen; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The unsaturated fatty acid (linoleic acid) sustained-release microspheres were prepared with linoleic acid (LA) using alginate-chitosan microcapsule technology. These LA sustained-release microspheres had a high encapsulation efficiency (up to 62%) tested by high performance liquid chromatography with a photo diode array. The dry microspheres were characterized by a scanning electron microscope, X-ray diffraction measurement, dynamic thermogravimetric analysis and Fourier transform infrared spectral analysis. The results of characterization showed that the microspheres had good thermal stability (decomposition temperature of 236°C), stable and temperature independent release properties (release time of more than 40 d). Compared to direct dosing of LA, LA sustained-released microspheres could inhibit Microcystis aeruginosa growth to the non-growth state. The results of this study suggested that the LA sustained-release microspheres may be a potential candidate for algal inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Research progress of fabricating polyvinyl alcohol coating on plastic microsphere

    International Nuclear Information System (INIS)

    Su Lin; Chen Sufen; Liu Meifang; Zhang Zhanwen; Yao Hong; Li Bo; Liu Yiyang

    2012-01-01

    In the procedures of designing polystyrene-polyvinyl alcohol-CH (carbon and hydrogen elements) (PS-PVA-CH) triple-layer microspheres, there are many methods such as drop-tower technique, emulsion micro-encapsulation, dip (spin) coating, interfacial polycondensation, and spraying technique to prepare the PVA coating. Drop-tower technique, emulsion micro-encapsulation and dip (spin) coating are most-commonly used. The advantages, disadvantages and the research progress of the three methods are summarized in this paper. Emulsion micro-encapsulation is suitable for preparing double-layer microspheres of sizes smaller then 500 μm, with high survival ratio and good quality. However, the preparation process is easily influenced by artificial factors. Small-sized double-layer microspheres can also be prepared by the drop-tower technique, and the preparation period is short. But there are still some problems such as the difficulty in designing the droplet generator, uneven PVA coating and the difficulty in preparing large-sized microspheres. Dip (spin) coating technique can be used to prepare PS-PVA microspheres with sizes larger than 1000 μm, but the spread of PVA coating is affected by many factors in this method, and the prepared PVA coating is too thin and not uniform. (authors)

  1. Effect of gamma-irradiation on biodegradable microspheres loaded with rasagiline mesylate

    International Nuclear Information System (INIS)

    Fernandez, Marcos; Barcia, Emilia; Negro, Sofia

    2016-01-01

    In the present study, the influence of gamma-irradiation was evaluated on the physicochemical characteristics and in vitro release of rasagiline mesylate (RM), a selective MAO-B inhibitor used in Parkinson's disease, from poly(D,L-lactide-co-glycolide) (PLGA) microspheres. Microspheres were prepared using PLGA 50:50 by the solvent evaporation technique (O/W emulsion). Microspheres were sterilized by gamma-irradiation and their influence was assessed by scanning electron microscopy (SEM), laser light diffraction, differential scanning calorimetry (DSC), X-ray diffraction (XRD), gel permeation chromatography (GPC), encapsulation efficiency (EE) and in vitro drug release. Gamma-irradiation of RM-loaded microspheres did not affect EE, DSC and XRD patterns. After gamma-irradiation, changes on the surface were observed by SEM, but no significant difference in mean particle size was observed. GPC measurements showed a decrease in molecular weight of the polymer after five days of in vitro release. The similarity factor value between irradiated and non-irradiates microspheres was <50, indicating the non-similarity of the release profiles. The sterilization technique had an effect on the integrity of polymeric system, significantly affecting in vitro release of RM from PLGA microspheres. Therefore, from our results we conclude that gamma-irradiation is not a suitable sterilization procedure for this formulation

  2. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  3. Cephradin-plaga microspheres for sustained delivery to cattle.

    Science.gov (United States)

    Ustariz-Peyret, C; Coudane, J; Vert, M; Kaltsatos, V; Boisramé, B

    1999-01-01

    In the field of controlled drug delivery, most of the reported work is aimed at introducing new systems, or at providing basic information on the critical parameters which affect release profiles in vitro and occasionally in vivo. The situation is totally different when one wants to fulfil the specific requirements imposed by the marketing of a sustained release device to be used in humans or in animals eaten by human beings. The control of the release characteristics is then a difficult challenge. In this work, attempts were made to combine cephradin, a hydrophilic beta-lactam antibiotic, and bioresorbable polymeric matrices of a poly(alpha-hydroxy acid) in the form of microspheres with the aim of delivering the antibiotic to cattle at a dose rate of 4-5 mg/kg/day over a 3-4 days period after i.m. injection. PLAGA aliphatic polyesters were selected because they are already FDA approved as matrices. The solvent evaporation technique using PVA as the emulsion stabilizer was selected because it is efficient and can be extended to an industrial scale. Various experimental conditions were used in order to obtain the highest encapsulation yields compatible with the desired specifications. Decreasing the volume of the aqueous phase and adding a water-miscible organic solvent/non-solvent of cephradin failed. In contrast, microspheres containing up to 30% cephradin were prepared after addition of sodium chloride to the aqueous dispersing phase. The amount of entrapped drug was raised to 40% by decreasing the temperature and the pressure. Preliminary investigations using dogs showed that 20% cephradin microspheres prepared under these conditions extended the presence of cephradin in the blood circulation up to 48 h. Increasing the load led to higher blood concentrations but shorter sustained release. The fact that the microspheres were for cattle limited the volume of the injection and thus the amount of microspheres to be administered. The other limiting factors were

  4. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering.

    Science.gov (United States)

    Zhong, Qiwei; Li, Wenhua; Su, Xiuping; Li, Geng; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-07-01

    Despite superior clinical handling, excellent biocompatibility, biodegradation property of calcium phosphate needs to be improved to coincide with the rate of new bone formation. In this study, spherical CaCO3 are fabricated in the presence of the silk sericin and then transformed into porous hydroxyapatite (HAP) microspheres via hydrothermal method. The degradation behavior of obtained CaCO3, HAP and their mixture is first investigated in vitro. The result demonstrates that the weight loss of HAP microspheres are almost 24.3% after immersing in pH 7.40 Tris-HCl buffer solution for 12 weeks, which is far slower than that of spherical CaCO3 (97.5%). The degradation speed of the mixtures depends on the proportion of CaCO3 and HAP. The mixture with higher content of CaCO3 possesses a quicker degradation speed. The obtained CaCO3 and HAP microspheres are injected into subcutaneous tissue of ICR mice with the assistance of sodium alginate. The result in vivo also shows an obvious difference of degradation speed between the obtained CaCO3 and HAP microspheres, implying it is feasible to modulate the degradation property of the mixture through changing the proportion of CaCO3 and HAP The good cytocompatibility of the two kinds of microspheres is proved and a mild inflammation response is observed only at early stage of implantation. The job offers a simple method to modify the degradation properties of biomaterial for potential use in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chitosan and Nanohydroxyapatite Roles in Physical and Chemical Characteristics of Gelatin/Chitosan/Nanohydroxyapatite Microspheres

    Directory of Open Access Journals (Sweden)

    S. Bagheri-Khoulenjani

    2010-12-01

    Full Text Available The effects of chitosan/biopolymer (C/P and nanohydroxyapatite/ biopolymer (nHA/P weight ratios on particle size and its uniformity, cross-linking density and NH2 content of nano-hydroxyapatite/chitosan/gelatin (nHA/C/G microspheres were investigated. Microspheres were fabricated using water-in-oil emulsion. Cross-linking of microspheres was performed using water soluble carbodiimide. Particle size and its uniformity were evaluated using an optical microscope. The morphology of microspheres was studied by scanning electron microscopy. The obtained data from particle size measurements revealed that increments in C/P ratio increased the particle size while reducing its uniformity, and increased the NH2 content and cross linking density of the microspheres. It was shown that incremental increase in nHA/P ratio increased the particle size and its uniformity and reduced the NH2 content and cross-linking density of the microspheres.Morphological studies showed that the fabricated microspheres had spherical shape in medium level of C/P ratio and nHA/P ratio. However, increasing in chitosan/biopolymer ratio induced some micro-cracks into the structure of microspheres.

  6. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available Introduction. An increasing number of studies are utilizing different magnetic resonance (MR methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI, modified Dixon method (also called fat fraction MRI (FFMRI, and magnetic resonance spectroscopy (MRS. Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI. Bone marrow adipose tissue (BMAT of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  7. Toward quantum-limited position measurements using optically levitated microspheres

    International Nuclear Information System (INIS)

    Libbrecht, Kenneth G.; Black, Eric D.

    2004-01-01

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements

  8. Toward quantum-limited position measurements using optically levitated microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Libbrecht, Kenneth G.; Black, Eric D

    2004-01-26

    We propose the use of optically levitated microspheres as test masses in experiments aimed at reaching and potentially exceeding the standard quantum limit for position measurements. Optically levitated microspheres have low mass and are essentially free of suspension thermal noise, making them well suited for experimentally testing our understanding of quantum-limited measurements.

  9. Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shekh M. [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Mahoney, Christopher [Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Sankar, Jagannathan [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Mechanical Engineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Marra, Kacey G. [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Department of Plastic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15250 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15250 (United States); Bhattarai, Narayan, E-mail: nbhattar@ncat.edu [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-01-15

    Graphical abstract: - Highlights: • Magnesium gluconate contained PLGA/chitosan microspheres were fabricated. • In vitro release of magnesium ions was performed using Xylidyl Blue assay. • Chitosan coated PLGA can significantly control the release of magnesium ions. • Cellular compatibility was tested using adipose-derived stem cells and PC12 cells. • The cells encounter acceptably low levels of damage in contact with microspheres. - Abstract: The goal of this study was to fabricate and investigate the chitosan coated poly(lactic-co-glycolic acid) (PLGA) microspheres for the development of controlled release magnesium delivery system. PLGA based microspheres are ideal vehicles for many controlled release drug delivery applications. Chitosan is a naturally occurring biodegradable and biocompatible polysaccharide, which can coat the surface of PLGA to alter the release of drugs. Magnesium gluconate (MgG) was encapsulated in the PLGA and PLGA/chitosan microspheres by utilizing the double emulsion solvent evaporation technique for controlled release study. The microspheres were tested with respect to several physicochemical and biological properties, including morphology, chemical structure, chitosan adsorption efficiency, magnesium encapsulation efficiency, in vitro release of magnesium ions, and cellular compatibility using both human adipose-derived stem cells (ASCs) and PC12 cells. Chitosan coated PLGA microspheres can significantly control the release of magnesium ions compared to uncoated PLGA microspheres. Both coated and uncoated microspheres showed good cellular compatibility.

  10. STRUCTURING OF DIAMOND FILMS USING MICROSPHERE LITHOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mária Domonkos

    2014-10-01

    Full Text Available In this study, the structuring of micro- and nanocrystalline diamond thin films is demonstrated. The structuring of the diamond films is performed using the technique of microsphere lithography followed by reactive ion etching. Specifically, this paper presents a four-step fabrication process: diamond deposition (microwave plasma assisted chemical vapor deposition, mask preparation (by the standard Langmuir-Blodgett method, mask modification and diamond etching. A self-assembled monolayer of monodisperse polystyrene (PS microspheres with close-packed ordering is used as the primary template. Then the PS microspheres and the diamond films are processed in capacitively coupled radiofrequency plasma  using different plasma chemistries. This fabrication method illustrates the preparation of large arrays of periodic and homogeneous hillock-like structures. The surface morphology of processed diamond films is characterized by scanning electron microscopy and atomic force microscope. The potential applications of such diamond structures in various fields of nanotechnology are also briefly discussed.

  11. Adsorption behavior of protein onto siloxane microspheres

    International Nuclear Information System (INIS)

    Liu Bailing; Cao Shunsheng; Deng Xiaobo; Li Songjun; Luo Rong

    2006-01-01

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption

  12. Adsorption behavior of protein onto siloxane microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bailing [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)]. E-mail: Blliuchem@hotmail.com; Cao Shunsheng [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Deng Xiaobo [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Li Songjun [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China); Luo Rong [Chengdu Institute of Organic Chemistry, Graduate School of CAS, Chinese Academy of Sciences, Chengdu 610041 (China)

    2006-09-15

    The siloxane microspheres with core-shell structure (PMMA/PMPS) (MMA, methyl methacrylate; MPS, 3-methacryloxypropyl-trimethoxysilane) have been prepared by dispersion polymerization as described in our previous work. In this paper, the developed poly(MMA-MPS) microspheres, as a carrier, are used to investigate the adsorption behavior of bovine serum albumin (BSA) on them. The Langmuir and Freundlich models have been applied to describe the adsorption behavior. The experimental results indicated that the presence of PMPS evidently increases the adsorption rate and the amount of protein, and it also influences the interaction of BSA molecules. The adsorption of BSA on the poly(MMA-MPS) microspheres seems to be sensitive to pH and ionic strength. The fittings curves from Langmuir and Freundlich models showed that the adsorption was actually more complicated than ideal situation because one or more interactions were involved in the process. For understanding the electronic contribution, the Zeta potential was used to measure the reactive system before and after protein adsorption.

  13. Synthesis and electrochemical properties of {alpha}-MnO{sub 2} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongen [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Zhengzhou Research Institute of CHALCO, Zhengzhou Research Institute of Light Metals, Zhengzhou 450041 (China); Qian Dong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: qiandong6@yahoo.com.cn

    2008-06-15

    We report the synthesis of {alpha}-MnO{sub 2} microspheres by a low-temperature hydrothermal method involving no templates or catalysts. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrum (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), and Brunauer-Emmett-Teller (BET). The results show that the as-synthesized products are mainly composed of large quantities of {alpha}-MnO{sub 2} microspheres having a sea-urchin shape and a few microspheres constructed of small nanorods. Electrochemical characterization indicates that the resulting {alpha}-MnO{sub 2} microspheres display promising discharge properties than the commercial electrolytic manganese dioxides (EMD) when used as cathodes in alkaline Zn-MnO{sub 2} batteries.

  14. Release of proteins via ion exchange from albumin-heparin microspheres

    NARCIS (Netherlands)

    Kwon, Glen S.; Bae, You Han; Cremers, H.F.M.; Cremers, Harry; Feijen, Jan; Kim, Sung Wan

    1992-01-01

    Albumin-heparin and albumin microspheres were prepared as ion exchange gels for the controlled release of positively charged polypeptides and proteins. The adsorption isotherms of chicken egg and human lysozyme, as model proteins, on microspheres were obtained. An adsorption isotherm of chicken egg

  15. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  16. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    Science.gov (United States)

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  17. In-vitro studies of enteric coated diclofenac sodium-carboxymethylcellulose microspheres.

    Science.gov (United States)

    Arica, B; Arica, M Y; Kaş, H S; Hincal, A A; Hasirci, V

    1996-01-01

    MIcrospheres containing diclofenac sodium (DS) were prepared using carboxymethylcellulose (CMC) as the main support material (1.0, 2.0, 3.0% (w/v)) and aluminum chloride as the crosslinker. Drug to polymer ratios of 1:1, 1:2 and 1:4 were used to obtain a range of microspheres. The microspheres were then coated with an enteric coating material, Eudragit S-100, efficiency, % yield value, particle sizes an in-vitro dissolution behaviour were investigated. The surface of the enteric coated microspheres seemed to be all covered with Eudragit S-100 from scanning electron microscopy observation. It was also observed that increasing the CMC concentration led to an increase in the encapsulation efficiency, % yield value and particle size and decreased the release rate. Eudragit S-100 coating did not significantly alter the size but the release rate was significantly lower even when the lower concentration solution was used.

  18. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    International Nuclear Information System (INIS)

    Bilbao, Jose I.; Martino, Alba de; Luis, Esther de; Diaz-Dorronsoro, Lourdes; Alonso-Burgos, Alberto; Martinez de la Cuesta, Antonio; Sangro, Bruno; Garcia de Jalon, Jose A.

    2009-01-01

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 μm in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and

  19. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    Science.gov (United States)

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening

    International Nuclear Information System (INIS)

    Zhang Lihui; Yang Heqing; Xie Xiaoli; Zhang Fenghua; Li Li

    2009-01-01

    Hollow ZnSe microspheres were prepared via a facile hydrothermal reaction of Zn(AC) 2 .2H 2 O with Na 2 SeO 3 and ethylene glycol in NaOH solution at 180 deg. C for 12 h. The products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectrum. The hollow microspheres with the diameters of about 2 μm are constructed from ZnSe nanoparticles with the cubic zinc blende structure, the size of hollow interiors and constituent ZnSe nanodots can be tuned by changing the reaction time. The hollow microspheres are formed via an Ostwald ripening process. Photoluminescence and photocatalytic activity of the hollow ZnSe microspheres were studied at room temperature. The results indicate that the hollow microspheres constructed from ZnSe nanoparticles display a strong near-band edge emission at 479 nm and a very weak deep defect (DD) related emission at 556 nm and a high photocatalytic activity in the photodegradation of methyl orange. The photodegradation of methyl orange catalyzed by the ZnSe microspheres is a pseudo first-order reaction

  1. Behaviour of (Th, U)O2 microspheres under compression tests and pelletization

    International Nuclear Information System (INIS)

    Ferreira, R.A.N.

    1982-12-01

    The interrelation between the behaviour of isolated microspheres in compression tests and the microstructure of sintered pellets obtained with these microspheres, was investigated. Various batches of (Th, 5 w/o U)O 2 microspheres were produced applying the so-called gel process. The production parameters were diversified both as to the composition and to the heat treatments. The resulting products underwent compression tests in an universal tension and compression machine as single microspheres and, as bulk material, were compacted and sintered. The results of the compression tests revealed the existence of two distinct classes of fragmentation behaviour. Each of these classes causes a distinct behaviour during the pelletization, too, resulting in fuel pellets with quite different microstructures. It was evidenced that there is a relationship between these differences in the microstructure and the behaviour of the single microspheres in the compression test. (Author) [pt

  2. Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres.

    Science.gov (United States)

    Wöhl-Bruhn, S; Heim, E; Schwoerer, A; Bertz, A; Harling, S; Menzel, H; Schilling, M; Ludwig, F; Bunjes, H

    2012-10-15

    Hydrogels are under investigation as long term delivery systems for biomacromolecules as active pharmaceutical ingredients. The release behavior of hydrogels can be tailored during the fabrication process. This study investigates the applicability of fluxgate magnetorelaxometry (MRX) as a tool to characterize the release properties of such long term drug delivery depots. MRX is based on the use of superparamagnetic core-shell nanoparticles as model substances. The feasibility of using superparamagnetic nanoparticles to study the degradation of and the associated release from hydrogel cylinders and hydrogel microspheres was a major point of interest. Gels prepared from two types of photo crosslinkable polymers based on modified hydroxyethylstarch, specifically hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA) and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA), were analyzed. MRX analysis of the incorporated nanoparticles allowed to evaluate the influence of different crosslinking conditions during hydrogel production as well as to follow the increase in nanoparticle mobility as a result of hydrogel degradation during release studies. Conventional release studies with fluorescent markers (half-change method) were performed for comparison. MRX with superparamagnetic nanoparticles as model substances is a promising method to analyze pharmaceutically relevant processes such as the degradation of hydrogel drug carrier systems. In contrast to conventional release experiments MRX allows measurements in closed vials (reducing loss of sample and sampling errors), in opaque media and at low magnetic nanoparticle concentrations. Magnetic markers possess a better long-term stability than fluorescent ones and are thus also promising for the use in in vivo studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the me...... of a DCM-FA-rich phase in the forming microsphere....

  4. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  5. Carbidopa/levodopa-loaded biodegradable microspheres: in vivo evaluation on experimental Parkinsonism in rats.

    Science.gov (United States)

    Arica, Betül; Kaş, H Süheyla; Moghdam, Amir; Akalan, Nejat; Hincal, A Atilla

    2005-02-16

    The purpose of this study was to prepare and characterize injectable carbidopa (CD)/levodopa (LD)-loaded Poly(L-lactides) (L-PLA), Poly(D,L-lactides) (D,L-PLA) and Poly(D,L-lactide-co-glycolide) (PLAGA) microspheres for the intracerebral treatment of Parkinson's disease. The microspheres were prepared by solvent evaporation method. The polymers' (L-PLA, D,L-PLA and PLAGA) concentrations were 10% (w/w) in the organic phase; the emulsifiers [sodium carboxymethylcellulose (NaCMC):sodium oleate (SO) and Polyvinyl alcohol (PVA):SO mixture (4:1 w/v)] concentrations were 0.75% in the aqueous phase. Microspheres were analyzed for morphological characteristics, size distribution, drug loading and in vitro release. The release profile of CD/LD from microspheres was characterized in the range of 12-35% within the first hour of the in vitro release experiment. The efficiency of CD- and LD-encapsulated microspheres to striatal transplantation and the altering of apomorphine-induced rotational behavior in the 6-hydroxydopamine (6-OHDA) unilaterally lesioned rat model were also tested. 6-OHDA/CD-LD-loaded microsphere groups exhibited lower rotation scores than 6-OHDA/Blank microsphere groups as early as 1 week postlesion. These benefits continued throughout the entire experimental period and they were statistically significant during the 1, 2 and 8 weeks (p<0.05). CD/LD-loaded microspheres were specifically prepared to apply as an injectable dosage forms for brain implantation.

  6. 2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhao, Lingyun; Zheng, Yajing; Yan, Hao; Xie, WenSheng; Sun, Xiaodan; Li, Ning; Tang, Jintian

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with appropriate surface chemistry have attracted wild attention in medical and biological application because of their current and potential usefulness such as magnetic resonance imaging (MRI) contrast enhancement, magnetic mediated hyperthermia (MMH), immunoassay, and in drug delivery, etc. In this study, we investigated the MRI contrast agents and MMH mediators properties of the novel 2-deoxy-D-glucose (2-DG) modified SPIONs. As a non-metabolizable glucose analogue, 2-DG can block glycolysis and inhibits protein glycosylation. Moreover, SPIONs coated with 2-DG molecules can be particularly attractive to resource-hungry cancer cells, therefore to realize the targeting strategy for the SPIONs. SPIONs with amino silane as the capping agent for amino-group surface modification were synthesized by the chemical co-precipitation method with modification. Glutaraldehyde was further applied as an activation agent through which 2-DG was conjugated to the amino-coated SPIONs. Physicochemical characterizations of the 2-DG-SPIONs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), ζ-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the 2-DG-SPIONs were analyzed by exposing the SPIONs suspension (magnetic fluid) under alternative magnetic field (AMF). U-251 human glioma cells with expression of glucose transport proteins type 1 and 3 (GLUT1 and GLUT 3), and L929 murine fibroblast cell as negative control, were employed to study the effect of 2-DG modification on the cell uptake for SPIONs. TEM images for ultra-thin sections as well as ICP-MS were applied to evaluate the SPIONs internalization within the cells. In vitro MRI was performed after cells were co-incubated with SPIONs and the T2 relaxation time was measured and compared. The results demonstrate that 2-DG-SPIONs were supermagnetic and in

  7. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  8. Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres

    Directory of Open Access Journals (Sweden)

    Shan L

    2016-01-01

    Full Text Available Lu Shan,1 En-Xue Tao,2 Qing-Hui Meng,3 Wen-Xia Hou,3 Kang Liu,1 Hong-Cai Shang,4 Jin-Bao Tang,1 Wei-Fen Zhang1,4 1School of Pharmacy, Weifang Medical University, 2The Affiliated Hospital of Weifang Medical University, 3School of Nursing, Weifang Medical University, Weifang, 4Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China Abstract: Cholinergic neurotransmission loss is the main cause of cognitive impairment in patients with Alzheimer’s disease. Phospholipids (PLs play an essential role in memory and learning abilities. Moreover, PLs act as a source of choline in acetylcholine synthesis. This study aimed to prepare and optimize the formulation of chitosan/phospholipid/β-cyclodextrin (CTS/PL/β-CD microspheres that can improve cognitive impairment. The CTS/PL/β-CD microspheres were prepared by spray drying, and optimized with an orthogonal design. These microspheres were also characterized in terms of morphology, structure, thermostability, drug loading, and encapsulation efficiency. The spatial learning and memory of rats were evaluated using the Morris water maze test, and the neuroprotective effects of the CTS/PL/β-CD microspheres were investigated by immunohistochemistry. Scanning electron microscopic images showed that the CTS/PL/β-CD microspheres were spherical with slightly wrinkled surfaces. Fourier transform infrared spectroscopy and differential scanning calorimetry proved that PLs formed hydrogen bonds with the amide group of CTS and the hydroxyl group of β-CD. The learning and memory abilities of rats in the treated group significantly improved compared with those in the model group. Immunohistochemical analysis revealed that treatment with the CTS/PL/β-CD microspheres attenuated the expression of protein kinase C-δ and inhibited the activation of microglias. These results suggest that the

  9. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples.

    Science.gov (United States)

    Zhu, Wenting; Peng, Hailong; Luo, Mei; Yu, Ningxiang; Xiong, Hua; Wang, Ronghui; Li, Yanbin

    2018-09-30

    Zipper-like on/off-switchable and magnetic molecularly imprinted microspheres (SM-MIMs) were constructed using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers for 17β-estradiol (17β-E 2 ) recognition and extraction. The imprinted polymer interactions between poly(AAm) (PAAm) and poly(AMPS) (PAMPS) with on/off-switchable property to temperature, exhibited dissociation at relatively higher temperatures (such as 30 °C) and helped 17β-E 2 enter into imprinted sites, leading to higher binding capability. Conversely, the interpolymer complexes between PAAm and PAMPS formed and blocked 17β-E 2 access to imprinted sites at lower temperature (such as 20 °C). SM-MIMs were used as dispersive solid phase extraction (SPE) adsorbent with HPLC for 17β-E 2 pretreatment and detection in food samples, and low limit detection (2.52 µg L -1 ) and quantification (10.76 µg L -1 ) with higher recovery were obtained. Therefore, SM-MIMs may be a promising adsorbent for 17β-E 2 pretreatment in food samples owing to its advantages of on/off-switchable recognition, eco-friendly elution, and efficient separation. Copyright © 2018. Published by Elsevier Ltd.

  10. MnS spheres: Shape-controlled synthesis and its magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Kezhen [Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 (China); Wang, Yan-Qin, E-mail: wangyanqin@tyut.edu.cn [Shanxi Key Lab. of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan, 030024 (China); Rengaraj, Selvaraj, E-mail: srengaraj1971@yahoo.com [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Al Wahaibi, Bushra [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Mohamed Jahangir, A.R. [Biyaq Oil Field Services LLC, Mina Al Fahal, Muscat, 123 (Oman)

    2017-06-01

    Sphere-like MnS hierarchical microstructures were successfully synthesized by a simple hydrothermal approach, which are composed of the size tunable and self-assembled nanoparticles. These hierarchical microspheres are γ-MnS phase, which is confirmed by X-ray diffraction (XRD) results, and the stoichiometry of MnS microspheres is checked by XPS measurement. Morphological studies performed by scanning electron microscopy (SEM) method show that the as-prepared γ-MnS samples are hierarchical microspheres. The size and morphology of composed nanoparticles can be turned by the concentration of L-Cystein molecules. Here, L-Cystein not only plays a role of sulfur source but also capping agent. Furthermore, a rational mechanism about the formation and evolution of the products is proposed. The present work shows that the origin of the observed difference of magnetic properties is due to the morphology difference of MnS crystals. - Highlights: • Sphere-like MnS hierarchical microstructures were synthesized and characterized. • The size and morphology of MnS crystals can be turned by the concentration of L-Cystein molecules. • The morphology of MnS hierarchitectures exerts a remarkable effect on their magnetic property.

  11. Regional cerebral blood flow measurements by a noninvasive microsphere method using 123I-IMP. Comparison with the modified fractional uptake method and the continuous arterial blood sampling method

    International Nuclear Information System (INIS)

    Nakano, Seigo; Matsuda, Hiroshi; Tanizaki, Hiroshi; Ogawa, Masafumi; Miyazaki, Yoshiharu; Yonekura, Yoshiharu

    1998-01-01

    A noninvasive microsphere method using N-isopropyl-p-( 123 I)iodoamphetamine ( 123 I-IMP), developed by Yonekura et al., was performed in 10 patients with neurological diseases to quantify regional cerebral blood flow (rCBF). Regional CBF values by this method were compared with rCBF values simultaneously estimated from both the modified fractional uptake (FU) method using cardiac output developed by Miyazaki et al. and the conventional method with continuous arterial blood sampling. In comparison, we designated the factor which converted raw SPECT voxel counts to rCBF values as a CBF factor. A highly significant correlation (r=0.962, p<0.001) was obtained in the CBF factors between the present method and the continuous arterial blood sampling method. The CBF factors by the present method were only 2.7% higher on the average than those by the continuous arterial blood sampling method. There were significant correlation (r=0.811 and r=O.798, p<0.001) in the CBF factor between modified FU method (threshold for estimating total brain SPECT counts; 10% and 30% respectively) and the continuous arterial blood sampling method. However, the CBF factors of the modified FU method showed 31.4% and 62.3% higher on the average (threshold; 10% and 30% respectively) than those by the continuous arterial blood sampling method. In conclusion, this newly developed method for rCBF measurements was considered to be useful for routine clinical studies without any blood sampling. (author)

  12. [Blood detoxification using superparamagnetic nanoparticles (magnetic hemodialysis)].

    Science.gov (United States)

    Ciochină, Al D; Untu, Alina; Iacob, Gh

    2010-01-01

    The authors present an experimental study realized in order to simulate blood detoxification with the help of supermagnetic nanoparticles. The particles used are red oxide nanoparticles which are considered to be equivalent from a magnetic susceptibility and dynamic diameter point of view to the complex structures of magnetite nanoparticles. Two types of custom HGMS matrices have been used--a threaded one and a micro-spheres one. For testing red oxide particles have been purposefully created to have a lower magnetic susceptibility than magnetite or iron-carbon particles used in other experimental studies. Different concentrations of iron oxide, glycerine and water have been prepared, creating a 3.5 cP viscosity (equivalent to the one of the blood); the concentrations of the prepared solutions varied between 0.16 mg/mL and 2 mg/mL, with the background magnetic field value ranging from 0.25 T to 0.9 T, in order to observer the effectiveness of filtering at different intensities. The efficiency of HGMS filtering in experimental conditions was almost completely successful (99.99%) in all experimental conditions, both with the threaded and micro-spheres matrices. The high gradient magnetic separation system of nanoparticles has maximum efficiency and has the potential of being implemented in a medical blood detoxification device.

  13. Comparison of gas clearance and radioactive microspheres for pancreatic blood flow measurement

    International Nuclear Information System (INIS)

    DeMar, A.R.; Graham, L.S.; Lake, R.; Fink, A.S.

    1989-01-01

    Measurement of pancreatic blood flow (PBF) is technically demanding. Although radiolabeled microspheres are considered the gold standard for PBF assessment, they have practical limitations. In the current study, H 2 and xenon-133 gas clearance techniques were adapted to PBF measurement and compared to radiolabeled microsphere techniques. Simultaneous measurements of PBF were made using either hydrogen or xenon gas washout and radiolabeled microspheres. Measurements were made under basal, vasoconstricted (vasopressin 2U i.v. or nicotine 4 micrograms/kg/h) and stimulated (secretin 125 ng/kg/h or 2 U/kg i.v.) conditions (random order). Mean PBF was 26.9 +/- 5.3, 50.5 +/- 2.3 and 27.6 +/- 5.2 ml/min/100 g basally, 36.9 +/- 8.0, 90.1 +/- 18.9, and 81.7 +/- 14.5 ml/min/100 g in the stimulated state, and 24.2 +/- 7.8, 25.0 +/- 3.5, and 14.9 +/- 7.5 ml/min/100 g in the vasoconstricted state for hydrogen gas clearance, xenon gas clearance, and radiolabeled microspheres, respectively. The H 2 clearance technique resulted in tissue trauma, was complicated by frequent electrode displacement, and correlated poorly (r2 = 0.36, p greater than 0.05) with microsphere values. In contrast, xenon clearance measurement had no apparent effect on the pancreas and correlated well (r2 = 0.83, p less than 0.01) with microsphere data. We conclude that xenon clearance offers an attractive, validated alternative to radiolabeled microspheres for measuring pancreatic blood flow

  14. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    International Nuclear Information System (INIS)

    Chao, Shao Ching; Wang, Ming-Jia; Pai, Nai-Su; Yen, Shiow-Kang

    2015-01-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO 3 ) 2 , NH 4 H 2 PO 4 and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space

  15. Resonant microsphere gyroscope based on a double Faraday rotator system.

    Science.gov (United States)

    Xie, Chengfeng; Tang, Jun; Cui, Danfeng; Wu, Dajin; Zhang, Chengfei; Li, Chunming; Zhen, Yongqiu; Xue, Chenyang; Liu, Jun

    2016-10-15

    The resonant microsphere gyroscope is proposed based on a double Faraday rotator system for the resonant microsphere gyroscope (RMSG) that is characterized by low insertion losses and does not destroy the reciprocity of the gyroscope system. Use of the echo suppression structure and the orthogonal polarization method can effectively inhibit both the backscattering noise and the polarization error, and reduce them below the system sensitivity limit. The resonance asymmetry rate dropped from 34.2% to 2.9% after optimization of the backscattering noise and the polarization noise, which greatly improved the bias stability and the scale factor linearity of the proposed system. Additionally, based on the optimum parameters for the double Faraday rotator system, a bias stability of 0.04°/s has been established for an integration time of 10 s in 1000 s in a resonator microsphere gyroscope using a microsphere resonator with a diameter of 1 mm and a Q of 7.2×106.

  16. The physical and chemical stability of suspensions of sustained-release diclofenac microspheres.

    Science.gov (United States)

    Lewis, L; Boni, R L; Adeyeye, C M

    1998-01-01

    The major challenge in liquid sustained-release oral suspensions is to minimize drug diffusion into the suspending medium and to retain the original properties of the microparticles during storage. Diclofenac wax microspheres prepared by the hydrophobic congealable disperse phase method were formulated as a sustained release suspension and stored at three different temperatures (25, 37 and 45 degrees C) for 3 months, to evaluate the physical and chemical stability of the suspended microspheres. Suspensions of microspheres stored at ambient temperatures were both physically and chemically stable, but at higher temperatures, up to 45 degrees C, there was a decrease in drug release due to scaling and melting on the microsphere surface as observed by scanning electron microscopy. However, on prolonged storage, up to 90 days, especially at 45 degrees C, temperature became a dominant factor causing an increase in drug release. The suspension of diclofenac microspheres was chemically stable for 3 months, while the plain drug suspension exhibited slight degradation.

  17. Real-space observation of nanojet-induced modes in a chain of microspheres

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang; Wang, Po-Kai

    2014-01-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  18. Real-space observation of nanojet-induced modes in a chain of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Yang, E-mail: cyliu@mail.tku.edu.tw; Wang, Po-Kai

    2014-04-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  19. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  20. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  1. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe{sub 3}Ni alloy microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: arif.inji.chem1986@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106 (India)

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe{sub 3}Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an ~M{sup 3} dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior. - Highlights: • Novel one-pot chemical synthesis of Fe-rich PAA-Fe{sub 3}Ni microspheres. • Room temperature steady shear magnetorheology revealed viscoelastic behavior. • Rheometer magnetic fields can be replaced by powder particle magnetization (M) for better stress scaling. • Higher order scaling relations (~M{sup 3}) to particle magnetization (M) were observed for static yield stress. • Temperature-induced, field-dependent oscillatory rheology indicated pronounced thinning behavior, owing to predominantly quasi-solid behavior at high field density.

  2. A study of factors affecting properties of AM/AMPS/NVP terpolymeric microspheres prepared by inverse suspension polymerization

    Science.gov (United States)

    Jiang, J. F.; Zhao, Q.; Lin, M. Q.; Wang, Y. F.; Dang, S. M.; Sun, F. F.

    2015-12-01

    Terpolymeric microspheres were synthesized by the inverse suspension polymerization of functional monomers including AMPS, NVP, and AM. The morphology and size of the obtained microspheres were measured by scanning electron microscopy (SEM) and optical microscopy. Furthermore, the swelling performances of the obtained microspheres were measured with alaser particle analyzer (LPA), and the thermal stability of the microspheres obtained was measured by differential thermal analysis (DSC-TG) and high temperature experiments involving microsphere/water dispersion. The results revealed that the extreme value of the microsphere size distribution decreased from 280 μm to 20 μm as the stirring rate increased from 175 rpm to 500 rpm. At temperatures below 25°C, the maximum achieved swelling ratio of the microspheres was 21, and the thermal stability of the terpolymer microspheres was significantly higher than that of the dipolymer microspheres. The terpolymer/water dispersions were kept at 120°C for 19d before any damage was observed.

  3. Microesferas poliméricas magnéticas à base de estireno e divinilbenzeno com morfologia casca e núcleo Magnetic polymeric microspheres based on styrene and divinylbenzene with core-shell morphology

    Directory of Open Access Journals (Sweden)

    Washington J. F. Formiga

    2013-01-01

    Full Text Available Microesferas poliméricas com propriedades magnéticas à base de estireno (STY e divinilbenzeno (DVB foram sintetizadas usando a técnica de polimerização em suspensão em duas etapas. Na primeira, foram preparados os núcleos poliméricos à base de STY e DVB e magnetita. Na segunda, os núcleos foram previamente inchados em uma emulsão de STY e DVB e novamente polimerizados para a formação da casca. Foram variados o método de adição da emulsão e o tempo de inchamento. Os materiais obtidos foram caracterizados quanto ao tamanho de partícula por peneiramento, análise termogravimétrica (TGA, microscopia eletrônica de varredura (SEM e magnetometria de amostra vibrante (VSM. Os métodos avaliados na formação da casca de poli(estireno-co-divinilbenzeno produziram partículas com diâmetro médio maior do que o núcleo. Este resultado indica a formação de morfologia casca e núcleo. O controle morfológico só foi obtido com as resinas RR48/1 e RR48/3. O método onde a emulsão de estireno e divinilbenzeno foi adicionada em etapa única, seguida de 48 horas de inchamento do núcleo a 10 °C (RR48/1, forneceu o maior rendimento (64%. Além disso, todas as resinas casca-núcleo foram sensíveis ao estímulo magnético realizado por um ímã, atestando assim que foram produzidas resinas com propriedades magnéticas.Magnetic polymeric microspheres based on styrene (STY and divinylbenzene (DVB were synthesized in two steps. Firstly, the polymeric core, constituted by STY, DVB and magnetite, was prepared by suspension polymerization. Then, the core was swollen in a STY and DVB emulsion. Subsequently, a second suspension polymerization was carried out in order to form a shell. The emulsion addition method and the swelling time were varied. The particle size, morphology, thermal stability and magnetic properties of the microspheres were studied by sieving, thermogravimetric analysis (TGA, scanning electron microscopy (SEM and vibrating

  4. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Yang, Jikai; Zhang, Xintong; Li, Bing; Liu, Hong; Sun, Panpan; Wang, Changhua; Wang, Lingling; Liu, Yichun

    2014-01-01

    Highlights: • USP method is used to prepare TiO 2 -graphene porous microspheres. • XPS shows GO sheets in the composites has been reduced to graphene. • TiO 2 -graphene microspheres display a red-shifted absorption edge. • PL spectra indicate graphene can accept the photoexcited electrons from TiO 2 . • TiO 2 -graphene shows higher photocatalytic activity than TiO 2 under solar light. -- Abstract: TiO 2 -graphene porous microspheres were prepared by ultrasonic spray pyrolysis (USP) of aqueous suspension of graphene oxide containing TiO 2 nanoparticles (Degussa P25). The composite microspheres were characterized with SEM, XPS, photoluminescence, Raman and UV–Vis absorption spectra. TiO 2 -graphene porous microspheres displayed higher photocatalytic activity for the degradation of methylene blue solution than pristine TiO 2 microspheres under the irradiation of Xe lamp, and the highest activity was obtained at a weight percentage of graphene around 1%. The effect of graphene on photocatalytic activity of porous microsphere was discussed in terms of the enhanced charge separation by TiO 2 -graphene heterojunction, increased absorption of the visible light, as well as the possible hindrance of mass transportation in microspheres

  5. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation.

    Science.gov (United States)

    Dhaliwal, Sumeet; Jain, Subheet; Singh, Hardevinder P; Tiwary, A K

    2008-06-01

    The aim of the present investigation was to evaluate the potential use of mucoadhesive microspheres for gastroretentive delivery of acyclovir. Chitosan, thiolated chitosan, Carbopol 71G and Methocel K15M were used as mucoadhesive polymers. Microsphere formulations were prepared using emulsion-chemical crosslinking technique and evaluated in vitro, ex-vivo and in-vivo. Gelatin capsules containing drug powder showed complete dissolution (90.5 +/- 3.6%) in 1 h. The release of drug was prolonged to 12 h (78.8 +/- 3.9) when incorporated into mucoadhesive microspheres. The poor bioavailability of acyclovir is attributed to short retention of its dosage form at the absorption sites (in upper gastrointestinal tract to duodenum and jejunum). The results of mucoadhesion study showed better retention of thiolated chitosan microspheres (8.0 +/- 0.8 h) in duodenal and jejunum regions of intestine. The results of qualitative and quantitative GI distribution study also showed significant higher retention of mucoadhesive microspheres in upper GI tract. Pharmacokinetic study revealed that administration of mucoadhesive microspheres could maintain measurable plasma concentration of acyclovir through 24 h, as compared to 5 h after its administration in solution form. Thiolated chitosan microsphere showed superiority over the other formulations as observed with nearly 4.0-fold higher AUC(0-24) value (1,090 +/- 51 ng h/ml) in comparison to drug solution (281 +/- 28 ng h/ml). Overall, the result indicated prolonged delivery with significant improvement in oral bioavailability of acyclovir from mucoadhesive microspheres due to enhanced retention in the upper GI tract.

  6. Properties of Amorphous Carbon Microspheres Synthesised by Palm Oil-CVD Method

    International Nuclear Information System (INIS)

    Zobir, S. A. M.; Zainal, Z.; Sarijo, S. H.; Rusop, M.

    2011-01-01

    Amorphous carbon microspheres were synthesized using a dual-furnace chemical vapour deposition method at 800-1000 deg. C. Palm oil-based cooking oil (PO) and zinc nitrate solution was used as a carbon source and catalyst precursor, respectively with PO to zinc nitrate ratio of 30:20 (v/v) and a silicon wafer as the sample target. Regular microsphere shape of the amorphous carbons was obtained and a uniform microsphere structure improved as the carbonization temperature increased from 800 to 1000 deg. C. At 800 deg. C, no regular microspheres were formed but more uniform structure is observed at 900 deg. C. Generally the microspheres size is uniform when the heating temperature was increased to 1000 deg. C, but the presence of mixed sizes can still be observed. X-ray diffraction patterns show the presence of oxide of carbon, ZnO phase together with Zn oxalate phase. Raman spectra show two broad peaks characteristic to amorphous carbon at 1344 and 1582 cm -1 for the D and G bands, respectively. These bands become more prominent as the preparation temperature increased from 800 to 1000 deg. C. This is in agreement with the formation of amorphous carbon microspheres as shown by the FESEM study and other Zn-based phases as a result of the oxidation process of the palm oil as the carbon source and the zinc nitrate as the catalyst precursor, respectively.

  7. Hydrothermally Synthesized Zinc Sulphide Microspheres for Solar Light-Driven Photocatalytic Properties

    Science.gov (United States)

    Waghadkar, Yogesh; Arbuj, Sudhir; Shinde, Manish; Ballal, Reshma; Rane, Sunit B.; Gosavi, Suresh; Fouad, H.; Chauhan, Ratna

    2018-02-01

    In this work, we reported the synthesis of zinc sulphide microspheres using the hydrothermal method. ZnS microspheres were synthesized using water, zinc acetate, thiourea and ammonia solution at 150°C for 6 h, 12 h, and 24 h. The as-synthesized ZnS powders were characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ultraviolet-visible (UV-Vis) spectroscopy. XRD indicates the cubic (major phase) as well as hexagonal (minor phase) crystalline phase with enhanced crystallinity increased gradually with more reaction time. UV-Vis spectra show the absorption peaks in the UV-Vis region for all the samples. The Tauc's plot was used to calculate the band gap energy of ZnS samples, which are found to be 3.39 eV, 3.4 eV, and 3.42 eV for the samples synthesized at reaction times of 6 h, 12 h, and 24 h, respectively. FESEM images confirm the formation of microspheres as aggregates of spherical nanoparticles. The as-synthesized ZnS microspheres have been explored for solar light-induced photo-catalytic dye degradation of methylene blue (MB), and the results confirm that such microspheres exhibit effectual photocatalytic properties.

  8. Transmission electron microscopy and Raman characterization of copper (I) oxide microspheres composed of nanoparticles

    International Nuclear Information System (INIS)

    Wang Wenzhong; Tu Ya; Wang Lijuan; Liang Yujie; Shi Honglong

    2013-01-01

    Highlights: ► Raman spectroscopy of copper (I) oxide microspheres were investigated. ► Infrared active mode is greatly activated in Raman scattering spectrum. ► Infrared active mode shows up in Raman spectrum of copper (I) oxide microspheres. ► The defects existed in spheres could be responsible for the observed Raman property. - Abstract: The high-resolution transmission electron microscope and Raman spectroscopy were used to investigate the microstructures and Raman scattering property of copper (I) oxide microspheres composed of nanoparticles. High-resolution transmission electron microscope images indicate that the copper (I) oxide microspheres are composed of nanoparticles with random growth direction, indicating that there are many defects in microspheres. The Raman spectrum shows that infrared active mode, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is activated and shows up in Raman scattering spectrum. On the basis of investigations of the microstructure features of copper (I) oxide microspheres, we attribute the appearance of IR active mode in Raman scattering spectrum to the breakdown of the symmetry of the lattice due to the presence of defects in the prepared copper (I) oxide microspheres as observed in HRTEM images.

  9. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    Science.gov (United States)

    Herran, C. Leigh; Huang, Yong; Chai, Wenxuan

    2012-08-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability.

  10. Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication

    International Nuclear Information System (INIS)

    Leigh Herran, C; Huang, Yong; Chai, Wenxuan

    2012-01-01

    Microspheres, small spherical (polymeric) particles with or without second phase materials embedded or encapsulated, are important for many biomedical applications such as drug delivery and organ printing. Scale-up fabrication with the ability to precisely control the microsphere size and morphology has always been of great manufacturing interest. The objective of this work is to experimentally study the performance differences of bipolar and tripolar excitation waveforms in using drop-on-demand (DOD)-based single nozzle jetting for alginate microsphere fabrication. The fabrication performance has been evaluated based on the formability of alginate microspheres as a function of materials properties (sodium alginate and calcium chloride concentrations) and operating conditions. The operating conditions for each excitation include voltage rise/fall times, dwell times and excitation voltage amplitudes. Overall, the bipolar excitation is more robust in making spherical, monodispersed alginate microspheres as good microspheres for its wide working range of material properties and operating conditions, especially during the fabrication of highly viscous materials such as the 2% sodium alginate solution. For both bipolar and tripolar excitations, the sodium alginate concentration and the voltage dwell times should be carefully selected to achieve good microsphere formability. (paper)

  11. Preparation and characterization of gelatin–hydroxyapatite composite microspheres for hard tissue repair

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Shao Ching [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Minimally Invasive Skull Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sect. 4, Taichung, Taiwan (China); Department of Neurosurgery, ChangHua Hospital, Ministry of Health and Welfare, 80 Chung Cheng Road, Sect. 2 Chiu Kuan Village, Changhua 500, Taiwan (China); Wang, Ming-Jia; Pai, Nai-Su [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2015-12-01

    Gelatin–hydroxyapatite composite microspheres composed of 21% gelatin (G) and 79% hydroxyapatite (HA) with uniform morphology and controllable size were synthesized from a mixed solution of Ca(NO{sub 3}){sub 2}, NH{sub 4}H{sub 2}PO{sub 4} and gelatin by a wet-chemical method. Material analyses such as X-ray diffraction (XRD), scanning/transmission electron microscopy examination (SEM/TEM) and inductively coupled plasma-mass spectroscopy (ICP-MS) were used to characterize G–HA microspheres by analyzing their crystalline phase, microstructure, morphology and composition. HA crystals precipitate along G fibers to form nano-rods with diameters of 6–10 nm and tangle into porous microspheres after blending. The cell culture indicates that G–HA composite microspheres without any toxicity could enhance the proliferation and differentiation of osteoblast-like cells. In a rat calvarial defect model, G–HA bioactive scaffolds were compared with fibrin glue (F) and Osteoset® Bone Graft Substitute (OS) for their capacity of regenerating bone. Four weeks post-implantation, new bone, mineralization, and expanded blood vessel area were found in G–HA scaffolds, indicating greater osteoconductivity and bioactivity than F and OS. - Highlights: • G–HA composite microspheres were prepared by hydroxyapatite and gelatin. • In vitro tests indicated that the G–HA microspheres were biocompatible and bioactive. • In in vitro tests, G–HA microspheres could be applied in hard tissue engineering. • G–HA had healed the bone defect and provides a high proportion of surface area to open space.

  12. Preparation And Biodistribution Study Of 153sm-Albumin Microspheres As Radiosynovectomy Agent

    International Nuclear Information System (INIS)

    W, Widyatuti; Tamat, Swasono R.; Indrawati, Teti; Fatimah; Aulya, Anna

    2003-01-01

    Treatment of rheumatics arthritis previously was done by inflamed synovial membrane surgery called synovectomy. The conventional synovectomy was costly and inconvenient method for the patients, therefore alternative method using radiation synovectomy was considered. Preparation of 153 Sm albumin microspheres as radio synovectomy agent has been candied out. Experiments have been carried out to decide optimal conditions of preparation, such as speed and time of stirring to form microspheres, and to find optimal condition in labelling the microspheres, such as pH, content of sodium citrate, samarium oxide and the amount of microspheres. The albumin particles were expected as spheres with 15-50 μm in diameter, high labelling efficiency and 153 Sm is strongly bound to the microspheres. In-vitro and in-vivo stability were tested by observing 153 Sm released from the particles after incubating the labelled particles in saline and human serum albumin solution for one week, and after administration of labelled particles into Wistar rats via intraarticular injection through one of its knee joint. The result shows the optimal speed and time of stirring to obtain desired shape and size of the particles was 750 rpm in 15 minutes, while the optimal formulation to obtain high labelling efficiency was at pH 5-6, containing 10 μg/mL of sodium citrate, 125 μg/mL of samarium oxide and 10 mg of albumin microspheres. The preparation was stable up to 5 days. In conclusion the 153 Sm-albumin microspheres can be produced and is ready for clinical trial

  13. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    Science.gov (United States)

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Super-paramagnetic core-shell material with tunable magnetic behavior by regulating electron transfer efficiency and structure stability of the shell

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available In this work, a spherical nano core-shell material was constructed by encapsulating Fe3O4 microsphere into conductive polymer-metal composite shell. The Fe3O4 microspheres were fabricated by assembling large amounts of Fe3O4 nano-crystals, which endowed the microspheres with super-paramagnetic property and high saturation magnetization. The polymer-metal composite shell was constructed by inserting Pt nano-particles (NPs into the conductive polymer polypyrrole (PPy. As size and dispersion of the Pt NPs has an important influence on their surface area and surface energy, it was effective to enlarge the interface area between PPy and Pt NPs, enhance the electron transfer efficiency of PPy/Pt composite shell, and reinforced the shell’s structural stability just by tuning the size and dispersion of Pt NPs. Moreover, core-shell structure of the materials made it convenient to investigate the PPy/Pt shell’s shielding effect on the Fe3O4 core’s magnetic response to external magnetic fields. It was found that the saturation magnetization of Fe3O4/PPy/Pt core-shell material could be reduced by 20.5% by regulating the conductivity of the PPy/Pt shell. Keywords: Super-paramagnetic, Conductivity, Magnetic shielding, Structural stability

  15. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-01-01

    Graft through strategy was utilized to coat magnetic Fe 3 O 4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host–guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  16. Multi-Objective Optimization for Pure Permanent-Magnet Undulator Magnets Ordering Using Modified Simulated Annealing

    CERN Document Server

    Chen Nian; Li, Ge

    2004-01-01

    Undulator field errors influence the electron beam trajectories and lower the radiation quality. Angular deflection of electron beam is determined by first field integral, orbital displacement of electron beam is determined by second field integral and radiation quality can be evaluated by rms field error or phase error. Appropriate ordering of magnets can greatly reduce the errors. We apply a modified simulated annealing algorithm to this multi-objective optimization problem, taking first field integral, second field integral and rms field error as objective functions. Undulator with small field errors can be designed by this method within a reasonable calculation time even for the case of hundreds of magnets (first field integral reduced to 10-6T·m, second integral to 10-6T·m2 and rms field error to 0.01%). Thus, the field correction after assembling of undulator will be greatly simplified. This paper gives the optimizing process in detail and puts forward a new method to quickly calculate the rms field e...

  17. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method

    DEFF Research Database (Denmark)

    Cui, Fude; Yang, Mingshi; Jiang, Yanyan

    2003-01-01

    crystallization technique, i.e. quasi-emulsion solvent diffusion method. The factors of effect on micromeritic properties and release profiles of the resultant microspheres were investigated. And the bioavailability of nitrendipine microspheres was evaluated in six healthy dogs. The results showed...... that the particle size of microspheres was determined mainly by the agitation speed. The dissolution rate of nitrendipine from microspheres was enhanced significantly with increasing the amount of dispersing agents, and sustained by adding retarding agents. The release rate of microspheres could be controlled...

  18. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    Science.gov (United States)

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method

    DEFF Research Database (Denmark)

    Li, Xiujuan; Chang, Si; Du, Guangsheng

    2012-01-01

    Azithromycin loaded microspheres with blends of poly-l-lactide and ploy-D,L-lactide-co-glycolide as matrices were prepared by the atmosphere-solvent evaporation (ASE) and reduced pressure-solvent evaporation (RSE) method. Both the X-ray diffraction spectra and DSC thermographs demonstrated...... characteristics and release profiles of microspheres. In conclusion, the overall improvement of microspheres in appearance, encapsulation efficiency and controlled drug release through the RSE method could be easily fulfilled under optimal preparation conditions....

  20. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chia-Hsin [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China); Lien, Hsing-Lung, E-mail: lien.sam@nuk.edu.tw [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Chung, Jung-Shing [Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan (China); Yeh, Hund-Der [Institute of Environmental Engineering, National Chiao Tung University, 300 Hsinchu, Taiwan (China)

    2017-01-15

    Highlights: • A reusable magnetic nano-adsorbent is prepared for precious metal adsorption. • The nano-adsorbent (MNP-G3) is synthesized by magnetic nanoparticles and dendrimer. • Higher valent ions show higher adsorption capacity by MNP-G3 suggesting complexation involved. • The pseudo second-order model best describe the adsorption kinetics. • MNP-G3 modified by EDTA significantly improve its adsorption ability for Ag(I). - Abstract: Magnetic nanoparticles modified by third-generation dendrimers (MNP-G3) and MNP-G3 further modified by ethylenediaminetetraacetic acid (EDTA) (MNP-G3-EDTA) were conducted to investigate their ability for recovery of precious metals (Pd(IV), Au(III), Pd(II) and Ag(I)) in water. Experiments were carried out using batch reactors for the studies of adsorption kinetics, adsorption isotherms, competitive adsorption and regeneration. The pseudo second-order model is the best-fit model among others suggesting that the adsorption of precious metals by MNP-G3 in water is a chemisorption process. Three adsorption isotherms namely Langmuir, Freundlich and Dubinin-Radushkevich isotherm were examined and the results showed the similarities and consistency of both linear and nonlinear analyses. Pd(IV) and Au(III) with higher valence exhibited relatively better adsorption efficiency than Pd(II) and Ag(I) with lower valence suggesting that the adsorption of precious metals by MNP-G3 is a function of valence. In the presence of the competing ion Zn(II), the adsorption efficiency of MNP-G3 for all four precious metals was declined significantly. The use of MNP-G3-EDTA revealed an increase in the adsorption efficiency for all four precious metals. However, the low selectivity of MNP-G3 towards precious metals was not enhanced by the modification of EDTA onto the MNP-G3. The regeneration of metal-laden MNP-G3 can be readily performed by using 1.0% HCl solution as a desorbent solution.

  1. A new rat model of portal hypertension induced by intraportal injection of microspheres

    Science.gov (United States)

    Li, Xiang-Nong; Benjamin, IS; Alexander, B

    1998-01-01

    AIM: To produce a new rat model of portal hypertension by intraportal injection of microspheres. METHODS: Measured aliquots of single or different-sized microspheres (15, 40, 80μm) were injected into the portal vein to block intrahepatic portal radicals. The resultant changes in arterial,portal,hepatic venous and splenic pulp pressures were monitored. The liver and lungs were excised for histological examination. RESULTS: Portal venous pressure was elevated from basal value of 0.89-1.02 kPa to a steady-state of 1.98-3.19 kPa following the sequential injections of single- or different-sized microspheres, with a markedly lowered mean arterial pressure. However, a small-dose injection of 80 μm microspheres (1.8 × 105) produced a steady-state portal venous pressure of 2.53 × 0.17 kPa, and all rats showed normal arterial pressures. In addition, numerous microspheres were found in the lungs in all experimental groups. CONCLUSION: Portal hypertension can be reproduced in rats by intraportal injection of microspheres at a small dose of 80 μm (1.8 × 105). Intrahepatic portal-systemic shunts probably exist in the normal rat liver. PMID:11819236

  2. Synthesis and photocatalytic properties of different SnO2 microspheres on graphene oxide sheets

    International Nuclear Information System (INIS)

    Wei, Jia; Xue, Shaolin; Xie, Pei; Zou, Rujia

    2016-01-01

    Highlights: • Different SnO 2 microspheres were grown on GOs by hydrothermal method. • The morphology was influenced by volume ratio of ethanol and concentrations of precursor. • The shape of SnO 2 microspheres looks like dandelion. • The photocatalytic property is strongly influenced by the SnO 2 morphology on GOs. - Abstract: Different SnO 2 microspheres like dandelions, silkworm cocoons and urchins have been synthesized on graphene oxide sheets (GOs) by hydrothermal method at 190 °C for 24 h. The morphologies, structures, chemical compositions and optical properties of the as-grown SnO 2 microspheres on GOs (SMGs) were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray energy dispersive spectrometer (EDS), Raman spectra and UV–vis diffuse reflectance spectra (DRS) techniques. The results of XRD revealed that the as-grown SnO 2 microspheres have tetragonal rutile structure. The results of Raman spectra, EDS, XRD, XPS and SEM showed that the SnO 2 microspheres were grown on GOs and the average diameter of dandelion-like microsphere was about 1.5 μm. The formation mechanism of SnO 2 microspheres grown on GOs was discussed. The photocatalytic activity of the SMGs composites was evaluated by photocatalytic degradation of Rhodamine B (Rh B) aqueous solution under visible light irradiation. The photocatalytic results showed that the dandelion-like SMGs exhibited a much better photocatalytic activity than those of smooth and rough SMGs.

  3. Recent advances in Pt coating of microspheres by a batch magnetron sputtering process

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Meyer, S.F.

    1980-01-01

    Some proposed inertial confinement fusion targets require high-Z, high density metal coatings on glass microspheres. Platinum, which satisfies the high-Z and density requirements, can be coated onto microspheres with a batch magnetron sputtering process incorporating oxygen as a dopant gas to prevent the microspheres from sticking. This paper outlines recent progress in three areas: First, the coating process has been improved; second, the oxygen content and resistivity of the oxygen doped platinum films are analyzed; and third, the roles oxygen may play in reducing microsphere sticking during sputtering are discussed in regard to cold welding, Van der Waals bonding, electrostatic sticking, and sintering

  4. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.

    Science.gov (United States)

    Mao, Shirui; Xu, Jing; Cai, Cuifang; Germershaus, Oliver; Schaper, Andreas; Kissel, Thomas

    2007-04-04

    Using fluorescein isothiocyanate labeled dextran (FITC-dextran 40, FD40) as a hydrophilic model compound, microspheres were prepared by a WOW double emulsion technique. Influence of process parameters on microsphere morphology and burst release of FD40 from PLGA microspheres was studied. Internal morphology of microspheres was investigated by stereological method via cryo-cutting technique and scanning electron microscopy (SEM). Drug distribution in microspheres was observed with confocal laser scanning microscopy (CLSM). Polymer nature (RG503 and RG503H) had significant influence on the micro-morphology of microspheres. Increase in continuous water phase volume (W2) led to increased surface porosity but decreased internal porosity. By increasing PVA concentration in the continuous phase from 0.1 to 1%, particle size changed marginally but burst release decreased from 12.2 to 5.9%. Internal porosity of microspheres decreased considerably with increasing polymer concentration. Increase in homogenization speed during the primary emulsion preparation led to decreased internal porosity. Burst release decreased with increasing drug loading but increased with drug molecular weight. Drug distribution in microspheres depended on preparation method. The porosity of microspheres decreased with time in the diffusion stage, but internal morphology had no influence on the release behavior in the bioerosion stage. In summary, surface porosity and internal morphology play a significant role in the release of hydrophilic macromolecules from biodegradable microspheres in the initial release phase characterized by pore diffusion.

  5. Fiber-optic array using molecularly imprinted microspheres for antibiotic analysis.

    Science.gov (United States)

    Carrasco, Sergio; Benito-Peña, Elena; Walt, David R; Moreno-Bondi, María C

    2015-05-01

    In this article we describe a new class of high-density optical microarrays based on molecularly imprinted microsphere sensors that directly incorporate specific recognition capabilities to detect enrofloxacin (ENRO), an antibiotic widely used for both human and veterinary applications. This approach involves the preparation of highly cross-linked polymer microspheres by thermal precipitation-polymerization in the presence and absence of the target analyte ENRO to generate either molecularly imprinted (MIP) or non-imprinted polymer (NIP) microspheres, respectively. Each polymer type of tailor-made microsphere is fluorescently encoded with either coumarin-30 or tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) dichloride [Ru(dip) 3 ]Cl 2 to enable the microspheres to be distinguished. The new MIP-based sensing platform utilizes an optical fiber bundle containing approximately 50 000 individual 3.1 μm diameter fibers that are chemically etched to create microwells in which MIP and NIP microspheres can be deposited and imaged using an epi-fluorescence microscope. The method enables multiplexed detection by independently addressing both types of beads through their separate light channels. The unique response to the presence of ENRO is manifested on the basis of a competitive immunoassay. A red-fluorescent dye-tagged ENRO, labeled with BODIPY® TR Cadaverine, competes with ENRO for specific binding sites. The developed immuno-like assay displayed a limit of detection (LOD) of 0.04 μM (10% binding inhibition) and a dynamic range of 0.29-21.54 μM (20-80% binding inhibition). The selectivity of the assay was evaluated by measuring the cross-reactivity of other fluoroquinolones (ciprofloxacin, norfloxacin, danofloxacin, and flumequine) and non-related antibiotics (penicillin G and doxycycline). This work demonstrates, for the first time, the applicability of MIPs, as an alternative to biomolecule receptors, for the development of multiplexed detection fiber

  6. Recent progress on the fabrication of hollow microspheres

    International Nuclear Information System (INIS)

    Wang Aijuan; Lu Yupeng; Sun Ruixue

    2007-01-01

    Hollow microspheres represent a special class of materials, on which intense interest has been paid in the fields of material science, medicine, chemistry and chromatography. Several methods, including templating method, emulsion processing, high temperature smelting and layer-by-layer self-assembly technique, have been used to produce this kind of materials. However, most of the current needs for hollow microspheres are limited because of the disadvantages of these fabricating methods, such as time-consuming and relatively complex fabricating process. Spray drying method, as a simple and feasible technology, has also been used to fabricate this kind of materials. This method can improve the efficiency and save the time to some extent, and thus gains more and more interest recently. The factors of influencing the product morphology, including inlet air temperature, atomized pressure, feed rate, initial slurry concentration, primary powders size and additives, are reviewed in this paper. In addition, several kinds of typical hollow microspheres fabricated by this method are also listed particularly

  7. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    Science.gov (United States)

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  8. Formulation, evaluation and 3(2) full factorial design-based optimization of ondansetron hydrochloride incorporated taste masked microspheres.

    Science.gov (United States)

    Kharb, Vandana; Saharan, Vikas Anand; Dev, Kapil; Jadhav, Hemant; Purohit, Suresh

    2014-11-01

    Masking the bitter taste of Ondansetron hydrochloride (ONS) may improve palatability, acceptance and compliance of ONS products. ONS-loaded, taste-masked microspheres were prepared with a polycationic pH-sensitive polymer and 3(2) full factorial design (FFD) was applied to optimize microsphere batches. Solvent evaporation, in acetone--methanol/liquid paraffin system, was used to prepare taste-masked ONS microspheres. The effect of varying drug/polymer (D/P) ratios on microspheres characteristics were studied by 3(2) FFD. Desirability function was used to search the optimum formulation. Microspheres were evaluated by FTIR, XRD and DSC to examine interaction and effect of microencapsulation process. In vitro taste assessment approach based on bitterness threshold and drug release was used to assess bitterness scores. Prepared ONS microspheres were spherical and surface was wrinkled. ONS was molecularly dispersed in microspheres without any incompatibility with EE100. In hydrochloric acid buffer pH 1.2, ONS released completely from microsphere in just 10 min. Contrary to this, ONS release at initial 5 min from taste-masked microspheres was less than the bitterness threshold. Full factorial design and in vitro taste assessment approach, coupled together, was successfully applied to develop and optimize batches of ONS incorporated taste-masked microspheres.

  9. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    Science.gov (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  10. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  11. Microwave-assisted activation for electroless nickel plating on PMMA microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Chung [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Materials and Electro-optics Research Division, Chung Shan Institute of Science and Technology, Tao-Yuan, Taiwan 325 (China); Liu, Robert Lian-Huey [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Department of Chemical and Materials Engineering, Minghsin University of Science and Technology, Hsinchu Taiwan 304 (China); Chen, Xin-Liang [Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China); Shu, Hsiou-Jeng [Materials and Electro-optics Research Division, Chung Shan Institute of Science and Technology, Tao-Yuan, Taiwan 325 (China); Ger, Ming-Der, E-mail: mingderger@gmail.com [Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan, Taiwan 335 (China)

    2011-05-15

    A novel microwave-assisted activation method for electroless plating on PMMA microspheres is presented in this study. When the microwave irradiation was applied during the activation step, the amount of the Pd species adsorbed on PMMA surfaces was much higher than that of sample pretreated with a conventional activation process without microwave irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of 4-6 nm were uniformly distributed on the surfaces of the PMMA microspheres, thus a smooth and uniform nickel-phosphorus coating on the PMMA microspheres was obtained by subsequent electroless plating. The samples after each step were characterized by XPS, TEM, ICP and SEM.

  12. Ammonolysis-induced solvent removal: a facile approach for solidifying emulsion droplets into PLGA microspheres.

    Science.gov (United States)

    Kim, Jayoung; Hong, Dasom; Chung, Younglim; Sah, Hongkee

    2007-12-01

    An ammonolysis-based microencapsulation technique useful for the preparation of biodegradable microspheres was described in this study. A dispersed phase consisting of poly- d, l-lactide- co-glycolide, progesterone, and methyl chloroacetate was emulsified in an aqueous phase. Upon addition of ammonia solution, the emulsion droplets were quickly transformed into poly- d, l-lactide- co-glycolide microspheres laden with progesterone. Rapid solvent removal was accompanied by ammonolysis. The chemical reaction converted water-immiscible methyl chloroacetate to water-miscible chloroacetamide and methanol. Chloroacetamide formation was proved by (1)H NMR and ESI-MS studies. Thermogravimetric analysis showed that the microspheres contained only small amounts of residual methyl chloroacetate. Incorporation efficiencies of progesterone ranged from 64.3 +/- 1.1 to 72.8 +/- 0.3%, depending upon microsphere formulations. X-ray powder diffractometry analysis substantiated that no polymorphic transition of progesterone occurred during microencapsulation. To evaluate the feasibility of this new method against the commonly used microencapsulation method, microspheres were also prepared by a typical dichloromethane-based solvent evaporation process. The important attributes of microspheres prepared from both methods were characterized for comparison. The new ammonolysis-based microencapsulation process showed interesting features distinct from those of the solvent evaporation process. The microencapsulation process reported in this study might be applicable in loading pharmaceuticals into various polymeric microspheres.

  13. Biocompatibility Research of a Novel pH Sensitive Ion Exchange Resin Microsphere.

    Science.gov (United States)

    Liu, Hongfei; Shi, Shuangshuang; Pan, Weisan; Sun, Changshan; Zou, Xiaomian; Fu, Min; Feng, Yingshu; Ding, Hui

    2014-01-01

    The main objective of this study was to investigate biocompatibility and provide in-vivo pharmacological and toxicological evidence for further investigation of the possibility of pH sensitive ion exchange resin microsphere for clinical utilizations. Acute toxicity study and general pharmacological studies were conducted on the pH sensitive ion exchange resin microsphere we prepared. The general pharmacological studies consist of the effects of the pH sensitive ion exchange resin microsphere on the nervous system of mice, the functional coordination of mice, the hypnosis of mice treated with nembutal at subliminal dose, the autonomic activities of tested mice, and the heart rate, blood pressure, ECG and breathing of the anesthetic cats. The LD50 of pH sensitive ion exchange resin microsphere after oral administration was more than 18.84 g·Kg(-1). Mice were orally administered with 16 mg·Kg(-1), 32 mg·Kg(-1) and 64 mg·Kg(-1) of pH sensitive ion exchange resin microsphere and there was no significant influence on mice nervous system, general behavior, function coordination, hypnotic effect treated with nembutal at subliminal dose and frequency of autonomic activities. Within the 90 min after 5 mg·Kg(-1), 10 mg·Kg(-1), 20 mg·Kg(-1) pH sensitive ion exchange resin microsphere was injected to cat duodenum, the heart rate, blood pressure, breathing and ECG of the cats didn't make significant changes in each experimental group compared with the control group. The desirable pharmacological and toxicological behaviors of the pH sensitive ion exchange resin microsphere exhibited that it has safe biocompatibility and is possible for clinical use.

  14. Evaluation of Controlled Release Theophylline Microspheres ...

    African Journals Online (AJOL)

    Erah

    High drug/polymer ratio, low processing temperature and low HLB value of ... Keywords: Microsphere, Emulsion solvent evaporation, Theophylline, Temperature, ... evaporation, stirring rate, viscosity of ... organic solvent is removed from the.

  15. Kinetics of piroxicam release from low-methylated pectin/zein hydrogel microspheres

    Science.gov (United States)

    The kinetics of a model drug (piroxicam) release from pectin/zein hydrogel microspheres was studied under conditions simulating the gastrointestinal tract. It is established that the rate-limiting step in the release mechanism is drug diffusion out of the microspheres rather than its dissolution. ...

  16. Minimizing resputtering of Pt-coated microspheres in a batch magnetron sputtering process

    International Nuclear Information System (INIS)

    Plake, A.L.

    1981-01-01

    Preventing DT loss from glass microspheres being smoothly coated with PT is needed during fabrication of laser fusion targets. Evidence indicates that the increase of substrate temperature due to resputtering will cause DT loss. Resputtering will prevent a smooth and uniform coating on these glass microspheres (140 μm in diameter). This paper reviews the method that was developed to find a set of coating conditions to minimize the DT loss, and still be able to produce thick smooth Pt coated glass microspheres

  17. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    Science.gov (United States)

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  18. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  19. Synthesis of polystyrene@(silver-polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Science.gov (United States)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver-polypyrrole) (PS@(Ag-PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag+ and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA)2]+) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO3 and Py, the introduction of [Ag(TEA)2]+ ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag-PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA)2]+ ions resulted in the increase of Ag-PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag-PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 105 - 9×105 cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag-PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.

  20. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Geschwind, Jean Francois H; Salem, Riad; Carr, Brian I; Soulen, Michael C; Thurston, Kenneth G; Goin, Kathleen A; Van Buskirk, Mark; Roberts, Carol A; Goin, James E

    2004-11-01

    Unresectable hepatocellular carcinoma is extremely difficult to treat. TheraSphere consists of yttrium-90 (a pure beta emitter) microspheres, which are injected into the hepatic arteries. This article reviews the safety and survival of patients with hepatocellular carcinoma who were treated with yttrium-90 microspheres. Eighty patients were selected from a database of 108 yttrium-90 microsphere-treated patients and were staged by using Child-Pugh, Okuda, and Cancer of the Liver Italian Program scoring systems. Patients were treated with local, regional, and whole-liver approaches. Survival from first treatment was analyzed with Kaplan-Meier and Cox regression methods. Adverse events and complications of treatment were coded by using the Southwest Oncology Group toxicity scoring system. Patients received liver doses ranging from 47 to 270 Gy. Thirty-two patients (40%) received more than 1 treatment. Survival correlated with pretreatment Cancer of the Liver Italian Program scores ( P = .002), as well as with the individual Cancer of the Liver Italian Program components, Child-Pugh class, alpha-fetoprotein levels, and percentage of tumor replacement. Patients classified as Okuda stage I (n = 54) and II (n = 26) had median survival durations and 1-year survival rates of 628 days and 63%, and 384 days and 51%, respectively ( P = .02). One patient died of liver failure judged as possibly related to treatment. Thus, in selected patients with hepatocellular carcinoma, yttrium-90 microsphere treatment is safe and well tolerated. On the basis of these results, a randomized controlled trial is warranted comparing yttrium-90 microsphere treatment with transarterial chemoembolization by using the Cancer of the Liver Italian Program system for prospective stratified randomization.

  1. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Science.gov (United States)

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Zachary D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Padilla Cintron, Cristina [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  3. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads.

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari

    2017-09-15

    Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.

  4. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material.

    Science.gov (United States)

    Xiao, Wei; Zhou, Wenjie; Feng, Tong; Zhang, Yanhua; Liu, Hongdong; Tian, Liangliang

    2016-09-20

    MoS₂/RGO composite hollow microspheres were hydrothermally synthesized by using SiO₂/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO₂ microspheres. The structure, morphology, phase, and chemical composition of MoS₂/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS₂/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m²·g -1 . When used as supercapacitor electrode material, MoS₂/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g -1 at the current density of 1 A·g -1 , which was much higher than that of contrastive bare MoS₂ microspheres developed in the present work and most of other reported MoS₂-based materials. The enhancement of supercapacitive behaviors of MoS₂/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS₂/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g -1 , showing excellent application potential.

  5. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-09-01

    Full Text Available MoS2/RGO composite hollow microspheres were hydrothermally synthesized by using SiO2/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 microspheres. The structure, morphology, phase, and chemical composition of MoS2/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS2/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m2·g−1. When used as supercapacitor electrode material, MoS2/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g−1 at the current density of 1 A·g−1, which was much higher than that of contrastive bare MoS2 microspheres developed in the present work and most of other reported MoS2-based materials. The enhancement of supercapacitive behaviors of MoS2/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS2/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g−1, showing excellent application potential.

  6. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao; Xiao, Manda; Bao, Zhihong; Wang, Peng; Wang, Jianfang

    2012-01-01

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Zhang, Jun; Tu, Jiang-ping; Du, Gao-hui; Dong, Zi-min; Su, Qing-mei; Xie, Dong; Wang, Xiu-li

    2013-01-01

    Highlights: ► Nest-like-porous (NLP) WO 3 microspheres are assembled by a hydrothermal method. ► The NLP-WO 3 microspheres have a hexagonal structure and high porous surface. ► Great enhancement of electrochemical property is achieved for Pt/NLP-WO 3 microspheres. -- Abstract: Hexagonal tungsten trioxide (hex-WO 3 ) hierarchical microspheres with nest-like pores are synthesized by a facile hydrothermal method. The nest-like-porous (NLP) WO 3 hierarchical microspheres with 5–6 μm in diameters are self-assembled of single-crystal nanowires. The nanowires have lengths of several hundred nanometers and diameters of 5–30 nm; the long axis of nanowire is oriented toward 〈0 0 1〉 direction. The specific surface area of hex-WO 3 microspheres is 62 m 2 g −1 . 20 wt.% Pt nanoparticles with ∼7 nm are loaded onto the WO 3 microspheres using a conventional microwave-assisted ethylene glycol (EG) method. The electrocatalytic activity for methanol oxidation of Pt/NLP-WO 3 microspheres is investigated by cyclic voltammetry and chronoamperometry. Due to the large tunnels of hexagonal structure and high porous surface morphology, great enhancement of electrochemical performance is achieved. The Pt/NLP-WO 3 microspheres are demonstrated to be a promising anode material for direct methanol fuel cells (DMFC)

  9. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  10. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 32 full factorial design

    Science.gov (United States)

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-01-01

    Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786

  11. One-pot solvothermal route to self-assembly of cauliflower-shaped CdS microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Ge Ming [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Cui Yao [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Liu Lu, E-mail: liul@nankai.edu.cn [Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071 (China); Zhou Zhen, E-mail: zhouzhen@nankai.edu.cn [Institute of New Energy Material Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China)

    2011-05-15

    Nearly monodispersed cauliflower-shaped CdS microspheres were prepared through a simple one-step solvothermal route on a large scale by employing sodium dodecyl sulfate (SDS) as the surfactant. Images by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) indicate that cauliflower-shaped CdS microspheres with diameters in the range from 1.3 to 4.5 {mu}m are assembled by nanoparticles with an average diameter of approximately 30 nm. The possible formation mechanism of the cauliflower-shaped CdS microspheres was also proposed. The photovoltaic activity of cauliflower-shaped CdS architectures has been investigated, indicating that the as-obtained CdS microspheres exhibited higher photovoltaic performance in comparison with CdS nanoparticles.

  12. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  13. Development and gamma-scintigraphy study of Hibiscus rosasinensis polysaccharide-based microspheres for nasal drug delivery.

    Science.gov (United States)

    Sharma, Nitin; Tyagi, Shanu; Gupta, Satish Kumar; Kulkarni, Giriraj Thirupathirao; Bhatnagar, Aseem; Kumar, Neeraj

    2016-11-01

    This work describes the application of natural plant polysaccharide as pharmaceutical mucoadhesive excipients in delivery systems to reduce the clearance rate through nasal cavity. Novel natural polysaccharide (Hibiscus rosasinensis)-based mucoadhesive microspheres were prepared by using emulsion crosslinking method for the delivery of rizatriptan benzoate (RB) through nasal route. Mucoadhesive microspheres were characterized for different parameters and nasal clearance of technetium-99m ((99m)Tc)-radiolabeled microspheres was determined by using gamma-scintigraphy. Their Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies showed that the drug was stable during preparation of microspheres. Aerodynamic diameter of microspheres was in the range 13.23 ± 1.83-33.57 ± 3.69 µm. Change in drug and polysaccharide ratio influenced the mucoadhesion, encapsulation efficiency and in-vitro release property. Scintigraphs taken at regular interval indicate that control solution was cleared rapidly from nasal cavity, whereas microspheres showed slower clearance (p < 0.005) with half-life of 160 min. Natural polysaccharide-based microspheres achieved extended residence by minimizing effect of mucociliary clearance with opportunity of sustained delivery for longer duration.

  14. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    International Nuclear Information System (INIS)

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-01

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li 2 O-CaO-B 2 O 3 glass microspheres in dilute phosphate solution at 37 o C. The results confirmed that Li 2 O-CaO-B 2 O 3 glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li 2 O-CaO-B 2 O 3 glass microspheres reacted in low-concentration K 2 HPO 4 solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  15. Effects of Temperature and pH on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate Microspheres

    Directory of Open Access Journals (Sweden)

    Siti Zulaikha Mazlan

    2017-01-01

    Full Text Available Immobilization of laccase on the functionalized methacrylate-acrylate copolymer microspheres was studied. Poly(glycidyl methacrylate-co-n-butyl acrylate microspheres consisting of epoxy groups were synthesized using facile emulsion photocuring technique. The epoxy groups in poly(GMA-co-nBA microspheres were then converted to amino groups. Laccase immobilization is based on covalent binding via amino groups on the enzyme surface and aldehyde group on the microspheres. The FTIR spectra showed peak at 1646 cm−1 assigned to the conformation of the polymerization that referred to GMA and nBA monomers, respectively. After modification of the polymer, intensity of FTIR peaks assigned to the epoxy ring at 844 cm−1 and 904 cm−1 was decreased. The results obtained from FTIR exhibit a good agreement with the epoxy content method. The activity of laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly(GMA-co-nBA microspheres revealed uniform size below 2 µm that contributes to large surface area of the microspheres to be used as a matrix, thus increasing the enzyme capacity and enzymatic reaction. Immobilized enzyme also shifted to higher pH and temperature compared to free enzyme.

  16. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds

    International Nuclear Information System (INIS)

    Zhai Peng; Chen, X B; Schreyer, David J

    2013-01-01

    Tissue engineering scaffolds are designed not only to provide structural support for the repair of damaged tissue, but can also serve the function of bioactive protein delivery. Here we present a study on the preparation and characterization of protein-loaded microspheres, either alone or incorporated into mock tissue scaffolds, for sustained protein delivery. Alginate microspheres were prepared by a novel, small-scale water-in-oil emulsion technique and loaded with fluorescently labeled immunoglobulin G (IgG). Microsphere size appears to be influenced by the magnitude and distribution of force generated by mechanical stirring during emulsion. Protein release studies show that sustained IgG release from microspheres could be achieved and that application of a secondary coating of chitosan could further slow the rate of protein release. Preservation of bioactivity of released IgG protein was confirmed using an immunohistochemical assay. When IgG-loaded microspheres were incorporated into mock scaffolds, initial protein release was diminished and the overall time course of release was extended. The present study demonstrates that protein-loaded microspheres can be prepared with a controlled release profile and preserved biological activity, and can be incorporated into scaffolds to achieve sustained and prolonged protein delivery in a tissue engineering application. (paper)

  17. Pilot trial of Y-90 glass microspheres in the treatment of primary hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Houle, S.; Yip, T.C.K.; Shepherd, F.A.; Rotstein, L.E.; Theis, B.; Cawthorn, R.; Barnes, K.

    1987-01-01

    A pilot trial is currently under way at our institution to determine the potential of new Y-90 glass microspheres (Theraspheres, Theragenics Corp., Atlanta) for the treatment of primary hepatocellular carcinoma. The Y-90 microspheres are injected through a percutaneous hepatic artery catheter positioned angiographically. The injection is facilitated by a new delivery system. Prior to the injection of the Y-90 microspheres, the presence of shunting is assessed by injecting Tc-99m human albumin microspheres (HAM) via the hepatic artery catheter. Bremsstrahlung scans done after injection demonstrate the distribution the Y-90 microspheres within the liver and the lack of extrahepatic activity. In the first group of patients treated, no significant toxicity was demonstrated for absorbed doses between 5,000 and 10,000 rad to the liver, and up to 20,000 rad to the tumor itself

  18. Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities.

    Science.gov (United States)

    An, Jing; Ji, Zhenxing; Wang, Desong; Luo, Qingzhi; Li, Xueyan

    2014-03-01

    The chitosan/silver microspheres (CAgMs), which possess effective inhibitory on microorganisms, were prepared by an inverse-emulsification cross-linking method using CS/Ag sol as dispersed phase, whiteruss as continuous phase, and glutaraldehyde as crosslinking agent. The size and shape of CAgMs, greatly affecting their antibacterial activities, were controlled by varying the concentrations of cross-linking agent, emulsifier and CS/Ag colloid. The preparation conditions for obtaining uniform-sized microspheres were optimized. The morphology of CAgMs was characterized by scanning electron microscopy (SEM) and laser particle size analysis. The spherical CAgMs with smooth surface in the mean size of ca. 5 μm exhibited a narrow particle size distribution. Energy Dispersive X-ray spectroscopy (EDX) revealed the elemental composition of the microspheres. Transmission electron micrographs (TEM) and Fourier transform infrared spectroscopy (FTIR) of the microspheres confirmed the formation of silver nanoparticles (AgNPs). The X-ray diffraction (XRD) patterns and UV-Visible diffuse reflectance spectroscopy (UV-vis DRS) of the sample showed that AgNPs with the diameter no more than 20 nm were face-centered cubic crystallites. X-ray photoelectron spectroscopy (XPS) proved that AgO bond existed in the microspheres. Thermogravimetric analysis (TGA) showed that the starting decomposition temperature of CAgMs (ca. 260°C) was much higher than that of CS (ca. 160°C), suggesting that the as-prepared CAgMs possessed better thermal stability than original CS did. Antimicrobial assays were performed using typical Gram bacteria and fungi. The inhibitory effect indicated that the as-prepared microspheres exerted a stronger antibacterial activity as the concentration of the AgNPs is increasing, and the microspheres in smaller size had much better antibacterial activity than those in the larger size. The antimicrobial mechanism of CAgMs was discussed. Copyright © 2013 Elsevier B.V. All

  19. Effective Enrichment and Detection of Trace Polycyclic Aromatic Hydrocarbons in Food Samples based on Magnetic Covalent Organic Framework Hybrid Microspheres.

    Science.gov (United States)

    Li, Ning; Wu, Di; Hu, Na; Fan, Guangsen; Li, Xiuting; Sun, Jing; Chen, Xuefeng; Suo, Yourui; Li, Guoliang; Wu, Yongning

    2018-04-04

    The present study reported a facile, sensitive, and efficient method for enrichment and determination of trace polycyclic aromatic hydrocarbons (PAHs) in food samples by employing new core-shell nanostructure magnetic covalent organic framework hybrid microspheres (Fe 3 O 4 @COF-(TpBD)) as the sorbent followed by HPLC-DAD. Under mild synthetic conditions, the Fe 3 O 4 @COF-(TpBD) were prepared with the retention of colloidal nanosize, larger specific surface area, higher porosity, uniform morphology, and supermagnetism. The as-prepared materials showed an excellent adsorption ability for PAHs, and the enrichment efficiency of the Fe 3 O 4 @COF-(TpBD) could reach 99.95%. The obtained materials also had fast adsorption kinetics and realized adsorption equilibrium within 12 min. The eluent was further analyzed by HPLC-DAD, and good linearity was observed in the range of 1-100 ng/mL with the linear correlation being above 0.9990. The limits of detection (S/N = 3) and limits of quantitation (S/N = 10) for 15 PAHs were in the range of 0.83-11.7 ng/L and 2.76-39.0 ng/L, respectively. For the application, the obtained materials were employed for the enrichment of trace PAHs in food samples and exhibited superior enrichment capacity and excellent applicability.

  20. Facile Fabrication of Urchin-like Polyaniline Microspheres for Electrochemical Energy Storage

    International Nuclear Information System (INIS)

    Wang, Yuan; Xu, Shaoqin; Liu, Wenfeng; Cheng, Huan; Chen, Shaoyun; Liu, Xueqing; Liu, Jiyan; Tai, Qidong; Hu, Chenglong

    2017-01-01

    Graphical abstract: The urchin-like polyaniline (i.e. PANI) microsphere was polymerized using the sulfonated polystyrene microspheres (i.e. SPS) as template. It showed large specific capacitance of 435 F g −1 at a scan rate of 10 mV s −1 , and also exhibited the good rate capability and the cycling stability with capacitance retentions of 93% after 1000 cycles. This facile approach is feasible and easy to fabricate microstructural conducting polymer for supercapacitor electrode materials. Display Omitted -- Highlights: •A novel route to fabricate urchin-like polyaniline (PANI) by polymeric template. •The specific capacitance of 435 Fg 1 was obtained when PANI acted as the electrode. •The cycling stability with capacitance retentions of 93% after 1000 cycles. -- Abstract: The urchin-like polyaniline (i.e. PANI) microsphere was polymerized using the sulfonated polystyrene microsphere (i.e. SPS) as template, and its structure was successfully conformed by the X-ray photoelectron spectrum, Raman spectrum, Ultraviolet-visible spectrum, and TGA thermogram. The urchin-like PANI microspheres with uniform diameter (1.5 μm) can be observed on scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge/discharge tests were carried out to investigate the electrochemical properties of as-prepared urchin-like PANI microspheres. It showed that the specific capacitance (SC) was 435 Fg −1 at a scan rate of 10 mV s −1 , and also exhibited good capability and cycling stability with capacitance retentions of 93% after 1000 cycles, which is superior or close to some individual PANI nanostructures and PANI composite materials. This facile approach is feasible and easy to fabricate microstructural conducting polymer for supercapacitor electrode materials.

  1. Production of cerium dioxide microspheres by an internal gelation sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Katalenich, Jeffrey A.

    2017-03-27

    An internal gelation sol-gel technique was used to prepare cerium dioxide microspheres with uniform diameters near 100 µm. In this process, chilled aqueous solutions containing cerium, hexamethylenetetramine (HMTA), and urea are transformed into a solid gel by heat addition and are subsequently washed, dried, and sintered to produce pure cerium dioxide. Cerous nitrate and ceric ammonium nitrate solutions were compared for their usefulness in microsphere production. Gelation experiments were performed with both cerous nitrate and ceric ammonium nitrate to determine desirable concentrations of cerium, HMTA, and urea in feed solutions as well as the necessary quantity of ammonium hydroxide added to cerium solutions. Analysis of the pH before and after sample gelation was found to provide a quantitative metric for optimal parameter selection along with subjective evaluations of gel qualities. The time necessary for chilled solutions to gel upon inserting into a hot water bath was determined for samples with a variety of parameters and also used to determine desirable formulations for microsphere production. A technique for choosing the optimal mixture of ceric ammonium nitrate, HMTA, and urea was determined using gelation experiments and used to produce microspheres by dispersion of the feed solution into heated silicone oil. Gelled spheres were washed to remove excess reactants and reaction products before being dried and sintered. X-ray diffraction of air-dried microspheres, sintered microspheres, and commercial CeO2 powders indicated that air-dried and sintered spheres were pure CeO2.

  2. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium.

    Science.gov (United States)

    Bozdağ, S; Caliş, S; Kaş, H S; Ercan, M T; Peksoy, I; Hincal, A A

    2001-01-01

    The dispersion of non-steroidal antiinflammatory drugs (NSAIDs) into biodegradable polymeric matrices have been accepted as a good approach for obtaining a therapeutic effect in a predetermined period of time meanwhile minimizing the side effects of NSAIDs. In the present study, it was aimed to prepare Naproxen Sodium (NS), (a NSAID) loaded microsphere formulation using natural Bovine Serum Albumin (BSA) and synthetic biodegradable polymers such as poly(lactide-co-glycolic acid) (PLGA) (50:50 MW 34,000 and 88,000 Da) for intra-articular administration, and to study the retention of the drug at the site of injection in the knee joint. NS incorporated microspheres were evaluated in vitro for particle size (the mean particle size; for BSA microspheres, 10.0 +/- 0.3 microm, for PLGA microspheres, 9.0 +/- 0.2 and 5.0 +/- 0.1 microm for MW 34,000 and 88,000 Da, respectively), yield value, drug loading, surface morphology and drug release. For in vivo studies, monoarticular arthritis was induced in the left knee joints of rabbits by using ovalbumin and Freund's Complete Adjuvant as antigen and adjuvant. A certain time (4 days) is allowed for the formation of arthritis in the knee joints, then the NS loaded microspheres were injected directly into the articular cavity. At specific time points, gamma scintigrams were obtained to determine the residence time of the microspheres in knee joints, in order to determine the most suitable formulation. This study indicated that PLGA, a synthetic polymer, is more promising than the natural type BSA microspheres for an effective cure of mono-articular arthritis in rabbits.

  3. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator.

    Science.gov (United States)

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai

    2013-07-01

    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers.

  4. Synthesis of Hollow CdS-TiO2 Microspheres with Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yuning Huo

    2012-01-01

    Full Text Available CdS-TiO2 composite photocatalyst in the shape of hollow microsphere was successfully synthesized via the hard-template preparation with polystyrene microspheres followed by ion-exchange approach. The hollow CdS-TiO2 microspheres significantly extended the light adsorption into visible light region, comparing to TiO2 microspheres. It led to much higher photocatalytic activities of hollow CdS-TiO2 microspheres than that of TiO2 during the photodegradation of rhodamine B under visible light irradiations. Furthermore, the well-remained hollow structure could achieve light multireflection within the interior cavities and the separation of photo-induced electrons and holes is efficient in CdS-TiO2, which were facilitated to improving the photoactivity.

  5. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    Directory of Open Access Journals (Sweden)

    Zeng SG

    2015-05-01

    Full Text Available Shuguang Zeng,1,* Manwen Ye,1,2,* Junqi Qiu,1 Wei Fang,1 Mingdeng Rong,1 Zehong Guo,1 Wenfen Gao11Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: We report the effects of distinct concentrations of genipin and silk fibroin (SF:chitosan (CS ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA, and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 µm to 147 µm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the

  6. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design.

    Science.gov (United States)

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-07-01

    Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.

  7. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat

    Directory of Open Access Journals (Sweden)

    Chunhui eJiang

    2015-11-01

    Full Text Available Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide (PLGA, a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue (WAT depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  8. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics.

    Science.gov (United States)

    Zhou, Xing; Zhao, Yang; Chen, Siyu; Han, Songling; Xu, Xiaoqiu; Guo, Jiawei; Liu, Mengyu; Che, Ling; Li, Xiaohui; Zhang, Jianxiang

    2016-08-08

    Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics.

  9. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.

    Science.gov (United States)

    Gong, Feilong; Lu, Shuang; Peng, Lifang; Zhou, Jing; Kong, Jinming; Jia, Dianzeng; Li, Feng

    2017-11-23

    Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g -1 at current density of 0.5 A g -1 , and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg -1 at power density of 500.00 W kg -1 , and a maximum power density of 20.14 kW kg -1 at energy density of 46.8 Wh kg -1 . We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

  10. Synthesis and photocatalytic properties of different SnO2 microspheres on graphene oxide sheets

    Science.gov (United States)

    Wei, Jia; Xue, Shaolin; Xie, Pei; Zou, Rujia

    2016-07-01

    Different SnO2 microspheres like dandelions, silkworm cocoons and urchins have been synthesized on graphene oxide sheets (GOs) by hydrothermal method at 190 °C for 24 h. The morphologies, structures, chemical compositions and optical properties of the as-grown SnO2 microspheres on GOs (SMGs) were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), X-ray energy dispersive spectrometer (EDS), Raman spectra and UV-vis diffuse reflectance spectra (DRS) techniques. The results of XRD revealed that the as-grown SnO2 microspheres have tetragonal rutile structure. The results of Raman spectra, EDS, XRD, XPS and SEM showed that the SnO2 microspheres were grown on GOs and the average diameter of dandelion-like microsphere was about 1.5 μm. The formation mechanism of SnO2 microspheres grown on GOs was discussed. The photocatalytic activity of the SMGs composites was evaluated by photocatalytic degradation of Rhodamine B (Rh B) aqueous solution under visible light irradiation. The photocatalytic results showed that the dandelion-like SMGs exhibited a much better photocatalytic activity than those of smooth and rough SMGs.

  11. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors

    Science.gov (United States)

    Cao, Hailiang; Zhou, Xufeng; Zhang, Yiming; Chen, Liang; Liu, Zhaoping

    2013-12-01

    Polyaniline/graphene nanocomposites with microspherical morphology and porous structure are prepared as electrode materials for supercapacitors. Using few-layer graphene obtained by liquid phase exfoliation of graphite as the raw material, porous graphene microspheres are produced by spray drying, and are then employed as the substrates for the growth of polyaniline nanowire arrays by in situ polymerization. In the composite, interconnected graphene sheets with few structural defects constitute a high-efficient conductive network to improve the electrical conductivity of polyaniline. Furthermore, the microspherical architecture prevents restacking of polyaniline/graphene composite nanosheets, thus facilitates fast diffusion of electrolytes. Consequently, the nanocomposite exhibits excellent electrochemical performance. A specific capacitance of 338 F g-1 is reached in 1 M H2SO4 at a scan rate of 20 mV s-1, and a high capacity retention rate of 87.4% after 10,000 cycles at a current density of 3 A g-1 can be achieved, which suggests that the polyaniline/graphene composite with such kind of 3D architecture is a promising electrode material for high-performance supercapacitors.

  12. Thales: an instrument to measure the low field magnetophoretic mobility of microscopic objects

    International Nuclear Information System (INIS)

    Hackett, S L; St Pierre, T G

    2005-01-01

    An instrument, Thales, was designed and constructed to measure the induce motion of magnetic microspheres in a low magnetic field strength environment. Results show that Thales can be used to precisely measure the speed of microspheres (± 0.08 μm.s -1 ). We evaluated the motion of magnetic microspheres induced by an inhomogeneous magnetic field, and developed models for the microsphere magnetophoretic mobility, a parameter determining the speed attained by the microsphere in a given static low strength magnetic field environment. The data suggested that the magnetic material was located at the surfaces of the microspheres rather than being distributed evenly through the microspheres. With suitable calibration microspheres, Thales will be capable of directly measuring the low field magnetophoretic mobility of microscopic objects

  13. Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jing; Ji, Zhenxing; Wang, Desong, E-mail: dswang06@126.com; Luo, Qingzhi; Li, Xueyan

    2014-03-01

    The chitosan/silver microspheres (CAgMs), which possess effective inhibitory on microorganisms, were prepared by an inverse-emulsification cross-linking method using CS/Ag sol as dispersed phase, whiteruss as continuous phase, and glutaraldehyde as crosslinking agent. The size and shape of CAgMs, greatly affecting their antibacterial activities, were controlled by varying the concentrations of cross-linking agent, emulsifier and CS/Ag colloid. The preparation conditions for obtaining uniform-sized microspheres were optimized. The morphology of CAgMs was characterized by scanning electron microscopy (SEM) and laser particle size analysis. The spherical CAgMs with smooth surface in the mean size of ca. 5 μm exhibited a narrow particle size distribution. Energy Dispersive X-ray spectroscopy (EDX) revealed the elemental composition of the microspheres. Transmission electron micrographs (TEM) and Fourier transform infrared spectroscopy (FTIR) of the microspheres confirmed the formation of silver nanoparticles (AgNPs). The X-ray diffraction (XRD) patterns and UV–Visible diffuse reflectance spectroscopy (UV–vis DRS) of the sample showed that AgNPs with the diameter no more than 20 nm were face-centered cubic crystallites. X-ray photoelectron spectroscopy (XPS) proved that Ag-O bond existed in the microspheres. Thermogravimetric analysis (TGA) showed that the starting decomposition temperature of CAgMs (ca. 260 °C) was much higher than that of CS (ca. 160 °C), suggesting that the as-prepared CAgMs possessed better thermal stability than original CS did. Antimicrobial assays were performed using typical Gram bacteria and fungi. The inhibitory effect indicated that the as-prepared microspheres exerted a stronger antibacterial activity as the concentration of the AgNPs is increasing, and the microspheres in smaller size had much better antibacterial activity than those in the larger size. The antimicrobial mechanism of CAgMs was discussed. - Highlights: • CAgM was

  14. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [Ministry of Education, Beijing University of Chemical Technology, Key Laboratory of Carbon Fiber and Functional Polymer (China)

    2015-01-15

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag{sup +} and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA){sub 2}]{sup +}) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO{sub 3} and Py, the introduction of [Ag(TEA){sub 2}]{sup +} ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA){sub 2}]{sup +} ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10{sup 5} – 9×10{sup 5} cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract.

  15. Synthesis of polystyrene@(silver–polypyrrole) core/shell nanocomposite microspheres and study on their antibacterial activities

    International Nuclear Information System (INIS)

    Guo, Longhai; Ren, Shanshan; Qiu, Teng; Wang, Leilei; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2015-01-01

    We reported the synthesis of polystyrene@(silver–polypyrrole) (PS@(Ag–PPy)) nanocomposite microspheres with the well-defined core/shell structure, in which the functionalized PS microspheres by the sulfonic acid groups were employed as template. The diameter of the synthesized PS microsphere template and AgNP was 1.26 μm and 50 nm, respectively. In order to well control the redox reaction between Ag + and Py monomer and to avoid the accumulation of these AgNPs during synthesis process, the complexation of triethanolamine (TEA) and silver ion ([Ag(TEA) 2 ] + ) was employed as the oxidant, so that the generation rate of AgNPs was in turn decreased. Moreover, compared with the redox reaction between AgNO 3 and Py, the introduction of [Ag(TEA) 2 ] + ions resulted in the improved coverage and distribution of AgNPs around the surface of PS microspheres. Meanwhile, the loading amount of Ag–PPy nanocomposites on the final microspheres was adjustable. The increasing concentrations of Py monomer and [Ag(TEA) 2 ] + ions resulted in the increase of Ag–PPy nanocomposite loading. The results of antibacterial experiment suggested that the synthesized PS@(Ag–PPy) composite microspheres showed the prominent antibacterial properties against both the Gram-negative bacteria of Escherichia coli and the Gram-positive bacteria of Staphylococcus aureus. For the bacteria with concentration at 1 × 10 5  – 9×10 5  cfu/mL, the microspheres can kill the bacteria above 3-log reduction with the concentration of PS@(Ag–PPy) composite microspheres at 50 μg/mL, in which the weight fraction of Py in the composite microspheres was above 10 wt%. When the weight fraction of Py in the composite microspheres was at 5 wt%, the 2-log reduction of in bacterial viability could also be obtained.Graphical Abstract

  16. Photocatalytic reduction of CO{sub 2} into methanol and ethanol over conducting polymers modified Bi{sub 2}WO{sub 6} microspheres under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weili, E-mail: wldai81@126.com; Xu, Hai; Yu, Juanjuan; Hu, Xu; Luo, Xubiao, E-mail: luoxubiao@126.com; Tu, Xinman; Yang, Lixia

    2015-11-30

    Graphical abstract: - Highlights: • Conducting polymers modified Bi{sub 2}WO{sub 6} HHMS (CP/Bi{sub 2}WO{sub 6}) was successfully synthesized. • The introduction of CP decreases the recombination of photogenerated e{sup –}–h{sup +} pairs. • The PTh/Bi{sub 2}WO{sub 6} exhibites good stability and recyclability for CO{sub 2} photoreduction. • The possible photocatalytic mechanism was discussed and proposed. - Abstract: Bi{sub 2}WO{sub 6} hierarchical hollow microspheres (HHMS) modified with different conducting polymers (polyaniline, polypyrrole, and polythiophene) were successfully synthesized by ‘in situ’ deposition oxidative polymerization method, and evaluated as photocatalysts for the photocatalytic reduction of CO{sub 2} with H{sub 2}O to methanol and ethanol. It was found that the introduction of conducting polymers obviously decreased the recombination of photogenerated electron–hole pairs, thus promoting the photocatalytic activity of Bi{sub 2}WO{sub 6}. Among the as-fabricated photocatalysts, polythiophene modified Bi{sub 2}WO{sub 6} (PTh/Bi{sub 2}WO{sub 6}) exhibited the best photoelectronic and photocatalytic performance, due to the narrow band gap and good charge mobility of polythiophene. The results demonstrate that the methanol and ethanol yield over PTh/Bi{sub 2}WO{sub 6} was 56.5 and 20.5 μmol g{sub cat}{sup −1} in 4 h, respectively. The total yield of hydrocarbons is 2.8 times higher than that over pure Bi{sub 2}WO{sub 6}. It is noted that the catalyst exhibits good recyclability and stability. After five consecutive runs, the PTh/Bi{sub 2}WO{sub 6} catalyst shows no significant loss of photocatalytic activity. The possible photocatalytic mechanism was proposed which is beneficial for further improving the activity of photocatalysts. The approach described in this study provides a simple and reliable strategy for the rational design of efficient visible light-driven photocatalysts for photoreduction of CO{sub 2} to hydrocarbons.

  17. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  18. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. THE PREPARATION OF MAGNETICALLY MODIFIED SYNTHETETIC AND NATURAL ZEOLITES AND COMPARISON OF THEIR SOME PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Zafer DİKMEN

    2013-06-01

    Full Text Available In this study, magnetically modified zeolites (MMZ has been produced and their adsorption, ion-exchange and magnetic properties have been studied. In this study, natural zeolite mineral, clinoptilolite, which belongs to Gördes (Manisa regions and synthetic 13X zeolite, which has been produced by Sigma-Aldrich firm have been used. In order to modify the surface of these minerals, magnetite sample which belongs to Divriği (Sivas region has been used. The engagement of magnetite particles on zeolite particles has been studied. For this reason, measuring, visualization and analysis techniques as DTA-TG, XRD, XRF, SEM and EDX have been used. As a result of these procedures, it has been observed that magnetite particles get engaged on the surface of zeolite particles and magnetite contribu-tion on MMZ has changed adsorption, ion-exchange and magnetic properties.In order to determine how magnetite contribution affects adsorption, ion exchange and magnetic properties of MMZ, weightily magnetite contribution ratio (zeolite/magnetite has been applied in three different forms (1/1, 1/2, 1/3.As a result of nitrogen adsorption of MMZ, it has been observed that as the weightily magnetite contribution ratio goes up, specific surface area goes down and average pore diameter rises. It has been identified that total cation exchange capacity rises as the weightily magnetite contribution ratio goes up. It has been observed that pure zeolites, which have no magnetic properties, as a result of magnetically modification process, they have got magnetically character, and they change their magnetic properties positively as the weightily magnetite contribution goes up. It has been determined that as a result of magnetic measurements; the optimum value of applied outer magnetic field is 0.5T.

  20. Yttrium-90 microspheres (TheraSphere and SIR-Spheres) for the treatment of unresectable hepatocellular carcinoma.

    Science.gov (United States)

    Allison, C

    2007-09-01

    (1) Microspheres containing radioactive yttrium-90 (90Y) are infused into the hepatic artery. These deliver high doses of ionizing radiation to inoperable hepatocellular carcinoma, the most common type of primary liver cancer. (2) Limited evidence from several case series indicates that palliative therapy with 90Y microspheres may reduce tumour size and increase survival time. (3) In some patients, 90Y treatment may result in enough tumour reduction to permit liver resection or transplantation. (4) While 90Y microsphere therapy is generally well tolerated, major complications and several treatment-related deaths have occurred. Improved patient selection criteria and technical changes to microsphere delivery have reduced the risks of complications and death. (5) Patient selection and the technical aspects of 90Y microsphere treatment are complex and require the coordinated expertise of a multidisciplinary team.