WorldWideScience

Sample records for modern microscopical methods

  1. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  2. Microscope and method of use

    Science.gov (United States)

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  3. A method for fast automated microscope image stitching.

    Science.gov (United States)

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2006-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and 267 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry and related fields. Special features in the 2nd edition: • Illustrates the high-resolution methods for ultrashort-living protei...

  5. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2010-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields. Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important...

  6. Modern teaching methods in economic subjects.

    OpenAIRE

    Maxa, Radek

    2014-01-01

    The main objective of this thesis is a comprehensive assessment of the practical usability and effectiveness of modern activating teaching methods in economic subjects in fulfilling the RVP economics and business and RVP Business Academy in comparison with traditional (standard) methods. To achieve this goal, a systematic clarification and evaluation of key elements of the choice of adequate methods of teaching, presentation and comparison of traditional, modern activating and comprehensive t...

  7. Quantitative methods for the analysis of electron microscope images

    DEFF Research Database (Denmark)

    Skands, Peter Ulrik Vallø

    1996-01-01

    The topic of this thesis is an general introduction to quantitative methods for the analysis of digital microscope images. The images presented are primarily been acquired from Scanning Electron Microscopes (SEM) and interfermeter microscopes (IFM). The topic is approached though several examples...... foundation of the thesis fall in the areas of: 1) Mathematical Morphology; 2) Distance transforms and applications; and 3) Fractal geometry. Image analysis opens in general the possibility of a quantitative and statistical well founded measurement of digital microscope images. Herein lies also the conditions...

  8. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  9. Development of Scanning Ultrafast Electron Microscope Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kimberlee Chiyoko [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Talin, Albert Alec [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michael, Joseph R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.

  10. Modern Reduction Methods

    CERN Document Server

    Andersson, Pher G

    2008-01-01

    With its comprehensive overview of modern reduction methods, this book features high quality contributions allowing readers to find reliable solutions quickly and easily. The monograph treats the reduction of carbonyles, alkenes, imines and alkynes, as well as reductive aminations and cross and heck couplings, before finishing off with sections on kinetic resolutions and hydrogenolysis. An indispensable lab companion for every chemist.

  11. Internal scanning method as unique imaging method of optical vortex scanning microscope

    Science.gov (United States)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  12. Microscopic methods in analysis of submicron phospholipid dispersions

    Directory of Open Access Journals (Sweden)

    Płaczek Marcin

    2016-03-01

    Full Text Available Microscopy belongs to the group of tests, used in pharmaceutical technology, that despite the lapse of time and the development of new analytical methods, still remain irreplaceable for the characterization of dispersed drug dosage forms (e.g., suspensions and emulsions. To obtain complete description of a specific drug formulation, such as parenteral colloidal products, a combination of different microscopic techniques is sometimes required. Electron microscopy methods are the most useful ones; however, even such basic methods as optical microscopy may be helpful for determination of some properties of a sample. The publication explicates the most popular microscopical techniques used nowadays for characterization of the morphology of nanoparticles suspended in pharmaceutical formulations; ad vantages and disadvantages of these methods are also discussed. Parenteral submicron formulations containing lecithin or a particular phospholipid were chosen as examples.

  13. Methods of modern mathematical physics

    CERN Document Server

    Reed, Michael

    1980-01-01

    This book is the first of a multivolume series devoted to an exposition of functional analysis methods in modern mathematical physics. It describes the fundamental principles of functional analysis and is essentially self-contained, although there are occasional references to later volumes. We have included a few applications when we thought that they would provide motivation for the reader. Later volumes describe various advanced topics in functional analysis and give numerous applications in classical physics, modern physics, and partial differential equations.

  14. Quantitative properties of clustering within modern microscopic nuclear models

    International Nuclear Information System (INIS)

    Volya, A.; Tchuvil’sky, Yu. M.

    2016-01-01

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially the possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.

  15. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  16. Application of Modern Experimental Technique to Solve Morphological Complexity in Plants Taxonomy

    Directory of Open Access Journals (Sweden)

    SURANTO

    2000-07-01

    Full Text Available Modern taxonomy has two approaches, i.e. classical and experimental taxonomy. Classical taxonomy uses morphological characters, while experimental taxonomy uses broader methods including chemistry, physics and mathematics, in the form of laboratory data that are revealed together with the progress of optical technique (microscope, chemistry methods (chromatography, electrophoresis, etc. Modern taxonomy tends to use series of interrelated data. More data used would result in more validity and give better clarification of taxonomic status. A lot of modern taxonomic data such as palynology, cytotaxonomy (cytology, chemical constituent (chemotaxonomy, isozyme and DNA sequencing were used recently.

  17. Application of the microscopic method in cutaneous leishmania diagnosis

    Directory of Open Access Journals (Sweden)

    Mohammed Wael Daboul

    2011-10-01

    Full Text Available Introduction: Cutaneous leishmania is spreading fast. This study aims at developing the microscopic method to achieve a full detection of all positive cases of leishmania.Methods: 50 human cases have been studied by applying microscopic smears stained with Wright stain. Microscopic photos were taken for the presumed unfamiliar figures.Results: Mononuclear cells with tails are present at a rate of (98%. They are associated with Leishman Donovan (LD bodies in 50% of the cases. The polygonal figures and the spherical forms are present at the same rate (60% and are associated with LD bodies in 24% of the cases. The small promastigote like forms are seen at a rate of (76% and are associated with LD bodies in 26% of the cases. The giant promastigotes like forms are present in (80% of the cases and are associated with LD bodies in 28% of the cases. Candle flame forms are present in (40% of the cases and are associated with the LD bodies in 21% of the cases.Discussion: It is applicable to use those discovered figures in diagnosing cutaneous leishmania.

  18. Apparatus and methods for controlling electron microscope stages

    Science.gov (United States)

    Duden, Thomas

    2015-08-11

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.

  19. eSIP: A Novel Solution-Based Sectioned Image Property Approach for Microscope Calibration.

    Directory of Open Access Journals (Sweden)

    Malte Butzlaff

    Full Text Available Fluorescence confocal microscopy represents one of the central tools in modern sciences. Correspondingly, a growing amount of research relies on the development of novel microscopic methods. During the last decade numerous microscopic approaches were developed for the investigation of various scientific questions. Thereby, the former qualitative imaging methods became replaced by advanced quantitative methods to gain more and more information from a given sample. However, modern microscope systems being as complex as they are, require very precise and appropriate calibration routines, in particular when quantitative measurements should be compared over longer time scales or between different setups. Multispectral beads with sub-resolution size are often used to describe the point spread function and thus the optical properties of the microscope. More recently, a fluorescent layer was utilized to describe the axial profile for each pixel, which allows a spatially resolved characterization. However, fabrication of a thin fluorescent layer with matching refractive index is technically not solved yet. Therefore, we propose a novel type of calibration concept for sectioned image property (SIP measurements which is based on fluorescent solution and makes the calibration concept available for a broader number of users. Compared to the previous approach, additional information can be obtained by application of this extended SIP chart approach, including penetration depth, detected number of photons, and illumination profile shape. Furthermore, due to the fit of the complete profile, our method is less susceptible to noise. Generally, the extended SIP approach represents a simple and highly reproducible method, allowing setup independent calibration and alignment procedures, which is mandatory for advanced quantitative microscopy.

  20. Microscopic methods for the interactions between complex nuclei

    International Nuclear Information System (INIS)

    Ikeda, Kiyomi; Tamagaki, Ryozo; Saito, Sakae; Horiuchi, Hisashi; Tohsaki-Suzuki, Akihiro.

    1978-01-01

    Microscopic study on composite-particle interaction performed in Japan is described in this paper. In chapter 1, brief historical description of the study is presented. In chapter 2, the theory of resonating group method (RGM) for describing microscopically the interaction between nuclei (clusters) is reviewed, and formulation on the description is presented. It is shown that the generator coordinate method (GCM) is a useful one for the description of interaction between shell model clusters, and that the kernels in the RGM are easily obtained from those of the GCM. The inter-cluster interaction can be well described by the orthogonality condition model (OCM). In chapter 3, the calculational procedures for the kernels of GCN, RGM and OCM and some properties related to their calculation are discussed. The GCM kernels for various types of systems are treated. The RGM kernels are evaluated by the integral transformation of GCM kernels. The problems related to the RGM norm kernel (RGM-NK) are discussed. The projection operator onto the Pauli-allowed state in OCM is obtained directly from the solution of the eigenvalue problem of RGM-NK. In chapter 4, the exchange kernels due to the antisymmetrization are derived in analytical way with the symbolical use of computer memory by taking the α + O 16 system as a typical example. New algorisms for deriving analytically the generator coordinate kernel (GCM kernel) are presented. In chapter 5, precise generalization of the Kohn-Hulthen-Kato variational method for scattering matrix is made for the purpose of microscopic study of reactions between complex nuclei with many channels coupled. (Kato, T.)

  1. On microscopic theory of radiative nuclear reaction characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  2. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    Science.gov (United States)

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  3. The plant virus microscope image registration method based on mismatches removing.

    Science.gov (United States)

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Problematic Methods in teaching Modern History. An alternative or a necessity?

    Directory of Open Access Journals (Sweden)

    Yohany Peralta Pérez

    2012-06-01

    Full Text Available The article presents the results of the analysis from the study of the theoretical research on the use of problematic methods in Teaching Learning Process of Modern H istory course in Rafael Maria de Mendive University of Pinar del Rio. An anal ysis o f the use of problematic methods in the Process of Teaching Modern History course from the definition of method taking into account the theoretical assumptions of scholars of the subject matter and the advantages and disadvantages provided by the use of these methods in the Teaching Learning Process of Modern History course.

  5. Non-contact micro mass evaluation method using an X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiseok; Sun, Gwang Min; Baek, Ha Ni; Hoang, Sy Minh Tuan; Park, Sun Ae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-07-15

    For the mass inspection of attached foils such as printed electrodes, mass should be measured by a non-contact method with the capacity to measure a small mass of micrograms. In this study, the masses of 1 mg to 10 mg electrodes were evaluated using an X-ray microscope. The results were compared with the masses determined by using a digital scale with a 0.005 mg error. The average of the relative error between the mass measurements using the X-ray microscope and those using the digital scale was less than 2.51%. The results show that X-ray mass evaluation method can be used for mass measurement of micro objects by replacing a digital scale.

  6. Digital phase-shifting atomic force microscope Moire method

    International Nuclear Information System (INIS)

    Liu Chiaming; Chen Lienwen

    2005-01-01

    In this study, the digital atomic force microscope (AFM) Moire method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moire patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2π. The principle of the digital AFM Moire method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement

  7. Fundamentals of modern statistical methods substantially improving power and accuracy

    CERN Document Server

    Wilcox, Rand R

    2001-01-01

    Conventional statistical methods have a very serious flaw They routinely miss differences among groups or associations among variables that are detected by more modern techniques - even under very small departures from normality Hundreds of journal articles have described the reasons standard techniques can be unsatisfactory, but simple, intuitive explanations are generally unavailable Improved methods have been derived, but they are far from obvious or intuitive based on the training most researchers receive Situations arise where even highly nonsignificant results become significant when analyzed with more modern methods Without assuming any prior training in statistics, Part I of this book describes basic statistical principles from a point of view that makes their shortcomings intuitive and easy to understand The emphasis is on verbal and graphical descriptions of concepts Part II describes modern methods that address the problems covered in Part I Using data from actual studies, many examples are include...

  8. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    Science.gov (United States)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  9. Mechanical vibration compensation method for 3D+t multi-particle tracking in microscopic volumes.

    Science.gov (United States)

    Pimentel, A; Corkidi, G

    2009-01-01

    The acquisition and analysis of data in microscopic systems with spatiotemporal evolution is a very relevant topic. In this work, we describe a method to optimize an experimental setup for acquiring and processing spatiotemporal (3D+t) data in microscopic systems. The method is applied to a three-dimensional multi-tracking and analysis system of free-swimming sperm trajectories previously developed. The experimental set uses a piezoelectric device making oscillate a large focal-distance objective mounted on an inverted microscope (over its optical axis) to acquire stacks of images at a high frame rate over a depth on the order of 250 microns. A problem arise when the piezoelectric device oscillates, in such a way that a vibration is transmitted to the whole microscope, inducing undesirable 3D vibrations to the whole set. For this reason, as a first step, the biological preparation was isolated from the body of the microscope to avoid modifying the free swimming pattern of the microorganism due to the transmission of these vibrations. Nevertheless, as the image capturing device is mechanically attached to the "vibrating" microscope, the resulting acquired data are contaminated with an undesirable 3D movement that biases the original trajectory of these high speed moving cells. The proposed optimization method determines the functional form of these 3D oscillations to neutralize them from the original acquired data set. Given the spatial scale of the system, the added correction increases significantly the data accuracy. The optimized system may be very useful in a wide variety of 3D+t applications using moving optical devices.

  10. Chinese Cyber Espionage: A Complementary Method to Aid PLA Modernization

    Science.gov (United States)

    2015-12-01

    COMPLEMENTARY METHOD TO AID PLA MODERNIZATION by Jamie M. Ellis December 2015 Thesis Advisor: Wade L. Huntley Second Reader: Christopher R. Twomey THIS...Master’s Thesis 4. TITLE AND SUBTITLE CHINESE CYBER ESPIONAGE: A COMPLEMENTARY METHOD TO AID PLA MODERNIZATION 5. FUNDING NUMBERS 6. AUTHOR(S) Jamie M...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) In 2013, Mandiant published a report linking one People’s Liberation Army ( PLA ) unit to the

  11. Use of results from microscopic methods in optical model calculations

    International Nuclear Information System (INIS)

    Lagrange, C.

    1985-11-01

    A concept of vectorization for coupled-channel programs based upon conventional methods is first presented. This has been implanted in our program for its use on the CRAY-1 computer. In a second part we investigate the capabilities of a semi-microscopic optical model involving fewer adjustable parameters than phenomenological ones. The two main ingredients of our calculations are, for spherical or well-deformed nuclei, the microscopic optical-model calculations of Jeukenne, Lejeune and Mahaux and nuclear densities from Hartree-Fock-Bogoliubov calculations using the density-dependent force D1. For transitional nuclei deformation-dependent nuclear structure wave functions are employed to weigh the scattering potentials for different shapes and channels [fr

  12. MODERN METHODS OF FOOD INTOLERANCE TESTING

    Directory of Open Access Journals (Sweden)

    M. Yu. Rosensteyn

    2016-01-01

    Full Text Available Аn analytical review of modern methods of food intolerance diagnostics based on interpretation of markers used in the various tests is рresented. It is shown that tests based on observation of the reaction of specific antibodies of the immune system to food antigens tested, are the most accurate, reliable and representative for the diagnosis of food intolerance.

  13. Knowledge attitude to modern family planning methods in Abraka ...

    African Journals Online (AJOL)

    Objective:. To assess the level of regard and misconceptions of modern family planning methods in Abraka communities. Methods: The interviewer\\'s administered questionnaire method was used to gather the required information from 657 respondents randomly chosen from PO, Ajalomi, Erho, Oria, Otorho, Umeghe, ...

  14. Spine surgeon's kinematics during discectomy, part II: operating table height and visualization methods, including microscope.

    Science.gov (United States)

    Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2014-05-01

    Surgeon spine angle during surgery was studied ergonomically and the kinematics of the surgeon's spine was related with musculoskeletal fatigue and pain. Spine angles varied depending on operation table height and visualization method, and in a previous paper we showed that the use of a loupe and a table height at the midpoint between the umbilicus and the sternum are optimal for reducing musculoskeletal loading. However, no studies have previously included a microscope as a possible visualization method. The objective of this study is to assess differences in surgeon spine angles depending on operating table height and visualization method, including microscope. We enrolled 18 experienced spine surgeons for this study, who each performed a discectomy using a spine surgery simulator. Three different methods were used to visualize the surgical field (naked eye, loupe, microscope) and three different operating table heights (anterior superior iliac spine, umbilicus, the midpoint between the umbilicus and the sternum) were studied. Whole spine angles were compared for three different views during the discectomy simulation: midline, ipsilateral, and contralateral. A 16-camera optoelectronic motion analysis system was used, and 16 markers were placed from the head to the pelvis. Lumbar lordosis, thoracic kyphosis, cervical lordosis, and occipital angle were compared between the different operating table heights and visualization methods as well as a natural standing position. Whole spine angles differed significantly depending on visualization method. All parameters were closer to natural standing values when discectomy was performed with a microscope, and there were no differences between the naked eye and the loupe. Whole spine angles were also found to differ from the natural standing position depending on operating table height, and became closer to natural standing position values as the operating table height increased, independent of the visualization method

  15. Diabetic osteoarthropathy: modern methods of therapy

    Directory of Open Access Journals (Sweden)

    Irina Nikolaevna Ul'yanova

    2010-12-01

    Full Text Available This paper is focused on the main aspects of pathogenesis of diabetic osteoarthropathy (DOAP underlain by motor and sensory neuropathies, injuries(including microfractures and joint disintegration, and inflammation accompanied by enhanced cytokine expression. The role of osteopenia andbone resorption-formation decoupling at different stages of DOAP is discussed. Modern methods of DOAP treatment are considered with special referenceto immobilization, drug therapy, surgical and orthopedic care

  16. Improved coating and fixation methods for scanning electron microscope autoradiography

    International Nuclear Information System (INIS)

    Weiss, R.L.

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens

  17. Scanning electron microscope - some aspects of the instrument and its applications

    International Nuclear Information System (INIS)

    Thatte, M.R.

    1976-01-01

    Development of the science of microscopy leading to three different types of microscopes - the optical, the conventional transmission electron microscope (CTEM) and the scanning electron microscope(SEM) has been discussed. Special advantages of the SEM in the solution of problems in industrial laboratories are mentioned. A brief reference to the latest instruments announced by Siemens AG shows the modern trends in the technique. A close similarity in image building between SEM and television is indicated. Operational anatomy of the SEM is reviewed. (author)

  18. Microscopic nuclear structure calculations with modern meson-exchange potentials

    International Nuclear Information System (INIS)

    Hjort-Jensen, M.; Osnes, E.; Muether, H.; Schmid, K.W.; Kuo, T.T.S.

    1990-07-01

    The report presents the results of microscopic nuclear shell-model calculations using three different nucleon-nucleon potentials. These are the phenomenological Reid-Soft-Core potential and the meson-exchange potentials of the Paris and the Bonn groups. It is found that the Bonn potential yields sd-shell matrix elements which are more attractive than those obtained with the Reid or the Paris potentials. The harmonic-oscillator matrix elements of the Bonn potential are also in better agreement with the empirically derived matrix elements of Wildenthal. The implications are discussed. 27 refs., 4 figs., 1 tab

  19. A new method for the characterization of micro-/nano-periodic structures based on microscopic Moiré fringes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn; Tang, Minjin; Hu, Zhenxing

    2014-01-15

    Linewidth and opening ratio (ratio of linewidth to period) are important parameters in characterizing micro-/nano-periodic and quasi-periodic structures. Periodic structures are conventionally characterized by the direct observation of specimens under a microscope. However, the field of view is relatively small, and only certain details can be acquired under a microscope. Moreover, the non-uniformity of the linewidth in quasi-periodic structures cannot be detected. This paper proposes a new characterization method for determining the linewidth and opening ratio of periodic structures based on Moiré fringe analysis. This method has the advantage of full-field characterization of the linewidth of micro-/nano-structures over a larger area than that afforded by direct observation. To validate the method, the linewidth of scanning electron microscope (SEM) scan lines was first calibrated with a standard grating. Next, a microperiodic structure with known geometry was characterized using this calibrated SEM system. The results indicate that the proposed method is simple and effective, indicating a potential approach for the characterization of gratings over large areas. This technique can be extended to various high-power scanning microscopes to characterize micro-/nano-structures. - Highlights: • A characterization method of the linewidth of high frequency gratings based on the microscope Moiré fringes is introduced. • The principle is according to the geometrical relationship between the gratings and the Moiré fringes. • This method has the potential application in characterization of the micro-/nano-structures. • The advantage of this method is that the micro-/nano-structures can be characterized in large view field under the full field of the microscope. • The microstructure of a butterfly has been characterized to declare the feasibility of this method.

  20. Special issue introduction: Ecological modernization

    DEFF Research Database (Denmark)

    Massa, Ilmo; Andersen, Mikael Skou

    2000-01-01

    The contributions to this special issue of the Journal of Environmental Policy and Planning stem from an international conference on ecological modernization that took place at the Department of Social Policy of the University of Helsinki, Finland, in late 1998. They have been selected, among other...... reasons, for their possible contribution to conceptual understanding and clarification. While recent publications have explored the implications of ecological modernization in different settings (Mol & Sonnenfeld, 2000), here we try to put the concept under the microscope again, in the hope of clarifying...

  1. The role of classical and modern teaching methods in business education

    Directory of Open Access Journals (Sweden)

    Conțu Eleonora Gabriela

    2017-07-01

    Full Text Available Nowadays the training-educational process is a dynamic and complex process which uses both classical and modern teaching methods in order to obtain performance in education. Even though traditional teaching methods have a formal character interaction between teacher and students, this is face-to-face and therefore students can give an immediate feedback. From this point of view classical teaching methods are important from time to time. In Romania, in the European context the role of effective learning strategies represents the key point for the education process. The role of teachers in developing creativity to those students who want to learn in an interactive way is very important because they should imply that students directly in the training -educational process. In this context the educational process must be student centered because only in this way their critical thinking and creativity is developed. We can say that when non-formal and informal learning is combined with formal learning the scope of pedagogy is accomplish. In contemporary context education is regarded as an innovative concept which is used to produce performance at the individual level and also, at institutional level, education provides support in order to build strategies according to the challenges from the labour market. The paper is based on a qualitative research, conducted on a sample of 100 people aged between 19 and 23 years old (students at a Business School. The key question raised at this point is: What is the role of classical and modern teaching methods in training-educational process? The objectives of this study are the following: 1. highlighting the context of higher education in Romania; 2. presenting the role of university strategy in contemporary context; 3. highlighting the importance of using classical/modern teaching methods in business education; 4. presenting the role of innovation and creativity in business education; 5. presenting the analysis

  2. [Modern methods of diagnosis dyslipidemia ].

    Science.gov (United States)

    Sukhorukov, V N; Karagodin, V P; Orekhov, A N

    2016-01-01

    Dyslipidemia is abnormalities of lipid and lipoprotein metabolism. Most dyslipidemias are hyperlipidemias; that is an abnormally high level of lipids and/or lipoproteins in the blood. Lipid and lipoprotein abnormalities are common in the general population, and are regarded as a modifiable risk factor for cardiovascular disease due to their influence on atherosclerosis. Primary dyslipidemia is usually due to genetic causes, while secondary dyslipidemia arises due to other underlying causes such as diabetes mellitus. Thus, dyslipidemia is an important factor in the development of atherosclerosis and cardiovascular diseases therefore, it is important to diagnose it in time. This review focuses on the modern methods of diagnosis of dyslipidemia.

  3. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  4. Use of Modern Birth Control Methods Among Rural Communities in ...

    African Journals Online (AJOL)

    elearning

    ABSTRACT. This paper studied the extent of utilization of Modern Birth Control Methods (MBCM) among rural dwellers in ... respondents used MBCM while 57% of them used the traditional birth control methods. ..... School of Public Health.

  5. Evaluation of a completely robotized neurosurgical operating microscope.

    Science.gov (United States)

    Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf

    2013-01-01

    Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.

  6. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  7. A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach

    Science.gov (United States)

    Artur, Stankiewicz B.; Mastalerz, Maria; Kruge, M.A.; Van Bergen, P. F.; Sadowska, A.

    1997-01-01

    Modern cone scales and seeds of Pinus strobus and Sequoia sempervirens, and their fossil (Upper Miocene, c. 6 Mar) counterparts Pinus leitzii and Sequoia langsdorfi have been studied using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), electron-microprobe and scanning electron microscopy. Microscopic observations revealed only minor microbial activity and high-quality structural preservation of the fossil material. The pyrolysates of both modern genera showed the presence of ligno-cellulose characteristic of conifers. However, the abundance of (alkylated)phenols and 1,2-benzenediols in modern S. sempervirens suggests the presence of non-hydrolysable tannins or abundant polyphenolic moieties not previously reported in modern conifers. The marked differences between the pyrolysis products of both modern genera are suggested to be of chemosystematic significance. The fossil samples also contained ligno-cellulose which exhibited only partial degradation, primarily of the carbohydrate constituents. Comparison between the fossil cone scale and seed pyrolysates indicated that the ligno-cellulose complex present in the seeds is chemically more resistant than that in the cone scales. Principal component analysis (PCA) of the pyrolysis data allowed for the determination of the discriminant functions used to assess the extent of degradation and the chemosystematic differences between both genera and between cone scales and seeds. Elemental composition (C, O, S), obtained using electron-microprobe, corroborated the pyrolysis results. Overall, the combination of chemical, microscopic and statistical methods allowed for a detailed characterization and chemosystematic interpretations of modern and fossil conifer cone scales and seeds.

  8. Method and computer program product for maintenance and modernization backlogging

    Science.gov (United States)

    Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M

    2013-02-19

    According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.

  9. Modern Methods of Voice Authentication in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Vladimir Leonovich Evseev

    2016-03-01

    Full Text Available Modern methods of voice authentication in mobile devices.The proposed evaluation of the probability errors of the first and second kind for multi-modal methods of voice authentication. The advantages of multimodal multivariate methods before, when authentication takes place in several stages – this is the one-stage, which means convenience for customers. Further development of multimodal methods of authentication will be based on the significantly increased computing power of mobile devices, the growing number and improved accuracy built-in mobile device sensors, as well as to improve the algorithms of signal processing.

  10. A landmark-based method for the geometrical 3D calibration of scanning microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, M.

    2007-04-27

    This thesis presents a new strategy and a spatial method for the geometric calibration of 3D measurement devices at the micro-range, based on spatial reference structures with nanometersized landmarks (nanomarkers). The new method was successfully applied for the 3D calibration of scanning probe microscopes (SPM) and confocal laser scanning microscopes (CLSM). Moreover, the spatial method was also used for the photogrammetric self-calibration of scanning electron microscopes (SEM). In order to implement the calibration strategy to all scanning microscopes used, the landmark-based principle of reference points often applied at land survey or at close-range applications has been transferred to the nano- and micro-range in the form of nanomarker. In order to function as a support to the nanomarkers, slope-shaped step pyramids have been developed and fabricated by focused ion beam (FIB) induced metal deposition. These FIB produced 3D microstructures have been sized to embrace most of the measurement volume of the scanning microscopes. Additionally, their special design allows the homogenous distribution of the nanomarkers. The nanomarkers were applied onto the support and the plateaus of the slope-step pyramids by FIB etching (milling) as landmarks with as little as several hundreds of nanometers in diameter. The nanomarkers are either of point-, or ring-shaped design. They are optimized so that they can be spatially measured by SPM and CLSM, and, imaged and photogrammetrically analyzed on the basis of SEM data. The centre of the each nanomarker serves as reference point in the measurement data or images. By applying image processing routines, the image (2D) or object (3D) coordinates of each nanomarker has been determined with subpixel accuracy. The correlative analysis of the SPM, CLSM and photogrammetric SEM measurement data after 3D calibration resulted in mean residues in the measured coordinates of as little as 13 nm. Without the coupling factors the mean

  11. Microscope image based fully automated stomata detection and pore measurement method for grapevines

    Directory of Open Access Journals (Sweden)

    Hiranya Jayakody

    2017-11-01

    Full Text Available Abstract Background Stomatal behavior in grapevines has been identified as a good indicator of the water stress level and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However, most of the current approaches involve manual measurement of stomatal features. The main aim of this research is to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope images as the input. The proposed approach, which employs machine learning and image processing techniques, can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological features. Results First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a combination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata detection approach was compared with an existing fully automated template matching technique and a semi-automatic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletonization method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmentation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further comparisons made with manually traced stoma openings indicated that the proposed method is able to estimate stomata morphological features with accuracies of 89.03% for area

  12. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  13. METHODS OF TRAINING OF MODERN AIRCRAFT FLIGHT CREWS FOR INFLIGHT ABNORMAL CIRCUMSTANCES

    Directory of Open Access Journals (Sweden)

    Yurii Hryshchenko

    2017-03-01

    Full Text Available Purpose: The purpose of this article is the theoretical justification of the existing methods and development of new methods of training the crews of modern aircraft for inflight abnormal circumstances. Methods: The article describes the research methods of engineering psychology, mathematical statistics and analysis of the correlation functions. Results: The example of the two accidents of aircraft with modern avionics is shown in the problem statement. The pilot made a sharp movement of the steering wheel while go-around, which has led to a sharp diving and impossibility of coming out of it. It was shown that the developed anti-stress training methods allow crews to train a human operator to prevent such events. The theoretical solution of the problem of optimization of the flight on the final approach, considering the human factor, is suggested to solve using the method of analysis of the autocorrelation function. Conclusions: It is necessary to additionally implement methods of teaching the counteracting of factorial overlaps into the training course using the complex modern aircraft simulators. It is enough to analyze a single pitch angle curve of the autocorrelation function to determine the phenomena of amplification of integral-differential motor dynamic stereotype of the pilot.

  14. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Science.gov (United States)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  15. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

    International Nuclear Information System (INIS)

    Qin Xudong; Chen Yonghai; Liu Yu; Zhu Laipan; Li Yuan; Wu Qing; Huang Wei

    2016-01-01

    We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS 2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials. (paper)

  16. INNOVATIVE METHODS OF TEACHING HISTORY AT MODERN UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    A. Yu. Suslov

    2017-01-01

    Full Text Available Introduction. As a discipline, History holds a specific place among disciplines of a humanitarian cycle of educational programs of higher education institutions regardless of university specialities. History plays an important role in the course of formation of a citizen and development of critical thinking of a personality as an element of a common culture. However, new federal standards require a drastic reduction of the classroom hours for studying a History course by students of non-humanitarian specialties, and, at the same time, enhancement of the contents of a discipline (its reorientation from History of Russia towards World History. Therefore, History programmes and courses demand up-to-date approaches, methods and didactic means to provide formation of holistic worldview of future experts.The aim of the article is to consider the features of innovative methods application in teaching history in high school taking into consideration modernization processes.Methodology and research methods. The research undertaken is based on activity and competence-based approaches. The methods of analysis and synthesis of the academic literature on the research topic were used; the methods of reflection and generalization of teaching activities of the Department of Humanitarian Disciplines of theKazanNationalResearchTechnologicalUniversity were applied as well.Results and scientific novelty. A modern view on historical education has been proposed as means of students’ systems thinking formation, designing the ideas about the world historical process among students, the mission ofRussia in this process, and evolution ofRussia as a part of the modern civilization. It is stated that History university course is designed not only to give the students strong subject knowledge, but also to create axiological orientations and abilities on the basis of the analysis of historical collisions, objective and subjective factors of society development. Moreover

  17. Dense and refined microstructure 3D measurement method based on an optical microscope and varying illuminations

    International Nuclear Information System (INIS)

    Li, Zhongwei; Li, Y F

    2011-01-01

    We propose a novel microscopic photometric stereo (MPS) method based on a conventional optical microscope and varying illuminations for dense and refined microstructure 3D measurement. To guarantee the flexibility of the MPS, an uncalibrated photometric stereo (UPS) method, which does not require a priori knowledge of the light-source direction or the light-source intensity, is employed to recover surface normals and albedos from the captured multiple micro-images. Although the UPS has been studied before, there are some particular issues to be addressed to make it suitable for microscopic cases. For resolving the inherent generalized bas-relief (GBR) ambiguity of the UPS, we present a GBR disambiguation method based on a framework of entropy minimization, and extend it using a graph-cut energy minimization to decrease the influence of noise and further refine the recovered surface normal. The proposed MPS method has been tested on synthetic as well as real images and very encouraging results have been obtained. The experimental results show that this novel method can reconstruct dense and refined 3D points for the microstructure. It is an easy-to-implement yet effective alternative method for microstructure 3D measurement and can be applied to many potential fields

  18. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-01-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  19. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.

    2015-05-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  20. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  1. Comparison of microscopic method and computational program for pesticide deposition evaluation of spraying

    Directory of Open Access Journals (Sweden)

    Chaim Aldemir

    2002-01-01

    Full Text Available The main objective of this work was to compare two methods to estimate the deposition of pesticide applied by aerial spraying. Hundred and fifty pieces of water sensitive paper were distributed over an area of 50 m length by 75 m width for sampling droplets sprayed by an aircraft calibrated to apply a spray volume of 32 L/ha. The samples were analysed by visual microscopic method using NG 2 Porton graticule and by an image analyser computer program. The results reached by visual microscopic method were the following: volume median diameter, 398±62 mum; number median diameter, 159±22 mum; droplet density, 22.5±7.0 droplets/cm² and estimated deposited volume, 22.2±9.4 L/ha. The respective ones reached with the computer program were: 402±58 mum, 161±32 mum, 21.9±7.5 droplets/cm² and 21.9±9.2 L/ha. Graphs of the spatial distribution of droplet density and deposited spray volume on the area were produced by the computer program.

  2. Barriers to utilization of modern methods of family planning amongst ...

    African Journals Online (AJOL)

    Barriers to utilization of modern methods of family planning amongst women in a ... is recognized by the world health organization (WHO) as a universal human right. ... Conclusion: The study finds numerous barriers to utilization of family ...

  3. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    Science.gov (United States)

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  4. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  5. Fibonacci’s Computation Methods vs Modern Algorithms

    Directory of Open Access Journals (Sweden)

    Ernesto Burattini

    2013-12-01

    Full Text Available In this paper we discuss some computational procedures given by Leonardo Pisano Fibonacci in his famous Liber Abaci book, and we propose their translation into a modern language for computers (C ++. Among the other we describe the method of “cross” multiplication, we evaluate its computational complexity in algorithmic terms and we show the output of a C ++ code that describes the development of the method applied to the product of two integers. In a similar way we show the operations performed on fractions introduced by Fibonacci. Thanks to the possibility to reproduce on a computer, the Fibonacci’s different computational procedures, it was possible to identify some calculation errors present in the different versions of the original text.

  6. [Watsu: a modern method in physiotherapy, body regeneration, and sports].

    Science.gov (United States)

    Weber-Nowakowska, Katarzyna; Gebska, Magdalena; Zyzniewska-Banaszak, Ewelina

    2013-01-01

    Progress in existing methods of physiotherapy and body regeneration and introduction of new methods has made it possible to precisely select the techniques according to patient needs. The modern therapist is capable of improving the physical and mental condition of the patient. Watsu helps the therapist eliminate symptoms from the locomotor system and reach the psychic sphere at the same time.

  7. A new method to detect geometrical information by the tunneling microscope

    DEFF Research Database (Denmark)

    Tasaki, S.; Levitan, J.; Mygind, Jesper

    1997-01-01

    A new method for the detection of the geometrical information by the scanning tunneling microscope is proposed. In addition to the bias voltage, a small ac modulation is applied. The nonlinear dependence of the transmission coefficient on the applied voltage is used to generate harmonics. The ratio...... of the harmonics to the dc current is found to give the width between the sample and the probe, i.e., the geometrical information. This method may be useful to measure materials, where the local-spatial-density of states may change notably from place to place. ©1997 American Institute of Physics....

  8. Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology

    Science.gov (United States)

    Liu, Xi; Zhou, Mei; Qiu, Song; Sun, Li; Liu, Hongying; Li, Qingli; Wang, Yiting

    2017-12-01

    Red blood cell counting, as a routine examination, plays an important role in medical diagnoses. Although automated hematology analyzers are widely used, manual microscopic examination by a hematologist or pathologist is still unavoidable, which is time-consuming and error-prone. This paper proposes a full-automatic red blood cell counting method which is based on microscopic hyperspectral imaging of blood smears and combines spatial and spectral information to achieve high precision. The acquired hyperspectral image data of the blood smear in the visible and near-infrared spectral range are firstly preprocessed, and then a quadratic blind linear unmixing algorithm is used to get endmember abundance images. Based on mathematical morphological operation and an adaptive Otsu’s method, a binaryzation process is performed on the abundance images. Finally, the connected component labeling algorithm with magnification-based parameter setting is applied to automatically select the binary images of red blood cell cytoplasm. Experimental results show that the proposed method can perform well and has potential for clinical applications.

  9. Some aspects of Trim-algorithm modernization for Monte-Carlo method

    International Nuclear Information System (INIS)

    Dovnar, S.V.; Grigor'ev, V.V.; Kamyshan, M.A.; Leont'ev, A.V.; Yanusko, S.V.

    2001-01-01

    Some aspects of Trim-algorithm modernization in Monte-Carlo method are discussed. This modification permits to raise the universality of program work with various potentials of ion-atom interactions and to improve the calculation precision for scattering angle θ c

  10. Contribution to the projected Hartree-Fock method and microscopic theory of coupling between rotation bands

    International Nuclear Information System (INIS)

    Brut, F.

    1982-01-01

    The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr

  11. Place of modern imaging methods and their influence on the diagnostic process

    International Nuclear Information System (INIS)

    Petkov, D.; Lazarova, I.

    1991-01-01

    The main trends in development of the modern imaging diagnostic methods are presented: increasing the specificity of CT, nuclear-magnetic resonance imaging, positron-emission tomography, digital substractional angiography, echography etc. based on modern technical improvements; objective representation of the physiological and biochemical divergencies in particular diseases; interventional radiology; integral application of different methods; improving the sensitivity and specificity of the methods based on developments in pharmacology (new contrast media, parmaceuticals influencing the function of examinated organs, etc.); the possibilities for data compilation and further computerized processing of primary data. Personal experience is reported with the exploitation of these methods in Bulgaria. Attention is also called to the unfavourable impact connected with the too strong technicization of the diagnostic and therapeutic process in a health, deontologic, economical and social respect. 15 refs

  12. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  13. Performance of ultrahigh resolution electron microscope JEM-4000EX and some applications of high Tc superconductors

    International Nuclear Information System (INIS)

    Honda, T.; Ibe, K.; Ishida, Y.; Kersker, M.M.

    1989-01-01

    The high resolution electron microscope is powerful for modern materials science because of its direct observation capability for the atomic structure of materials. the JEM-4000EX, a 400 kV accelerating voltage electron microscope whose objective lens has a 1 mm spherical aberration coefficient, has a 0.168 nm theoretical resolving power. Using this microscope, atomic structure images of high Tc superconductor such as Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O are reported

  14. Applications of modern statistical methods to analysis of data in physical science

    Science.gov (United States)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance

  15. A scanning tunneling microscope break junction method with continuous bias modulation.

    Science.gov (United States)

    Beall, Edward; Yin, Xing; Waldeck, David H; Wierzbinski, Emil

    2015-09-28

    Single molecule conductance measurements on 1,8-octanedithiol were performed using the scanning tunneling microscope break junction method with an externally controlled modulation of the bias voltage. Application of an AC voltage is shown to improve the signal to noise ratio of low current (low conductance) measurements as compared to the DC bias method. The experimental results show that the current response of the molecule(s) trapped in the junction and the solvent media to the bias modulation can be qualitatively different. A model RC circuit which accommodates both the molecule and the solvent is proposed to analyze the data and extract a conductance for the molecule.

  16. MODERN METHODS OF REASONABLE PRODUCT SUPPLY

    Directory of Open Access Journals (Sweden)

    Anna Kulik

    2016-11-01

    Full Text Available Thesis objective is to study modern methods of product supply with the purpose to determine optimal ways for their rationalization. Since the use of reasonable practices, taking into account external and internal factors under the specific conditions of product moving from the supplier to the buyer, makes the process of product supply economically viable, i.e., low costs for product transportation, ensures fast moving products, their safety and, ultimately, results in reduction of the costs of product disposal. Methodology. The study is based on theoretical methods to study this problem. System analysis method and simulation of the ways to improve were also used in the study. Results. Addressing these issues, the concept, form and stages of product supply process organization depending on the type of product have been studied; product supply management methods based on logistics concept of “demand response”. Practical significance. Optimization of the principles and methods of product supply, factors affecting its organization will, in practice, contribute to the development of reasonable product delivery systems featured with economic efficiency of advanced technologies of product supply. Value/ originality. The analyzed methods of product supply management based on logistics concept of “demand response” can ensure maximum reduction of response time to the changes in demand by rapid stocktaking at those points of the market where the demand is expected to increase, which will allow to reduce the costs of bringing the product to the consumer.

  17. [Reasearch on evolution and transition of processing method of fuzi in ancient and modern times].

    Science.gov (United States)

    Liu, Chan-Chan; Cheng, Ming-En; Duan, Hai-Yan; Peng, Hua-Sheng

    2014-04-01

    Fuzi is a medicine used for rescuing from collapse by restoring yang as well as a famous toxic traditional Chinese medicine. In order to ensure the efficacy and safe medication, Fuzi has mostly been applied after being processed. There have been different Fuzi processing methods recorded by doctors of previous generations. Besides, there have also been differences in Fuzi processing methods recorded in modern pharmacopeia and ancient medical books. In this study, the authors traced back to medical books between the Han Dynasty and the period of Republic of China, and summarized Fuzi processing methods collected in ancient and modern literatures. According to the results, Fuzi processing methods and using methods have changed along with the evolution of dynasties, with differences in ancient and modern processing methods. Before the Tang Dynasty, Fuzi had been mostly processed and soaked. From Tang to Ming Dynasties, Fuzi had been mostly processed, soaked and stir-fried. During the Qing Dynasty, Fuzi had been mostly soaked and boiled. In the modem times, Fuzi is mostly processed by being boiled and soaked. Before the Tang Dynasty, a whole piece of Fuzi herbs or their fragments had been applied in medicines; Whereas their fragments are primarily used in the modern times. Because different processing methods have great impacts on the toxicity of Fuzi, it is suggested to study Fuzi processing methods.

  18. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the

  19. LOOKING OUT CLASICAL TURKISH POEM ACCORDING TO MODERN ANALYSIS METHODS / DİVAN ŞİİRİ'NE MODERN METİN ÇÖZÜMLEME YÖNTEMLERİNDEN BAKMAK

    Directory of Open Access Journals (Sweden)

    Dr. Dursun Ali TÖKEL

    2007-08-01

    Full Text Available Literature has a characteristic of following the changes of investigations and technology. The great literal changes ın 19th century, effected deeply literature studies. After Saussure, the view of the Occident on language and literature changed. This view changed not only structuralism but also linguistic studies, perceiving and utilizing the linguistic existence. In modern terms, all scientific toughts as modernism, structuralism, post-modernism, seemeiology, semantics bring up new points of view to literary texts. The last quarter of 20th century has been the term of understanding Classical Ottoman Poems not only with the view of traditional commentary methods but also modern analysis methods. This paper gives the panorama of all these analysis, methods of Classical Ottoman Poems.

  20. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  1. The perturbed angular correlation method - a modern technique in studying solids

    International Nuclear Information System (INIS)

    Unterricker, S.; Hunger, H.J.

    1979-01-01

    Starting from theoretical fundamentals the differential perturbed angular correlation method has been explained. By using the probe nucleus 111 Cd the magnetic dipole interaction in Fesub(x)Alsub(1-x) alloys and the electric quadrupole interaction in Cd have been measured. The perturbed angular correlation method is a modern nuclear measuring method and can be applied in studying ordering processes, phase transformations and radiation damages in metals, semiconductors and insulators

  2. Commentary: Giuseppe Campani (1635-1715, Rome, Italy): the First Use of a Microscope in Medicine and Surgery.

    Science.gov (United States)

    Brogna, Christian; Millesi, Matthias; Fiengo, Leslie; Richardson, Mark; Bhangoo, Ranjeev; Ashkan, Keyoumars; Türe, Ugur

    2018-02-01

    Giuseppe Campani (1635-1715) was a polymath in Rome, Italy, during the Scientific Revolution in the XVIIth century. In particular, he forged the screw barrel microscope and was manufacturing his own lenses for microscopes and telescopes. He mastered the art of lens grinding. Those lenses have been analyzed with modern methods and turned out to be of extremely good quality, shining light on the fact that Giuseppe Campani mastered the theories of optics. Moreover, in a letter that Giuseppe Campani sent to Pope Innocent XI, he clearly described the use of a microscope for the examination of wounds of legs. This letter dates back to 15 August 1686 and is the first evidence of the use of microscopes to analyze wounds, sores, and anatomic specimens in medical and surgical settings. MG Yasargil previously showed the lithography accompanying this letter and was the first to recognize its great importance. We accessed this original letter in the Vatican Library, and for the first time we have translated it from Latin to English in order to unveil its significance in the context of the Scientific Revolution and the history of medicine and surgery. Copyright © 2017 by the Congress of Neurological Surgeons.

  3. ACARP Project C10059. ACARP manual of modern coal testing methods. Volume 1: The manual

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, R.; Creelman, R.; Pohl, J.; Juniper, L. [CSIRO Energy Technology, Sydney, NSW (Australia)

    2002-07-01

    The Manual summarises the purpose, applicability, and limitations of a range of standard and modern coal testing methods that have potential to assist the coal company technologist to better evaluate coal performance. The first volume sets out the Modern Coal Testing Methods in summarised form that can be used as a quick guide to practitioners to assist in selecting the best technique to solve their problems.

  4. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    Science.gov (United States)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  5. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  6. Modern acupuncture-like stimulation methods: a literature review

    Directory of Open Access Journals (Sweden)

    Min-Ho Jun

    2015-12-01

    Full Text Available Acupuncture therapy has been proved to be effective for diverse diseases, symptoms, and conditions in numerous clinical trials. The growing popularity of acupuncture therapy has triggered the development of modern acupuncture-like stimulation devices (ASDs, which are equivalent or superior to manual acupuncture with respect to safety, decreased risk of infection, and facilitation of clinical trials. Here, we aim to summarize the research on modern ASDs, with a focus on featured devices undergoing active research and their effectiveness and target symptoms, along with annual publication rates. We searched the popular electronic databases Medline, PubMed, the Cochrane Library, and Web of Science, and analyzed English-language studies on humans. Thereby, a total of 728 studies were identified, of which 195 studies met our inclusion criteria. Electrical stimulators were found to be the earliest and most widely studied devices (133 articles, followed by laser (44 articles, magnetic (16 articles, and ultrasound (2 articles stimulators. A total of 114 studies used randomized controlled trials, and 109 studies reported therapeutic benefits. The majority of the studies (32% focused on analgesia and pain-relief effects, followed by effects on brain activity (16%. All types of the reviewed ASDs were associated with increasing annual publication trends; specifically, the annual growth in publications regarding noninvasive stimulation methods was more rapid than that regarding invasive methods. Based on this observation, we anticipate that the noninvasive or minimally invasive ASDs will become more popular in acupuncture therapy.

  7. Near-infrared microscopic methods for the detection and quantification of processed by-products of animal origin

    Science.gov (United States)

    Abbas, O.; Fernández Pierna, J. A.; Dardenne, P.; Baeten, V.

    2010-04-01

    Since the BSE crisis, researches concern mainly the detection, identification, and quantification of meat and bone meal with an important focus on the development of new analytical methods. Microscopic based spectroscopy methods (NIR microscopy - NIRM or/and NIR hyperspectral imaging) have been proposed as complementary methods to the official method; the optical microscopy. NIR spectroscopy offers the advantage of being rapid, accurate and independent of human analyst skills. The combination of an NIR detector and a microscope or a camera allows the collection of high quality spectra for small feed particles having a size larger than 50 μm. Several studies undertaken have demonstrated the clear potential of NIR microscopic methods for the detection of animal particles in both raw and sediment fractions. Samples are sieved and only the gross fraction (superior than 250 μm) is investigated. Proposed methodologies have been developed to assure, with an acceptable level of confidence (95%), the detection of at least one animal particle when a feed sample is adulterated at a level of 0.1%. NIRM and NIR hyperspectral imaging are running under accreditation ISO 17025 since 2005 at CRA-W. A quantitative NIRM approach has been developed in order to fulfill the new requirements of the European commission policies. The capacities of NIRM method have been improved; only the raw fraction is analyzed, both the gross and the fine fractions of the samples are considered, and the acquisition parameters are optimized (the aperture, the gap, and the composition of the animal feed). A mapping method for a faster collection of spectra is also developed. The aim of this work is to show the new advances in the analytical methods developed in the frame of the feed ban applied in Europe.

  8. Introduction to modern methods of quantum many-body theory and their applications

    CERN Document Server

    Fantoni, Stefano; Krotscheck, Eckhard S

    2002-01-01

    This invaluable book contains pedagogical articles on the dominant nonstochastic methods of microscopic many-body theories - the methods of density functional theory, coupled cluster theory, and correlated basis functions - in their widest sense. Other articles introduce students to applications of these methods in front-line research, such as Bose-Einstein condensates, the nuclear many-body problem, and the dynamics of quantum liquids. These keynote articles are supplemented by experimental reviews on intimately connected topics that are of current relevance. The book addresses the striking l

  9. Transients of modern power electronics

    CERN Document Server

    Bai, Hua

    2011-01-01

    In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to crea

  10. Present status of the microscopic study of low-lying collective states in spherical and transitional nuclei

    International Nuclear Information System (INIS)

    Marumori, Toshio; Takada, Kenjiro; Sakata, Fumihiko.

    1981-12-01

    The history and the present status of the microscopic study of the low-lying collective excited states in spherical and transitional nuclei are discussed by putting emphasis on explaining the rather modern microscopic investigations of the concept of collective subspace. Importance of the dynamical interplay between the pairing and the quadrupole correlations is emphasized as a crucial element to mediate coupling between the collective and non-collective subspace. (author)

  11. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  12. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    Science.gov (United States)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  13. Hydrobalneological methods in modern medical treatment

    Directory of Open Access Journals (Sweden)

    Włodzisław Kuliński

    2015-03-01

    Full Text Available Introduction: Therapeutic methods combining balneology and hydrotherapy have been used in treatment and prevention for a long time. Their influence on the skin, based on mechanical, thermal, and hydrostatic stimuli, results in a reaction of the internal organs as well as the whole body. The most important effects of such procedures are changes within the cardiovascular system. Aim of the research: The use of hydrobalneological methods in modern medical treatment. Material and methods : The analysis focused on the influence of water jets at alternating temperatures in the treatment of functional cardiovascular disturbances with the use of non-invasive methods of autonomic nervous system function work-up based on the analysis of heart rate variability. The effect of the jets on heart rate and blood pressure was observed in 50 patients with first-degree hypertension, which was accompanied by radioelectrocardiographic (RECG assessment of the influence of underwater massage and carbonic acid baths on the cardiovascular system in patients undergoing these procedures due to Da Costa’s syndrome. Results : Water jets at alternating temperatures successfully modulate the tension within the autonomic nervous system and stimulate its parasympathetic part. Underwater massage is a gentle procedure and does not cause significant changes in heart rate and RECG tracing. Carbonic acid baths decrease autonomic nervous system excitability. Conclusions: The study results show a possibility of regulating autonomic nervous system function with the use of selected balneological and hydrotherapeutic methods, and thus influencing the functional level of the human body which is most appropriate for the requirements created by the internal and external environment of the body.

  14. Modern Methods for Cost Management in Construction Enterprises

    Directory of Open Access Journals (Sweden)

    Mesároš Peter

    2015-06-01

    Full Text Available Cost management should be seen as an essential function of enterprises which perform their activities in current market environment. One of the main factors affecting the level of achieved profit and favourable market position is cost structure. The company's ability to obtain necessary and reliable information on their own cost, subsequent processing and effective cost management is crucial for achieving success. This study focuses on cost management and the use of modern methods of cost management in construction enterprises. The aim of this paper is to identify approaches to cost management in Slovak construction enterprises, based on own empirical research.

  15. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    Science.gov (United States)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  16. Modern optimization with R

    CERN Document Server

    Cortez, Paulo

    2014-01-01

    The goal of this book is to gather in a single document the most relevant concepts related to modern optimization methods, showing how such concepts and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in Computer Science, Information Technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R.

  17. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification. Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are...

  18. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  19. Advanced methods of microscope control using μManager software.

    Science.gov (United States)

    Edelstein, Arthur D; Tsuchida, Mark A; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D; Stuurman, Nico

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  20. Modern methods of surveyor observations in opencast mining under complex hydrogeological conditions.

    Science.gov (United States)

    Usoltseva, L. A.; Lushpei, V. P.; Mursin, VA

    2017-10-01

    The article considers the possibility of linking the modern methods of surveying security of open mining works to improve industrial safety in the Primorsky Territory, as well as their use in the educational process. Industrial Safety in the management of Surface Mining depends largely on the applied assessment methods and methods of stability of pit walls and slopes of dumps in the complex mining and hydro-geological conditions.

  1. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope.

    Science.gov (United States)

    Trägårdh, J; Macrae, K; Travis, C; Amor, R; Norris, G; Wilson, S H; Oppo, G-L; McConnell, G

    2015-07-01

    We report a method for characterizing the focussing laser beam exiting the objective in a laser scanning microscope. This method provides the size of the optical focus, the divergence of the beam, the ellipticity and the astigmatism. We use a microscopic-scale knife edge in the form of a simple transmission electron microscopy grid attached to a glass microscope slide, and a light-collecting optical fibre and photodiode underneath the specimen. By scanning the laser spot from a reflective to a transmitting part of the grid, a beam profile in the form of an error function can be obtained and by repeating this with the knife edge at different axial positions relative to the beam waist, the divergence and astigmatism of the postobjective laser beam can be obtained. The measured divergence can be used to quantify how much of the full numerical aperture of the lens is used in practice. We present data of the beam radius, beam divergence, ellipticity and astigmatism obtained with low (0.15, 0.7) and high (1.3) numerical aperture lenses and lasers commonly used in confocal and multiphoton laser scanning microscopy. Our knife-edge method has several advantages over alternative knife-edge methods used in microscopy including that the knife edge is easy to prepare, that the beam can be characterized also directly under a cover slip, as necessary to reduce spherical aberrations for objectives designed to be used with a cover slip, and it is suitable for use with commercial laser scanning microscopes where access to the laser beam can be limited. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  2. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  3. Quantitative detection of microscopic lithium distributions with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Giulia; Gernhaeuser, Roman; Lichtinger, Josef; Winkler, Sonja; Seiler, Dominik; Bendel, Michael [Technische Universitaet Muenchen, Physik-Department (Germany); Kunze-Liebhaeuser, Julia; Brumbarov, Jassen; Portenkirchner, Engelbert [Institut fuer Physikalische Chemie, Leopold-Franzens-Universitaet Innsbruck (Austria); Renno, Axel; Rugel, Georg [Helmholtz Zentrum Dresden Rossendorf, Helmholtz-Institut Freiberg fuer Ressourcentechnologie (Germany)

    2016-07-01

    The importance of lithium in the modern industrial society is continuously increasing. Spatially resolved detection of tritium particles from {sup 6}Li(n,α){sup 3}H nuclear reactions is used to reconstruct microscopic lithium distributions. Samples are exposed to a flux of cold neutrons. Emitted charged particles are detected with a PSD. Introducing a pinhole aperture between target and detector, the experimental setup works like a ''camera obscura'', allowing to perform spatially resolved measurements. Tritium detection analysis was successfully used to reconstruct the lithium content in self-organized TiO{sub 2-x}-C and Si/TiO{sub 2-x}-C nanotubes electrochemically lithiated, for the first time. Titanium dioxide nanotubes are a candidate for a safe anode material in lithium-ion batteries. Also lithium distributions in geological samples, so called ''pathfinder-minerals'' containing lithium, like lepidolite from a pegmatite, were analyzed. With this development we present a new precision method using nuclear physics for material science.

  4. A method for automatic grain segmentation of multi-angle cross-polarized microscopic images of sandstone

    Science.gov (United States)

    Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian

    2018-06-01

    Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.

  5. A comparative analysis of microscopic alterations in modern and ancient undecalcified and decalcified dry bones.

    Science.gov (United States)

    Caruso, Valentina; Cummaudo, Marco; Maderna, Emanuela; Cappella, Annalisa; Caudullo, Giorgio; Scarpulla, Valentina; Cattaneo, Cristina

    2018-02-01

    The present study aims to evaluate the preservation of the microstructure of skeletal remains collected from four different known burial sites (archaeological and contemporary). Histological analysis on undecalcified and decalcified thin sections was performed in order to assess which of the two techniques is more affected by taphonomic insults. A histological analysis was performed on both undecalcified and decalcified thin sections of 40 long bones and the degree of diagenetic change was evaluated using transmitted and polarized light microscopy according to the Oxford Histological Index (OHI). In order to test the optical behavior of bone tissue, thin sections were observed by polarized light microscopy and the intensity of birefringence was evaluated. The more ancient samples are generally characterized by a low OHI (0-1) with extensive microscopic focal destruction; recent samples exhibited a better preservation of bone micromorphology. When comparing undecalcified to decalcified thin sections, the latter showed an amelioration in the conservation of microscopic structure. As regards the birefringence, it was very low in all the undecalcified thin sections, whereas decalcification process seems to improve its visibility. The preservation of the bone microscopic structure appears to be influenced not only by age, but also by the burial context. Undecalcified bones appear to be more affected by taphonomical alterations, probably because of the thickness of the thin sections; on the contrary, decalcified thin sections proved to be able to tackle this issue allowing a better reading of the bone tissue. © 2017 Wiley Periodicals, Inc.

  6. Modern leadership and management methods for development organizations

    Directory of Open Access Journals (Sweden)

    Samosudova Natalia V.

    2017-01-01

    Full Text Available The following article represents an overview of the basic theoretical concepts of leadership and management in the framework of the organization. The main scientific approaches to leadership are described in conjunction with various leadership styles and their correlation with different levels of effectiveness as a result of the organization’s activity. Certain characteristics applicable to leaders and managers are mentioned. Attitude and obligations of a modern construction project manager are discussed, along with the challenges the construction industry represents these days. Ideas about methods of complex analysis for further research and identifying leadership tactics and their impact on the success of the development organization are suggested.

  7. Modern methods in analytical acoustics lecture notes

    CERN Document Server

    Crighton, D G; Williams, J E Ffowcs; Heckl, M; Leppington, F G

    1992-01-01

    Modern Methods in Analytical Acoustics considers topics fundamental to the understanding of noise, vibration and fluid mechanisms. The series of lectures on which this material is based began by some twenty five years ago and has been developed and expanded ever since. Acknowledged experts in the field have given this course many times in Europe and the USA. Although the scope of the course has widened considerably, the primary aim of teaching analytical techniques of acoustics alongside specific areas of wave motion and unsteady fluid mechanisms remains. The distinguished authors of this volume are drawn from Departments of Acoustics, Engineering of Applied Mathematics in Berlin, Cambridge and London. Their intention is to reach a wider audience of all those concerned with acoustic analysis than has been able to attend the course.

  8. Overcurrent protection co-ordination. A modern approach for modern devices

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, P. [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom); Sanderson, J.V.H. [Power Engineering Consultants Ltd., Cheshire (United Kingdom)

    1995-12-31

    A modern approach to relay co-ordination that takes advantage of the improved performance of modern protective relays and circuits was proposed. The proposed method dealt with a mixture of new and old equipment and was most useful when implemented using common spreadsheet software. The suggested approach justified reduced time margins for relay co-ordination in many difficult applications. Other established approaches were reviewed. A discussion of fixed and variable time margin allowances was presented. The formulation of an equation to determine the required upstream relay operating time was explained, with sample calculations. Relay performance standards and modern protective equipment were discussed. It was concluded that modern relays and circuit breakers are much more advanced than designs of the recent past. The method described allowed significant reductions in margins which enabled modern relays to operate faster. While calculations for the procedures were said to be tedious to perform by hand, they can be easily done with spreadsheet software. 10 refs., 4 figs.

  9. Distinguishing the Chinese materia medica Tiepishihu from similar Dendrobium species of the same genus using histological and microscopic method.

    Science.gov (United States)

    Yu, Kun-Zi; Yan, Hua; Tai, Hai-Chuan; Zhang, Nan-Ping; Cheng, Xian-Long; Guo, Zeng-Xi; Ma, Shuang-Cheng; Wei, Feng

    2017-07-01

    The Chinese Materia Medica, Tiepishihu, used as a tonic for over one thousand years, is a well-known precious medicine in China. According to the Chinese Pharmacopoeia, its source is the species Dendrobium officinale Kimura et Migo, which is distinguished from other species in Dendrobium genus. However, these species from the same genus are similar with Tiepishihu and caused confusion in the market. To find a quick and simple method to distinguish Tiepishihu from other similar species, histologic and microscopic methods were combined together to investigate the transverse section of stem of Tiepishihu and other similar species. Phloroglucinol test solution with hydrochloric acid was used to reveal the lignified tissue by staining the transverse section of Tiepishihu and similar species. Results revealed the unique identification characteristics to distinguish Tiepishihu from similar species, which were difficult to distinguish by other methods. The identification characteristics of Tiepishihu include the cells of vascular bundle sheath were stained red, parenchyma cells were not stained red. What's more, other species can be distinguished from each other with microscopic and histological characteristics. These characteristics proved stable and can be easily observed by normal light microscopic examination. This method is rapid, accurate, stable, and inexpensive. © 2017 Wiley Periodicals, Inc.

  10. Occupational concerns associated with regular use of microscope

    OpenAIRE

    Garima Jain; Pushparaja Shetty

    2014-01-01

    Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire...

  11. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  12. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  13. A test of Hartnett's revisions to the pubic symphysis and fourth rib methods on a modern sample.

    Science.gov (United States)

    Merritt, Catherine E

    2014-05-01

    Estimating age at death is one of the most important aspects of creating a biological profile. Most adult age estimation methods were developed on North American skeletal collections from the early to mid-20th century, and their applicability to modern populations has been questioned. In 2010, Hartnett used a modern skeletal collection from the Maricopia County Forensic Science Centre to revise the Suchey-Brooks pubic symphysis method and the İşcan et al. fourth rib methods. The current study tests Hartnett's revised methods as well as the original Suchey-Brooks and İşcan et al. methods on a modern sample from the William Bass Skeletal Collection (N = 313, mean age = 58.5, range 19-92). Results show that the Suchey-Brooks and İşcan et al. methods assign individuals to the correct phase 70.8% and 57.5% of the time compared with Hartnett's revised methods at 58.1% and 29.7%, respectively, with correctness scores based on one standard deviation of the mean rather than the entire age range. Accuracy and bias scores are significantly improved for Hartnett's revised pubic symphysis method and marginally better for Hartnett's revised fourth rib method, suggesting that the revised mean ages at death of Hartnett's phases better reflect this modern population. Overall, both Hartnett's revised methods are reliable age estimation methods. For the pubic symphysis, there are significant improvements in accuracy and bias scores, especially for older individuals; however, for the fourth rib, the results are comparable to the original İşcan et al. methods, with some improvement for older individuals. © 2014 American Academy of Forensic Sciences.

  14. Some considerations about literary analysis modern methods from a didactic perspective

    OpenAIRE

    Marialina Ana García Escobio; Moraima Pérez Barrera; María del Carmen Miló Anillo

    2016-01-01

    This article make it possible a close look to the modern methods of literary analysis, taking as the starting point what the teaching of literature in the joyful context should fulfill in the study of the literary play and the processes of reception and aesthetic statement, as well as the application of the aforementioned methods in the attempt to make the student arrive at rational position; But, at the same time, he/she should feel creator and coauthor of an event that should be lived from ...

  15. Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics

    International Nuclear Information System (INIS)

    Dragt, A.J.

    1987-01-01

    A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)

  16. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    International Nuclear Information System (INIS)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-01-01

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  17. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  18. Modern design methods of hydraulic machines according to a quality system; Moderne tecniche di progettazione delle macchine idrauliche a garanzia della qualita`

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, G.; Romolotti, F.; Lazzaro, B. [Voith Riva Hydr s.p.a., Milan (Italy)

    1998-03-01

    The article underlines how the adoption of a Quality System in line with the ISO 9001 Code is an essential instrument that is necessary to safely manage the complexity of the calculation, control and organization methods connected to the unavoidable sharing out of competence relevant to design, construction and installation of modern hydraulic machines. [Italiano] L`articolo sottolinea come l`adozione di un Sistema Qualita` in linea con la norma ISO 9001, sia strumento indispensabile per la sicura gestione della maggior complessita` dei metodi di calcolo, di controllo e di organizzazione legati all`inevitabile frazionamento delle competenze relative alla progettazione, costruzione e installazione delle moderne macchine idrauliche.

  19. A Literature Review Fuzzy Pay-Off-Method – A Modern Approach in Valuation

    Directory of Open Access Journals (Sweden)

    Daniel Manaţe

    2015-01-01

    Full Text Available This article proposes to present a modern approach in the analysis of updated cash flows. The approach is based on the Fuzzy Pay-Off-Method (FPOM for Real Option Valuation (ROV. This article describes a few types of models for the valuation of real options currently in use. In support for the chosen FPOM method, we included the mathematical model that stands at the basis of this method and a case study.

  20. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  1. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  2. The Innovation Blaze-Method of Development Professional Thinking Designers in the Modern Higher Education

    Science.gov (United States)

    Alekseeva, Irina V.; Barsukova, Natalia I.; Pallotta, Valentina I.; Skovorodnikova, Nadia A.

    2017-01-01

    This article proved the urgency of the problem of development of professional thinking of students studying design in modern conditions of higher education. The authors substantiate for the need of an innovative Blaise-method development of professional design thinking of students in higher education. "Blaise-method" named by us in…

  3. Computational methods in the pricing and risk management of modern financial derivatives

    Science.gov (United States)

    Deutsch, Hans-Peter

    1999-09-01

    In the last 20 years modern finance has developed into a complex mathematically challenging field. Very complicated risks exist in financial markets which need very advanced methods to measure and/or model them. The financial instruments invented by the market participants to trade these risk, the so called derivatives are usually even more complicated than the risks themselves and also sometimes generate new riks. Topics like random walks, stochastic differential equations, martingale measures, time series analysis, implied correlations, etc. are of common use in the field. This is why more and more people with a science background, such as physicists, mathematicians, or computer scientists, are entering the field of finance. The measurement and management of all theses risks is the key to the continuing success of banks. This talk gives insight into today's common methods of modern market risk management such as variance-covariance, historical simulation, Monte Carlo, “Greek” ratios, etc., including the statistical concepts on which they are based. Derivatives are at the same time the main reason for and the most effective means of conducting risk management. As such, they stand at the beginning and end of risk management. The valuation of derivatives and structured financial instruments is therefore the prerequisite, the condition sine qua non, for all risk management. This talk introduces some of the important valuation methods used in modern derivatives pricing such as present value, Black-Scholes, binomial trees, Monte Carlo, etc. In summary this talk highlights an area outside physics where there is a lot of interesting work to do, especially for physicists. Or as one of our consultants said: The fascinating thing about this job is that Arthur Andersen hired me not ALTHOUGH I am a physicist but BECAUSE I am a physicist.

  4. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  5. ACARP Project C10059. ACARP manual of modern coal testing methods. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, R.; Creelman, R.; Pohl, J.; Juniper, L. [CSIRO Energy Technology, Sydney, NSW (Australia)

    2002-07-01

    The Manual summarises the purpose, applicability, and limitations of a range of standard and modern coal testing methods that have potential to assist the coal company technologist to better evaluate coal performance. It is presented in two volumes. This second volume provides more detailed information regarding the methods discussed in Volume 1.

  6. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  7. Towards native-state imaging in biological context in the electron microscope

    Science.gov (United States)

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  8. Why history matters: Ab initio rederivation of Fresnel equations confirms microscopic theory of refractive index

    Science.gov (United States)

    Starke, R.; Schober, G. A. H.

    2018-03-01

    We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.

  9. Tracking nanoparticles in an optical microscope using caustics

    International Nuclear Information System (INIS)

    Patterson, Eann A; Whelan, Maurice P

    2008-01-01

    An elegant method is proposed and demonstrated for tracking the location and movement of nanoparticles in an optical microscope using the optical phenomenon of caustics. A simple and reversible adjustment to the microscope generates caustics several orders of magnitude larger than the particles. The method offers a simple and relatively inexpensive method for visualizing such phenomena as the formation of self-assembled monolayers and the interaction of nanoparticles with chemically functionalized surfaces

  10. Tracking nanoparticles in an optical microscope using caustics

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Eann A [Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824 (United States); Whelan, Maurice P [Nanotechnology and Molecular Imaging Unit, Institute for Health and Consumer Protection, European Commission DG Joint Research Center, 21021 Ispra (Vatican City State, Holy See,) (Italy)

    2008-03-12

    An elegant method is proposed and demonstrated for tracking the location and movement of nanoparticles in an optical microscope using the optical phenomenon of caustics. A simple and reversible adjustment to the microscope generates caustics several orders of magnitude larger than the particles. The method offers a simple and relatively inexpensive method for visualizing such phenomena as the formation of self-assembled monolayers and the interaction of nanoparticles with chemically functionalized surfaces.

  11. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    CERN Document Server

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  12. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  13. [Modern education in histopathology and radiology].

    Science.gov (United States)

    Maas, Mario; Mooi, Wolter J

    2011-01-01

    Radiological and pathological imaging constitute an essential part of modern medicine. Furthermore, by showing microscopic and radiological images many pathological processes can be made clearer and easier to understand. This has consequences for education. Many medical faculties are switching partly or entirely to the use of 'virtual microscopy', which amounts to studying digitalised histological preparations with the help of software that shows striking similarities to Google Earth. The requesting physician of the future will be able to make the most effective use of radiological tests when he or she has been trained in 'radiological thinking'. Students must realise that radiology depends not just on looking, as one might at holiday snaps, but more especially on interpreting what is seen. By using modern aids, it is possible to test the listeners' knowledge during lectures as a basis for the rest of the presentation. Collections of educational images are now widely available, including on the Internet.

  14. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Science.gov (United States)

    Spišáková, Marcela; Mačková, Daniela

    2015-11-01

    The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  15. Modern methods to improve the accuracy in fast neutron dosimetry

    International Nuclear Information System (INIS)

    Baers, B.; Karnani, H.; Seren, T.

    1985-01-01

    In order to improve the quality of fast neutron dose estimates at the reactor pressure vessel (PV) some modern methods are presented. In addition to basic principles, some error reduction procedures are also presented based on the combined use of relative measurements, direct sample taking from the pressure vessel and the use of iron and niobium as dosimeters. The influence of large systematic errors could be significantly reduced by carrying out relative measurements. This report also presents the successful use of niobium as a dosimeter by destructive treatment of PV samples. (author)

  16. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  17. Microscopic saw mark analysis: an empirical approach.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  18. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  19. Modern nuclear medicine methods as a topic of biophysics in veterinary training at UVM in Kosice

    International Nuclear Information System (INIS)

    Stanicova, J.; Lohajova, L.

    2004-01-01

    Diagnostic and therapeutic application of ionising radiation is very important in all of branches of medicine including veterinary medicine. In veterinary training at University of Veterinary Medicine in Kosice (UVM), biophysics is a basic subject and it grants physical basis necessary for understanding subsequent subjects such as veterinary surgery, roentgenology, orthopedics. In view of this, traditional methods of radiology such as fluoroscopy, skiagraphy and tomography are explaining. The appearance and application of the theory so called reconstruction of image and also computers led to qualitatively new solutions via the development of modern methods in radiology. Explaining of physical principles, advantages or disadvantages of these new methods is also important in veterinary training although some of them do not use in veterinary practice yet. Two modern methods of nuclear medicine using in diagnostic (SPECT and PET) are discussed bellow. (authors)

  20. Monitoring the Error Rate of Modern Methods of Construction Based on Wood

    Science.gov (United States)

    Švajlenka, Jozef; Kozlovská, Mária

    2017-06-01

    A range of new and innovative construction systems, currently developed, represent modern methods of construction (MMC), which has the ambition to improve the performance parameters of buildings throughout their life cycle. Regarding the implementation modern methods of construction in Slovakia, assembled buildings based on wood seem to be the most preferred construction system. In the study, presented in the paper, were searched already built and lived-in wood based family houses. The residents' attitudes to such type of buildings in the context with declared designing and qualitative parameters of efficiency and sustainability are overlooked. The methodology of the research study is based on the socio-economic survey carried out during the years 2015 - 2017 within the Slovak Republic. Due to the large extent of data collected through questionnaire, only selected parts of the survey results are evaluated and discussed in the paper. This paper is aimed at evaluating the quality of buildings expressed in a view of users of existing wooden buildings. Research indicates some defects, which can be eliminated in the next production process. Research indicates, that some defects occur, so the production process quality should be improved in the future development.

  1. IMIS: An intelligence microscope imaging system

    Science.gov (United States)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  2. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    Science.gov (United States)

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  3. HPLC method validation for modernization of the tetracycline hydrochloride capsule USP monograph

    Directory of Open Access Journals (Sweden)

    Emad M. Hussien

    2014-12-01

    Full Text Available This paper is a continuation to our previous work aiming at development and validation of a reversed-phase HPLC for modernization of tetracycline-related USP monographs and the USP general chapter . Previous results showed that the method is accurate and precise for the assay of tetracycline hydrochloride and the limit of 4-epianhydrotetracycline impurity in the drug substance and oral suspension monographs. The aim of the current paper is to examine the feasibility of the method for modernization of USP tetracycline hydrochloride capsule monograph. Specificity, linearity, accuracy and precision were examined for tetracycline hydrochloride assay and 4-epianhydrotetracycline limit. The method was linear in the concentration range from 80% to 160% (r>0.9998 of the assay concentration (0.1 mg/mL for tetracycline hydrochloride and from 50% to 150% (r>0.997 of the acceptance criteria specified in tetracycline hydrochloride capsule monograph for 4-epianhydrotetracycline (NMT 3.0%. The recovery at three concentration levels for tetracycline hydrochloride assay was between 99% and 101% and the RSD from six preparations at the concentration 0.1 mg/mL is less than 0.6%. The recovery for 4-epianhydrotetracycline limit procedure over the concentration range from 50% to 150% is between 96% and 102% with RSD less than 5%. The results met the specified acceptance criteria.

  4. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  5. Transmission electron microscopic method for gene mapping on polytene chromosomes by in situ hybridization

    OpenAIRE

    Wu, Madeline; Davidson, Norman

    1981-01-01

    A transmission electron microscope method for gene mapping by in situ hybridization to Drosophila polytene chromosomes has been developed. As electron-opaque labels, we use colloidal gold spheres having a diameter of 25 nm. The spheres are coated with a layer of protein to which Escherichia coli single-stranded DNA is photochemically crosslinked. Poly(dT) tails are added to the 3' OH ends of these DNA strands, and poly(dA) tails are added to the 3' OH ends of a fragmented cloned Drosophila DN...

  6. Methods of geometric function theory in classical and modern problems for polynomials

    International Nuclear Information System (INIS)

    Dubinin, Vladimir N

    2012-01-01

    This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.

  7. The Use Potential of Traditional Building Materials for the Realization of Structures by Modern Methods of Construction

    Directory of Open Access Journals (Sweden)

    Spišáková Marcela

    2015-11-01

    Full Text Available The sustainable building has taken off in recent years with many investors looking for new and different methods of construction. The traditional building materials can be made out of natural materials, while others can help to lower energy costs of the occupant once built. Regardless of what the goal of the investor is, traditional building materials and their use is on the rise. The submitted paper provides an overview of natural building materials and possible modern building systems using these construction materials. Based on the questionnaire survey is defined the use potential of traditional building materials for the realization of the construction by methods of modern constructions and then are determined the drivers and barriers of traditional materials through using modern methods of construction. Considering the analysis of the achieved results, we can identify the gaps in the construction market in Slovakia and also to assess the perception of potential investors in the field of traditional building materials use, which is the purpose of submitted paper.

  8. [Use of modern contraceptive methods in the Democratic Republic of the Congo: prevalence and barriers in the health zone of Dibindi, Mbuji-Mayi].

    Science.gov (United States)

    Ntambue, Abel Mukengeshayi; Tshiala, Rachel Ngalula; Malonga, Françoise Kaj; Ilunga, Tabitha Mpoyi; Kamonayi, Josaphat Mulumba; Kazadi, Simon Tshimankinda; Matungulu, Charles Matungu; Musau, Angel Nkola; Mulamba, Diese; Dramaix-Wilmet, Michèle; Donnen, Philippe

    2017-01-01

    This study aimed to determine modern contraceptive prevalence and the barriers to using modern contraceptive methods among the couples in Dibindi health zone, Mbuji-Mayi, in the Democratic Republic of the Congo. We conducted a cross-sectional descriptive study from May to June 2015. Nonpregnant married women aged 15-49 years old at the time of the investigation, living in Dibindi health zone for two years and having freely consented to participate in the study were included. Data were collected by open-ended interview of these women. Modern contraceptive prevalence was referred to women who were currently using, at the time of the investigation, modern contraceptives. The comparison between proportions was performed at the significance threshold of 5%. Bonferroni's test was used to compare, two by two, the proportions of barriers to using modern contraceptive methods. Modern contraceptive prevalence in Dibindi was 18.4% in 2015. It was low with regard to family planning services available in this health zone. Several women refused to use modern contraceptive methods despite available information because of their desire for motherhood, religious prohibition, opposition on the part of their husband and fear of side effects. Sufficient client-centered or couple-centered information and family planning information should be strengthened in order to eliminate the false beliefs and to increase the use of modern contraceptive methods.

  9. Specimen holder for an electron microscope and device and method for mounting a specimen in an electron microscope

    NARCIS (Netherlands)

    Zandbergen, H.W.; Latenstein van Voorst, A.; Westra, C.; Hoveling, G.H.

    1996-01-01

    A specimen holder for an electron microscope, comprising a bar-shaped body provided adjacent one end with means for receiving a specimen, with means being present for screening the specimen from the environment at least temporarily in airtight and moisture-proof manner in a first position, which

  10. Occupational concerns associated with regular use of microscope

    Directory of Open Access Journals (Sweden)

    Garima Jain

    2014-08-01

    Full Text Available Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Results: Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11–15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15–30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. Conclusions: The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  11. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Hidetoshi Nakanishi

    2015-11-01

    Full Text Available A laser terahertz emission microscope (LTEM can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL, photoluminescence (PL, and laser beam induced current (LBIC, as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  12. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    Science.gov (United States)

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-11-01

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Obtaining the lattice energy of the anthracene crystal by modern yet affordable first-principles methods

    Science.gov (United States)

    Sancho-García, J. C.; Aragó, J.; Ortí, E.; Olivier, Y.

    2013-05-01

    The non-covalent interactions in organic molecules are known to drive their self-assembly to form molecular crystals. We compare, in the case of anthracene and against experimental (electronic-only) sublimation energy, how modern quantum-chemical methods are able to calculate this cohesive energy taking into account all the interactions between occurring dimers in both first-and second-shells. These include both O(N6)- and O(N5)-scaling methods, Local Pair Natural Orbital-parameterized Coupled-Cluster Single and Double, and Spin-Component-Scaled-Møller-Plesset perturbation theory at second-order, respectively, as well as the most modern family of conceived density functionals: double-hybrid expressions in several variants (B2-PLYP, mPW2-PLYP, PWPB95) with customized dispersion corrections (-D3 and -NL). All-in-all, it is shown that these methods behave very accurately producing errors in the 1-2 kJ/mol range with respect to the experimental value taken into account the experimental uncertainty. These methods are thus confirmed as excellent tools for studying all kinds of interactions in chemical systems.

  14. Theory and use of modern microscopical methods with applications to studies of wetlands microbial community dynamics. Final performance reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Funds were granted to the University of Southwestern Louisiana to coordinate and offer a summer enhancement institute for science teachers. Following are highlights from that institute: (1) 20 teachers from Louisiana attended the institute as students; (2) institute faculty included staff members from USL`s Departments of Biology, Mathematics, and Education and 3 principal scientists plus technicians from the Southern Science Center; (3) the institute began June 5, 1995 and ended June 30, 1995, and it featured daily lectures, laboratory exercises, examinations, and field trips--assignments for students included journal keeping, lesson plan development, and presentations, the student`s journal entries proved valuable for evaluating institute activities, students received copies of lesson plans developed at the institute, videos entitled ``Pond Life Diversity`` and ``Chesapeake: The Twilight Estuary,`` a guide to ``Free-lining Freshwater Protozoa,`` a graphing calculator, 2 x 2 slide set of pond life, software or hardware (selected by the teacher to meet specific needs), a field manual for water quality monitoring laboratory exercises (Project Green), and a book on Benchmarks for Science Literacy; (4) follow-up measures included the following--a newsletter disseminated by USL but written with teacher input; making equipment (such as a trinocular compound microscope and video monitor) and materials and supplies available to the teachers and their students in the classroom; and mentoring between USL and SSC staff and the teachers during the school year. Attached to this report are copies of the institute agenda and lesson plans developed in the institute.

  15. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Emhjellen, Magne; Alaouze, Chris M

    2002-07-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  16. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Emhjellen, Magne; Alaouze, Chris M.

    2002-07-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  17. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    International Nuclear Information System (INIS)

    Emhjellen, Magne; Alaouze, Chris M.

    2002-01-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  18. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    Science.gov (United States)

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  19. Modern teaching for modern education

    OpenAIRE

    Mirascieva, Snezana

    2016-01-01

    Carrying the epithet of being contemporary education today means modern teaching. If modern education is a state in the field of education of all its elements, then teaching will also be a state with its own special features defining it as modern. The main issues of concern in this paper relate to what constitutes modern teaching, which features determine it as being modern, and how much is teaching today following the trend of modernization.

  20. Comparative description of the use of modern methods of hormonal contraception for women with excessive body mass

    Directory of Open Access Journals (Sweden)

    I. B. Gridina

    2016-04-01

    Full Text Available Maintenance of reproductive health of women with excessive weight is the actual problem of nowadays and is an important direction of modern medicine. Aim. To analyze the efficiency and acceptability of oral, іntravaginal and transdermal hormonal contraceptives among women with excessive body mass. Methods and results. The tolerability and ease of use of different types of hormonal contraception have been studied in 72 women with excessive body mass to determine the reliability and acceptability of modern hormonal contraceptives. It has been investigated that the effectiveness of hormonal contraceptives according to our data is 100%, none patient was registered with an unwanted pregnancy. The total subjective evaluation of all hormonal contraceptives use were positive: 78.6% of women with excessive body mass who used oral contraceptives, were satisfied with the chosen contraceptive method, 81,8% – were satisfied with intravaginal method, 59,1% – transdermal contraceptive. Conclusions. It has been found that intravaginal contraceptive is most suitable as the drug of first choice for women with overweight compared with oral and transdermal hormonal methods of contraception. This suggests that women with excessive body mass can successfully use modern methods of hormonal contraception. But it is necessary to carry out clinical supervision, during which further clarification on the use of hormonal contraception in women with excessive body mass is possible.

  1. Modern methods of cost saving of the production activity in construction

    Science.gov (United States)

    Silka, Dmitriy

    2017-10-01

    Every time economy faces recession, cost saving questions acquire increased urgency. This article shows how companies of the construction industry have switched to the new kind of economic relations over recent years. It is specified that the dominant type of economic relations does not allow to quickly reorient on the necessary tools in accordance with new requirements of economic activity. Successful experience in the new environment becomes demanded. Cost saving methods, which were proven in other industries, are offered for achievement of efficiency and competitiveness of the companies. Analysis is performed on the example of the retail sphere, which, according to the authoritative analytical reviews, is extremely innovative on both local and world economic levels. At that, methods, based on the modern unprecedentedly high opportunities of communications and informational exchange took special place among offered methods.

  2. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes

    International Nuclear Information System (INIS)

    Kang, Hyeonggon; Attota, Ravikiran; Tondare, Vipin; Vladár, András E.; Kavuri, Premsagar

    2015-01-01

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements is also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter

  3. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    International Nuclear Information System (INIS)

    Park, Kyoung-Duck; Park, Doo-Jae; Jeong, Mun-Seok; Choi, Geun-Chang; Lee, Seung-Gol; Byeon, Clare-Chisu; Choi, Soo-Bong

    2014-01-01

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  4. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  5. The long road to the use of microscope in clinical medicine in vivo: from early pioneering proposals to the modern perspectives of optical biopsy.

    Science.gov (United States)

    Ponti, Giovanni; Muscatello, Umberto; Sgantzos, Markos

    2015-01-01

    For a long period the scientists did not recognized the potentialities of the compound microscope in medicine. Only few scientists recognized the potentialities of the microscope for the medicine; among them G. Campani who proposed the utilization of his microscope to investigate the skin lesions directly on the patient. The proposal was illustrated in a letter Acta Eruditorum of 1686. The recent development of optical techniques, capable of providing in-focus images of an object from different planes with high spatial resolution, significantly increased the diagnostic potential of the microscope directly on the patient.

  6. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    Science.gov (United States)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  7. Modern Instrumental Methods in Forensic Toxicology*

    Science.gov (United States)

    Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.

    2009-01-01

    This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968

  8. Observing Fluorescent Probes in Living Cells using a Low-Cost LED Flashlight Retrofitted to a Common Vintage Light Microscope

    Directory of Open Access Journals (Sweden)

    G. A. Babbitt

    2013-03-01

    Full Text Available While the application of molecular biological techniques based upon fluorescent probes has rapidly expanded over recent decades, the equipment cost of fluorescent microscopy has largely prevented its adoption in the college and high school classroom. We offer a simple solution to this problem by describing in detail how to build with simple tools, a fluorescent microscope using a common brand of colored LED flashlights and second-hand components of vintage Nikon microscopes. This extremely low cost solution is qualitatively compared to an expensive modern Zeiss system.

  9. Some considerations about literary analysis modern methods from a didactic perspective

    Directory of Open Access Journals (Sweden)

    Marialina Ana García Escobio

    2016-12-01

    Full Text Available This article make it possible a close look to the modern methods of literary analysis, taking as the starting point what the teaching of literature in the joyful context should fulfill in the study of the literary play and the processes of reception and aesthetic statement, as well as the application of the aforementioned methods in the attempt to make the student arrive at rational position; But, at the same time, he/she should feel creator and coauthor of an event that should be lived from a type of special reading done; Herein the importance of a system of methodological work that prepares the professors to contribute from each of the classes to the development of skills for the students´ literary analysis.

  10. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  11. Optical design of Kirkpatrick-Baez microscope for ICF

    International Nuclear Information System (INIS)

    Mu Baozhong; Yi Shengzhen; Huang Shengling; Wang Zhanshan

    2008-01-01

    A new flux-resolution optical design method of Kirkpatrick-Baez microscope (KB microscope) is proposed. In X-ray imaging diagnostics of inertial confinement fusion(ICF), spatial resolution and flux are always the key parameters. While the traditional optical design of KB microscope is to correct on-axis spherical aberration and astigmatic aberration, flux-resolution method is based on lateral aberration of full field and astigmatic aberration. Thus the spatial resolution related to field dimension and light flux can be estimated. By the expressions of spatial resolution and actual limits in ICF, rules of how to set original structure and optical design flow are summarized. An instance is presented and it shows that the design has met the original targets and overcome the shortcomings of image characterization in compressed core by traditional spherical aberration correction. (authors)

  12. Modern methods of studying surfaces and their application to glasses

    International Nuclear Information System (INIS)

    Rauschenbach, B.; Haehnert, M.

    1977-05-01

    In the works are demonstrated modern methods for study of solid surfaces and its use of glasses. Study of the interaction of ions, electrons and photons with the glass surface provides information about the composition of the surface and its structure on an atomic scale. A qualitative analysis of a surface can be made with the aid of the Auger electron spectroscopy (AES) and the electron spectroscopy for chemical analysis (ESCA) and with the ion scattering (ISS and RBS) and the secondary ion mass spectrometry (SIMS). The structure of a surface can be studied by means of ion scattering and low-energy electron diffraction (LEED) and the topography of a surface by means of scanning electron microscopy (SEM). The ellipsometry is generally confined to measuring the thickness of very thin layers. The application these methods to the glass surfaces is demonstrated on series of examples. (author)

  13. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope

    International Nuclear Information System (INIS)

    Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter

    2011-01-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10 -10 mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  14. Optical modeling of Fresnel zoneplate microscopes

    International Nuclear Information System (INIS)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-01-01

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  15. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  16. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  17. THE INTENTIONAL ASPECT OF MODERN STYLISTICS

    Directory of Open Access Journals (Sweden)

    Natalia Klushina

    2013-10-01

    Full Text Available There are cognitive, communicative, and pragmatic scientific methods in the modern anthropocentric linguistic paradigm. We have created the intentional method as a new integrative linguistic method for studying modern Russian discourse. The main scientific categories of the intentional method include: intention, intentionality, intentional categories, author, and addressee. The intention of the addressee consists of cognitive, communicative, and pragmatic constituents. We can divide intention into cognitive intention, which helps to understand the world, and communicative intention, which organizes communication between addressee and addresser. The intentional method can help to search out creative and subjective factors of human communication. This method can help to understand the nonlinearity and creativity of the communicative processes. The different types of effects of modern communication are analysed in this article. The effect holds not only a perlocutive quality in integral communication; therefore we announce that there are both positive and negative intentional effects in modern communication. Communicative failures are situations when an addressee refuses to carry on a dialogue or experiences indifference to the interlocutor.

  18. Modern

    Directory of Open Access Journals (Sweden)

    A.V. Bagrov

    2014-06-01

    Full Text Available The article gives an overview of the most important problems of modern meteoric astronomy and briefly describes ways and methods of their solutions. Particular attention is paid to the construction and arrangement of meteoric video cameras intended for registration of the meteoric phenomena as the main method of obtaining reliable and objective observational data on the basis of which the solution of the described tasks is possible.

  19. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

    Science.gov (United States)

    2014-01-01

    This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618

  20. Abstracts of International Conference on Experimental and Computing Methods in High Resolution Diffraction Applied for Structure Characterization of Modern Materials - HREDAMM

    International Nuclear Information System (INIS)

    2004-01-01

    The conference addressed all aspects of high resolution diffraction. The topics of meeting include advanced experimental diffraction methods and computer data analysis for characterization of modern materials as well as the progress and new achievements in high resolution diffraction (X-ray, electrons, neutrons). Application of these methods for characterization of modern materials are widely presented among the invited, oral and poster contributions

  1. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    Directory of Open Access Journals (Sweden)

    Ring Peter

    2018-01-01

    Full Text Available We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  2. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Microscopic to macroscopic depletion model development for FORMOSA-P

    International Nuclear Information System (INIS)

    Noh, J.M.; Turinsky, P.J.; Sarsour, H.N.

    1996-01-01

    Microscopic depletion has been gaining popularity with regard to employment in reactor core nodal calculations, mainly attributed to the superiority of microscopic depletion in treating spectral history effects during depletion. Another trend is the employment of loading pattern optimization computer codes in support of reload core design. Use of such optimization codes has significantly reduced design efforts to optimize reload core loading patterns associated with increasingly complicated lattice designs. A microscopic depletion model has been developed for the FORMOSA-P pressurized water reactor (PWR) loading pattern optimization code. This was done for both fidelity improvements and to make FORMOSA-P compatible with microscopic-based nuclear design methods. Needless to say, microscopic depletion requires more computational effort compared with macroscopic depletion. This implies that microscopic depletion may be computationally restrictive if employed during the loading pattern optimization calculation because many loading patterns are examined during the course of an optimization search. Therefore, the microscopic depletion model developed here uses combined models of microscopic and macroscopic depletion. This is done by first performing microscopic depletions for a subset of possible loading patterns from which 'collapsed' macroscopic cross sections are obtained. The collapsed macroscopic cross sections inherently incorporate spectral history effects. Subsequently, the optimization calculations are done using the collapsed macroscopic cross sections. Using this approach allows maintenance of microscopic depletion level accuracy without substantial additional computing resources

  4. Use of traditional and modern contraceptives among childbearing women: findings from a mixed methods study in two southwestern Nigerian states.

    Science.gov (United States)

    Ajayi, Anthony Idowu; Adeniyi, Oladele Vincent; Akpan, Wilson

    2018-05-09

    Contraceptive use has numerous health benefits such as preventing unplanned pregnancies, ensuring optimum spacing between births, reducing maternal and child mortality, and improving the lives of women and children in general. This study examines the level of contraceptive use, its determinants, reasons for non-use of contraception among women in the reproductive age group (18-49 years) in two southwestern Nigerian states. The study adopted an interviewer-administered questionnaire to collect data from 809 participants selected using a 3-stage cluster random sampling technique. We also conducted 46 in-depth interviews. In order to investigate the association between the socio-demographic variables and use of contraceptive methods, we estimated the binary logistic regression models. The findings indicated that knowledge of any methods of contraception was almost universal among the participants. The rates of ever use and current use of contraception was 80 and 66.6%, respectively. However, only 43.9% of the participants had ever used any modern contraceptive methods, considered to be more reliable. The fear of side effects of modern contraceptive methods drove women to rely on less effective traditional methods (withdrawal and rhythm methods). Some women employed crude and unproven contraceptive methods to prevent pregnancies. Our findings show that the rate of contraceptive use was high in the study setting. However, many women chose less effective traditional contraceptive methods over more effective modern contraceptive methods due to fear of side effects of the latter. Patient education on the various options of modern contraceptives, their side effects and management would be crucial towards expanding the family planning services in the study setting.

  5. Differentials of modern contraceptive methods use by food security status among married women of reproductive age in Wolaita Zone, South Ethiopia.

    Science.gov (United States)

    Feyisso, Mohammed; Belachew, Tefera; Tesfay, Amanuel; Addisu, Yohannes

    2015-01-01

    In spite of the massive spending and extensive family-planning promotion, many poor people in the third world remain reluctant to use modern contraceptive method. Mostly when they use modern contraceptives, their continuation rates are often low. Reproductive health can improve women's nutrition; in return better nutrition can improve reproductive health. Thus addressing the connection between nutrition and reproductive health is critical to ensure population growth that does not overwhelm world resources. A community based cross-sectional study was conducted from March 15-30, 2014 in Soddo Zuria Woreda, Southern Ethiopia. A total of 651 currently married women of reproductive age group were selected using multistage sampling. Probability proportional to the size allocation method was employed to determine the number of households. Multivariable logistic regression was used to assess the association between family planning use and food security status after adjusting for other covariates. Use of modern contraceptive method was significantly low among food insecure women (29.7 %) compared to those who were food secure (52.0 %), (P insecurity is negatively associated with modern contraceptive method use. Thus food insecurity should be considered as one of the barriers in designing family planning services and needs special arrangement.

  6. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  7. Basics of modern mathematical statistics

    CERN Document Server

    Spokoiny, Vladimir

    2015-01-01

    This textbook provides a unified and self-contained presentation of the main approaches to and ideas of mathematical statistics. It collects the basic mathematical ideas and tools needed as a basis for more serious studies or even independent research in statistics. The majority of existing textbooks in mathematical statistics follow the classical asymptotic framework. Yet, as modern statistics has changed rapidly in recent years, new methods and approaches have appeared. The emphasis is on finite sample behavior, large parameter dimensions, and model misspecifications. The present book provides a fully self-contained introduction to the world of modern mathematical statistics, collecting the basic knowledge, concepts and findings needed for doing further research in the modern theoretical and applied statistics. This textbook is primarily intended for graduate and postdoc students and young researchers who are interested in modern statistical methods.

  8. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  9. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  10. A new computerized moving stage for optical microscopes

    Science.gov (United States)

    Hatiboglu, Can Ulas; Akin, Serhat

    2004-06-01

    Measurements of microscope stage movements in the x and y directions are of importance for some stereological methods. Traditionally, the length of stage movements is measured with differing precision and accuracy using a suitable motorized stage, a microscope and software. Such equipment is generally expensive and not readily available in many laboratories. One other challenging problem is the adaptability to available microscope systems which weakens the possibility of the equipment to be used with any kind of light microscope. This paper describes a simple and cheap programmable moving stage that can be used with the available microscopes in the market. The movements of the stage are controlled by two servo-motors and a controller chip via a Java-based image processing software. With the developed motorized stage and a microscope equipped with a CCD camera, the software allows complete coverage of the specimens with minimum overlap, eliminating the optical strain associated with counting hundreds of images through an eyepiece, in a quick and precise fashion. The uses and the accuracy of the developed stage are demonstrated using thin sections obtained from a limestone core plug.

  11. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  12. Modern methodic of power cardio training in students’ physical education

    Directory of Open Access Journals (Sweden)

    A.Yu. Osipov

    2016-12-01

    Full Text Available Purpose: significant increase of students’ physical condition and health level at the account of application of modern power cardio training methodic. Material: 120 students (60 boys and 60 girls participated in the research. The age of the tested was 19 years. The research took one year. We used methodic of power and functional impact on trainees’ organism (HOT IRON. Such methodic is some systems of physical exercises with weights (mini-barbells, to be fulfilled under accompaniment of specially selected music. Results: we showed advantages of power-cardio and fitness trainings in students’ health improvement and in elimination obesity. Control tests showed experimental group students achieved confidently higher physical indicators. Boys demonstrated increase of physical strength and general endurance indicators. Girls had confidently better indicators of physical strength, flexibility and general endurance. Increase of control group students’ body mass can be explained by students’ insufficient physical activity at trainings, conducted as per traditional program. Conclusions: students’ trainings by power-cardio methodic with application HOT IRON exercises facilitate development the following physical qualities: strength and endurance in boys and strength, flexibility and endurance in girls. Besides, it was found that such systems of exercises facilitate normalization of boys’ body mass and correction of girls’ constitution.

  13. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  14. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  15. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  16. Improving the speed of AFM by mechatronic design and modern control methods

    International Nuclear Information System (INIS)

    Schitter, Georg

    2009-01-01

    In Atomic Force Microscopy (AFM) high-performance and high-precision control of the AFM scanner and of the imaging forces is crucial. Particularly at high imaging speeds the dynamic behaviour of the scanner may cause imaging artifacts and limit the maximum imaging rate. This contribution discusses and presents recent improvements in AFM instrumentation for faster imaging by means of mechatronic design and utilizing modern control engineering methods. Combining these improvements enables AFM imaging at more than two orders of magnitudes faster than conventional AFMs. (orig.)

  17. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  18. Differential magnetic force microscope imaging.

    Science.gov (United States)

    Wang, Ying; Wang, Zuobin; Liu, Jinyun; Hou, Liwei

    2015-01-01

    This paper presents a method for differential magnetic force microscope imaging based on a two-pass scanning procedure to extract differential magnetic forces and eliminate or significantly reduce background forces with reversed tip magnetization. In the work, the difference of two scanned images with reversed tip magnetization was used to express the local magnetic forces. The magnetic sample was first scanned with a low lift distance between the MFM tip and the sample surface, and the magnetization direction of the probe was then changed after the first scan to perform the second scan. The differential magnetic force image was obtained through the subtraction of the two images from the two scans. The theoretical and experimental results have shown that the proposed method for differential magnetic force microscope imaging is able to reduce the effect of background or environment interference forces, and offers an improved image contrast and signal to noise ratio (SNR). © Wiley Periodicals, Inc.

  19. THE LONG ROAD TO THE USE OF MICROSCOPE IN CLINICAL MEDICINE IN VIVO: FROM EARLY PIONEERING PROPOSALS TO THE MODERN PERSPECTIVES OF OPTICAL BIOPSY

    OpenAIRE

    Ponti, Giovanni; Muscatello, Umberto

    2015-01-01

    For a long period the scientists did not recognized the potentialities of the compound microscope in medicine. Only few scientists recognized the potentialities of the microscope for the medicine; among them G. Campani who proposed the utilization of his microscope to investigate the skin lesions directly on the patient. The proposal was illustrated in a letter Acta Eruditorum of 1686. The recent development of optical techniques, capable of providing in-focus images of an object from differe...

  20. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    International Nuclear Information System (INIS)

    Ananikov, V P; Khemchyan, L L; Ivanova, Yu V; Dilman, A D; Levin, V V; Bukhtiyarov, V I; Sorokin, A M; Prosvirin, I P; Romanenko, A V; Simonov, P A; Vatsadze, S Z; Medved'ko, A V; Nuriev, V N; Nenajdenko, V G; Shmatova, O I; Muzalevskiy, V M; Koptyug, I V; Kovtunov, K V; Zhivonitko, V V; Likholobov, V A

    2014-01-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references

  1. Modern concepts of cost accounting: A review of the ABC method specific features

    Directory of Open Access Journals (Sweden)

    Trklja Radmila

    2014-01-01

    Full Text Available New business conditions, in which the presence of turbulent changes in the environment are extremely obvious, demand, much more than before, relevant and reliable information which represent an essential support for the management in all the stages of decision making processes. In the countries with developed market and competitive economies, new approaches, philosophies, concepts and techniques in the field of expense accounting appear. The development of high technology businesses and the appearance of business globalisation raise the question of the quality of accounting information obtained using traditional methods of cost accounting and it is necessary to change the concept of establishing product costs. According to this, management accounting should ensure an informational support for managing businesses which are based on customers' demands, internal processes, continuous business improvement etc. It is only possible with the application of modern concepts of cost accounting, which will ensure efficient of cost management and business management in modern business conditions.

  2. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits

    OpenAIRE

    Arun Kaintura; Tom Dhaene; Domenico Spina

    2018-01-01

    Advances in manufacturing process technology are key ensembles for the production of integrated circuits in the sub-micrometer region. It is of paramount importance to assess the effects of tolerances in the manufacturing process on the performance of modern integrated circuits. The polynomial chaos expansion has emerged as a suitable alternative to standard Monte Carlo-based methods that are accurate, but computationally cumbersome. This paper provides an overview of the most recent developm...

  3. Chinese cyber espionage: a complementary method to aid PLA modernization

    OpenAIRE

    Ellis, Jamie M.

    2015-01-01

    Approved for public release; distribution is unlimited In 2013, Mandiant published a report linking one People’s Liberation Army (PLA) unit to the virtual exploitation of 11 modern U.S. military platforms. In the last two decades, Chinese cyber espionage has cultivated a significant reputation in cyberspace for its high-volume, illicit exploitation of defense technology. At the same time, the PLA has also rapidly modernized its naval, fighter jet, and air defense technologies. This thesis ...

  4. Modern vs. Traditional.

    Science.gov (United States)

    Zhenhui, Rao

    1999-01-01

    This article discusses traditional methods, such as the grammar-translation, and modern methods, the communicative approach, for teaching English-as-a-foreign-language in China. The relationship between linguistic accuracy and communicative competence, student-centered orientation, and the role of the teacher are highlighted. (Author/VWL)

  5. Predictors of modern contraceptive methods use among married women of reproductive age groups in Western Ethiopia: a community based cross-sectional study.

    Science.gov (United States)

    Tekelab, Tesfalidet; Melka, Alemu Sufa; Wirtu, Desalegn

    2015-07-17

    In Ethiopia, the prevalence of modern contraceptive use is very low (27 %) and the percentage of those with unmet needs for family planning is 25 %. The current study identified factors associated with the utilization of modern contraceptive methods among married women in Western Ethiopia. A community based, cross-sectional study was employed from April 10 to April 25, 2014, among married women of reproductive age in Nekemte Town. A multi-stage sampling procedure was used to select 1003 study participants. A pretested structured questionnaire was used to collect data, and data collectors who had completed high school were involved in the data collection process. A bivariate, multivariable logistic regression model was fit, and statistical significance was determined with a 95% confidence level. The overall utilization rate of modern contraceptives in this study was 71.9%. The most common form of modern contraceptives used was injectable (60.3%). Age (AOR = 2.00, 95 % CI = 1.35-2.98), women's educational level (AOR = 2.50, 95 % CI = 1.62-3.84), monthly income (AOR = 2.26, 95 % CI = 1.24-4.10), respondent's fertility (AOR = 2.60, 95 % CI = 1.48-4.56), fertility-related decision (AOR = 3.70, 95 % CI = 2.45-5.58), and having radio (AOR = 1.93, 95 % CI = 1.37-2.71) showed significant positive associations with the utilization of modern contraceptive methods. The findings showed that women's empowerment, fertility-related discussions among couples, and the availability of the media were important factors that influenced the use of modern contraceptives. Thus, policymakers and implementers should work on those factors to increase the utilization of modern contraceptive methods.

  6. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  7. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  8. Quality Assurance Tests for Modern Optical Imaging Systems

    Science.gov (United States)

    Cole, R.W.; Stack, R.F.

    2010-01-01

    r10-1 Modern light microscopes are highly evolved opto-electronic-mechanical devices, most costing in the 100′s of thousands of dollars.The days of simply be being able to ascertain instrument performance by looking through the eye pieces at a specimen are gone.However, users as well as granting agencies need to be confident that data collected will be uniform and quantifiable both over time on the same instrument andfrom instrument to instrument.We have conducted the first stage of a world-wide research study on instrument performance utilizing three image-based tests.The goal of this study was not to compare the performance of different brands of instruments, nor to ascertain which brand had better performance in a given area.Simply, the aims of the study were: to ascertain the current state of light microscopes through simple and efficient, yet robust tests and to develop relative standards that will assist core managers and/or users in maintaining their instruments in optimal operating conditions. In an ideal world, a LASER would not fluctuate, illumination would be completely uniform and all colors would perfectly align.The tests selected were: long and short term stability tests of illumination sources, uniformity of field illumination, and co-localization across various wavelengths. There were instances where data from a single microscope was within range for some tests but not for all.There were other instances where single microscopes meet all or conversely none of the expected performance levels.From this data it is obvious that all three tests need to be performed on a regular basis to assure high fidelity data.

  9. Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood

    Directory of Open Access Journals (Sweden)

    Jozef Švajlenka

    2018-01-01

    Full Text Available Recent developments in the construction industry have brought more efficient and sustainable technologies, technological procedures, and materials. An example of this are modern methods of construction, which offer larger production volumes with a higher quality and shorter procurement time. The goal of those methods is to improve construction sustainability through quality improvement, customer satisfaction, shortened construction time, and reduced environmental impact. The main goal of this research is to demonstrate, by means of theoretical assumptions, surveys, and analyses, the sustainability of modern methods of construction based on wood. The work focuses on identifying the user criteria for construction sustainability. Selected user criteria of construction sustainability are applied in a socio-economic survey whose purpose is to determine how users perceive the efficiency of selected construction systems. We evaluate certain user parameters in the context of sustainability by relying on the users of buildings (family houses which have already been built and compare the results with declared design parameters.

  10. [Microscopic investigation of vessel wall after endovascular catheter atherectomy].

    Science.gov (United States)

    Tsygankov, V N; Khovalkin, R G; Chekmareva, I A; Kalinin, D V; Filippova, E M

    2014-01-01

    Endovascular target catheter atherectomy (ETCA) - method of artery patency allowing to obtain occlusion substrate. Given the high destructive effect of atherectome's elements on tissue the objective was determination possibility of histological and electron microscopic investigation of this substrate after atherectomy. The research included 8 patients who underwent ETCA of legs arteries. It was observed substrate removal from broken stent in 1 case. 2 of 8 patients had diabetes. Obtained substrate was available for histological and electron microscopic investigation. Atherosclerosis was confirmed in all cases. It was not observed substrate significant morphological changes in patients with presence or absence of diabetes. Microscopic investigation of substrate from broken stent shows pronounced development of granulation tissue that was regarded as special form of reparative regeneration. Finding internal elastic membrane during microscopic investigation in some cases proves radical intervention. The authors consider that microscopic investigation of substrate after ETCA may be used for diagnosis verification, thorough analysis of morphological changes in lesion area and radicalism of atherectomy.

  11. Advance in quality assessment of Chinese materia medica using microscopic and morphological methods.

    Science.gov (United States)

    Miao, Xiao-Su; Cui, Qing-Yu; Wang, Zhao-Yi; Liu, Xiao-Na; Zhao, An-Bang; Qiao, Yan-Jiang; Wu, Zhi-Sheng

    2017-09-01

    Quality evaluation plays a vital role in ensuring safety and effectiveness of Chinese materia medica (CMM). Microscopic and morphological technologies can be used to distinguish CMM's characteristics, such as shape, size, texture, section, and smell, for authenticity and quality control of CMM. The microscopic and morphological applications of novel micro-technology, colorimeter, and texture analyzer for CMM identification are summarized and the future prospect is discussed in this paper. Various styles and complex sources of CMM are systemically reviewed, including cormophyte medicinal materials, fruit and seeds, pollen grain, and spore materials. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Quantification of incisal tooth wear in upper anterior teeth: conventional vs new method using toolmakers microscope and a three-dimensional measuring technique.

    Science.gov (United States)

    Al-Omiri, Mahmoud K; Sghaireen, Mohd G; Alzarea, Bader K; Lynch, Edward

    2013-12-01

    This study aimed to quantify tooth wear in upper anterior teeth using a new CAD-CAM Laser scanning machine, tool maker microscope and conventional tooth wear index. Fifty participants (25 males and 25 females, mean age = 25 ± 4 years) were assessed for incisal tooth wear of upper anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 1 year later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System. Scanned images were printed and examined under a toolmaker microscope to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyze the data. TWI scores for incisal edges were 0-3 and were similar at both occasions. Score 4 was not detected. Wear values measured by directly assessing the dies under the toolmaker microscope (range = 113 - 150 μm, mean = 130 ± 20 μm) were significantly more than those measured from Cercon Digital Machine images (range=52-80 μm, mean = 68 ± 23 μm) and both showed significant differences between the two occasions. Wear progression in upper anterior teeth was effectively detected by directly measuring the dies or the images of dies under toolmaker microscope. Measuring the dies of worn dentition directly under tool maker microscope enabled detection of wear progression more accurately than measuring die images obtained with Cercon Digital Machine. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  14. A comparison of discounted cashflow and modern asset pricing methods - project selection and policy implications

    International Nuclear Information System (INIS)

    Emhjellen, Magne; Alaouze, Chris M.

    2003-01-01

    We examine the differences in the net present values (NPVs) of North Sea oil projects obtained using the weighted average cost of capital and a modern asset pricing (MAP) method which involves the separate discounting of project cashflow components. NPV differences of more than $10 million were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies and could influence tax policy. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model

  15. Study of five-dimensional potential-energy surfaces for actinide isotopes by the macroscopic-microscopic method

    Science.gov (United States)

    Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.

    2017-09-01

    In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  16. On the resolution of the electron microscopic radioautography

    International Nuclear Information System (INIS)

    Uchida, Kazuko; Daimon, Tateo; Kawai, Kazuhiro

    1981-01-01

    The aim of electron microscopic radioautography is to reveal the exact localization of certain substances at the macromolecular level. In order to attain this object the establishment of a fine grain development method is indispensable. Some of latent images are formed at the contact surface between the polyhedral halide silver grain and the section surface, where the impact of #betta# particles come directly from the section involved, and since it is in contact with the section it remains in place even after development and gelatin removal. This latent image finally becomes a developed silver grain in the electron microscope radioautogram. Although the limit of resolution in electron microscopic radioautography is supposed to be the diameter of halide silver grains in emulsion, it may be improved by considering the fact that the contact area between the halide silver grain and the section surface is the minimum unit of resolution. The minimum resolution of electron microscopic radioautography was determined histologically to be about 100A. (author)

  17. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  18. Technical characterization by image analysis: an automatic method of mineralogical studies

    International Nuclear Information System (INIS)

    Oliveira, J.F. de

    1988-01-01

    The application of a modern method of image analysis fully automated for the study of grain size distribution modal assays, degree of liberation and mineralogical associations is discussed. The image analyser is interfaced with a scanning electron microscope and an energy dispersive X-rays analyser. The image generated by backscattered electrons is analysed automatically and the system has been used in accessment studies of applied mineralogy as well as in process control in the mining industry. (author) [pt

  19. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    International Nuclear Information System (INIS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-01-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  20. UNIVERSITY TEACHERS’ READINESS TO APPLY THE MODERN EDUCATIONAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Irina O. Kotlyarova

    2015-01-01

    Full Text Available The aim of the research is to investigate the readiness of the university teachers to apply the modern educational technologies. Methods. The methods include theoretical: analysis of existing modern educational technologies, the concept «readiness» and its components, abstraction of signs and kinds of modern educational technologies based on the scientific literature and in the Federal State Educational Standards (FSES; empirical: questionnaires and testing methods for detecting levels of university teachers’ skills and readiness to use modern educational technology. Results. The main features of modern educational technologies are identified and justified that are to comply with modern methodology of the theory and practice of education study and the latest FSES requirements; the level of science, manufacturing, and modern rules of human relations. The components of readiness of university teachers to use modern educational technology are structured. The linguistic component is included along with the cognitive, psychological, operational, connotative components; its necessity is proved. The average level of readiness for the use of modern educational technology by university teachers is identified. Scientific novelty. The author specifies the features of the modern educational technology. The most significant components of higher-education teaching personnel readiness to use technological innovations are identified. As a whole, these results form the indicative framework for the development and measurement of readiness of the university teachers to use the modern educational technology. The development of the readiness of the university teachers to apply the modern educational technologies is proved to be an issue of current interest. Practical significance. The research findings can be used as the basis of techniques and methods designing for its further development and measurement of the training, retraining and advanced training of

  1. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  2. Improved microscopical detection of acid-fast bacilli by the modified bleach method in lymphnode aspirates

    Directory of Open Access Journals (Sweden)

    Annam Vamseedhar

    2009-07-01

    Full Text Available Objectives: To improve the smear microscopy for detection of acid-fast bacilli (AFB in fine needle aspiration cytology (FNAC of lymph node using the bleach method and also to compare this with cytological diagnosis and the conventional Ziehl-Neelsen (ZN method. Study Design: In 99 consecutive patients with clinical suspicion of tuberculosis (TB presenting with lymphadenopathy, FNACs were performed. Smears from the aspirates were processed for routine cytology and the conventional ZN method. The remaining material in the needle hub and/or the syringe was used for the bleach method. The significance of the bleach method over the conventional ZN method and cytology was analyzed using the χ2 test. Results: Of 99 aspirates, 93 were studied and the remaining six were excluded from the study due to diagnosis of malignancy in 4.04% (4/6 and inadequate aspiration in 2.02% (2/6. Among the 93 aspirates, 33.33% (31/93 were positive for AFB on conventional ZN method, 41.94% (39/93 were indicative of TB on cytology and the smear positivity increased to 63.44% (59/93 on bleach method. Conclusion: The bleach method is simple, inexpensive and potent disinfectant, also limiting the risk of laboratory-acquired infections. The implementation of the bleach method clearly improves microscopic detection and can be a useful contribution to routine cytology.

  3. Comparison of visual versus microscopic methods to detect blood splatter from an intravascular catheter with engineered sharps injury protection.

    Science.gov (United States)

    Ansari, Aiysha; Ramaiah, Padmaja; Collazo, Lillian; Salihu, Hamisu M; Haiduven, Donna

    2013-11-01

    To determine whether retractable intravenous devices produced blood splatter and whether blood splatter frequency differed between visual and microscopy detection methods. In this laboratory-based experiment, 105 venipunctures were performed in a simulated brachial vein containing mock venous blood. The retraction mechanism was activated in a testing chamber with precut fabric filters, placed at 3 different locations, to capture blood splatter. Differences in filter mass, visual inspection, and microscopic analysis for presence of blood on filters were the units of analysis. Descriptive statistics, paired Student t tests, and κ statistics were used for data analysis. Blood splatter was detected visually and microscopically as follows: filter A, 70% and 71%, respectively; filter B, 12% and 9%, respectively; and filter C, 13% and 10%, respectively. A statistically significant difference was observed in the mean mass of filter A between before and after activation when confirmed by the naked eye (P = .014) and microscopically (P = .0092). Substantial agreement between methods was observed for filter A (κ - 0.78 [95% confidence interval, 0.64-0.92]), filter B (κ - 0.73 [95% confidence interval, 0.51-0.95]), and filter C (κ - 0.75 [95% confidence interval, 0.55-0.96]). However, blood was detected by microscopy and not by the naked eye in 7 instances (7%). Our findings demonstrate that splatter, which can potentially expose healthcare workers (HCWs) to bloodborne pathogens, is associated with the activation of intravascular catheters with retraction mechanisms. HCWs may not detect this splatter when it occurs and may not report a splash to mucous membranes or nonintact skin. The need to wear personal protective equipment when using such devices is reinforced.

  4. A microscopic theory of the nuclear collective motion

    International Nuclear Information System (INIS)

    Baranger, M.

    1975-01-01

    A microscopic theory of the nuclear collective model is reviewed, discussions being concentrated, mainly, on the shape motion. An adiabatic time dependent Hartree-Fock method is used. Kinetic energy using the cranking model is obtained. The generator coordinate method is discussed [pt

  5. Multiple modernities, modern subjectivities and social order

    DEFF Research Database (Denmark)

    Jung, Dietrich; Sinclair, Kirstine

    2015-01-01

    to modern subjectivity formation. In combining conceptual tools from these strands of social theory, we argue that the emergence of multiple modernities should be understood as a historical result of idiosyncratic social constructions combining global social imaginaries with religious and other cultural......Taking its point of departure in the conceptual debate about modernities in the plural, this article presents a heuristic framework based on an interpretative approach to modernity. The article draws on theories of multiple modernities, successive modernities and poststructuralist approaches...... traditions. In the second part of the article we illustrate this argument with three short excursions into the history of Islamic reform in the 19th and 20th centuries. In this way we interpret the modern history of Muslim societies as based on cultural conflicts between different forms of social order...

  6. Modernity: Are Modern Times Different?

    Directory of Open Access Journals (Sweden)

    Lynn Hunt

    2014-12-01

    Full Text Available “Modernity” has recently been the subject of considerable discussion among historians. This article reviews some of the debates and argues that modernity is a problematic concept because it implies a complete rupture with “traditional” ways of life. Studies of key terms are undertaken with the aid of Google Ngrams. These show that “modernity,” “modern times,” and “traditional” —in English and other languages— have a history of their own. A brief analysis of the shift from a self oriented toward equilibrium to a self oriented toward stimulation demonstrates that modernity is not necessary to historical analysis.

  7. Comparison of endoscope- versus microscope-assisted resection of deep-seated intracranial lesions using a minimally invasive port retractor system.

    Science.gov (United States)

    Hong, Christopher S; Prevedello, Daniel M; Elder, J Bradley

    2016-03-01

    Tubular brain retractors may improve access to deep-seated brain lesions while potentially reducing the risks of collateral neurological injury associated with standard microsurgical approaches. Here, microscope-assisted resection of lesions using tubular retractors is assessed to determine if it is superior to endoscope-assisted surgery due to the technological advancements associated with modern tubular ports and surgical microscopes. Following institutional approval of the tubular port, data obtained from the initial 20 patients to undergo transportal resection of deep-seated brain lesions were analyzed in this study. The pathological entities of the resected tissues included metastatic tumors (8 patients), glioma (7), meningioma (1), neurocytoma (1), radiation necrosis (1), primitive neuroectodermal tumor (1), and hemangioblastoma (1). Surgery incorporated endoscopic (5 patients) or microscopic (15) assistance. The locations included the basal ganglia (11 patients), cerebellum (4), frontal lobe (2), temporal lobe (2), and parietal lobe (1). Cases were reviewed for neurological outcomes, extent of resection (EOR), and complications. Technical data for the port, surgical microscope, and endoscope were analyzed. EOR was considered total in 14 (70%), near total (> 95%) in 4 (20%), and subtotal (microscope rather than the endoscope due to a wider and 3D field of view. Improved microscope optics and tubular retractor design allows for binocular vision with improved lighting for the resection of deep-seated brain lesions.

  8. Modern logic and quantum mechanics

    International Nuclear Information System (INIS)

    Garden, R.W.

    1984-01-01

    The book applies the methods of modern logic and probabilities to ''interpreting'' quantum mechanics. The subject is described and discussed under the chapter headings: classical and quantum mechanics, modern logic, the propositional logic of mechanics, states and measurement in mechanics, the traditional analysis of probabilities, the probabilities of mechanics and the model logic of predictions. (U.K.)

  9. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    Science.gov (United States)

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  10. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  11. The Homemade Microscope.

    Science.gov (United States)

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  12. [Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills].

    Science.gov (United States)

    Nie, Li-Xing; Zhang, Ye; Zhang, Nan-Ping; Hu, Xiao-Ru; Kang, Shuai; Hou, Jian-Zhong; Dai, Zhong; Ma, Shuang-Cheng

    2016-10-01

    Application of microscopic spectroscopy in quality control of Niuhuang Qingxin pills was discussed. First, microscopic characteristics specified by the statutory standard of Niuhuang Qingxin pills were summarized. Then new identification method was established for Dioscoreae Rhizoma, Saigae Tataricae Cornu, Cinnamomi Cortex and Saposhnikoviae Radix. Finally, microscopic spectroscopy was used for test of Dioscoreae Rhizoma's adulterant Dioscoreae Fordii Rhizoma.It was the first time for this technology being applied in adulteration test of Chinese patent medicine.The results showed that Saigae Tataricae Cornu was not detected in 2 batches of Niuhuang Qingxin pills from 1 manufacturer while Dioscoreae Fordii Rhizoma was detected in 3 batches of samples from 2 manufacturers. The proposed methods were accurate, simple, rapid, objective and economic, which offered a more comprehensive approach for quality control of Niuhuang Qingxin pills. It was indicated that conventional technology such as microscopic spectroscopy could play an important role in identification of traditional Chinese medicine whose index ingredient was deficient or tiny. Copyright© by the Chinese Pharmaceutical Association.

  13. Minimizing inter-microscope variability in dental microwear texture analysis

    Science.gov (United States)

    Arman, Samuel D.; Ungar, Peter S.; Brown, Christopher A.; DeSantis, Larisa R. G.; Schmidt, Christopher; Prideaux, Gavin J.

    2016-06-01

    A common approach to dental microwear texture analysis (DMTA) uses confocal profilometry in concert with scale-sensitive fractal analysis to help understand the diets of extinct mammals. One of the main benefits of DMTA over other methods is the repeatable, objective manner of data collection. This repeatability, however, is threatened by variation in results of DMTA of the same dental surfaces yielded by different microscopes. Here we compare DMTA data of five species of kangaroos measured on seven profilers of varying specifications. Comparison between microscopes confirms that inter-microscope differences are present, but we show that deployment of a number of automated treatments to remove measurement noise can help minimize inter-microscope differences. Applying these same treatments to a published hominin DMTA dataset shows that they alter some significant differences between dietary groups. Minimising microscope variability while maintaining interspecific dietary differences requires then that these factors are balanced in determining appropriate treatments. The process outlined here offers a solution for allowing comparison of data between microscopes, which is essential for ongoing DMTA research. In addition, the process undertaken, including considerations of other elements of DMTA protocols also promises to streamline methodology, remove measurement noise and in doing so, optimize recovery of a reliable dietary signature.

  14. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-06-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1 to 4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  15. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-01-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1-4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  16. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  17. Optimization of an analytical electron microscope for x-ray microanalysis: instrumental problems

    International Nuclear Information System (INIS)

    Bentley, J.; Zaluzec, N.J.; Kenik, E.A.; Carpenter, R.W.

    1979-01-01

    The addition of an energy dispersive x-ray spectrometer to a modern transmission or scanning transmission electron microscope can provide a powerful tool in the characterization of the materials. Unfortunately this seemingly simple modification can lead to a host of instrumental problems with respect to the accuracy, validity, and quality of the recorded information. This tutorial reviews the complications which can arise in performing x-ray microanalysis in current analytical electron microscopes. The first topic treated in depth is fluorescence by uncollimated radiation. The source, distinguishing characteristics, effects on quantitative analysis and schemes for elimination or minimization as applicable to TEM/STEMs, D-STEMs and HVEMs are discussed. The local specimen environment is considered in the second major section where again detrimental effects on quantitative analysis and remedial procedures, particularly the use of low-background specimen holers, are highlighted. Finally, the detrimental aspects of specimen contamination, insofar as they affect x-ray microanalysis, are discussed. It is concluded that if the described preventive measures are implemented, reliable quantitative analysis is possible

  18. AN INTELLIGENT NEURO-FUZZY TERMINAL SLIDING MODE CONTROL METHOD WITH APPLICATION TO ATOMIC FORCE MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Seied Yasser Nikoo

    2016-11-01

    Full Text Available In this paper, a neuro-fuzzy fast terminal sliding mode control method is proposed for controlling a class of nonlinear systems with bounded uncertainties and disturbances. In this method, a nonlinear terminal sliding surface is firstly designed. Then, this sliding surface is considered as input for an adaptive neuro-fuzzy inference system which is the main controller. A proportinal-integral-derivative controller is also used to asist the neuro-fuzzy controller in order to improve the performance of the system at the begining stage of control operation. In addition, bee algorithm is used in this paper to update the weights of neuro-fuzzy system as well as the parameters of the proportinal-integral-derivative controller. The proposed control scheme is simulated for vibration control in a model of atomic force microscope system and the results are compared with conventional sliding mode controllers. The simulation results show that the chattering effect in the proposed controller is decreased in comparison with the sliding mode and the terminal sliding mode controllers. Also, the method provides the advantages of fast convergence and low model dependency compared to the conventional methods.

  19. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  20. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  1. 3D geometric phase analysis and its application in 3D microscopic morphology measurement

    Science.gov (United States)

    Zhu, Ronghua; Shi, Wenxiong; Cao, Quankun; Liu, Zhanwei; Guo, Baoqiao; Xie, Huimin

    2018-04-01

    Although three-dimensional (3D) morphology measurement has been widely applied on the macro-scale, there is still a lack of 3D measurement technology on the microscopic scale. In this paper, a microscopic 3D measurement technique based on the 3D-geometric phase analysis (GPA) method is proposed. In this method, with machine vision and phase matching, the traditional GPA method is extended to three dimensions. Using this method, 3D deformation measurement on the micro-scale can be realized using a light microscope. Simulation experiments were conducted in this study, and the results demonstrate that the proposed method has a good anti-noise ability. In addition, the 3D morphology of the necking zone in a tensile specimen was measured, and the results demonstrate that this method is feasible.

  2. Using a university characterization facility to educate the public about microscopes: light microscopes to SEM

    Science.gov (United States)

    Healy, Nancy; Henderson, Walter

    2015-10-01

    The National Nanotechnology Infrastructure Network (NNIN)1is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. The NNIN education office is located at the Institute of Electronics and Nanotechnology at the Georgia Institute of Technology. At Georgia Tech we offer programs that integrate the facility and its resources to educate the public about nanotechnology. One event that has proved highly successful involves using microscopes in our characterization suite to educate a diverse audience about a variety of imaging instruments. As part of the annual Atlanta Science Festival (ATLSF)2 we provided an event entitled: "What's all the Buzz about Nanotechnology?" which was open to the public and advertised through a variety of methods by the ATLSF. During the event, we provided hands-on demos, cleanroom tours, and activities with three of our microscopes in our recently opened Imaging and Characterization Facility: 1. Keyence VHX-600 Digital Microscope; 2. Hitachi SU823 FE-SEM; and 3. Hitachi TM 3000. During the two hour event we had approximately 150 visitors including many families with school-aged children. Visitors were invited to bring a sample for scanning with the TM-3000. This paper will discuss how to do such an event, lessons learned, and visitor survey results.

  3. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.

    Science.gov (United States)

    Xia, Shuman; Pan, Zhipeng; Zhang, Jingwen

    2014-07-15

    We report a novel optical microscope for full-field, noncontact measurements of three-dimensional (3D) surface deformation and topography at the microscale. The microscope system is based on a seamless integration of the diffraction-assisted image correlation (DAIC) method with fluorescent microscopy. We experimentally demonstrate the microscope's capability for 3D measurements with submicrometer spatial resolution and subpixel measurement accuracy.

  4. Active Mask Segmentation of Fluorescence Microscope Images

    OpenAIRE

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  5. Understanding seafloor morphology using remote high frequency acoustic methods: An appraisal to modern techniques and its effectiveness

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Content-Type text/plain; charset=UTF-8 179 Understanding seafloor morphology using remote high frequency acoustic methods: an appraisal to modern techniques and its effectiveness Bishwajit Chakraborty National institute of Oceanography.... The two third of the earth surface i.e. 362 million square km (70 %) is covered by the ocean. In order to understand the seafloor various methods like: application of remote acoustic techniques, seafloor photographic and geological sampling techniques...

  6. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    Science.gov (United States)

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  7. Evaluation of Enterococcus faecalis adhesion, penetration, and method to prevent the penetration of Enterococcus faecalis into root cementum: Confocal laser scanning microscope and scanning electron microscope analysis.

    Science.gov (United States)

    Halkai, Rahul S; Hegde, Mithra N; Halkai, Kiran R

    2016-01-01

    To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration.

  8. Science Academies' Refresher Course on Modern Biotechnology ...

    Indian Academy of Sciences (India)

    IAS Admin

    , PCR and RT-PCR. A variety of teaching methods like lectures by eminent ... knowledge to boost their confidence in handling modern instruments used in the discipline of life sciences and modern biotechnology. Skills gained during this ...

  9. Utilisation des methodes modernes et reversibles de contraception ...

    African Journals Online (AJOL)

    Cette étude descriptive et transversale de 6 ans, allant du 1er Janvier 1999 au 10 Mai 2005 à la clinique de gynécologie obstétrique de l\\'hôpital Donka du CHU de Conakry, a fait ressortir le niveau d\\'utilisation des méthodes modernes de contraception et a permis d\\'élaboré des recommandations pour l\\'amélioration de la ...

  10. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  11. Reviews in Modern Astronomy 12, Astronomical Instruments and Methods at the turn of the 21st Century

    Science.gov (United States)

    Schielicke, Reinhard E.

    The yearbook series Reviews in Modern Astronomy of the Astronomische Gesellschaft (AG) was established in 1988 in order to bring the scientific events of the meetings of the society to the attention of the worldwide astronomical community. Reviews in Modern Astronomy is devoted exclusively to the invited Reviews, the Karl Schwarzschild Lectures, the Ludwig Biermann Award Lectures, and the highlight contributions from leading scientists reporting on recent progress and scientific achievements at their respective research institutes. Volume 12 continues the yearbook series with 16 contributions which were presented during the International Scientific Conference of the AG on ``Astronomical Instruments and Methods at the Turn of the 21st Century'' at Heidelberg from September 14 to 19, 1998

  12. Microscopic deformation and strain hardening analysis of ferrite–bainite dual-phase steels using micro-grid method

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Yasuda, Kyono; Sueyoshi, Hitoshi; Endo, Shigeru; Ikeda, Hiroshi; Morikawa, Tatsuya; Higashida, Kenji

    2015-01-01

    The local strain measurement method using nanometer-scaled micro grids printed on the surface of a specimen by an electron lithography technique (the micro-grid method) has been established. Microscopic deformation behavior of the ferrite–bainite steels with different bainite volume fraction, 16% and 40% of bainite, was evaluated. Strain localization in the ferrite phase adjacent to the ferrite/bainite boundary was clearly observed and visualized. Highly strained regions expanded toward the inner region of the ferrite phase and connected each other with an increase of macroscopic strain. The existence of hard bainite phase plays an important role for inducing strain localization in the ferrite phase by plastic constraint in the boundary parallel to the tensile direction. In order to obtain further understanding of microscopic deformation behavior, finite element analysis using the representative volume element, which is expressed by the axisymmetric unit cell containing a hard phase surrounded by a soft phase matrix, was conducted. It was found that the macroscopic stress–strain behavior of ferrite–bainite steels was well simulated by the unit cell models. Strain concentration in the ferrite phase was highly enhanced for the ferrite-40% bainite steel, and this imposed higher internal stress in the bainite phase, resulting in higher strain hardening rate in the early stage of the deformation. However, smaller ferrite volume fraction of ferrite-40% bainite steel induced bainite plastic deformation in order to fulfill the macroscopic strain of the steel. Accordingly, strain hardening capacity of the ferrite-40% bainite steel was reduced to a significant degree, resulting in a smaller uniform elongation than the ferrite-16% bainite steel

  13. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    International Nuclear Information System (INIS)

    Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E.; Cortes, R.; Coello, V.

    2016-01-01

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  14. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Santamaria, L.; Siller, H. R. [Tecnológico de Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, N.L., 64849 (Mexico); Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx [CONACYT Research Fellow – CICESE, Unidad Monterrey, Alianza Centro 504, Apodaca, NL, 66629 (Mexico); Cortes, R.; Coello, V. [CICESE, Unidad Monterrey, PIIT, Alianza Centro 504, Apodaca, NL, 66629 (Mexico)

    2016-04-15

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  15. MODERN INSTRUMENTAL METHODS TO CONTROL THE SEED QUALITY IN ROOT VEGETABLES

    Directory of Open Access Journals (Sweden)

    F. B. Musaev

    2017-01-01

    Full Text Available The standard methods of analysis don’t meet all modern requirements to determine the seed a quality. These methods can’t unveil inner deficiencies that are very important to control seed viability. The capabilities of new instrumental method to analyze the seed quality of root vegetables were regarded in the article. The method of micro-focus radiography is distinguished from other existing methods by more sensitivity, rapidity and easiness to be performed. Based on practical importance the visualization of inner seed structure, it allows determining far before seed germination the degree of endosperm development and embryo; the presence of inner damages and infections, occupation and damage caused by pests. The use of micro-focus radiography enables to detect the degree of seed quality difference for some traits such as monogermity and self-fertilization that are economically valuable for breeding program in red beet. With the aid of the method the level of seed development, damage and inner deficiencies in carrot and parsnip can be revealed. In X-ray projection seeds of inbred lines of radish significantly differed from variety population ones for their underdevelopment in the inner structure. The advantage of the method is that seeds rest undamaged after quality analyzing and both can be used for further examination with the use of other methods or be sown; that is quite important for breeders, when handling with small quantity or collectable plant breeding material. The results radiography analyses can be saved and archived that enables to watch for seed qualities in dynamic; this data can be also used at possible arbitration cases. 

  16. Pengaruh Revolusi Industri Terhadap Perkembangan Desain Modern

    Directory of Open Access Journals (Sweden)

    Yunida Sofiana

    2014-10-01

    Full Text Available The Industrial revolution of the second half of the eighteenth century in Britain was the beginning era of the design modern. Pros and Cons from these revolution happens to comes up with a new movement to art and design that called Art and Craft Movement and Art Nouveau that will be given a tremendous impacts on design modern. Different design approach will be contributed on developing design modern. The research method that has been used for this paper was desk-research method by collected secondary data and analyses to find conclusion about how did the industrial revolution contributed to modern design. The beauty of a design derived from the expertise in exploring new material and technology. The lack in artistic and decorative aspects set new structural and functional display of a design. 

  17. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    Science.gov (United States)

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E

    2015-07-01

    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  18. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  19. TRANSFORMATION OF FAMILY IN MODERN RUSSIAN SOCIETY

    Directory of Open Access Journals (Sweden)

    Olga Anatolevna Otradnova

    2014-09-01

    Full Text Available The article examines concept of family in Russian society, changes in interpretation of family, connected with modern tendencies and processes in different sociocultural spheres.   The article is structured and has accurate limits of introduction, main part and conclusion. The relevance of the research is caused by present-day crisis tendencies connected with suicide actions, atomization and hedonization of society, value depreciation of family.  The object of the research is to analyze the conception of family and its transformation in condition of modern Russian society. The tasks are to determine the term family, to analyze approaches to understanding of the family and its genesis, detect some peculiarities of modern Russian society, research the transformation of interpretation of family in modern society; the matter of investigation is modern Russian society, the subject is the transformation of family structures; the following methods of research are used: historical and cultural approach, typological method, existential method, common logic procedures. The research contains author’s definition of the term family, historical and cultural analysis and typological explication of the approaches to interpretation of the problem, classification of family structures - which have been formed in Russian society- on the base of statistic and sociological data.   Some interweaving of concept family with the most important existential values (love, freedom, responsibility were investigated and some tendencies for further development of family relationship in Russian society were revealed, its problems and prospect were emphasized. The results of the investigation testify that modern types of matrimonial relationship differ in limitation of functionality, mutual responsibility, thereby it is possible to state that interpretation of family in modern Russian society has transformed.

  20. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well......-defined aspect ratio, this technique provides an excellent z-calibration standard for the atomic force microscope....

  1. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Science.gov (United States)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  2. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2 /Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  3. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  4. Modern electronic maintenance principles

    CERN Document Server

    Garland, DJ

    2013-01-01

    Modern Electronic Maintenance Principles reviews the principles of maintaining modern, complex electronic equipment, with emphasis on preventive and corrective maintenance. Unfamiliar subjects such as the half-split method of fault location, functional diagrams, and fault finding guides are explained. This book consists of 12 chapters and begins by stressing the need for maintenance principles and discussing the problem of complexity as well as the requirements for a maintenance technician. The next chapter deals with the connection between reliability and maintenance and defines the terms fai

  5. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  6. Robotic autopositioning of the operating microscope.

    Science.gov (United States)

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  7. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  8. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Arun Kaintura

    2018-02-01

    Full Text Available Advances in manufacturing process technology are key ensembles for the production of integrated circuits in the sub-micrometer region. It is of paramount importance to assess the effects of tolerances in the manufacturing process on the performance of modern integrated circuits. The polynomial chaos expansion has emerged as a suitable alternative to standard Monte Carlo-based methods that are accurate, but computationally cumbersome. This paper provides an overview of the most recent developments and challenges in the application of polynomial chaos-based techniques for uncertainty quantification in integrated circuits, with particular focus on high-dimensional problems.

  9. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  10. Unified equation of state for neutron stars on a microscopic basis

    Science.gov (United States)

    Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.

    2015-12-01

    We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.

  11. The model for evaluation of the effectiveness of civil service modernization

    Directory of Open Access Journals (Sweden)

    O. A. Lyndyuk

    2016-09-01

    Full Text Available The effectiveness of the civil service modernization depends on the timely implementation of control measures and evaluating of the effectiveness of modernization processes and system components. The article analyzes the basic problems of evaluation the effectiveness of civil service modernization and scientific papers on these issues. The basic theoretical approaches to the definition of «assessment» and «evaluation» are studied. Existing theoretical and methodological approaches to the assessment process are analyzed and summarized, the main methods of evaluating the effectiveness of the civil service modernization and the most common assessment methods are defined. Eligible for evaluating the effectiveness of civil service modernization are special analytical techniques: functional review, Balanced Scorecard, taxonomic analysis, Key Performance Indicators, methods of multivariate analysis and others. Among the methods of studying consumer expectations about the effectiveness of the civil service modernization such ones are singled out: questionnaires, surveys, interviews, testing, monitoring, analysis of statistical sources, contents of documents, reports and regulatory framework and others. The methods of improving efficiency include: benchmarking, reengineering, performance assessment models and more. The importance of gradual replacement of cost evaluation methods by the results evaluation method is determined. It was shown the need for a comprehensive balanced scorecard to evaluate. With a view to the mutual agreement of principles, mechanisms and instruments for evaluating the effectiveness of civil service modernization the expediency of a systematic, targeted, synergistic, process, situational, strategic and resource approaches is grounded. Development of theoretical concepts and methodological principles of evaluating the effectiveness of civil service modernization should be based on the harmonious combination (integration of all

  12. Fair in the face: modern diagnostics of midfacial trauma; Mitten ins Gesicht: Moderne bildgebende Diagnostik beim Gesichtsschaedeltrauma

    Energy Technology Data Exchange (ETDEWEB)

    Zajaczek, J.E.W. [Abt. Neuroradiologie (OE 8210), Zentrum Radiologie, Medizinische Hochschule Hannover (Germany); Abt. Diagnostische Radiologie, Medizinische Hochschule Hannover (Germany); Rodt, T.; Keberle, M. [Abt. Diagnostische Radiologie, Medizinische Hochschule Hannover (Germany)

    2007-07-15

    Modern diagnostics of midfacial trauma are embedded in a diagnostic concept that is oriented to the therapeutic relevance for the individual. Critical analysis of the indicated and efficient radiological method in the acute phase shows that MSCT is currently the method of choice in the diagnosis of midfacial trauma. Besides extensive acquisition of data in the shortest time the possibilities of modern post-processing provide a three-dimensional picture of the often complex injuries in real time. Other perilous injuries are often more important especially for the polytrauma patient. With modern scan protocols intracranial injuries as well as injuries of bone and soft tissue of the head and neck region can be diagnosed during a single examination. Radiology plays a key role for the economically oriented strategy of patient care. (orig.)

  13. Cooled CCDs for recording data from electron microscopes

    CERN Document Server

    Faruqi, A R

    2000-01-01

    A cooled-CCD camera based on a low-noise scientific grade device is described in this paper used for recording images in a 120 kV electron microscope. The primary use of the camera is for recording electron diffraction patterns from two-dimensionally ordered arrays of proteins at liquid-nitrogen temperatures leading to structure determination at atomic or near-atomic resolution. The traditional method for recording data in the microscope is with electron sensitive film but electronic detection methods offer the following advantages over film methods: the data is immediately available in a digital format which can be displayed on a monitor screen for visual inspection whereas a film record needs to be developed and digitised, a lengthy process taking at least several hours, prior to inspection; the dynamic range of CCD detectors is about two orders of magnitude greater with better linearity. The accuracy of measurements is also higher for CCDs, particularly for weak signals due to inherent fog levels in film. ...

  14. On some recent developments in microscopic nuclear models

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1987-01-01

    An overview of the status of development of some microscopic nuclear models is presented. A special attention is paid to the recent calculations starting from the effective nucleon-nucleon force, to the angular momentum projection method before variation, to the multiphonon method and to the selfconsistent coordinate method. The success and the limitations of the three last mentioned models are illustrated in the example of 168 Er

  15. Closed-Loop Autofocus Scheme for Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Cui Le

    2015-01-01

    Full Text Available In this paper, we present a full scale autofocus approach for scanning electron microscope (SEM. The optimal focus (in-focus position of the microscope is achieved by maximizing the image sharpness using a vision-based closed-loop control scheme. An iterative optimization algorithm has been designed using the sharpness score derived from image gradient information. The proposed method has been implemented and validated using a tungsten gun SEM at various experimental conditions like varying raster scan speed, magnification at real-time. We demonstrate that the proposed autofocus technique is accurate, robust and fast.

  16. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  17. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  18. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  19. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  20. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  1. A METHODOLOGY FOR IMPROVING PRODUCTIVITY OF THE EXISTING SHIPBUILDING PROCESS USING MODERN PRODUCTION CONCEPTs AND THE AHP METHOD

    Directory of Open Access Journals (Sweden)

    Venesa Stanić

    2017-01-01

    Full Text Available In recent years, shipyards have been facing difficulties in controlling operational costs. To maintain continual operation of all of the facilities, a shipyard must analyze ways of utilizing present production systems for assembling interim vessel products as well as other types of industrial constructions. In the past, new machines continuously improved shipbuilding processes, including software and organizational restructuring, but management continued to search for a modern technological concept that will provide higher productivity, greater profit and overall reduction in costs. In the article the authors suggest implementing Design for Production, Design for Maintainability and Group Technology principles using the Analytical Hierarchy Process (AHP to apply to multi criteria decision making methods as an efficient tool for maintaining international competitiveness in the modern shipbuilding industry. This novel methodology is implemented through four phases. In the first phase, the present situation analysis is suggested for a real shipyard by establishing closest relations among production lines. The second phase presents a constraint analysis that must be evaluated when developing the design solution. The third phase involves generating a typical number of selected alternatives of the Design for Production, Design for Maintainability and Group Technology principles. In the fourth phase, the optimal design solution is selected using the Analytical Hierarchy Process (AHP method. The solution incorporating this modern methodology will improve productivity, profit and lead to decreasing operational costs.

  2. Foldscope: origami-based paper microscope.

    Directory of Open Access Journals (Sweden)

    James S Cybulski

    Full Text Available Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  3. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    by a charge-coupled-device (ccd) camera mounted on a fluorescence microscope allowed a pixelwise estimation of the ratio function in a microscopic image. Use of a microsensor and oxygen-consuming bacteria in a sample chamber enabled the calibration of the system for quantification of absolute oxygen......Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular...... states of the fluorophore can be expressed by a three-state energy model. This leads to a set of differential equations which describe the photobleaching behavior of fluorescein. The numerical solution of these equations shows that in a conventional wide-field fluorescence microscope, the fluorescence...

  4. Digital Position Encoding Of Galvanometer Scanner In A Laser Microscope

    Science.gov (United States)

    Liljeborg, Anders

    1988-09-01

    An account is given of a realization of a feedback method to digitize the analog position signal from a moving iron galvanometer. It is employed in a confocal scanning laser microscope for generating digital images. The photometric sampling has to be closely coupled to the position of a mirror that scans a focused laser beam across a microscope specimen. Pictures with low geometric distortion are obtained up to the size 1024 x 1024 pixels.

  5. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  6. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Modern methods of high-pressure fuel pump common rail power system diagnostics

    Directory of Open Access Journals (Sweden)

    Kyshchun В.

    2016-08-01

    Full Text Available We've considered high pressure fuel pumps design features and equipment for their diagnosis. It was noted that the reliability of the fuel elements Common Rail system primarily provide precision parts of the fuel equipment. As a consequence, the aim of study was comparative analysis and laborious of modern methods of the high pressure fuel pump diagnosing. In particular, the definition of a technical condition of the fuel pump was carried out using a special stand and by measuring the fuel pressure and duty cycle of the pressure regulator signal. As an object of our research we've chosen Bosch № 0445010008 fuel pump (from Mercedes Benz E320cdi in which the plunger pairs were changed alternately with different technical conditions. Preliminary fuel pump parameters were determined by hydraulic testing. Based on conducted experiments we've found out that fuel pressure measurement change method and the duty cycle of the pressure regulator signal at the starting and full load modes less laborious compared to the definition of a technical condition of the pump on the stand. The results of both methods of diagnosing confirmed identity of the fuel pumps.

  8. REVEALING OF DEFECTS OF BEARINGS WITH THE HELP OF MODERN METHODS OF CONTROL OF TECHNOLOGICAL EQUIPMENT OF HARDWARE PRODUCTION

    Directory of Open Access Journals (Sweden)

    S. M. Piskun

    2010-01-01

    Full Text Available It is shown that using of modern methods and means of technical diagnostics will allow to provide reliable accident-free exploitation of equipment, to decrease considerably labour-intensiveness, period of repair and accordingly production expenses.

  9. A modern course in statistical physics

    CERN Document Server

    Reichl, Linda E

    2016-01-01

    "A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...

  10. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  11. Modernity after Modernity

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2007-08-01

    Full Text Available A strategy for the second modernization raises, beyond objectives, a series of epistemicresponsibilities. It is known that modernization stemming from the Enlightment had, among other things,the pretense that it is a project which is self-legitimating. Its profound rationales are the only justification.Referential self-centering proved to be the one that made possible a practice of the new. Modernizationhaving the function of renouncing myth – meaning an eliminatory formula for the past – and thefixation in the opportunity and potentiality of the present, seemed to close an insoluble but extremelyengrossing problem: that of a propensity towards utopia, of the risky escape towards the future. Thetraditionalization of the new constitutes a support for the daring to break out of the captivity of themoment.Modernization becomes the experience of combining the new which, thus, creates a succession ofpresent times. The future is no longer the result of fantasy, but a system’s direct expression to combine thenew. Therefore the future is an option for one or another model of the present, often tested previouslysomewhere else. In a non-metaphysical way, the future can be seen, touched, tried, lived by simplegeographical movement. The sense of evolution has de-temporalized taking the form of the concomitant,parallel, enclosed, neighboring space. We just have to be in the trend, to evolve in the context.Globalization defines the context and its conception – as a project of the second modernity – showsus the trends. The problem is how to understand the context in order to find the sense of the trend. Are wethe load the sense with the values of the first modernity or will we have to turn to the values of anothermodernity? Why do we have to move away from the significance of the processes which made up the firstmodernity? How do we relate to the content of the new context in which the structural trends of today’sworld are taking place? What is the

  12. Electron microscopic radioautography of the cell

    International Nuclear Information System (INIS)

    Sarkisov, D.S.; Pal'tsyn, A.A.; Vtyurin, B.V.

    1980-01-01

    This monograph is the first one in the world literature that gives th generalised experience in application of the up-to-date method of structural and functional analysis, i.e. of electron-microscopic autography to study the dynamics of intracellular processes under normal conditions as well as under some pathogenic effects. Given herein are the data on synthesis of DNA and RNA in various structures of the nucleus, particularly in nucleoli, the regularities of the synthesis processes in the organellae of the same name are discussed; illustrated are the possibilities of structure analysis of biosynthesis intensity variations in the nucleus and cytoplasma in cells of liver miocardium, granulation tissue at different stages of morphological process; the results of electron-microscopic radioautography application in study of clinical biopsy material are given and the data obtained are discussed in the light of general pathology problems

  13. Classification of Salmonella serotypes with hyperspectral microscope imagery

    Science.gov (United States)

    Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...

  14. Media space of the modern school

    Directory of Open Access Journals (Sweden)

    Anna A. Vakneeva

    2017-01-01

    Full Text Available What should be the media of a modern education institution? How is the educational organization supposed to be represented in social media? What methods of increasing the level of media literacy of teachers and students should optimally use?As the purpose of this study the authors can see in the development and presentation of an optimal model of media space for modern educational institutions which will take into account not only the changes in the education process, but also the needs of the modern audience – teachers, students, parents, and educational partners. The resources of “Moscow e-school” become part of the educational media sphere of modern educational organizations.Resources and methods: resources of an educational institution, namely, social media, blogs and microblogs, users’ accounts, channels, educational platforms, which present the work of educators. The importance of analyzing media of the modern educational institution is that media-education serves as a pedagogical system, allowing the use of modern techniques and technologies through the development of critical thinking, which occurs under the influence of information flows. In this regard, there is a need for the comprehensive approach to the media organization in the modern school. An integral element of the complex approach is the creation of conditions for the development of media literacy for teachers and learners.The result of this research is the optimal model of media space for the modern school, which includes social networking profiles, microblogging, blogs, users’ accounts, and web resources, each of which has its own purpose and functional features.As a conclusion we can note that one of the core values of the media model is the development of creative and critical thinking, the acquisition of experience and tools of media, independent search, the ability to use information flows for the effective communication, solving educational and cognitive

  15. Planning of community heating systems modernization and development

    International Nuclear Information System (INIS)

    Mroz, Tomasz M.

    2008-01-01

    New approach to community heating systems modernization and development planning process has been proposed. It is based on the general decision making aid algorithm. The proposed algorithm takes into account both demand and supply side of community heat market modernization and development. The first step of algorithm - analytical step, refers to data base creation, which is needed for the description of community heating system energy, ecology and economic characteristics. Analysis of those characteristics allows for the identification of heating system market modernization and development potential scenarios. The second algorithm step - decision step, allows for the identification of the most compromise scenarios of system modernization and development. To make the planning process more transparent and to increase the influence of decision makers on the planning process the ELECTRE III method was chosen as the tool of decision aid. The ELECTRE III method is based on the construction of outranking relation and definition of pseudo-criterion. The iteration mode of method application allows the decision maker and analyst for the investigation of the sensitivity of final solution to the changing preference model. One of the methods of statistics - the creditability of mean range method was used for the determination of initial definition of pseudo-criterion. Proposed algorithm and decision aid method were employed for the case study analysis referring to the choice of the heating system for new developing urban area. (author)

  16. A simple method for environmental cell depressurization for use with an electron microscope.

    Science.gov (United States)

    Ogawa, Naoki; Mizokawa, Ryo; Saito, Minoru; Ishikawa, Akira

    2017-12-01

    With the aid of the environmental cell (EC) in electron microscopy, hydrated specimens have been observed at high resolutions that optical microscopy cannot attain. Due to the ultra-high vacuum conditions of the inner column of the electron microscope, the EC requires sealing films that are sufficiently thin to allow electron transmission and that are sufficiently tough to withstand the pressure difference between the inside and outside of the EC. However, most hydrated specimens can be observed at low vacuum because the saturated vapor pressure of water is known to be 0.02 atm at room temperature. These concepts have been used in the differential pumping system, but it is complicated and relatively expensive. In this work, we propose a simple method for depressurization of the EC using a 'balloon structure' and demonstrate the theoretical benefits and practical improvement for specimen observations in low-vacuum conditions. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...... (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning...

  18. The demographic impact and development benefits of meeting demand for family planning with modern contraceptive methods.

    Science.gov (United States)

    Goodkind, Daniel; Lollock, Lisa; Choi, Yoonjoung; McDevitt, Thomas; West, Loraine

    2018-01-01

    Meeting demand for family planning can facilitate progress towards all major themes of the United Nations Sustainable Development Goals (SDGs): people, planet, prosperity, peace, and partnership. Many policymakers have embraced a benchmark goal that at least 75% of the demand for family planning in all countries be satisfied with modern contraceptive methods by the year 2030. This study examines the demographic impact (and development implications) of achieving the 75% benchmark in 13 developing countries that are expected to be the furthest from achieving that benchmark. Estimation of the demographic impact of achieving the 75% benchmark requires three steps in each country: 1) translate contraceptive prevalence assumptions (with and without intervention) into future fertility levels based on biometric models, 2) incorporate each pair of fertility assumptions into separate population projections, and 3) compare the demographic differences between the two population projections. Data are drawn from the United Nations, the US Census Bureau, and Demographic and Health Surveys. The demographic impact of meeting the 75% benchmark is examined via projected differences in fertility rates (average expected births per woman's reproductive lifetime), total population, growth rates, age structure, and youth dependency. On average, meeting the benchmark would imply a 16 percentage point increase in modern contraceptive prevalence by 2030 and a 20% decline in youth dependency, which portends a potential demographic dividend to spur economic growth. Improvements in meeting the demand for family planning with modern contraceptive methods can bring substantial benefits to developing countries. To our knowledge, this is the first study to show formally how such improvements can alter population size and age structure. Declines in youth dependency portend a demographic dividend, an added bonus to the already well-known benefits of meeting existing demands for family planning.

  19. Overcurrent protection co-ordination: A modern approach for modern devices

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, P.J.

    1995-12-31

    The increasing densities and reduced geographical spans of urban and industrial power systems call for the coordination of more stages of overcurrent protection up to increasingly high fault levels. Applying existing rules of relay coordination, especially for industrial power systems, may make achieving satisfactory coordination difficult. This paper proposes a modern approach to coordination which is able to take advantage of the improved performance of modern protective relays and circuit breakers. The proposed method can handle a mix of new and old equipment and is made most useful when implemented with commonly available spreadsheet software. The suggested approach justifies reduced time margins for relay coordination in many difficult applications. Example calculations are included to illustrate typical considerations for coordinating two digital protection relays where a vacuum circuit breaker is used to clear a downstream fault.

  20. Computer modeling in free spreadsheets OpenOffice.Calc as one of the modern methods of teaching physics and mathematics cycle subjects in primary and secondary schools

    Directory of Open Access Journals (Sweden)

    Markushevich M.V.

    2016-10-01

    Full Text Available the article details the use of such modern method of training as computer simulation applied to modelling of various kinds of mechanical motion of a material point in the free spreadsheet OpenOffice.org Calc while designing physics and computer science lessons in primary and secondary schools. Particular attention is paid to the application of computer modeling integrated with other modern teaching methods.

  1. Modeling and Modern Control of Wind Power

    DEFF Research Database (Denmark)

    This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden...... of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures....

  2. Microscopic Evaluation of Leaves of Memecylon umbellatum Burm

    Directory of Open Access Journals (Sweden)

    Suresh G. Killedar

    2014-01-01

    Full Text Available Objective. Aim of present work is to perform the microscopic evaluation and physicochemical analysis and to explore the morphology parameters of Memecylon umbellatum Burm leaves. Methods. Fresh, dried and desiccated powdered leaf samples were studied for their morphology, microscopy, organoleptic characters, and an assortment of other WHO recommended methods for standardisation. Results. The microscopy revealed the dorsiventral nature of the leaf. Midrib showed presence of nonlignified phloem, lignified xylem with well-defined xylem fibers, vessels, and parenchyma. Presence of Phloecentric vascular bundles surrounded by endodermis and crystal sheath. Well-defined patches of collenchyma were observed above and below the vascular bundles in the midrib area. Trichomes are mostly absent and stomata (anomocytic were observed on both epidermal surfaces. Conclusions. It can be concluded that the microscopic analysis and pharmacognostic parameters can serve as tool for developing standards for proper authentication, quality, and purity of Memecylon umbellatum Burm leaves.

  3. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  4. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  5. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  6. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  7. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  8. BASES OF CONSTRUCTIVITY OF MODERN PERSONALITY

    Directory of Open Access Journals (Sweden)

    Natalya Petrovna Shatalova

    2014-11-01

    Full Text Available Formation of bases of constructibility is important process at this stage of de-velopment of our state. Personality of modern type must be capable to self-determination, competent adoption of constructive decisions and manifestation of a personal responsibility for the constructive election, personality of modern type must be capable for self-determination, competent adoption of constructive decisions and manifestation to a personal responsibility for the constructive choice. Formation of bases of constructibility in the course of education is caused by use of constructive tasks and the constructive educational environment which define innovative recep-tions and skills of influence as methods of pedagogical influence taking into account constantly changing circumstances. Extent of mastering each member of society bases of constructibility defines a spiritual condition of society, of the present and the future of our country, development of economy and culture in general.Purpose: consideration of question about development of constructive thinking and constructive skills of personality in modern constructive educational environ-ment.Methodology: formal pedagogical method, the theoretical modeling, the meth-od of participant observation.Results. In the article is give the short analysis of problem of development of personality in modern society, opened the concept of constructibility of the personali-ty and her basic components, classification constructive tasks investigated, specified preparatory steps for organization of the conditions of development of a constructibil-ity and gives a brief description of their. Article has the scientific value as contains au-thor's generalizations possessing scientific novelty and the conclusions directed on disclosure of problems of formation and development of the modern personality, considered from the point of view of the theory of democratic constructivism in edu-cation.Practical implications: pedagogical

  9. Modern Cored Wire Injection 2PE-9 Method in the Production of Ductile Iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-04-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of nodular graphite cast iron with use of unique implementation of drum ladle as a treatment/ transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results of using this method for possibility production of ductile iron under specific industrial conditions. In this case was taken ductile iron with material designation: EN-GJS-450- 10 Grade according PN-EN 1563:2000. Microstructure of 28 trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical metallic matrix and graphite characteristic. Additionally, mechanical properties were checked in one experiment. Because of further possibility treatment temperature reduction only the rough magnesium recovery and cost of this new method are given.

  10. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  11. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  12. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  13. THE MODERN TRENDS AND EXPERIMENTAL METHODS OF TRAINING FUTURE SPECIALISTS IN THE FIELD OF HISTRIONIC ART

    Directory of Open Access Journals (Sweden)

    Julia Sergeevna Skvortsova

    2013-11-01

    Full Text Available This article reflects the specific ways of training specialists in the sphere of histrionic art, contemporary trends and special scientific experiments in the education of actors.We consider the traditional aspects of histrionic art specialists’ occupational fitness and modern requirements upon actor’s psycho-physical training.There also follows historical parallels in studying actor’s energy in the researches of K. Stanislavsky, M. Chekhov, T. Reebo, W. James, A. Maneggetty as well as in the modern researches of L. Gracheva.And there was proved the reason for including some Yoga elements and Academician M.Norbecov’s exercises system into the actors training practice.In the article Yoga for actors considers as a system of emotional and physical preparation to the artistic creative work, as a method of self-control that let an actor be really deep in his creative condition.There also was described an advantageous result of applying at our experimental laboratory of actors Yoga classes some exercises that reveal connection of person’s carriage and his condition in the process of working on the outward demonstration of this or that emotion in order to create appropriate inner state.Object: Studying the influence on the productivity of actors’ professional education of the Yoga elements included into the actors’ psycho-technique practice training.Methods: theoretical, experimental and observational methods of research.Results: After using these methods during the classes the rate of student’s psycho-physical APPARATUS has extremely increased.The area of application: the educational process at artistic creative high schools.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-52

  14. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-07-01

    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  15. Abstracts book of 4. Poznan Analytical Seminar on Modern Methods of Sample Preparation and Trace Amounts Determination of Elements

    International Nuclear Information System (INIS)

    1995-01-01

    The 4. Poznan Analytical Seminar on Modern Methods of Sample Preparation and Trace Amounts Determination of Elements has been held in Poznan 27-28 April 1995. The new versions of analytical methods have been presented for quantitative determination of trace elements in biological, environmental and geological materials. Also the number of special techniques for sample preparation enables achievement the best precision of analytical results have been shown and discussed

  16. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  17. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  18. Ancient humans and the origin of modern humans.

    Science.gov (United States)

    Kelso, Janet; Prüfer, Kay

    2014-12-01

    Recent advances in sequencing technologies and molecular methods have facilitated the sequencing of DNA from ancient human remains which has, in turn, provided unprecedented insight into human history. Within the past 4 years the genomes of Neandertals and Denisovans, as well as the genomes of at least two early modern humans, have been sequenced. These sequences showed that there have been several episodes of admixture between modern and archaic groups; including admixture from Neandertals into modern human populations outside of Africa, and admixture from Denisovans into modern human populations in Oceania. Recent results indicate that some of these introgressed regions may have been advantageous for modern humans as they expanded into new regions outside of Africa. Copyright © 2014. Published by Elsevier Ltd.

  19. A new statistical scission-point model fed with microscopic ingredients to predict fission fragments distributions

    International Nuclear Information System (INIS)

    Heinrich, S.

    2006-01-01

    Nucleus fission process is a very complex phenomenon and, even nowadays, no realistic models describing the overall process are available. The work presented here deals with a theoretical description of fission fragments distributions in mass, charge, energy and deformation. We have reconsidered and updated the B.D. Wilking Scission Point model. Our purpose was to test if this statistic model applied at the scission point and by introducing new results of modern microscopic calculations allows to describe quantitatively the fission fragments distributions. We calculate the surface energy available at the scission point as a function of the fragments deformations. This surface is obtained from a Hartree Fock Bogoliubov microscopic calculation which guarantee a realistic description of the potential dependence on the deformation for each fragment. The statistic balance is described by the level densities of the fragment. We have tried to avoid as much as possible the input of empirical parameters in the model. Our only parameter, the distance between each fragment at the scission point, is discussed by comparison with scission configuration obtained from full dynamical microscopic calculations. Also, the comparison between our results and experimental data is very satisfying and allow us to discuss the success and limitations of our approach. We finally proposed ideas to improve the model, in particular by applying dynamical corrections. (author)

  20. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  1. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  2. A review of modern instrumental methods of elemental analysis of petroleum related material. Part 2

    International Nuclear Information System (INIS)

    Nadkarni, R.A.

    1991-01-01

    In this paper a review is presented of the state of the art in elemental analysis of petroleum-related materials (crude oil, gasoline, additives, and lubricants) using modern instrumental analysis techniques. The major instrumental techniques used for elemental analysis of petroleum products include atomic absorption spectrometry (both with flame and with graphite furnace atomizer), inductively coupled plasma atomic emission spectrometry, ion chromatography, microelemental methods, neutron activation, spark source mass spectrometry, and x-ray fluorescence. Each of these techniques is compared for its advantages, disadvantages, and typical applications in the petroleum field

  3. Quality in modern Nordic working life

    DEFF Research Database (Denmark)

    Jacobsen, Stine; Bramming, Pia; Holt, Helle

    2013-01-01

    quality issues of modern working life. Welfare research, working environment research, and human resource management (HRM) research attack the multiple challenges of working life in different ways and share the overall objective of solving issues in modern working life. Research from the three...... of the perspectives are applied at the same time in the same study. Our results show that while the perspectives share a common interest in solving the problems of the overlapping working life (OWL), they do so with different methods and criteria for success, and offer different solutions. We propose the concept “OWL...... theme reflects an approach to solving the issues of modern working life through improvements of the working life balance. The quality theme reflects an approach to solving issues in modern working life by addressing quality of work, preventing stress, burnout, etc. The review only finds three studies...

  4. Mobile microscope complex GIB-1

    International Nuclear Information System (INIS)

    Belyakov, A.V.; Gorbachev, A.N.

    2002-01-01

    To study microstructure in operating pipelines of power units a mobile microscope system is developed and successfully used. The system includes a portable microscope, a monitor, power supply and a portable computer. The monitor is used for surveying images from a video camera mounted on the microscope. The magnification on visual examination constitutes x 100 and x 500. Diameters of pipelines examined should not be less than 130 mm. Surface preparation for microstructural studies includes routine mechanical rough grinding and polishing with subsequent etching [ru

  5. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  6. Microscopic evaluation of methods of fixation and preservation of vaginal smears taken from normal women submitted to radiotherapy for uterine cervical cancer

    International Nuclear Information System (INIS)

    Costa, O.L.N.; Baruffi, I.; Valeri, V.; Parente, J.V.

    1983-01-01

    Two methods were evaluated for fixation and conservation of vaginal smears of normal and irradiated women for periods as long as four months. An initial fixation was used with 95% alcohol for 24 hours followed by either air storage or 0,5% alcohol - ether celoidina solution coating. It is concluded that through microscopic evaluation, the smears of non-irradiated women treated by both methods in long run observation are only worthwhile for oncotic studies. On the other hand, the smears of irradiated women are not valid either for hormonal or oncotic analysis. (Author) [pt

  7. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  8. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  9. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  10. The Physical Characterization of Liposome Salicylic Acid Using Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Elman Panjaitan

    2008-01-01

    The physical characterization of liposome, formulated from salicylic acid using thin film hydration methods with cholesterol and soybean lecithin, has been done. The formula was characterized by optical microscopes and Transmission Electron Microscope (TEM). The observation result shows that the salicylic acid can be formulated to liposomes. Soybean lecithin combined with cholesterol (600 mg : 20 mg) was the best formula and the liposome was spherical vesicle like with dimension about 70 nm unit 800 nm. (author)

  11. Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multicentre particles.

    Science.gov (United States)

    Xiao, X; Bai, B; Xu, N; Wu, K

    2015-04-01

    Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  13. A study of microscopic dose rate distribution of 99Tcm-MIBI in the liver of mice

    International Nuclear Information System (INIS)

    Wang Mingxi; Zhang Liang'an; Wang Yong; Dai Guangfu

    2002-01-01

    Objective: A microdosimetry model was tried to develop an accurate way to evaluate absorbed dose rates in target cell nuclei from radiopharmaceuticals. Methods: Microscopic frozen section autoradiography was used to determine the subcellular locations of 99 Tc m -MIBI relative to the tissue histology in the liver of mice after injection of 99 Tc m -MIBI via tail for two hours, and a mathematical model was developed to evaluate the microscopic dose rates in cell nuclei. The Medical Internal Radiation Dose (MIRD) schema was also used to evaluate the dose rates at the same time, and a comparison of the results of the two methods was conducted to determine which method is better to accurately estimate microscopic dose rates. Results: The spatial distribution of 99 Tc m -MIBI in the liver of mice at subcellular level was not uniform, and the differences between the microdosimetry model and MIRD schema were significant (P 99 Tc m -labeled pharmaceuticals at the microscopic level

  14. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  15. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  16. Towards Realization of Intelligent Medical Treatment at Nanoscale by Artificial Microscopic Swarm Control Systems

    Directory of Open Access Journals (Sweden)

    Alireza Rowhanimanesh

    2017-07-01

    Full Text Available Background: In this paper, the novel concept of artificial microscopic swarm control systems is proposed as a promising approach towards realization of intelligent medical treatment at nanoscale. In this new paradigm, treatment is done autonomously at nanoscale within the patient’s body by the proposed swarm control systems.Methods: From control engineering perspective, medical treatment can be considered as a control problem, in which the ultimate goal is to find the best feasible way to change the state of diseased tissue from unhealthy to healthy in presence of uncertainty. Although a living tissue is a huge swarm of microscopic cells, nearly all of the common treatment methods are based on macroscopic centralized control paradigm. Inspired by natural microscopic swarm control systems such as nervous, endocrine and immune systems that work based on swarm control paradigm, medical treatment needs a paradigm shift from macroscopic centralized control to microscopic swarm control. An artificial microscopic swarm control system consists of a huge number of very simple autonomous microscopic agents that exploit swarm intelligence to realize sense, control (computing and actuation at nanoscale in local, distributed and decentralized manner. This control system can be designed based on mathematical analysis and computer simulation.Results: The proposed approach is used for treatment of atherosclerosis and cancer based on mathematical analysis and in-silico study.Conclusion: The notion of artificial microscopic swarm control systems opens new doors towards realization of autonomous and intelligent medical treatment at nanoscale within the patient’s body.

  17. Microscopic study of rock for estimating long-term behavior

    International Nuclear Information System (INIS)

    Ichikawa, Yasuaki

    2002-03-01

    Micro-structure of rock plays a essential role for their long-term behavior. For elucidating long-term characteristics of granite we here present the followings: 1) Conforcal Laser Scanning Microscope (LSM) observation of joint surfaces of granite and Fourier analysis, 2) characterization of the mechanism of microcrack initiation and propagation observed by stereoscopic microscope under uniaxial/triaxial compression and relaxation tests, 3) observation of microcrack initiation and propagation by LSM under uniaxial compression, and 4) a viscoelastic homogenization theory to predict the long-term behavior of micro/macro-level stress for granite. Rock image processing and analysis become a fundamental procedure to determine rock surface discontinuities. But the complexity of rock surface discontinuities seems beyond the manual image processing method. In Chapter 2 a Conforcal Laser Scanning Microscope that can acquire three-dimensional images is introduced to observe the rock roughness of a discontinuity. Then, scanning three-dimensional images are changed its data form in order to adapt various image analysis programs, and granitic rock roughness of discontinuities are displayed by graphic images. For example, these datas are analyzed by Discrete Fourier Transformation (DFT) program and Inverse Discrete Fourier Transformation (IDFT) program. Microcrack generation and propagation play an essential role to predict the long-term behavior of rock. In Chapter 3 a progressive development of cracking in granite is revealed by using stereoscopic microscope under triaxial compression condition and by using LSM under uniaxial compression condition. With a viscoelastic theory applied in homogenization method, we can calculate macro behavior of medium influenced by its micro structure by analyse the long-term time-dependent behavior of granite under the same condition to the relaxation experiment. (author)

  18. Ukrainian Nuclear Society International Conference 'Modernization of the NPP with VVER reactor' (abstracts)

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.G.

    1999-01-01

    Abstracts of the papers presented at International conference of the Ukrainian Nuclear Society 'Modernization of the NPP with VVER reactor'. The following problems are considered: improving the NPP's safety and reliability; reactor modernization, the lifetime prolongation; increasing of the reactor operating characteristics; methods of capacity factor increasing: refueling control, maintenance control; technical and economical aspects of NPP modernization; modernization of the automated control system of the fuel process at the NPP's; technical features and methods for the continued radiation and technology control at the NPP's; training, increasing the staff qualification and NPP modernization

  19. A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.

    Science.gov (United States)

    Figl, Michael; Ede, Christopher; Hummel, Johann; Wanschitz, Felix; Ewers, Rolf; Bergmann, Helmar; Birkfellner, Wolfgang

    2005-11-01

    Ever since the development of the first applications in image-guided therapy (IGT), the use of head-mounted displays (HMDs) was considered an important extension of existing IGT technologies. Several approaches to utilizing HMDs and modified medical devices for augmented reality (AR) visualization were implemented. These approaches include video-see through systems, semitransparent mirrors, modified endoscopes, and modified operating microscopes. Common to all these devices is the fact that a precise calibration between the display and three-dimensional coordinates in the patient's frame of reference is compulsory. In optical see-through devices based on complex optical systems such as operating microscopes or operating binoculars-as in the case of the system presented in this paper-this procedure can become increasingly difficult since precise camera calibration for every focus and zoom position is required. We present a method for fully automatic calibration of the operating binocular Varioscope M5 AR for the full range of zoom and focus settings available. Our method uses a special calibration pattern, a linear guide driven by a stepping motor, and special calibration software. The overlay error in the calibration plane was found to be 0.14-0.91 mm, which is less than 1% of the field of view. Using the motorized calibration rig as presented in the paper, we were also able to assess the dynamic latency when viewing augmentation graphics on a mobile target; spatial displacement due to latency was found to be in the range of 1.1-2.8 mm maximum, the disparity between the true object and its computed overlay represented latency of 0.1 s. We conclude that the automatic calibration method presented in this paper is sufficient in terms of accuracy and time requirements for standard uses of optical see-through systems in a clinical environment.

  20. Image enhancement of x-ray microscope using frequency spectrum analysis

    International Nuclear Information System (INIS)

    Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao; Liu Yijin; Wu Ziyu

    2009-01-01

    We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.

  1. Image enhancement of x-ray microscope using frequency spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Liu Yijin; Wu Ziyu, E-mail: wuzy@ihep.ac.c, E-mail: ychtian@ustc.edu.c [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China)

    2009-09-01

    We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.

  2. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  3. Thermographic and microscopic evaluation of LARS knee ligament tearing.

    Science.gov (United States)

    Pătraşcu, Jenel Marian; Amarandei, Mihaela; Kun, Karla Noemy; Borugă, Ovidiu; Totorean, Alina; Andor, Bogdan; Florescu, Sorin

    2014-01-01

    Damage to knee articular ligaments causes important functional problems and adversely affects particularly the stability of the knee joint. Several methods were developed in order to repair damage to the anterior cruciate ligament (ACL), which employ autografts, allografts, as well as synthetic ligaments. One such synthetic scaffold, the ligament advanced reinforcement system (LARS) synthetic ligament is made of non-absorbing polyethylene terephthalate fibers whose structure allow tissue ingrowths in the intra-articular part, improving the stability of the joint. The LARS ligament is nowadays widely used in modern knee surgery in the Europe, Canada, China or Japan. This paper evaluates LARS ligament from two perspectives. The first regards a study done by the Orthopedics Clinic II, Timisoara, Romania, which compared results obtained by employing two techniques of ACL repair - the Bone-Tendon-Bone (BTB) or LARS arthroscopic, intra-articular techniques. This study found that patients treated with the BTB technique presented with an IKDC score of 45.82±1.14 units preoperative, with increasing values in the first nine months after each implant post-surgical ligament restoration, reaching an average value of 75.92 ± 2.88 units postoperative. Patients treated with the LARS technique presented with an IKDC score of 43.64 ± 1.11 units preoperative, and a score of 77.32 ± 2.71 units postoperative. The second perspective describes the thermographic and microscopic analysis of an artificial knee ligament tearing or loosening. The objective of the study was to obtain information regarding the design of artificial ligaments in order to expand their lifespan and avoid complications such as recurring synovitis, osteoarthritis and trauma of the knee joint. Thermographic data has shown that tearing begins from the inside out, thus improving the inner design of the ligament would probably enhance its durability. An optical microscope was employed to obtain images of structural

  4. Modernism and tradition and the traditions of modernism

    Directory of Open Access Journals (Sweden)

    Kros Džonatan

    2006-01-01

    Full Text Available Conventionally, the story of musical modernism has been told in terms of a catastrophic break with the (tonal past and the search for entirely new techniques and modes of expression suitable to a new age. The resulting notion of a single, linear, modernist mainstream (predicated on the basis of a Schoenbergian model of musical progress has served to conceal a more subtle relationship between past and present. Increasingly, it is being recognized that there exist many modernisms and their various identities are forged from a continual renegotiation between past and present, between tradition(s and the avant-garde. This is especially relevant when attempting to discuss the reception of modernism outside central Europe, where the adoption of (Germanic avant-garde attitudes was often interpreted as being "unpatriotic". The case of Great Britain is examined in detail: Harrison Birtwistle’s opera The Mask of Orpheus (1973–83 forms the focus for a wider discussion of modernism within the context of late/post-modern thought.

  5. Economic security of modern Russia: the current state and prospects

    Directory of Open Access Journals (Sweden)

    Karanina Elena

    2018-01-01

    Full Text Available In the conditions of instability of the world economy and the introduction of sanctions against Russia by a number of countries, the problem of ensuring national economic security has become particularly relevant. This topic also has a high scientific, practical and social significance, as it allows to identify possible gaps in the economic security of modern Russia and timely develop mechanisms to eliminate them to protect the national interests of the state. The purpose of this article is to determine the state and prospects of improving the economic security of modern Russia. This can be achieved by solving the following tasks: review of existing methods to evaluate the economic security of country, conduct a SWOT analysis of economic security of modern Russia, the development of suggestions for its improvement. This research analyzes various aspects of the economic security of modern Russia. As a result, the author developed an integrated method to ensuring the economic security of the country, as well as a matrix of economic security within this method. The way of increase of economic security of modern Russia is offered. Thus, to overcome the threats for the economic security of modern Russia, it is necessary to implement the recommendations developed by the authors, including the establishment of their own production and the construction of an innovatively oriented model of the economy. This will ensure the economic security of modern Russia and its stable development in the future.

  6. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  7. Ponderomotive phase plate for transmission electron microscopes

    Science.gov (United States)

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  8. Nanometer-scale lithography on microscopically clean graphene

    International Nuclear Information System (INIS)

    Van Dorp, W F; De Hosson, J Th M; Zhang, X; Feringa, B L; Wagner, J B; Hansen, T W

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO) 6 was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.

  9. Modern management of building materials with the example hard coal fly ash; Modernes Baustoffmanagement am Beispiel von Steinkohlenflugasche

    Energy Technology Data Exchange (ETDEWEB)

    Backes, H.P.; Brandenburger, D.; Meissner, M. [BauMineral GmbH, Herten (Germany)

    2005-07-01

    Today, Germany has a leading position world-wide regarding the utilisation of power plant by-products as well as regarding the use of fly ash as concrete addition, in particular. This is based on a modern management of building materials successfully practised in Germany for decades. Current tasks show how possibilities of fly ash application and thus sustainable construction methods can be increased by a modern management of building materials. (orig.)

  10. Occupational concerns associated with regular use of microscope.

    Science.gov (United States)

    Jain, Garima; Shetty, Pushparaja

    2014-08-01

    Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  11. A unit density method of grain analysis used to identify GABEergic neurons for electron microscopic autoradiographs

    International Nuclear Information System (INIS)

    Burry, R.W.

    1982-01-01

    The distribution of electron microscopic autoradiographic grains over neurons in cerebellar cultures incubated with [ 3 H]gamma-aminobutyric acid ([ 3 H]GABA) was examined. With the unit density method of grain analysis, the number of grains over each structure was tested against the total grain density for the entire section. If an individual structure has a grain density higher than the expected grain density, it is considered one of the group of heavily labeled structures. The expected grain density for each structure is calculated based on the area for that structure, the total grain density and the Poisson distribution. A different expected grain density can be calculated for any P value required. The method provides an adequate population of structures for morphological analysis but excludes weakly labeled structures and thus may underestimate the number of labeled structures. The unit density method of grain analysis showed, as expected, a group of cell bodies and synapses that was labeled heavily. Cultures incubated with other [ 3 H]amino acids did not have any heavily labeled synaptic elements. In addition, serial section analysis of sections showed that synapses heavily labeled with [ 3 H]GABA are seen in adjacent sections. The advantage of the unit density method of grain analysis is that it can be used to separate two groups of metabolically different neurons even when no morphological differences are present. (Auth.)

  12. Microscopic Polyangiitis

    Science.gov (United States)

    ... body, specifically the feet, lower legs and, in bed-ridden patients, the buttocks. The skin findings of cutaneous ... that are in contact with the lungs’ microscopic air sacs – the condition may quickly pose a threat ...

  13. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1992-01-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations

  14. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  15. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  16. Transition from the Lactational Amenorrhea Method to other modern family planning methods in rural Bangladesh: barrier analysis and implications for behavior change communication program intervention design.

    Science.gov (United States)

    Kouyaté, Robin Anthony; Ahmed, Salahuddin; Haver, Jaime; McKaig, Catharine; Akter, Nargis; Nash-Mercado, Angela; Baqui, Abdullah

    2015-06-01

    The timely transition from Lactational Amenorrhea Method (LAM)(2) to another modern family planning method contributes to healthy spacing of pregnancies by increasing the adoption of family planning during the first year postpartum. Yet, literature suggests challenges in completing a timely LAM transition. To guide program implementation in Bangladesh, this study identified factors influencing women's transition decisions. Eighty postpartum women, comprising 40 who transitioned from LAM(3) and 40 who did not,(4) participated. Half of each group participated in in-depth interviews to explore the decision-making process. All participants responded to a "Barrier Analysis" questionnaire to identify differences in eight behavioral determinants. More than half of transitioners switched to another modern method before or within the same month that LAM ended. Of the 18 transitioners who delayed,(5) 15 waited for menses to return. For non-transitioners, key barriers included waiting for menses to return, misconceptions on return to fertility, and perceived lack of familial support. The LAM transition can help women prevent unintended pregnancy during the first year postpartum. Increased emphasis on counseling women about the risk of pregnancy, and misconceptions about personal fertility patterns are critical for facilitating the transition. Strategies should also include interventions that train health workers and improve social support. Copyright © 2015. Published by Elsevier Ltd.

  17. Role of Media Rumors in the Modern Society

    Science.gov (United States)

    Zheltukhina, Marina R.; Slyshkin, Gennady G.; Ponomarenko, Elena B.; Busygina, Maryana V.; Omelchenko, Anatoly V.

    2016-01-01

    The article examines the using of media rumors as pragmatic influence mechanism in the modern communication. The printed and electronic messages with rumors make the material of research. The complex methods of analysis of the rumors role in the modern society are used. The inductive, descriptive and comparative, cognitive and discursive,…

  18. Er Rousseau moderne?

    DEFF Research Database (Denmark)

    Dupont, Søren

    1985-01-01

    Artiklen analyserer på hvilken måde Rousseau kan siges at være moderne, og den diskuterer på hvilken måde Rouseau har været medvirkende til at opbygge den moderne civilisation, og på hvilken måde han var kritisk i forhold til den gryende og moderne kapitalisme.......Artiklen analyserer på hvilken måde Rousseau kan siges at være moderne, og den diskuterer på hvilken måde Rouseau har været medvirkende til at opbygge den moderne civilisation, og på hvilken måde han var kritisk i forhold til den gryende og moderne kapitalisme....

  19. Cobol software modernization

    CERN Document Server

    Barbier, Franck

    2015-01-01

    Nowadays, billions of lines of code are in the COBOL programming language. This book is an analysis, a diagnosis, a strategy, a MDD method and a tool to transform legacy COBOL into modernized applications that comply with Internet computing, Service-Oriented Architecture (SOA) and the Cloud.  It serves as a blueprint for those in charge of finding solutions to this considerable challenge.

  20. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  1. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  2. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  3. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Vitelli, Chiara; Paternostro, Mauro; De Martini, Francesco; Sciarrino, Fabio

    2011-01-01

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  4. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, Nicolo [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Vitelli, Chiara [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Paternostro, Mauro [School of Mathematics and Physics, Queen' s University, BT 7 1NN Belfast (United Kingdom); De Martini, Francesco [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Accademia Nazionale dei Lincei, via della Lungara 10, I-00165 Roma (Italy); Sciarrino, Fabio [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (INO-CNR), largo E. Fermi 6, I-50125 Firenze (Italy)

    2011-09-15

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  5. Microscope use in clinical veterinary practice and potential implications for veterinary school curricula.

    Science.gov (United States)

    Stewart, Sherry M; Dowers, Kristy L; Cerda, Jacey R; Schoenfeld-Tacher, Regina M; Kogan, Lori R

    2014-01-01

    Microscopy (skill of using a microscope) and the concepts of cytology (study of cells) and histology (study of tissues) are most often taught in professional veterinary medicine programs through the traditional method of glass slides and light microscopes. Several limiting factors in veterinary training programs are encouraging educators to explore innovative options for teaching microscopy skills and the concepts of cytology and histology. An anonymous online survey was administered through the Colorado Veterinary Medical Association to Colorado veterinarians working in private practice. It was designed to assess their current usage of microscopes for cytological and histological evaluation of specimens and their perceptions of microscope use in their veterinary education. The first part of the survey was answered by 183 veterinarians, with 104 indicating they had an onsite diagnostic lab. Analysis pertaining to the use of the microscope in practice and in veterinary programs was conducted on this subset. Most respondents felt the amount of time spent in the curriculum using a microscope was just right for basic microscope use and using the microscope for viewing and learning about normal and abnormal histological sections and clinical cytology. Participants felt more emphasis could be placed on clinical and diagnostic cytology. Study results suggest that practicing veterinarians frequently use microscopes for a wide variety of cytological diagnostics. However, only two respondents indicated they prepared samples for histological evaluation. Veterinary schools should consider these results against the backdrop of pressure to implement innovative teaching techniques to meet the changing needs of the profession.

  6. The Current Status of Microscopical Hair Comparisons

    Directory of Open Access Journals (Sweden)

    Walter F. Rowe

    2001-01-01

    Full Text Available Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation leads to three conclusions: (1 microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2 the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3 forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court’s Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  7. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  8. Enhancing the performance of the light field microscope using wavefront coding.

    Science.gov (United States)

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  9. Direct intensity calibration of X-ray grazing-incidence microscopes with home-lab source

    Science.gov (United States)

    Li, Yaran; Xie, Qing; Chen, Zhiqiang; Xin, Qiuqi; Wang, Xin; Mu, Baozhong; Wang, Zhanshan; Liu, Shenye; Ding, Yongkun

    2018-01-01

    Direct intensity calibration of X-ray grazing-incidence microscopes is urgently needed in quantitative studies of X-ray emission from laser plasma sources in inertial confinement fusion. The existing calibration methods for single reflecting mirrors, crystals, gratings, filters, and X-ray detectors are not applicable for such X-ray microscopes due to the specific optical structure and the restrictions of object-image relation. This article presents a reliable and efficient method that can be performed using a divergent X-ray source and an energy dispersive Si-PIN (silicon positive-intrinsic-negative) detector in an ordinary X-ray laboratory. The transmission theory of X-ray flux in imaging diagnostics is introduced, and the quantities to be measured are defined. The calibration method is verified by a W/Si multilayer-coated Kirkpatrick-Baez microscope with a field of view of ˜95 μm at 17.48 keV. The mirror reflectance curve in the 1D coordinate is drawn with a peak value of 20.9% and an uncertainty of ˜6.0%.

  10. Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions

    KAUST Repository

    Cheng, X.

    2011-09-01

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension\\'s structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  11. Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory

    Science.gov (United States)

    Taylor, Jamie M.

    2016-09-01

    This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.

  12. The Extent of the Application of the Commercial Banks in Aqaba for Modern Methods of Accounting Information Systems

    OpenAIRE

    Muhannad Akram Meqbel Ahmad; Ashraf Mohammad Salem Alrjoub

    2014-01-01

    This study tests the head of departments’ perception towards the relationship between applying accounting information systems and production activities. The results show a positive significant relationship between AIS and production activities (i.e. production design, production planning and control, production operation and cost accounting).This study recommends that using modern methods to develop the skills of the interaction between the users of accounting information systems and between ...

  13. Microscopic Analysis of Activated Sludge. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  14. Atomic force microscope featuring an integrated optical microscope

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1992-01-01

    The atomic force microscope (AFM) is used to image the surface of both conductors and nonconductors. Biological specimens constitute a large group of nonconductors. A disadvantage of most AFM's is the fact that relatively large areas of the sample surface have to be scanned to pinpoint a biological

  15. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  16. Nanometer-scale lithography on microscopically clean graphene

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...... to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous...

  17. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  18. Utilization and determinants of modern family planning among ...

    African Journals Online (AJOL)

    kim

    planning increases with women's education, and creating a conductive environment for ... Key words: Family planning, Modern methods, Utilization, Reproductive age, Partner discussion .... Traditional methods consist of periodic abstinence,.

  19. 21 CFR 864.3600 - Microscopes and accessories.

    Science.gov (United States)

    2010-04-01

    ... enlarge images of specimens, preparations, and cultures for medical purposes. Variations of microscopes... light. (3) Inverted stage microscopes, which permit examination of tissue cultures or other biological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microscopes and accessories. 864.3600 Section 864...

  20. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  1. Darkfield illumination improves microscopic detection of metals in Timm's stained tissue

    DEFF Research Database (Denmark)

    Baatrup, E; Frederickson, C J

    1989-01-01

    Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue are undet...... are undetectable in brightfield light microscopy but are easily detected in darkfield microscopy. Darkfield illumination is therefore recommended for improving the detection of trace or toxic metals in tissue. Udgivelsesdato: 1989-Aug......Deposits of trace or toxic metals can be quickly identified by light microscopical surveys of tissue sections stained for metals by variants of Timm's silver enhancement method. The present work shows that the small, isolated silver grains that label isolated deposits of metal in tissue...

  2. Comparison of the diagnostic performance of microscopic examination with nested polymerase chain reaction for optimum malaria diagnosis in Upper Myanmar.

    Science.gov (United States)

    Kang, Jung-Mi; Cho, Pyo-Yun; Moe, Mya; Lee, Jinyoung; Jun, Hojong; Lee, Hyeong-Woo; Ahn, Seong Kyu; Kim, Tae Im; Pak, Jhang Ho; Myint, Moe Kyaw; Lin, Khin; Kim, Tong-Soo; Na, Byoung-Kuk

    2017-03-16

    Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.

  3. Microscopic description of magnetized plasma: quasiparticle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1993-01-01

    A quasiparticle concept is developed systematically, from first principles, within the context of microscopic description of magnetized plasma. It is argued that the zeroth velocity-gyroangle harmonic of the microscopic particle distribution function under the gyrokinetic change of variables can be taken as a microscopic quasi-particle density in a reduced phase space. The nature of quasiparticles is discussed and equations of their motion are derived within both exact and reduced microscopic descriptions. The reduced one employs explicitly the separation of interesting time scales. (orig.)

  4. LIBRARIES, SCHOOLS AND MODERN AGE

    Directory of Open Access Journals (Sweden)

    Borjanka Trajković

    2016-04-01

    Full Text Available For centuries the role of the library was defined as a warehouse of books. Now, in the 21st century, the library is facing perhaps the biggest challenge – its physical survival. The role of librarians is re-branded to reflect their expertise as curators of content and reliable navigators in an evergrowing ocean of information - in any format they might exist. The future libraries shall be open to all the new ideas on how to work better and accept the new technologies. On the one hand, they must recognize the need to change their methods, but on the other hand - to preserve the continuity of their objectives and mission. The new era requires modern models of learning and the attractiveness of the curricula, that is, a modern education system that shall adapt the curricula to the needs of modern society and reconcile centuries of man's need for knowledge, reading books and education in general with the new technologies.

  5. The optics of microscope image formation.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  6. Barriers to modern contraceptive use in rural areas in DRC.

    Science.gov (United States)

    Muanda, Mbadu Fidèle; Ndongo, Gahungu Parfait; Messina, Lauren J; Bertrand, Jane T

    2017-09-01

    Recent research in the Democratic Republic of Congo (DRC) has shown that over a quarter of women have an unmet need for family planning and that modern contraceptive use is three times higher among urban than rural women. This study focuses on the reasons behind the choices of married men and women to use contraception or not. What are the barriers that have led to low levels of modern contraceptive use among women and men in DRC rural areas? The research team conducted 24 focus groups among women (non-users of any method, users of traditional methods and users of modern methods) and husbands (of non-users or users of traditional methods) in six health zones of three geographically dispersed provinces. The key barriers that emerged were poor spousal communication, sociocultural norms (especially the husband's role as primary decision-maker and the desire for a large family), fear of side-effects and a lack of knowledge. Despite these barriers, many women in the study indicated that they were open to adopting a modern family planning method in the future. These findings imply that programming must address mutual comprehension and decision-making among rural men and women alike in order to trigger positive changes in behaviour and perceptions relating to contraceptive use.

  7. Science 101: How Does an Electron Microscope Work?

    Science.gov (United States)

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  8. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    Science.gov (United States)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  9. Microscopic assessment of bone toughness using scratch tests

    Directory of Open Access Journals (Sweden)

    Amrita Kataruka

    2017-06-01

    Full Text Available Bone is a composite material with five distinct structural levels: collagen molecules, mineralized collagen fibrils, lamellae, osteon and whole bone. However, most fracture testing methods have been limited to the macroscopic scale and there is a need for advanced characterization methods to assess toughness at the osteon level and below. The goal of this investigation is to present a novel framework to measure the fracture properties of bone at the microscopic scale using scratch testing. A rigorous experimental protocol is articulated and applied to examine cortical bone specimens from porcine femurs. The observed fracture behavior is very complex: we observe a strong anisotropy of the response with toughening mechanisms and a competition between plastic flow and brittle fracture. The challenge consists then in applying nonlinear fracture mechanics methods such as the J-integral or the energetic Size Effect Law to quantify the fracture toughness in a rigorous fashion. Our result suggests that mixed-mode fracture is instrumental in determining the fracture resistance. There is also a pronounced coupling between fracture and elasticity. Our methodology opens the door to fracture assessment at multiple structural levels, microscopic and potentially nanometer length scale, due to the scalability of scratch tests.

  10. Analysis of C-shaped canal systems in mandibular second molars using surgical operating microscope and cone beam computed tomography: A clinical approach.

    Science.gov (United States)

    Chhabra, Sanjay; Yadav, Seema; Talwar, Sangeeta

    2014-05-01

    The study was aimed to acquire better understanding of C-shaped canal systems in mandibular second molar teeth through a clinical approach using sophisticated techniques such as surgical operating microscope and cone beam computed tomography (CBCT). A total of 42 extracted mandibular second molar teeth with fused roots and longitudinal grooves were collected randomly from native Indian population. Pulp chamber floors of all specimens were examined under surgical operating microscope and classified into four types (Min's method). Subsequently, samples were subjected to CBCT scan after insertion of K-files size #10 or 15 into each canal orifice and evaluated using the cross-sectional and 3-dimensional images in consultation with dental radiologist so as to obtain more accurate results. Minimum distance between the external root surface on the groove and initial file placed in the canal was also measured at different levels and statistically analyzed. Out of 42 teeth, maximum number of samples (15) belonged to Type-II category. A total of 100 files were inserted in 86 orifices of various types of specimens. Evaluation of the CBCT scan images of the teeth revealed that a total of 21 canals were missing completely or partially at different levels. The mean values for the minimum thickness were highest at coronal followed by middle and apical third levels in all the categories. Lowest values were obtained for teeth with Type-III category at all three levels. The present study revealed anatomical variations of C-shaped canal system in mandibular second molars. The prognosis of such complex canal anatomies can be improved by simultaneous employment of modern techniques such as surgical operating microscope and CBCT.

  11. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  12. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  13. Retrospective and modern views on modernization and alternative modernization components of shinto and zen buddhism

    Directory of Open Access Journals (Sweden)

    Y. Y. Medviedieva

    2016-03-01

    Full Text Available The article is devoted to the ratio of modernization and counter modernizing key components of Japan and religions (partly introduced Christianity. The author concludes that the various components of the religious consciousness of the Japanese were kontratetycal on two main elements that form the basis of modern Western culture Japanese resistance and cause upgrade. First, science and technology, working on the basis of the laws of nature, which are opposed to the supernatural and the metaphysical world. Secondly, expressed individualism and atomism as hypertrophic respect for the human person, liberal nadzoseredzhenist to a person who undermines the consolidation of corporate social society. Japanese culture in the past was oriented toward modernization, but progress has been very slow. Moreover, in this process, Japan was much more conservative because in Japanese society regulatory institutions of the army, religion and industrial corporations can be considered a kind of constants which not only can be adapted to the modernization of Euro-American style, as suggested selection of authentic script compatible, especially with life values corporatism and solidarity. It is in this dimension of modernization projects related to Christian proselytism, as were «frustrated.» The reason for this breakdown can be considered inherence religion with social cohesion, its actual merging of social institutions, as well as hidden mahizm skepticism and religious outlook that combines Shinto, Confucian and Zen Buddhist elements. Since modernization in Christianity included the distinction darkened minds clerical era and «enlightened enlightenment» of consciousness era of modern times, it is this dichotomy allowed to oppose religious «ignorance» and scientific «enlightenment», the clergy and secular intellectuals, universities and intellectual clubs as a medium spreading the ideology of the bourgeoisie and monasteries as centers of religious clericalism

  14. Digital management of an electron microscope unit

    International Nuclear Information System (INIS)

    Elea, N.; Dickson, M.; Munroe, P.

    2002-01-01

    Full text: Electron microscope units, especially those such as ours, which operate as a central infrastructural facility are increasingly asked to provide more service, over more instruments with decreasing, or limited, financial resources. We believe that staff time is best used performing electron microscopy, assisting users and maintaining instrumentation rather than in the pursuit of red tape. One solution to this problem has been the creation of a control system which performs all routine acts of data management, such as the archiving and accessing of digital data, providing access to bookings, and most importantly in the era of user pays services, logging time and billing users. The system we have created, developed and expanded allows the users themselves to access our server through any web-browser and make their own bookings or access and manipulate their data. Users themselves must log on to a microscope through swipecard readers before it can be used and log-off after use. Their time is logged precisely and an exquisitely fair user pays systems can be operated by transferring logged usage time to spreadsheets to calculate charges. Furthermore, this system acts as a method of user authentication and can be used to bar incompetent or unauthorised users. The system has recently been upgraded to increase its utility to include sensors that monitor the electron microscope operating environment, such as magnetic field, room temperature, water flow etc, so that if these parameters depart significantly from optimum levels electron microscope unit staff may be alerted. In this presentation the structure of our system will be described and the advantages and disadvantages of such a system will be discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  15. Modern dimensioning criteria for pressure vessels

    International Nuclear Information System (INIS)

    Roche, Roland.

    1975-01-01

    Some ideas on modern dimensioning criteria are given and their advantages with regard to both safety and economy are shown. In general these criteria result from considerations on possible damage to the apparatus in service and the modes of breakdown liable to follow. They are general enough to allow for a variety of dimensioning methods both experimental and theoretical, with special reference to modern computerized digital analysis techniques. As a practical example however some notions are given on the simplest means of computing dimensions in accordance with these criteria [fr

  16. Handy Microscopic Close-Range Videogrammetry

    Science.gov (United States)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  17. Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models

    DEFF Research Database (Denmark)

    Marschler, Christian; Sieber, Jan; Berkemer, Rainer

    2014-01-01

    We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold...... against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond...... to equilibria on the macroscopic level in the equation-free setup. The collapse of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic equilibrium. We continue this bifurcation in two parameters using equation-free analysis....

  18. Prevalence of discordant microscopic changes with automated CBC analysis

    Directory of Open Access Journals (Sweden)

    Fabiano de Jesus Santos

    2014-12-01

    Full Text Available Introduction:The most common cause of diagnostic error is related to errors in laboratory tests as well as errors of results interpretation. In order to reduce them, the laboratory currently has modern equipment which provides accurate and reliable results. The development of automation has revolutionized the laboratory procedures in Brazil and worldwide.Objective:To determine the prevalence of microscopic changes present in blood slides concordant and discordant with results obtained using fully automated procedures.Materials and method:From January to July 2013, 1,000 hematological parameters slides were analyzed. Automated analysis was performed on last generation equipment, which methodology is based on electrical impedance, and is able to quantify all the figurative elements of the blood in a universe of 22 parameters. The microscopy was performed by two experts in microscopy simultaneously.Results:The data showed that only 42.70% were concordant, comparing with 57.30% discordant. The main findings among discordant were: Changes in red blood cells 43.70% (n = 250, white blood cells 38.46% (n = 220, and number of platelet 17.80% (n = 102.Discussion:The data show that some results are not consistent with clinical or physiological state of an individual, and cannot be explained because they have not been investigated, which may compromise the final diagnosis.Conclusion:It was observed that it is of fundamental importance that the microscopy qualitative analysis must be performed in parallel with automated analysis in order to obtain reliable results, causing a positive impact on the prevention, diagnosis, prognosis, and therapeutic follow-up.

  19. Dynamic Low-Vacuum Scanning Electron Microscope Freeze Drying Observation for Fresh Water Algae

    International Nuclear Information System (INIS)

    Mohsen, H.T.; Ghaly, W.A.; Zahran, N.F.; Helal, A.I.

    2010-01-01

    A new perpetration method for serving in dynamic examinations of the fresh water algae is developed in connection with the Low-Vacuum Scanning Electron Microscope (LV-SEM) freeze drying technique. Specimens are collected from fresh water of Ismailia channel then transferred directly to freeze by liquid nitrogen and dried in the chamber of the scanning electron microscope in the low vacuum mode. Scanning electron micrographs revealed that the drying method presented the microstructure of algae. Dehydration in a graded ethanol series is not necessary in the new method. Dried algae specimen is observed in SEM high vacuum mode after conductive coating at higher resolution. Low-vacuum SEM freeze drying technique is a simple, time-saving and reproducible method for scanning electron microscopy that is applicable to various aquatic microorganisms covered with soft tissues.

  20. Microscope and X-ray investigations of the implanted silicium monocrystals

    International Nuclear Information System (INIS)

    Auleytner, J.; Drwiega, M.; Furmanik, Z.; Godwod, K.; Krylow, J.; Lazarski, S.; Maciaszek, M.; Maydel-Ondrusz, E.

    1974-01-01

    The evaluation of the usefullness of bi-crystallic spectrometer and topographic method is presented to investigate the changes in implantated silicium monocrystals and diffraction effects as caused by implantation. The samples have been also examined by electronic microscope JEM-1000. (author)

  1. Late-Modern Symbolism

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2015-01-01

    Through analysis of key texts, I seek to demonstrate the explanative potential of Durkheim’s sociology of religion in the present context. I critically readdress the idea, found in his early work, that modernity is characterized by a rupture with pre-modern forms of solidarity. First, I investigate...... the ways in which Durkheim sets up a stark distinction between the pre-modern and the modern in his early work, and how this distinction is further cemented by his orthodox critique of the modern economy and its negative effects on social life. Second, I show how another timeless and positive understanding...... of “mechanical” solidarity is to be found behind the “symbolist” template crystalizing in Durkheim’s late work. Third, I develop this template for a modern context by critically addressing and removing other obstacles and prejudices on Durkheim’s part....

  2. The electro-magnetic transition properties in the microscopic SDG interacting boson model

    International Nuclear Information System (INIS)

    Han Guangze; Liu Yong; Sang Jianping

    1996-01-01

    A bosonic method and the corresponding fermionic one for studying the electro-magnetic transition properties of nucleus are presented in the microscopic sdg interacting boson model. The methods are applied to the nucleus 60 Ni. Detailed discussions are made with the calculated results

  3. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  4. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  5. Emotiogenic Cognitive Function of Modern School Teaching Texts

    Directory of Open Access Journals (Sweden)

    Любовь Васильевна Ерохина

    2015-12-01

    Full Text Available The article is devoted to the analysis of emotional attractiveness of modern school educational texts and ecological/non-ecological influence upon pupils’ cognition in teaching communication. Reasoning is based on the thesis that - emotional attractiveness of modern school educational texts opposes their cognitive function. Emotional educational text profile and its components are under consideration. The article is concerned with ecological and cognitive and emotional asymmetry content. The material under focus is printed texts of some of modern school textbooks, teaching methodical aids, academic competitions, mass media information from the cognitive ecology point of view.

  6. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  7. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  8. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  9. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  10. Archives and the Boundaries of Early Modern Science.

    Science.gov (United States)

    Popper, Nicholas

    2016-03-01

    This contribution argues that the study of early modern archives suggests a new agenda for historians of early modern science. While in recent years historians of science have begun to direct increased attention toward the collections amassed by figures and institutions traditionally portrayed as proto-scientific, archives proliferated across early modern Europe, emerging as powerful tools for creating knowledge in politics, history, and law as well as natural philosophy, botany, and more. The essay investigates the methods of production, collection, organization, and manipulation used by English statesmen and Crown officers such as Keeper of the State Papers Thomas Wilson and Secretary of State Joseph Williamson to govern their disorderly collections. Their methods, it is shown, were shared with contemporaries seeking to generate and manage other troves of evidence and in fact reflect a complex ecosystem of imitation and exchange across fields of inquiry. These commonalities suggest that historians of science should look beyond the ancestors of modern scientific disciplines to examine how practices of producing knowledge emerged and migrated throughout cultures of learning in Europe and beyond. Creating such a map of knowledge production and exchange, the essay concludes, would provide a renewed and expansive ambition for the field.

  11. 3D widefield light microscope image reconstruction without dyes

    Science.gov (United States)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  12. A Simple Metric for Determining Resolution in Optical, Ion, and Electron Microscope Images.

    Science.gov (United States)

    Curtin, Alexandra E; Skinner, Ryan; Sanders, Aric W

    2015-06-01

    A resolution metric intended for resolution analysis of arbitrary spatially calibrated images is presented. By fitting a simple sigmoidal function to pixel intensities across slices of an image taken perpendicular to light-dark edges, the mean distance over which the light-dark transition occurs can be determined. A fixed multiple of this characteristic distance is then reported as the image resolution. The prefactor is determined by analysis of scanning transmission electron microscope high-angle annular dark field images of Si. This metric has been applied to optical, scanning electron microscope, and helium ion microscope images. This method provides quantitative feedback about image resolution, independent of the tool on which the data were collected. In addition, our analysis provides a nonarbitrary and self-consistent framework that any end user can utilize to evaluate the resolution of multiple microscopes from any vendor using the same metric.

  13. Application of Modern Fortran to Spacecraft Trajectory Design and Optimization

    Science.gov (United States)

    Williams, Jacob; Falck, Robert D.; Beekman, Izaak B.

    2018-01-01

    In this paper, applications of the modern Fortran programming language to the field of spacecraft trajectory optimization and design are examined. Modern object-oriented Fortran has many advantages for scientific programming, although many legacy Fortran aerospace codes have not been upgraded to use the newer standards (or have been rewritten in other languages perceived to be more modern). NASA's Copernicus spacecraft trajectory optimization program, originally a combination of Fortran 77 and Fortran 95, has attempted to keep up with modern standards and makes significant use of the new language features. Various algorithms and methods are presented from trajectory tools such as Copernicus, as well as modern Fortran open source libraries and other projects.

  14. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Detection of picosecond electrical transients in a scanning tunneling microscope

    NARCIS (Netherlands)

    Groeneveld, R.H.M.; Rasing, T.H.M.; Kaufmann, L.M.F.; Smalbrugge, E.; Wolter, J.H.; Melloch, M.R.; Kempen, van H.

    1996-01-01

    We have developed a scanning tunneling microscope using an optoelectronic switch which gates the tunneling tip current. The switch is fabricated within several tens of microns from the tip by photolithography and an accurate cleavage method. We demonstrate this approach by detecting picosecond

  16. Educational Contribution of RPG Video Games: Modern Media in Modern Education

    OpenAIRE

    Kratochvíl, Martin

    2014-01-01

    TITLE OF WORK: The Educational Contribution of RPG Video Games: Modern Media in Modern Education AUTHOR: Martin Kratochvíl KEY WORDS: video games, RPG genre, modern education, critical thinking, language learning, student's motivation DEPARTMENT: Department of English Language and Literature Charles University in Prague, Faculty of Education SUPERVISOR: Mark Robert Farrell ABSTRACT: The subject of this topic is to research the potential contribution of RPG video games in the field of modern e...

  17. Development and design of up-to-date laser scanning two-photon microscope using in neuroscience

    Science.gov (United States)

    Doronin, Maxim; Popov, Alexander

    2017-02-01

    Today one of the main areas of application of two-photon microscopy is biology. This is due to the fact that this technique allows to obtain 3D images of tissues due to laser focus change, that is possible due to substantially greater penetration depth on the main wavelength into biological tissues. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. This article may be regarded as a quick reference to laboratory staff who are wishing to develop their own microscopy system for self-service and modernization of the system and in order to save the lab budget.

  18. Digital Signal Processing Applied to the Modernization Of Polish Navy Sonars

    Directory of Open Access Journals (Sweden)

    Marszal Jacek

    2014-04-01

    Full Text Available The article presents the equipment and digital signal processing methods used for modernizing the Polish Navy’s sonars. With the rapid advancement of electronic technologies and digital signal processing methods, electronic systems, including sonars, become obsolete very quickly. In the late 1990s a team of researchers of the Department of Marine Electronics Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, began work on modernizing existing sonar systems for the Polish Navy. As part of the effort, a methodology of sonar modernization was implemented involving a complete replacement of existing electronic components with newly designed ones by using bespoke systems and methods of digital signal processing. Large and expensive systems of ultrasound transducers and their dipping and stabilisation systems underwent necessary repairs but were otherwise left unchanged. As a result, between 2001 and 2014 the Gdansk University of Technology helped to modernize 30 sonars of different types.

  19. Translation: an example from ancient Chinese to modern Chinese

    NARCIS (Netherlands)

    Liu, X; Hoede, C.

    2002-01-01

    In this paper, we gave an idea of translation by means of knowledge graph theory from ancient Chinese to modern Chinese, by using an example story. Actually, we give the details of the method of translation from ancient Chinese to modern Chinese step by step as carried out by hand. From the example,

  20. Modernized accurate methods for processing of in-core measurement signals in WWER reactors

    International Nuclear Information System (INIS)

    Polak, T.

    1996-01-01

    Utilization of the new accurate WIMS-KAERI library (WIMKAL-88) to generate the following characteristics for Rhodium SPND: Sensitivity depletion law by high (approx= 75%) burnup of emitter; influence of burnup-history on depletion law course; influence of neutron spectrum change on Rh-SPND sensitivity caused by change of fuel enrichment, fuel burnup, moderator temperature, concentration of boracid, central pin power rate and concentration of Xe 135 ; generating and experimental testing of Rh-SPND signal to linear pin power rate and signal to neutron flux conversion factors. Rh-SPND instrumentation optimization (reduction) related to safety and operational aspects as needed for 3D power surveillance in WWER-1000 reactors. Analysis of SPND reduction from 64x7 to 46x7 by method of Shannon information entropy optimization. Influence of reduction on accuracy of 3D power distribution reconstruction. Physical methods of 3D power distribution unfolding in new modernized on-line I and C system in NPP J. Bohunice with in-core measurements according to 210 thermocouples and 36x7 Rh-SPNDs. Program system TOPRE under QNX operating system network in FORTRAN 77, neutronic background calculations by macrocode MOBY-DICK. (author). 10 refs, 6 figs, 7 tabs

  1. Spectral history correction of microscopic cross sections for the PBR using the slowing down balance

    International Nuclear Information System (INIS)

    Hudson, N.; Rahnema, F.; Ougouag, A. M.; Gougar, H. D.

    2006-01-01

    A method has been formulated to account for depletion effects on microscopic cross sections within a Pebble Bed Reactor (PBR) spectral zone without resorting to calls to the spectrum (cross section generation) code or relying upon table interpolation between data at different values of burnup. In this method, infinite medium microscopic cross sections, fine group fission spectra, and modulation factors are pre-computed at selected isotopic states. This fine group information is used with the local spectral zone nuclide densities to generate new cross sections for each spectral zone. The local spectrum used to generate these microscopic cross sections is estimated through the solution to the cell-homogenized, infinite medium slowing down balance equation during the flux calculation. This technique is known as Spectral History Correction (SHC), and it is formulated to specifically account for burnup within a spectral zone. It was found that the SHC technique accurately calculates local broad group microscopic cross sections with local burnup information. Good agreement is obtained with cross sections generated directly by the cross section generator. Encouraging results include improvement in the converged fuel cycle eigenvalue, the power peaking factor, and the flux. It was also found that the method compared favorably to the benchmark problem in terms of the computational speed. (authors)

  2. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    Science.gov (United States)

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  3. An automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope

    International Nuclear Information System (INIS)

    Lin, Chern-Sheng; Loh, Guo-Hao; Fu, Shu-Hsien; Chang, Hsun-Kai; Yang, Shih-Wei; Yeh, Mau-Shiun

    2010-01-01

    In this paper, an automatic evaluation method for the surface profile of a microlens array using an optical interferometric microscope is presented. For inspecting the microlens array, an XY-table is used to position it. With a He–Ne laser beam and optical fiber as a probing light, the measured image is sent to the computer to analyze the surface profile. By binary image slicing and area recognition, this study located the center of each ring and determined the substrate of the microlens array image through the background of the entire microlens array interference image. The maximum and minimum values of every segment brightness curve were determined corresponding to the change in the segment phase angle from 0° to 180°. According to the ratio of the actual ring area and the ideal ring area, the area ratio method was adopted to find the phase-angle variation of the interference ring. Based on the ratio of actual ring brightness and the ideal ring brightness, the brightness ratio method was used to determine the phase-angle variation of the interference ring fringe. The area ratio method and brightness ratio method are interchangeable in precisely determining the phase angles of the innermost and outermost rings of the interference fringe and obtaining different microlens surface altitudes of respective pixels in the segment, to greatly increase the microlens array surface profile inspection accuracy and quality

  4. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  5. Modern techniques of structural neutron diffraction

    International Nuclear Information System (INIS)

    Aksenov, V.L.; )

    1997-01-01

    Modern techniques of neutron diffraction for structural investigations are analyzed. The time-of-flight method and the reverse time-of-flight method are considered briefly. Characteristics of two-crystal and time-of-flight neutron diffractometers are compared. It is pointed that in the future, the great importance will be possessed the development of high-resolution Fourier neutron diffractometers [ru

  6. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  7. Postpartum Visit Attendance Increases the Use of Modern Contraceptives.

    Science.gov (United States)

    Masho, Saba W; Cha, Susan; Charles, RaShel; McGee, Elizabeth; Karjane, Nicole; Hines, Linda; Kornstein, Susan G

    2016-01-01

    Background. Delays in postpartum contraceptive use may increase risk for unintended or rapid repeat pregnancies. The postpartum care visit (PPCV) is a good opportunity for women to discuss family planning options with their health care providers. This study examined the association between PPCV attendance and modern contraceptive use using data from a managed care organization. Methods. Claims and demographic and administrative data came from a nonprofit managed care organization in Virginia (2008-2012). Information on the most recent delivery for mothers with singleton births was analyzed ( N = 24,619). Routine PPCV (yes, no) and modern contraceptive use were both dichotomized. Descriptive analyses provided percentages, frequencies, and means. Multiple logistic regression was conducted and ORs and 95% CIs were calculated. Results. More than half of the women did not attend their PPCV (50.8%) and 86.9% had no modern contraceptive use. After controlling for the effects of confounders, women with PPCV were 50% more likely to use modern contraceptive methods than women with no PPCV (OR = 1.50, 95% CI = 1.31, 1.72). Conclusions. These findings highlight the importance of PPCV in improving modern contraceptive use and guide health care policy in the effort of reducing unintended pregnancy rates.

  8. Postpartum Visit Attendance Increases the Use of Modern Contraceptives

    Directory of Open Access Journals (Sweden)

    Saba W. Masho

    2016-01-01

    Full Text Available Background. Delays in postpartum contraceptive use may increase risk for unintended or rapid repeat pregnancies. The postpartum care visit (PPCV is a good opportunity for women to discuss family planning options with their health care providers. This study examined the association between PPCV attendance and modern contraceptive use using data from a managed care organization. Methods. Claims and demographic and administrative data came from a nonprofit managed care organization in Virginia (2008–2012. Information on the most recent delivery for mothers with singleton births was analyzed (N = 24,619. Routine PPCV (yes, no and modern contraceptive use were both dichotomized. Descriptive analyses provided percentages, frequencies, and means. Multiple logistic regression was conducted and ORs and 95% CIs were calculated. Results. More than half of the women did not attend their PPCV (50.8% and 86.9% had no modern contraceptive use. After controlling for the effects of confounders, women with PPCV were 50% more likely to use modern contraceptive methods than women with no PPCV (OR = 1.50, 95% CI = 1.31, 1.72. Conclusions. These findings highlight the importance of PPCV in improving modern contraceptive use and guide health care policy in the effort of reducing unintended pregnancy rates.

  9. Fair in the face: modern diagnostics of midfacial trauma

    International Nuclear Information System (INIS)

    Zajaczek, J.E.W.; Rodt, T.; Keberle, M.

    2007-01-01

    Modern diagnostics of midfacial trauma are embedded in a diagnostic concept that is oriented to the therapeutic relevance for the individual. Critical analysis of the indicated and efficient radiological method in the acute phase shows that MSCT is currently the method of choice in the diagnosis of midfacial trauma. Besides extensive acquisition of data in the shortest time the possibilities of modern post-processing provide a three-dimensional picture of the often complex injuries in real time. Other perilous injuries are often more important especially for the polytrauma patient. With modern scan protocols intracranial injuries as well as injuries of bone and soft tissue of the head and neck region can be diagnosed during a single examination. Radiology plays a key role for the economically oriented strategy of patient care. (orig.)

  10. modern war and the utility of force: challenges, methods and strategy

    African Journals Online (AJOL)

    ismith

    to have adapted well to the new strategic environment, which now results in the ... On the one hand, empirical evidence confirms that military force has ... focussed on the question of how the modern social construct of war should be ... some light on four interrelated paradoxes that are central to the current debate on the.

  11. India's Modern Slaves: Bonded Labor in India and Methods of Intervention

    Science.gov (United States)

    Boutros, Heidi

    2005-01-01

    Slavery flourishes in the modern world. In nations plagued by debilitating poverty, individuals unable to afford food, clothing, and shelter may be compelled to make a devastating decision: to sell themselves or their children into slavery. Nowhere in the world is this more common than India. Conservative estimates suggest that there are 10…

  12. Influence of stereoscopic vision on task performance with an operating microscope

    NARCIS (Netherlands)

    Nibourg, Lisanne M.; Wanders, Wouter; Cornelissen, Frans W.; Koopmans, Steven A.

    PURPOSE: To determine the extent to which stereoscopic depth perception influences the performance of tasks executed under an operating microscope. SETTING: Laboratory of Experimental Ophthalmology, University Medical Center Groningen, the Netherlands. DESIGN: Experimental study. METHODS: Medical

  13. Studies on electronic properties of solids in Japan. Traces toward microscopic world

    International Nuclear Information System (INIS)

    Ishiguro, Takehiko

    2005-01-01

    Properties of solids are determined by the microscopic structure where quantum mechanics stands. Throughout the 20th century physicists have made progress in developing the methods to explore the microscopic world of materials. In the latter half of the 20th century, starting with catching-up modes, Japanese solid-state physicists have been at some leading edges in the last decade. Trace towards the frontiers are briefly reviewed placing emphasis upon the material development and the investigation, and ways to go are mentioned. (author)

  14. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Postmodernism in Belgrade architecture: Between cultural modernity and societal modernization

    Directory of Open Access Journals (Sweden)

    Blagojević Ljiljana

    2011-01-01

    Full Text Available The paper explores the introduction and articulation of ideas and aesthetic practice of postmodernism in architecture of late socialism in Yugoslavia, with the focus on Belgrade architecture scene. Theoretical and methodological point of departure of this analysis is Jürgen Habermas's thesis of modernity as an incomplete, i.e., unfinished project, from his influential essay “Die Moderne: Ein unvollendetes Projekt” (1980. The thematic framework of the paper is shifted towards issues raised by Habermas which concern relations of cultural modernity and societal modernization, or rather towards consideration of architectural postmodernity in relation to the split between culture and society. The paper investigates architectural discourse which was profiled in Belgrade in 1980s, in a historical context of cultural modernity simultaneous with Habermas's text, but in different conditions of societal modernization of Yugoslav late socialism. In that, the principle methodological question concerns the interpretation of postmodern architecture as part of the new cultural production within the social restructuration of late and/or end of socialism as a system, that being analogous to Fredric Jameson's thesis of “Postmodernism, Or, The Cultural Logic of Late Capitalism” (1984.

  16. Determination of the parameters of a microscopic object from a complex response of a differential microscope

    International Nuclear Information System (INIS)

    Baranov, D V; Egorov, Alexander A; Zolotov, Evgenii M; Svidzinsky, K K

    1998-01-01

    An analysis of the amplitude and phase of a complex response of a heterodyne differential microscope was used to demonstrate experimentally the feasibility of determination of the parameters of a composite microscopic object representing a combination of a step with a groove. (laser applications and other topics in quantum electronics)

  17. Systematic approach to modernizing the production company

    Directory of Open Access Journals (Sweden)

    Irina Valeryevna Makarova

    2011-06-01

    Full Text Available This paper discusses development of modernization processes in the Russian industrial enterprises. The object of the current study is the JSC "Perm Company of petroleum machinery-producing industry". It has been manufacturing oilfield service products of various kinds. It is shown that the impact of modernization on the enterprise depends not only on the local effectiveness of selected solutions, but also on the overall strategy of sustainable development. Modernization is a strategic planning tool. Taking into account the need for a comprehensive approach to strategic development and modernization, the top five stages of the development strategy of the company were mentioned: 1 analysis of internal and external environment; 2 definition of the mission and goals; 3 choice of strategy and baseline scenarios; 4 development of basic strategy; 5 implementation of the strategy. At each stage, methods and tools for strategic planning, as well as the tools of modernization are defined. The relationship between modernization and development strategy of the company is shown. It was revealed that an integrated approach to the modernization and incremental implementation are the basics for the use of a hierarchical system of optimization models to describe the process of manufacturing company modernization. As the target model of the upper level, financial performance of the company is defined. This approach has the following advantages over the point upgrading - reducing the probability of omission of important limitations and ineffective use of resources during the transition to modernization of the company. Basing on the main strategic goals, main directions and tasks of modernization, which are integrated into the tree ends were formed. A thesis was substantiated that he essence of modernization lies in the continuity of mutually complex processes of improving all its directions. For the JSC "Perm Company of petroleum machinery-producing industry

  18. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  19. A novel microscopic method for analyzing Gram-stained vaginal smears in the diagnosis of disorders of vaginal microflora.

    Science.gov (United States)

    Nenadić, Dane B; Pavlović, Miloš D; Motrenko, Tatjana

    2015-08-01

    The Nugent's score is still the gold standard in the great majority of studies dealing with the assessment of vaginal flora and the diagnosis of bacterial vaginosis (BV). The aim of this study was to show that the analysis of Gram-stained vaginal samples under microscope at the magnification of x200 (a novel microscopic method--NMM), as a fast and simple tool, easily applicable in everyday practice, better reflects complexity of vaginal microflora than the Nugent's methodology (x1000). Gram-stained vaginal smears from 394 asymptomatic pregnant women (24-28 week of pregnancy) were classified according to the Nugent's microscopic criteria (immersion, magnification x1000). The smears were then reexamined under immersion but at magnification x200. All samples were classified into 6 groups according to semiquanititative assessment of numbers (cellularity) and the ratio of rod (length < 1.5 microm) and small bacterial (< 1.5 microm) forms: hypercellular (normal full--NF), moderately cellular (normal mid-NM), hypocellular (normal empty--NE), bacterial vaginosis full (BVF), bacterial vaginosis mid (BVM), and bacterial vaginosis empty (BVE). Also yeasts, coccae, bifido and lepto bacterial forms as well polymorphonuclear (PMN) leukocytes were identified. According to the Nugent's scoring, BV was found in 78, intermediate findings in 63, and yeasts in 48 patients. By our criteria BV was confirmed in 88 patients (37 BVF, 24 BVM, and 27 BVN). Generally, both tools proved to be highly concordant for the diagnosis of BV (Lin's concordance correlation coefficient = 0.9852). In 40% of the women mixed flora was found: yeasts in 126 (32%), coccae in 145 (37%), bifido forms in 32 (8%) and lepto forms in 20 (5%). Almost a half of BV patients had also yeasts (39/88). Elevated PMN numbers were found in 102 (33%) patients with normal and in 36 (41%) women with BV. The newly described methodology is simpler to apply and much better reflects diversity of vaginal microflora. In this way it

  20. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  1. Scanning tunnel microscope with large vision field compatible with a scanning electron microscope

    International Nuclear Information System (INIS)

    Volodin, A.P.; Stepanyan, G.A.; Khajkin, M.S.; Ehdel'man, V.S.

    1989-01-01

    A scanning tunnel microscope (STM) with the 20μm vision field and 1nm resolution, designed to be compatible with a scanning electron microscope (SEM), is described. The sample scanning area is chosen within the 3x10mm limits with a 0.1-1μm step. The STM needle is moved automatically toward the sample surface from the maximum distance of 10mm until the tunneling current appears. Bimorphous elements of the KP-1 piezocorrector are used in the STM design. The device is installed on a table of SEM object holders

  2. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  3. Teaching issues of contemporary history using historical sources and modern teaching methods

    Directory of Open Access Journals (Sweden)

    Gruber Gabriela

    2017-01-01

    Full Text Available The study of history is becoming increasingly less interesting to students, despite the fact that the history teaching process has been continuously modernized during recent years. It is an observation which can be perceived even if we don`t make an elaborated research in the field. Some empirical data show us that students in secondary and High Schools are less interested in studying History than in studying Geography or other social sciences. The number of students who are determined to study History in universities has significantly dropped in recent years [1]. Of course, there are multiple causes and the factors behind this change are numerous and varied. In this paper we handle only some changes in teaching History in High Schools, as they are designed in History Curricula and in History textbooks. Therefore during the first sequence of this paper we shall analyze the History Curricula for High School, 11th and 12th grades, regarding their finalities (competencies, some relevant contents and the recommended pedagogical approaches about the teaching methods and the auxiliary material. In the second part of the paper we propose some teaching activities through which students would practice the specific competencies from their Curriculum for History. We aim at presenting attractive teaching material and learning methods and applying the methodological recommendations from the High school Curricula for History, 11th and 12th grades.

  4. The Issue of Age Estimation in a Modern Skeletal Population: Are Even the More Modern Current Aging Methods Satisfactory for the Elderly?

    Science.gov (United States)

    Cappella, Annalisa; Cummaudo, Marco; Arrigoni, Elena; Collini, Federica; Cattaneo, Cristina

    2017-01-01

    The main idea behind age assessment in adults is related to the analysis of the physiological degeneration of particular skeletal structures with age. The main issues with these procedures are due to the fact that they have not been tested on different modern populations and in different taphonomic contexts and that they tend to underestimate the age of older individuals. The purpose of this study was to test the applicability and the reliability of these methods on a contemporary population of skeletal remains of 145 elderly individuals of known sex and age. The results show that, due to taphonomic influences, some skeletal sites showed a lower survival. Therefore, the methods with the highest percentage of applicability were Lovejoy (89.6%) and Rougé-Maillart (81.3%), followed by Suchey-Brooks (59.3%), and those with the lowest percentage of applicability were Beauthier (26.2%) and Iscan (22.7%). In addition, this research has shown how for older adults the study of both acetabulum and auricular surface may be more reliable for aging. This is also in accordance with the fact that auricular surface and the acetabulum are the areas more frequently surviving taphonomic insult. © 2016 American Academy of Forensic Sciences.

  5. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes.

    Science.gov (United States)

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-01-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm(2)) results in skin surface temperature of 43 degrees C. Higher intensities (forearm 335 mW/cm(2), back 250 mW/cm(2)) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm(2)), pain occurs within 30 s at temperatures of 46 degrees C+/-1 degrees C (hand and forearm), and 43 degrees C+/-2 degrees C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 degrees C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  6. Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution

    Science.gov (United States)

    Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin

    2017-09-01

    Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.

  7. The Mathematical Microscope - Making the inaccessible accessible

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2011-01-01

      In this chapter we introduce a new term, the "Mathematical Microscope", as a method of using mathematics in accessing information about reality when this information is otherwise inaccessible. Furthermore, we discuss how models and experiments are related: none of which are important without th...... of mathematical modeling is discussed for type 1 and type 2 diabetes, depression, cardiovascular diseases and the interactions between the combinations of these, the so-called gray triangle in the metabolic syndrome....

  8. Modern methods of thyroid diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Hehrmann, R

    1980-11-01

    An attempt is made to provide a systematic general view at the diagnostical methods and facilities which nowadays are applied in the case of thyroid diseases. The reasonable and accurate application of the various methods possible is of decisive importance for the thyroid diagnostics. This planned application requires exact knowledge of the case history and of the findings as well as knowledge of the preconditions, the advantages and disadvantages of and the possible errors in the methods applied. Proposals and guiding lines for a planned step-by-step application of methods of diagnosing thyroid diseases were published by the Section Thyroid Society for Endocrinology in Wiesbaden in December 1978. For step-by-step diagnostics of thyroid diseaeses, these publications may be of help.

  9. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  10. The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis

    Directory of Open Access Journals (Sweden)

    Fatma Demet Ä°nce

    2016-08-01

    Full Text Available Objectives: Urinalysis is one of the most commonly performed tests in the clinical laboratory. However, manual microscopic sediment examination is labor-intensive, time-consuming, and lacks standardization in high-volume laboratories. In this study, the concordance of analyses between manual microscopic examination and two different automatic urine sediment analyzers has been evaluated. Design and methods: 209 urine samples were analyzed by the Iris iQ200 ELITE (Ä°ris Diagnostics, USA, Dirui FUS-200 (DIRUI Industrial Co., China automatic urine sediment analyzers and by manual microscopic examination. The degree of concordance (Kappa coefficient and the rates within the same grading were evaluated. Results: For erythrocytes, leukocytes, epithelial cells, bacteria, crystals and yeasts, the degree of concordance between the two instruments was better than the degree of concordance between the manual microscopic method and the individual devices. There was no concordance between all methods for casts. Conclusion: The results from the automated analyzers for erythrocytes, leukocytes and epithelial cells were similar to the result of microscopic examination. However, in order to avoid any error or uncertainty, some images (particularly: dysmorphic cells, bacteria, yeasts, casts and crystals have to be analyzed by manual microscopic examination by trained staff. Therefore, the software programs which are used in automatic urine sediment analysers need further development to recognize urinary shaped elements more accurately. Automated systems are important in terms of time saving and standardization. Keywords: Urinalysis, Autoanalysis, Microscopy

  11. Operation Mode and Optimum Design of China's Agricultural Modern Logistics System

    OpenAIRE

    Qin, Shi-bo

    2012-01-01

    Using comparative analysis and logical reasoning methods, in combination with traditional logistics theory and practice, and on the basis of objective demand of modern agricultural development for logistics service, we analyze features of logistics function. Besides, we discuss functional elements and service contents of agricultural modern logistics. In addition, we explore innovation model of agricultural modern logistics and systematized operation of supply chain. Finally, it is concluded ...

  12. Free and open-source automated 3-D microscope.

    Science.gov (United States)

    Wijnen, Bas; Petersen, Emily E; Hunt, Emily J; Pearce, Joshua M

    2016-11-01

    Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, noninterchangeable stages. This paper presents a low-cost, open-source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high-depth images over unprecedented areas and complex geometries. The repeatability is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open-source microscope stage costs less than 3-9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. Microscopic cluster model analysis of 14O+p elastic scattering

    International Nuclear Information System (INIS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-01-01

    The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed

  14. Synergy between indigenous knowledge systems, modern health ...

    African Journals Online (AJOL)

    ... the people of this country should harness a synergy between indigenous health care systems, scientific research and modern health care methods. This article attempts to address the historical evolution of health care methods in South Africa, its effect on the community as well as challenges facing the health professions.

  15. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  16. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters

    International Nuclear Information System (INIS)

    Maki, D.; Ishii, T.; Sato, F.; Kato, Y.; Yamamoto, T.; Iida, T.

    2011-01-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using 241 Am alpha rays. The spatial resolution of this system was ∼3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image. (authors)

  17. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    Science.gov (United States)

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  18. Neuromorphic Data Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Naegle, John H.; Suppona, Roger A.; Aimone, James Bradley; James, Conrad D.; Follett, David R.; Townsend, Duncan C.M.; Follett, Pamela L.; Karpman, Gabe D.

    2017-08-01

    In 2016, Lewis Rhodes Labs, (LRL), shipped the first commercially viable Neuromorphic Processing Unit, (NPU), branded as a Neuromorphic Data Microscope (NDM). This product leverages architectural mechanisms derived from the sensory cortex of the human brain to efficiently implement pattern matching. LRL and Sandia National Labs have optimized this product for streaming analytics, and demonstrated a 1,000x power per operation reduction in an FPGA format. When reduced to an ASIC, the efficiency will improve to 1,000,000x. Additionally, the neuromorphic nature of the device gives it powerful computational attributes that are counterintuitive to those schooled in traditional von Neumann architectures. The Neuromorphic Data Microscope is the first of a broad class of brain-inspired, time domain processors that will profoundly alter the functionality and economics of data processing.

  19. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  20. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  1. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE's nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer

  2. Application of modern diagnostic methods to environmental improvement. Annual progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, W.S.

    1995-12-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL), an interdisciplinary research department in the College of Engineering at Mississippi State University (MSU), is under contract with the US Department of Energy (DOE) to develop and apply advanced diagnostic instrumentation and analysis techniques to aid in solving DOE`s nuclear waste problem. The program is a comprehensive effort which includes five focus areas: advanced diagnostic systems; development/application; torch operation and test facilities; process development; on-site field measurement and analysis; technology transfer/commercialization. As part of this program, diagnostic methods will be developed and evaluated for characterization, monitoring and process control. Also, the measured parameters, will be employed to improve, optimize and control the operation of the plasma torch and the overall plasma treatment process. Moreover, on-site field measurements at various DOE facilities are carried out to aid in the rapid demonstration and implementation of modern fieldable diagnostic methods. Such efforts also provide a basis for technology transfer.

  3. Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Faulkner, T.; Segerink, Franciscus B.; van der Werf, Kees; de Grooth, B.G.; Bölger, B.; Bölger, B.

    1992-01-01

    Images obtained with a scanning near field optical microscope (SNOM) operating in reflection are presented. We have obtained the first results with a SiN tip as optical probe. The instrument is simultaneously operated as a scanning force microscope (SFM). Moreover, the instrument incorporates an

  4. Variable-temperature independently driven four-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Hobara, Rei; Nagamura, Naoka; Hasegawa, Shuji; Matsuda, Iwao; Yamamoto, Yuko; Miyatake, Yutaka; Nagamura, Toshihiko

    2007-01-01

    The authors have developed an ultrahigh vacuum (UHV) variable-temperature four-tip scanning tunneling microscope (STM), operating from room temperature down to 7 K, combined with a scanning electron microscope (SEM). Four STM tips are mechanically and electrically independent and capable of positioning in arbitrary configurations in nanometer precision. An integrated controller system for both of the multitip STM and SEM with a single computer has also been developed, which enables the four tips to operate either for STM imaging independently and for four-point probe (4PP) conductivity measurements cooperatively. Atomic-resolution STM images of graphite were obtained simultaneously by the four tips. Conductivity measurements by 4PP method were also performed at various temperatures with the four tips in square arrangement with direct contact to the sample surface

  5. Chromosome structure investigated with the atomic force microscope

    NARCIS (Netherlands)

    de Grooth, B.G.; Putman, C.A.J.; Putman, Constant A.; van der Werf, Kees; van Hulst, N.F.; van Oort, G.; van Oort, Geeske; Greve, Jan; Manne, Srinivas

    1992-01-01

    We have developed an atomic force microscope (AFM) with an integrated optical microscope. The optical microscope consists of an inverted epi-illumination system that yields images in reflection or fluorescence of the sample. With this system it is possible to quickly locate an object of interest. A

  6. OPTiM: Optical projection tomography integrated microscope using open-source hardware and software.

    Science.gov (United States)

    Watson, Thomas; Andrews, Natalie; Davis, Samuel; Bugeon, Laurence; Dallman, Margaret D; McGinty, James

    2017-01-01

    We describe the implementation of an OPT plate to perform optical projection tomography (OPT) on a commercial wide-field inverted microscope, using our open-source hardware and software. The OPT plate includes a tilt adjustment for alignment and a stepper motor for sample rotation as required by standard projection tomography. Depending on magnification requirements, three methods of performing OPT are detailed using this adaptor plate: a conventional direct OPT method requiring only the addition of a limiting aperture behind the objective lens; an external optical-relay method allowing conventional OPT to be performed at magnifications >4x; a remote focal scanning and region-of-interest method for improved spatial resolution OPT (up to ~1.6 μm). All three methods use the microscope's existing incoherent light source (i.e. arc-lamp) and all of its inherent functionality is maintained for day-to-day use. OPT acquisitions are performed on in vivo zebrafish embryos to demonstrate the implementations' viability.

  7. Contradictions porteñas: modernity, modernism and modernization in Jorge Luis Borges during the 1920’s

    Directory of Open Access Journals (Sweden)

    Pedro Demenech

    2013-06-01

    Full Text Available The aim of the article is discuss the concepts of modernity, modernism and modernization from the propositions raised by Marshal Berman and Néstor García Canclini. The fierce transformation of Buenos Aires during the 1920’s will be the focus of the analysis. To this end, we use the work of argentine poet Jorge Luis Borges to comprehend the development of these processes in the urban space of Buenos Aires.

  8. X-ray microscope with a Wolter mirror

    International Nuclear Information System (INIS)

    Watanabe, Norio; Aoki, Sadao

    2003-01-01

    A Wolter mirror as an objective of an X-ray microscope is described. In comparison with other optical elements, a Wolter mirror has several advantages, such as a large numerical aperture and no chromatic aberration. Recent developments of fabrication process enabled us to make a Wolter mirror objective for X-rays. The fabrication process and the applications to a soft X-ray microscope and an X-ray fluorescence microscope are described. (author)

  9. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  10. Development and applications of the positron microscope

    International Nuclear Information System (INIS)

    1991-01-01

    Progress on the positron microscope during the past year has been steady, and we currently project that initial microscope images can be collected during mid to late summer of 1992. Work during the year has mainly been divided among four areas of effort: hardware construction; power supply and control system development; radioactive source fabrication; and planning of initial experimental projects. Details of progress in these areas will be given below. An initial optical design of the microscope was completed during 1990, but during the past year, significant improvements have been made to this design, and several limiting cases of microscope performance have been evaluated. The results of these evaluations have been extremely encouraging, giving us strong indications that the optical performance of the microscope will be better than originally anticipated. In particular, we should be able to explore ultimate performance capabilities of positron microscopy using our currently planned optical system, with improvements only in the image detector system, and the positron-source/moderator configuration. We should be able to study imaging reemission microscopy with resolutions approaching 10 Angstrom and be able to produce beam spots for rastered microscope work with diameters below the 1000 Angstrom diffusion limit. Because of these exciting new possibilities, we have decided to upgrade several microscope subsystems to levels consistent with ultimate performance earlier in our construction schedule than we had previously intended. In particular, alignment facilities in the optical system, vibration isolation, and power supply and control system flexibility have all been upgraded in their design over the past year

  11. 21 CFR 878.4700 - Surgical microscope and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical microscope and accessories. 878.4700 Section 878.4700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... microscope and accessories. (a) Identification. A surgical microscope and accessories is an AC-powered device...

  12. Design and analysis of a cross-type structured-illumination confocal microscope for high speed and high resolution

    International Nuclear Information System (INIS)

    Kim, Young-Duk; Ahn, MyoungKi; Kim, Taejoong; Gweon, DaeGab; Yoo, Hongki

    2012-01-01

    There have been many studies about a super resolution microscope for many years. A super resolution microscope can detect the physical phenomena or morphology of a biological sample more precisely than conventional microscopes. The structured-illumination microscope (SIM) is one of the technologies that demonstrate super resolution. However, the conventional SIM requires more time to obtain one resolution-enhanced image than other super resolution microscopes. More specifically, the conventional SIM uses three images with a 120° phase difference for each direction and three different directions are image-processed to make one resolution enhancement by increasing the optical transfer function in three directions. In this paper, we present a novel cross structured-illumination confocal microscope (CSICM) that takes the advantage of the technology of both SIM and the confocal microscope. The CSICM uses only two directions with three phase difference images, for a total of six images. By reducing the number of images that must be obtained, the total image acquisition time and image reconstruction time in obtaining the final output images can be decreased, and the confocal microscope provides axial information of the sample automatically. We demonstrate our method of cross illumination and evaluate the performance of the CSICM and compare it to the conventional SIM and the confocal microscope. (paper)

  13. Direct microscopic image and measurement of the atomization process of a port fuel injector

    International Nuclear Information System (INIS)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-01-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin–Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin–Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter

  14. Direct microscopic image and measurement of the atomization process of a port fuel injector

    Science.gov (United States)

    Esmail, Mohamed; Kawahara, Nobuyuki; Tomita, Eiji; Sumida, Mamoru

    2010-07-01

    The main objective of this study is to observe and investigate the phenomena of atomization, i.e. the fuel break-up process very close to the nozzle exit of a practical port fuel injector (PFI). In order to achieve this objective, direct microscopic images of the atomization process were obtained using an ultra-high-speed video camera that could record 102 frames at rates of up to 1 Mfps, coupled with a long-distance microscope and Barlow lens. The experiments were carried out using a PFI in a closed chamber at atmospheric pressure. Time-series images of the spray behaviour were obtained with a high temporal resolution using backlighting. The direct microscopic images of a liquid column break-up were compared with experimental results from laser-induced exciplex fluorescence (LIEF), and the wavelength obtained from the experimental results compared with that predicated from the Kelvin-Helmholtz break-up model. The droplet size diameters from a ligament break-up were compared with results predicated from Weber's analysis. Furthermore, experimental results of the mean droplet diameter from a direct microscopic image were compared with the results obtained from phase Doppler anemometry (PDA) experimental results. Three conclusions were obtained from this study. The atomization processes and detailed characterizations of the break-up of a liquid column were identified; the direct microscopic image results were in good agreement with the results obtained from LIEF, experimental results of the wavelength were in good agreement with those from the Kelvin-Helmholtz break-up model. The break-up process of liquid ligaments into droplets was investigated, and Weber's analysis of the predicated droplet diameter from ligament break-up was found to be applicable only at larger wavelengths. Finally, the direct microscopic image method and PDA method give qualitatively similar trends for droplet size distribution and quantitatively similar values of Sauter mean diameter.

  15. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  16. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    Science.gov (United States)

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  17. Modern concepts of pathogenesis of ichthyosis

    Directory of Open Access Journals (Sweden)

    Світлана Володимирівна Дмитренко

    2015-06-01

    Full Text Available The modern concepts of ichthyosis are rather ambiguous and need more precise definition. The modern conception of pathogenesis of ichthysosis is offered and considered in this article.Aim. An aim is to analyze received data of our researches about molecular disturbances of keratin on the background of ichthyosis and the current data on the pathogenesis of disease.Materials and methods. An analysis of the results of research in 70 patients with ichthyosis by the methods of the flow cytometry, immunohistochemistry and by immunologic methods is presented in an article.Results. Authors revealed molecular, immunologic and immunohistochemical changes that realizes the disturbance of keratinization on the background of this disease. The model of pathogenesis of the various manifestations of gene mutations that causes ichthyosis is proposed and it can be taken into account when elaborating the new directions of therapy.Conclusions. Gene mutations that cause ichthyosis realizes on the background of disturbance of the cell cycle causing cornification and disturb the local and general immune reactions that summarily lead to the clinical presentations of disease. 

  18. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    Science.gov (United States)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  19. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  20. A frameless stereotaxic operating microscope for neurosurgery

    International Nuclear Information System (INIS)

    Friets, E.M.; Strohbehn, J.W.; Hatch, J.F.; Roberts, D.W.

    1989-01-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given

  1. A frameless stereotaxic operating microscope for neurosurgery.

    Science.gov (United States)

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  2. Nuclear weapons modernizations

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  3. Active mask segmentation of fluorescence microscope images.

    Science.gov (United States)

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  4. Using the Power of Modern Processors in Bioformatics

    DEFF Research Database (Denmark)

    Simonsen, Martin; Sand, Andreas; Mailund, Thomas

    range of applications within bioinformatics for modeling sequential data assumed to originate from a Markov process; e.g. gene annotation, alignments and inferring coalescence processes among species. Because of their computational efficiency, HMMs are one of few methods used for genome wide analysis......Bioinformatics focuses on developing computational methods for collecting, handling and analyzing biological data. Because the amount of data is often very large and the models used for analysis are complex, the demand for efficient methods exploiting modern computer hardware is increasing...... with a target protein molecule. Such ligands potentially alters the function of the (disease causing) target protein and can therefore be used in a modern drug discovery process. Evaluation of ligands against a target molecule requires a moderate amount of computation, but we often need to evaluate thousands...

  5. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  6. Microscope-controlled glass bead blasting: a new technique

    Directory of Open Access Journals (Sweden)

    Peter Kotschy

    2011-01-01

    Full Text Available Peter Kotschy1, Sascha Virnik2, Doris Christ3, Alexander Gaggl21Private Practice, Vienna, Austria; 2Department of Oral and Maxillofacial Surgery, Central Hospital, Klagenfurt, Austria; 3Klagenfurt, AustriaObjective: The aim of periodontal therapy is the healing of periodontal inflammation; the protection of the attachment and the alveolar bone; and the regeneration of the periodontal structures. In the therapy of periodontitis, supra- and subgingival scaling and root planing plays a main role. The procedure described combines perfect root cleaning without scaling and root planing and minimal invasive periodontal surgery without a scalpel.Material and methods: Glass beads of 90 µm were used with the kinetic preparation unit PrepStart® under a pressure of 0.5–5 bar. This technique was practised only under visual control using the OPMI® PRO Magis microscope. Seven examinations were carried out at baseline after 3, 6, 12, 18, 24, and 36 months.Results: Time shows a statistically significant influence on all of the considered target variables (P < 0.0001 for all. As the according estimate is negative, probing depth decreases over time. The major decrease seems to be during the first 6 months. Considering probing depth, plaque on the main effect root shows significant influence (again, P < 0.0001 for all. Observations with high probing depth at the beginning were faster than those with low probing depth. The same characteristic appears by attachment level. Patients with more loss of attachment show more gain.Conclusions: Using microscope-controlled glass bead blasting results in a perfectly clean root surface using visual control (magnification 20×. Microscope-controlled glass bead blasting is therefore a good alternative to periodontal surgery.Keywords: periodontal therapy, microscope, periodontitis

  7. Comparison of modern and traditional methods of soilsorption complex measurement : the basis of long -term studies and modelling

    Directory of Open Access Journals (Sweden)

    Kučera Aleš

    2014-03-01

    Full Text Available This paper presents the correlations between two different analytical methods of assessing soil nutrient contents. Soil nutrient content measurements measured using the flame atomic absorption spectrometry (FAAS method, which uses barium chloride extraction, were compared with those of the now-unused Gedroiz method, which uses ammonium chloride extraction (calcium by titration, magnesium, potassium and sodium by weighing. Natural forest soils from the Ukrainian Carpathians at the localities of Javorník and Pop Ivan were used. Despite the risk of analysis errors during the complicated analytical procedure, the results showed a high level of correlation between different nutrient content measurements across the whole soil profile. This allows concentration values given in different studies to be linearly recalculated on results of modern method. In this way, results can be used to study soil’s chemical changes over time from the soil samples that were analysed in the past using labour-intensive and time-consuming methods with a higher risk of analytic error.

  8. Shlaer-Mellor object-oriented analysis and recursive design, an effective modern software development method for development of computing systems for a large physics detector

    International Nuclear Information System (INIS)

    Kozlowski, T.; Carey, T.A.; Maguire, C.F.

    1995-01-01

    After evaluation of several modern object-oriented methods for development of the computing systems for the PHENIX detector at RHIC, we selected the Shlaer-Mellor Object-Oriented Analysis and Recursive Design method as the most appropriate for the needs and development environment of a large nuclear or high energy physics detector. This paper discusses our specific needs and environment, our method selection criteria, and major features and components of the Shlaer-Mellor method

  9. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  10. Physical Education between the social project of solid modernity and the of liquid modernity

    Directory of Open Access Journals (Sweden)

    Sidinei Pithan da Silva

    2012-09-01

    Full Text Available Grounded on Bauman’s thought, the present paper focuses on the constitution of social legitimacy and identity of Physical Education in the context of transition from solid to liquid modernity. This thought favors the understanding of the nature of the crisis that has crossed the identity discourse of Physical Education. The text signals the limits and possibilities of both the modern and the post-modern educational discourses. In this context, it describes a modern scenario that is marked by two distinct moments, the one of modernity at its solid stage, and that of modernity at its liquid stage. The first one, of solid modernity, social condition of surveillance, rationalization and control, performs the functional / adaptive role of putting everyone under the same rigid order (managed society. The second one, of liquid modernity, of the social condition of insignificance and irrationalism, plays the functional role of putting and keeping everyone under the same flexible Market disorder. From the scientific, mechanic focus of both the body and the physical education in solid modernity we have moved to the relativist and esthetic focus of body and physical education in liquid modernity.

  11. Microscopic modelling of doped manganites

    International Nuclear Information System (INIS)

    Weisse, Alexander; Fehske, Holger

    2004-01-01

    Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations

  12. Microscopic Analysis of Plankton, Periphyton, and Activated Sludge. Training Manual.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This manual is intended for professional personnel in the fields of water pollution control, limnology, water supply and waste treatment. Primary emphasis is given to practice in the identification and enumeration of microscopic organisms which may be encountered in water and activated sludge. Methods for the chemical and instrumental evaluation…

  13. Potential of modern sonographic techniques in paediatric uroradiology

    Energy Technology Data Exchange (ETDEWEB)

    Riccabona, Michael E-mail: michael.riccabona@kfunigraz.ac.at

    2002-08-01

    Objective: To describe the potential of modern sonographic techniques in paediatric uroradiology. Method: Ultrasound (US)--now being the primary imaging tool--has revolutionised imaging diagnostic in the urinary tract. Constant developments and technical refinements have secured the role of US in uroradiology. Colour Doppler Sonography (CDS) and innovative applications such as the transperineal approach or application of m-mode US to the urinary tract have helped to develop US from just a basic tool to a sophisticated and respected method. The ongoing introduction of new and even more sophisticated methods further enhance the sonographic potential, which shall be demonstrated by a more detailed discussion of these methods. Results: Harmonic imaging, extended field of view US, amplitude coded CDS, echo-enhanced US, and three-dimensional US as the most recent new sonographic techniques are successfully applicable to paediatric urinary tract disease. They improve sonographic diagnosis in many conditions, such as detection of vesico-ureteral reflux, renal parenchymal volume assessment, comprehensive visualisation of hydronephrosis and complex pathology, evaluation of renal perfusional disturbances or defects, superior documentation with improved comparability for follow-up, or simply by offering clearer tissue delineation and differentiation. Conclusion: Modern US techniques are successfully applicable to neonates, infants, and children, further boosting the value of US in the paediatric urinary tract. However, as handling became more sophisticated, and artefacts have to be considered, modern urosonography became not only a more powerful, but also a more demanding method, with the need for expert knowledge and dedicated training.

  14. Potential of modern sonographic techniques in paediatric uroradiology

    International Nuclear Information System (INIS)

    Riccabona, Michael

    2002-01-01

    Objective: To describe the potential of modern sonographic techniques in paediatric uroradiology. Method: Ultrasound (US)--now being the primary imaging tool--has revolutionised imaging diagnostic in the urinary tract. Constant developments and technical refinements have secured the role of US in uroradiology. Colour Doppler Sonography (CDS) and innovative applications such as the transperineal approach or application of m-mode US to the urinary tract have helped to develop US from just a basic tool to a sophisticated and respected method. The ongoing introduction of new and even more sophisticated methods further enhance the sonographic potential, which shall be demonstrated by a more detailed discussion of these methods. Results: Harmonic imaging, extended field of view US, amplitude coded CDS, echo-enhanced US, and three-dimensional US as the most recent new sonographic techniques are successfully applicable to paediatric urinary tract disease. They improve sonographic diagnosis in many conditions, such as detection of vesico-ureteral reflux, renal parenchymal volume assessment, comprehensive visualisation of hydronephrosis and complex pathology, evaluation of renal perfusional disturbances or defects, superior documentation with improved comparability for follow-up, or simply by offering clearer tissue delineation and differentiation. Conclusion: Modern US techniques are successfully applicable to neonates, infants, and children, further boosting the value of US in the paediatric urinary tract. However, as handling became more sophisticated, and artefacts have to be considered, modern urosonography became not only a more powerful, but also a more demanding method, with the need for expert knowledge and dedicated training

  15. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    Science.gov (United States)

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  16. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Science.gov (United States)

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  17. [Morphological observation on hypopus of Lepidoglyphus destructor by optical microscope].

    Science.gov (United States)

    Yong, H; Ning, T; Qiang, C; Chao-Pin, L I

    2017-07-03

    Objective To observe the external morphology of Lepidoglyphus destructor hypopus under an optical microscope. Methods The samples were collected in a store of Chinese medicinal herbs in Huainan City in September, 2016, the L. destructor and the hypopus were isolated, and then made of slide specimens. The slide samples were prepared and observed under an optical microscope. Results The L. destructor hypopus and protonymph were found. The inactive hypopus was oval in shape, the feet were not welldeveloped, there was a distinct transverse seam on its back, and there were 2 pairs of genital sensory organs. Conclusion The optical microscopy shows the morphological characteristics of L. destructor hypopus, which can provide the basis for the biological classification and the prevention.

  18. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  19. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  20. Modern Organization of Entrepreneurial Business

    OpenAIRE

    Liudmila Rosca-Sadurschi

    2013-01-01

    This article gives the notion of "entrepreneurial business" and is compared to "business inovations". It analyzes the advantages of these two notions. Modern methods are presented and analyzed to develop an innovative business through reengineering, incubators, business centers, clusters and others. It is also considered the experience of the Danube in practicing these organizational arrangements to develop business.