WorldWideScience

Sample records for modern ice wedges

  1. Microtopographic control on the ground thermal regime in ice wedge polygons

    Science.gov (United States)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  2. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...

  3. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    International Nuclear Information System (INIS)

    Vonk, J E; Mann, P J; Spencer, R G M; Bulygina, E B; Holmes, R M; Dowdy, K L; Davydova, A; Davydov, S P; Zimov, N; Eglinton, T I

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved and highly biologically available (biolabile) upon thaw. A better understanding of the processes regulating Yedoma degradation is important to improve estimates of the response and magnitude of permafrost carbon feedbacks to climate warming. In this study, we examine the composition of ice wedges and the influence of ice wedge thaw on the biolability of Yedoma OM. Incubation assays were used to assess OM biolability, fluorescence spectroscopy to characterize the OM composition, and potential enzyme activity rates to examine the controls and regulation of OM degradation. We show that increasing amounts of ice wedge melt water in Yedoma-leached incubations enhanced the loss of dissolved OM over time. This may be attributed to the presence of low-molecular weight compounds and low initial phenolic content in the OM of ice wedges, providing a readily available substrate that promotes the degradation of Yedoma OC. The physical vulnerability of ice wedges upon thaw (causing irreversible collapse), combined with the composition of ice wedge-engrained OM (co-metabolizing old OM), underlines the particularly strong potential of Yedoma to generate a positive feedback to climate warming relative to other forms of non-ice wedge permafrost. (letter)

  4. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    Science.gov (United States)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges

  5. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  6. Measured Hydrologic Storage Characteristics of Three Major Ice Wedge Polygon Types, Barrow, Alaska

    Science.gov (United States)

    Chamberlain, A. J.; Liljedahl, A.; Wilson, C. J.; Cable, W.; Romanovsky, V. E.

    2014-12-01

    Model simulations have suggested that the hydrologic fluxes and stores of Arctic wetlands are constrained by the micro-topographical features of ice wedge polygons, which are abundant in lowland tundra landscapes. Recently observed changes in ice wedge polygon landscapes - in particular, ice wedge degradation and trough formation - emphasize the need to better understand how differing ice wedge polygon morphologies affect the larger hydrologic system. Here we present three seasons of measured end-of-winter snow accumulation, continuous soil moisture and water table elevations, and repeated frost table mapping. Together, these describe the hydrologic characteristics of three main ice wedge polygon types: low centered polygons with limited trough development (representative of a ~500 year old vegetated drained thaw lake basin), and low- and high-centered polygons with well-defined troughs. Dramatic spatiotemporal variability exists both between polygon types and between the features of an individual polygon (e.g. troughs, centers, rims). Landscape-scale end-of-winter snow water equivalent is similar between polygon types, while the sub-polygon scale distribution of the surface water differs, both as snow and as ponded water. Some sub-polygon features appear buffered against large variations in water levels, while others display periods of prolonged recessions and large responses to rain events. Frost table elevations in general mimic the ground surface topography, but with spatiotemporal variability in thaw rate. The studied thaw seasons represented above long-term average rainfall, and in 2014, record high June precipitation. Differing ice wedge polygon types express dramatically different local hydrology, despite nearly identical climate forcing and landscape-scale snow accumulation, making ice wedge polygons an important component when describing the Arctic water, nutrient and energy system.

  7. Late Holocene ice wedges near Fairbanks, Alaska, USA: Environmental setting and history of growth

    Science.gov (United States)

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The wedges occur in peat that has accumulated since about 3500 yr BP and have grown episodically as the permafrost table fluctuated in response to fires, other local site conditions and perhaps regional climatic changes. Radiocarbon dates suggest one or two episodes of ice-wedge growth between about 3500 and 2000 yr BP as woody peat accumulated at the site. Subsequent wedge truncation evidently followed a fire that charred the peat. Younger peat exhibits facies changes between sedge-rich components that filled troughs over the ice wedges and woody bryophytic deposits that formed beyond the troughs. A final episode of wedge development took place within the past few hundred years. Pollen data from the site indicate that boreal forest was present throughout the past 6000 yr, but that it underwent a gradual transition from a predominantly deciduous to a spruce-dominated assemblage. This change may reflect either local site conditions or a more general climatic shift to cooler, moister summers in late Holocene time. The history of ice-wedge growth shows that wedges can form and grow to more than 1 m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5°C) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8°C in the zone of continuous permafrost is invalid.

  8. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    Science.gov (United States)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  9. [Radiocarbon dating of pollen and spores in wedge ice from Iamal and Kolyma].

    Science.gov (United States)

    Vasil'chuk, A K

    2004-01-01

    Radiocarbon dating of pollen concentrate from late Pleistocene syngenetic wedge ice was carried out using acceleration mass spectrometry (AMS) in Seyakha and Bizon sections. Comparison of the obtained dating with palynological analysis and AMS radiocarbon dating previously obtained for other organic fractions of the same samples allowed us to evaluate accuracy of dating of different fractions. Quantitative tests for data evaluation were considered in terms of possible autochthonous or allochthonous accumulation of the material on the basis of pre-Pleistocene pollen content in these samples. Paleoecological information content of pollen spectra from late Pleistocene syngenetic wedge ice was evaluated.

  10. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in

  11. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    NARCIS (Netherlands)

    Vonk, J.E.; Mann, P.J.; Dowdy, K.L.; Davydova, A.; Davydov, S.P.; Zimov, N.; Spencer, R.G.M.; Bulygina, E.B.; Eglinton, T.I.; Holmes, R.M.

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved

  12. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2013-12-01

    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1

  13. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.

    2015-01-01

    to the former presence of permafrost under periglacial conditions. These features truncate Carboniferous sandstone or Last Glacial Maximum (LGM) glacial and glaciomarine diamicts, both overlain by subtidal or coastal units. Six optically stimulated luminescence (OSL) and four radiocarbon ages were obtained from......The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify...... both host and infilled sedimentary units. These ages provide the first absolute chronological data on these structures, shedding new light on the relationships between glacial and periglacial phases. Our chronostratigraphic data suggest that, after the deglaciation and the emersion of the archipelago...

  14. Near-Surface Profiles of Water Stable Isotope Components and Indicated Transitional History of Ice-Wedge Polygons Near Barrow

    Science.gov (United States)

    Iwahana, G.; Wilson, C.; Newman, B. D.; Heikoop, J. M.; Busey, R.

    2017-12-01

    Wetlands associated with ice-wedge polygons are commonly distributed across the Arctic Coastal Plain of northern Alaska, a region underlain by continuous permafrost. Micro-topography of the ice-wedge polygons controls local hydrology, and the micro-topography could be altered due to factors such like surface vegetation, wetness, freeze-thaw cycles, and permafrost degradation/aggradation under climate change. Understanding status of the wetlands in the near future is important because it determines biogeochemical cycle, which drives release of greenhouse gases from the ground. However, transitional regime of the ice-wedge polygons under the changing climate is not fully understood. In this study, we analyzed geochemistry of water extracted from frozen soil cores sampled down to about 1m depth in 2014 March at NGEE-Arctic sites in the Barrow Environmental Observatory. The cores were sampled from troughs/rims/centers of five different low-centered or flat-centered polygons. The frozen cores are divided into 5-10cm cores for each location, thawed in sealed plastic bags, and then extracted water was stored in vials. Comparison between the profiles of geochemistry indicated connection of soil water in the active layer at different location in a polygon, while it revealed that distinctly different water has been stored in permafrost layer at troughs/rims/centers of some polygons. Profiles of volumetric water content (VWC) showed clear signals of freeze-up desiccation in the middle of saturated active layers as low VWC anomalies at most sampling points. Water in the active layer and near-surface permafrost was classified into four categories: ice wedge / fresh meteoric / transitional / highly fractionated water. The overall results suggested prolonged separation of water in the active layer at the center of low-centered polygons without lateral connection in water path in the past.

  15. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.

  16. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    Science.gov (United States)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated

  17. Ice-Wedge Polygon Formation Impacts Permafrost Carbon Storage and Vulnerability to Top-Down Thaw in Arctic Coastal Plain Soils

    Science.gov (United States)

    Jastrow, J. D.; Matamala, R.; Ping, C. L.; Vugteveen, T. W.; Lederhouse, J. S.; Michaelson, G. J.; Mishra, U.

    2017-12-01

    Ice-wedge polygons are ubiquitous, patterned ground features throughout Arctic coastal plains and river deltas. The progressive expansion of ice wedges influences polygon development and strongly affects cryoturbation and soil formation. Thus, we hypothesized that polygon type impacts the distribution and composition of soil organic carbon (C) stocks across the landscape and that such information can improve estimates of permafrost C stocks vulnerable to active layer thickening and increased decomposition due to climatic change. We quantified the distribution of soil C across entire polygon profiles (2-m depth) for three developmental types - flat-centered (FCP), low-centered (LCP), and high-centered (HCP) polygons (3 replicates of each) - formed on glaciomarine sediments within and near the Barrow Environmental Observatory at the northern tip of Alaska. Active layer thickness averaged 45 cm and did not vary among polygon types. Similarly, active layer C stocks were unaffected by polygon type, but permafrost C stocks increased from FCPs to LCPs to HCPs despite greater ice volumes in HCPs. These differences were due to a greater presence of organic horizons in the upper permafrost of LCPs and, especially, HCPs. On average, C stocks in polygon interiors were double those of troughs, on a square meter basis. However, HCPs were physically smaller than LCPs and FCPs, which affected estimates of C stocks at the landscape scale. Accounting for the number of polygons per unit area and the proportional distribution of troughs versus interiors, we estimated permafrost C stocks (2-m depth) increased from 259 Mg C ha-1 in FCPs to 366 Mg C ha-1 in HCPs. Active layer C stocks did not differ among polygon types and averaged 328 Mg C ha-1. We used our detailed polygon profiles to investigate the impact of active layer deepening as projected by Earth system models under future climate scenarios. Because HCPs have a greater proportion of upper permafrost C stocks in organic horizons

  18. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)

    Science.gov (United States)

    Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga; Nazarova, Larisa; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian

    2016-09-01

    Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at

  19. Isotopic composition on ground ice in Western Yamal (Marre-Sale

    Directory of Open Access Journals (Sweden)

    I. D. Streletskaya

    2013-01-01

    Full Text Available The profile of Quaternary sediments near Marre-Salle polar station, Western Yamal Peninsula, has large bodies of tabular ground ice. This profile is considered strata-typical and critical in understanding of paleogeographic conditions of the Arctic in Pleistocene-Holocene. However, interpretation of the profile is under discussion. It consists of two distinct strata: upper layer of 10–15 m thick represented by continental sediments and lower one with a thickness of more than 100 m represented by marine sediments. Lower layer of saline marine clays has lenses of tabular ground ice (more than 20 m thick, the bases of which are below the sea level. Upper continental layer is characterized by syngenetic ice-wedges of different generations. Samples were collected from ice-wedges and tabular ground ice for chemical and isotope analysis. The results of the analysis allow to reconstruct paleogeographic conditions of the sedimentation and freezing of Quaternary sediments. Heavy stable isotope content and relationship between oxygen and hydrogen isotopes show that the ice bodies in the lower layer were formed in-situ within the ground. In the upper layer, heavier isotope content found in younger ice-wedges relative to the old-generation wedges. Formation of massive syngenetic Upper-Pleistocene ice-wedges occurred in conditions of colder winter temperatures than at present. Syngenetic Holocene wedges were formed after Holocene Optimum under winter conditions similar to present. Younger ice wedges formed smaller polygons, were smaller and often were developing in the locations of the degraded old wedges. Results of the isotope analysis of various types of ground ice near Marre-Sale allow reconstructing changes of marine sedimentation to continental one around Kargino time (MIS 3 and changes in climatic conditions in Arctic in Late Pleistocene and Holocene.

  20. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  1. Phased occupation and retreat of the last British-Irish Ice Sheet in the southern North Sea; geomorphic and seismostratigraphic evidence of a dynamic ice lobe

    Science.gov (United States)

    Dove, Dayton; Evans, David J. A.; Lee, Jonathan R.; Roberts, David H.; Tappin, David R.; Mellett, Claire L.; Long, David; Callard, S. Louise

    2017-05-01

    Along the terrestrial margin of the southern North Sea, previous studies of the MIS 2 glaciation impacting eastern Britain have played a significant role in the development of principles relating to ice sheet dynamics (e.g. deformable beds), and the practice of reconstructing the style, timing, and spatial configuration of palaeo-ice sheets. These detailed terrestrially-based findings have however relied on observations made from only the outer edges of the former ice mass, as the North Sea Lobe (NSL) of the British-Irish Ice Sheet (BIIS) occupied an area that is now almost entirely submarine (c.21-15 ka). Compounded by the fact that marine-acquired data have been primarily of insufficient quality and density, the configuration and behaviour of the last BIIS in the southern North Sea remains surprisingly poorly constrained. This paper presents analysis of a new, integrated set of extensive seabed geomorphological and seismo-stratigraphic observations that both advances the principles developed previously onshore (e.g. multiple advance and retreat cycles), and provides a more detailed and accurate reconstruction of the BIIS at its southern-most extent in the North Sea. A new bathymetry compilation of the region reveals a series of broad sedimentary wedges and associated moraines that represent several terminal positions of the NSL. These former still-stand ice margins (1-4) are also found to relate to newly-identified architectural patterns (shallow stacked sedimentary wedges) in the region's seismic stratigraphy (previously mapped singularly as the Bolders Bank Formation). With ground-truthing constraint provided by sediment cores, these wedges are interpreted as sub-marginal till wedges, formed by complex subglacial accretionary processes that resulted in till thickening towards the former ice-sheet margins. The newly sub-divided shallow seismic stratigraphy (at least five units) also provides an indication of the relative event chronology of the NSL. While there

  2. The emergence of modern sea ice cover in the Arctic Ocean.

    Science.gov (United States)

    Knies, Jochen; Cabedo-Sanz, Patricia; Belt, Simon T; Baranwal, Soma; Fietz, Susanne; Rosell-Melé, Antoni

    2014-11-28

    Arctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33-2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.

  3. Modelling the wedge shape for the virtual wedge

    International Nuclear Information System (INIS)

    Chang Liyun; Ho Shengyow; Chen, Helen H W

    2003-01-01

    We present a method to model the virtual wedge shape in a 3D treatment planning system as a physical wedge. The virtual wedge shape was determined using the measured dose profile of the virtual wedge at a chosen reference depth. The differences between the calculated and the measured dose profiles for the virtual wedge were within 0.5% at the reference depth, and within 2.5% at other depths. This method provides a fast and accurate way to implement the virtual wedge into our planning system for any wedge angles. This method is also applicable to model the physical wedge shapes with comparable good results

  4. Physical characteristics comparison of virtual wedge device with physical wedge

    International Nuclear Information System (INIS)

    Cho, Jung Keun; Choi, Kye Sook; Lim, Cheong Hwan; Kim, Jeong Koo; Jung, Hong Ryang; Lee, Jung Ok; Lee, Man Goo

    2001-01-01

    We compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60) using 6- and 15- MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15 cm x 20 cm radiation field size at the depth of 10 cm. Surface does without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15 cm * 20 cm and a polystyrene phantom was used. For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%, respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5. Surface dose with physical wedge was reduced by maximum 20% (x-ray beam : 6 MV, wedge angle : 45, SSD : 80 cm) relative to one with virtual wedge or without wedge. Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using a physical wedge

  5. Physical characteristics comparison of virtual wedge device with physical wedge

    International Nuclear Information System (INIS)

    Choi, Dong Rak; Shin, Kyung Hwan; Lee, Kyu Chan; Kim, Dae Yong; Ahn, Yong Chan; Lim, Do Hoon; Kim, Moon Kyung; Huh, Seung Jae

    1999-01-01

    We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60 ) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15 cm x 20 cm radiation field size at the depth of 10 cm. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15 cm x 20 cm and a polystyrene phantom was used. For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%, respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5 .deg. . Surface dose with physical wedge was reduced by maximum 20% (x-ray beam: 6 MV, wedge angle: 45 .deg. , SSD: 80cm) relative to one with virtual wedge or without wedge. Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge

  6. In Situ Field Sequencing and Life Detection in Remote (79°26′N Canadian High Arctic Permafrost Ice Wedge Microbial Communities

    Directory of Open Access Journals (Sweden)

    J. Goordial

    2017-12-01

    Full Text Available Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26′N, an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1 the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2 a Microbial Activity Microassay (MAM plate (BIOLOG Ecoplate for detecting viable extant microorganisms through a colourimetric assay, and (3 the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus

  7. Intercomparison of wedge factor for symmetric field and asymmetric field used 6MV linac

    International Nuclear Information System (INIS)

    Ji, Youn Sang; Han, Jae Jin

    1999-01-01

    Therapy equipment have taken progress for Cancer make use of Radiation for the normal tissue system make much of important for shielding. In modern times independent jaw setting to used equipment as possible make use of asymmetric field. Therefore, the asymmetric field be leave out of consideration wedge factor because of with used wedge for the most of part. These experimentation find out have an effect on the dosimetry of out put compared with of the difference between the symmetric field and asymmetric field for the wedge factor

  8. Yedomas in Alaska: Evolution of ice-rich landscapes in a changing climate

    Science.gov (United States)

    Stephani, E.; Kanevskiy, M. Z.; Fortier, D.; Shur, Y.; Jorgenson, T. T.; Dillon, M.; Bray, M.

    2011-12-01

    Yedomas (Ice complexes) have developed on lands that remained unglaciated during the Late-Pleistocene. Ground exposure to cold climate allowed large syngenetic ice wedges to form typically in fine-grained, organic-rich, and ice-rich enclosing sediments, resulting in particularly ice-rich and thick sequences. Changing climate since has triggered geomorphological changes of these ice-rich landscapes and now contemporary climate conditions generally favour their degradation. Yedoma remnants have been observed in areas of Alaska including in the northern part of Seward Peninsula and Iktilik River area where we studied their metrics, cryostratigraphy, soil properties, and their degradation processes. Understanding the dynamic of this particular periglacial landscape and determining its properties is essential for modeling its future evolution in a changing climate. At our three study sites, presence of typical geomorphological features and cryostratigraphic units revealed information on the landscape evolution since deposition of these ice-rich strata. A Yedoma deposit in the northern part of Seward Peninsula comprised ice wedges at least 36 m-deep. The enclosing sediment was characterized by an ice-rich cryofacies of coarse silt with microlenticular cryostructure and abundant fine rootlets. The intermediate layer, a typical extremely ice-rich layer located below the active layer, was observed above the Yedoma deposit in areas less affected by thermo-degradation. In the thermo-degraded areas characterized by an irregular terrain surface, the intermediate layer was replaced by the generally ice-poor taberal cryofacies which corresponds to a deposit that was formerly ice-rich, thawed, drained, and eventually refrozen. Yedoma remnants in their contemporary degrading state can be recognized with their abundant thermokarst lakes, drained lake basins, and drainage gullies. Thermokarst lakes can be particularly deep because of the considerable amount of ground ice that can

  9. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  10. Integrating Carbon Flux Measurements with Hydrologic and Thermal Responses in a Low Centered Ice-Wedge Polygon near Prudhoe Bay, AK

    Science.gov (United States)

    Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.

    2014-12-01

    Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 flux measurements were recorded from a site approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static flux chambers that were located within a single low-centered ice-wedge polygon. Three flux chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation measured on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas measurements were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. Measured cumulative methane fluxes were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in flux was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 fluxes were greater than methane fluxes and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The

  11. Wedges I

    International Nuclear Information System (INIS)

    DeWitt-Morette, C.; Low, S.G.; Schulman, L.S.; Shiekh, A.Y.

    1986-01-01

    The wedge problem, that is, the propagation of radiation or particles in the presence of a wedge, is examined in different contexts. Generally, the paper follows the historical order from Sommerfeld's early work to recent stochastic results - hindsights and new results being woven in as appropriate. In each context, identifying the relevant mathematical problem has been the key to the solution. Thus each section can be given both a physics and a mathematics title: Section 2: diffraction by reflecting wedge; boundary value problem of differential equations; solutions defined on multiply connected spaces. Section 3: geometrical theory of diffraction; identification of function spaces. Section 4: path integral solutions; path integration on multiply connected spaces; asymptotics on the boundaries of function spaces. Section 5: probing the shape of the wedge and the roughness of its surface; stochastic calculus. Several propagators and Green functions are given explicitly, some old ones and some new ones. They include the knife-edge propagator for Dirichlet and Neumann boundary conditions, the absorbing knife edge propagator, the wedge propagators, the propagator for a free particle on a /sigma phi/-sheeted Riemann surface, the Dirichlet and the Neumann wedge Green function

  12. Contemporary sand wedge development in seasonally frozen ground and paleoenvironmental implications

    Science.gov (United States)

    Wolfe, Stephen A.; Morse, Peter D.; Neudorf, Christina M.; Kokelj, Steven V.; Lian, Olav B.; O'Neill, H. Brendan

    2018-05-01

    with limited surface sediment supply can result in stratigraphy similar to ice-wedge and composite-wedge pseudomorphs. Therefore, caution must be exercised when interpreting this suite of forms and inferring paleoenvironments.

  13. Characteristics and processing of seismic data collected on thick, floating ice: Results from the Ross Ice Shelf, Antarctica

    Science.gov (United States)

    Beaudoin, Bruce C.; ten Brink, Uri S.; Stern, Tim A.

    1992-01-01

    Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.

  14. Chemical risk factors responsible for the formation of wedge-shaped lesions

    Directory of Open Access Journals (Sweden)

    Perić Dejan

    2015-01-01

    Full Text Available Introduction: Non-carious tooth substances loss pose a major health problem of a modern man. The literature often collectively describes all non-carious lesions and is therefore difficult to compare results obtained by different authors. Chemical factors are one of the predisposing factors responsible for the formation of wedge-shaped erosions. Aim: Examination of chemical risk factors as one of the predisposing causes responsible for the formation of wedge-shaped lesions. Method: We examined 62 patients with wedge-shaped erosions (mean age 45.52 ± 12.03 years, 58.1% of men and 60 patients without erosions in the control group (mean age 34.40 ± 9.28 years, 60% men . The entire examination was completed by using a questionnaire at the Dental Clinic of the University of Pristina - Kosovska Mitrovica. salivary pH was measured by the pH meter. Results: The results show that the wedge-shaped lesions often occur equally in both men and women. Considerably often it might appear in older people but can also occur in teenagers. Patients with wedge-shaped erosion have increased acidity of saliva, a heightened sense of acid in the mouth and consume a lot more carbonated drinks compared to patients without erosions. Conclusion: Wedge-shaped lesions are more common in people older than 40 years. Taking into account the results obtained in this study it can be concluded that the chemical risk factors truly fall within the predisposing factors that may be responsible for the creation of wedge-shaped erosions.

  15. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  16. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    Science.gov (United States)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  17. Evaluation of wedge-shaped phantoms for assessment of scanner display as a part of quality control of scanner performance

    International Nuclear Information System (INIS)

    Bergmann, H.; Havlik, E.

    1981-01-01

    Image manipulation in modern rectilinear scanners comprises background subtraction and contrast enhancement facilities. It has been the aim of this investigation to develop simple quality assurance methods suitable for checking the function of these features on a routine basis. Several types of phantoms have been investigated: an absorption step wedge, an emission step wedge and an emission continuous wedge. The absorption step wedge when used with a usual gamma-camera checking source gave the least satisfactory results. The emission step wedge is best suited for test procedures for background subtraction of the colour printer display and for contrast enhancement of the photo display, whereas the emission continuous wedge gave best results in testing the contrast enhancement of the colour printer display. An evaluation of the relative merits of the phantoms indicates that the emission step wedge is best suited for quality assurance tests. (author)

  18. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  19. Clinical Application of Wedge Factor

    International Nuclear Information System (INIS)

    Choi, Dong Rak; Ahn, Yong Chan; Huh, Sueng Jae

    1995-01-01

    Purpose : In general. The wedge factors which are used clinical practices are ignored of dependency on field sizes and depths. In this present, we investigated systematically the depth and field size dependency to determine the absorbed dose more accurately. Methods : The wedge factors for each wedge filter were measured at various depth (depth of Dmax, 5cm, 10cm, and 15cm) and field sizes (5 X 5cm, 10 X 10cm, 15 X 15cm, 20 X 20 cm) by using 4-,6-, and 10-MV X rays. By convention, wedge factors are determined by taking the ratio of the central axis ionization readings when the wedge filter is in place to those of the open field in same field size and measurement depth. In this present work, we determined the wedge factors for 4-, 6-, and 10-MV X rays from Clinac 600C and 2100C linear accelerators (manufactured by Varian Associates, Inc., Palo Alto, CA). To confirm that the wedge was centered., measurements were done with the two possible wedge position and various collimator orientations. Results : The standard deviations of measured values are within 0.3% and the depth dependence of wedge factor is greater for the lower energies. Especially, the variation of wedge factor is no less than 5% for 4- and 6- MV X rays with more than 45 .deg. wedge filter. But there seems to be a small dependence on field size. Conclusion : The results of this study show a dependence on the point of measurement. There also seems to be a small dependence on field size. And so, we should consider the depth and field size dependence in determining the wedge factors. If one wedge factor were to be used for each wedge filter, it seems that the measurement for a 10cm X 10cm field size at a depth of 10cm would be a reasonable choice

  20. Measurement of hepatic venous pressure gradient revisited: Catheter wedge vs balloon wedge techniques

    Directory of Open Access Journals (Sweden)

    S Timothy Chelliah

    2011-01-01

    Full Text Available Aims: To evaluate the accuracy of measurement of hepatic venous pressure gradient by catheter wedge as compared to balloon wedge (the gold standard. Materials and Methods: Forty-five patients having a clinical diagnosis of intrahepatic portal hypertension were subjected to the two different types of pressure measurements (catheter wedge and balloon wedge during transjugular liver biopsy under fluoroscopic guidance. Statistical Analysis: Spearman′s rank correlation coefficient, Bland-Altman plot for agreement, and single measure intraclass correlation were used for analysis of data. Results: There was a close correlation between the results obtained by both the techniques, with highly significant concordance (P < 0.0001. Hepatic venous pressure gradients as measured by the catheter wedge technique were either equal to or less than those obtained by the balloon wedge technique. Conclusions: The difference in hepatic venous pressure gradients measured by the two techniques is insignificant.

  1. Rethinking wedges

    Science.gov (United States)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    a longer-term focus, the root difference lies in the perceived urgency of the climate problem [6]. The emission reductions required by current targets, let alone a complete phase-out of emissions, demand fundamental, disruptive changes in the global energy system over the next 50 years. Depending on what sort of fossil-fuel infrastructure is replaced and neglecting any emissions produced to build and maintain the new infrastructure (see, e.g. [43]), a single wedge represents 0.7-1.4 terawatts (TW) of carbon-free energy (or an equivalent decrease in demand for fossil energy). Whether the changes to the energy system are called incremental or revolutionary, few would dispute that extensive innovation of technologies will be necessary to afford many terawatts of carbon-free energy and reductions in energy demand [42, 44, 45]. Currently, only a few classes of technologies might conceivably provide carbon-free power at the scale of multiple terawatts, among them fossil fuels with carbon capture and storage (CCS), nuclear, and renewables (principally solar and wind, and perhaps biomass) [42, 46, 47]. However, CCS has not yet been commercially deployed at any centralized power plant; the existing nuclear industry, based on reactor designs more than a half-century old and facing renewed public concerns of safety, is in a period of retrenchment, not expansion; and existing solar, wind, biomass, and energy storage systems are not yet mature enough to provide affordable baseload power at terawatt scale. Each of these technologies must be further developed if they are to be deployed at scale and at costs competitive with fossil energy. Yet because investments in the energy sector tend to be capital intensive and long term, research successes are often not fully appropriable [48], and technologies compete almost entirely on the price of delivered electricity, private firms tend to underinvest in R&D, which has made energy one of the least innovative industry sectors in modern

  2. Clinical implementation of enhanced dynamic wedge

    International Nuclear Information System (INIS)

    Klein, Eric E.; Zhu Xiaorong; Low, Daniel A.; Drzymala, Robert E.; Harms, William B.; Purdy, James A.

    1996-01-01

    Purpose/Objective: Our clinic has been using dynamic wedge since 1993. We appreciate the customized wedge shaped distributions (independent of field size) and the positive aspects of replacing filters with dynamic jaw motion. Varian recently introduced enhanced dynamic wedge (EDW) software. The EDW can be delivered over; a 30 cm field, asymmetric fields (in both wedged and non-wedged directions), and additional wedge angles (10, 15, 20, 25, 30, 45, 60). The EDW software creates customized segmented treatment tables (STTs) for the desired wedge angle and field size. The STT is created from a 'golden' fluence profile of 60 deg. over 30 cm. The wedge STT is derived using ratio-of-tangents and the truncated field segment extracted from the 'golden' table. A review of our dosimetric studies will be presented as well as a discussion of clinical implementation issues including treatment planning and quality assurance. Methods and Materials: We tested a set of angle and field size combinations chosen to encompass clinical needs. The wedge factor (WF) was measured using an ionization chamber along central axis for symmetric fields ranging from 4 to 20 cm, and asymmetric fields to 30 cm. The non-wedged field dimension was found to be inconsequential. An algorithm was developed to predict the wedge factor for any angle and field dimension. Isodoses were measured with film and used for profile evaluation and treatment planning development. The 'golden' fluence table was used to create a universal 60 deg. 'physical' wedge for planning. The universal wedge is combined with an open field (to derive intermediate wedge angles) and blocked according to the treatment field segment. A quality assurance program was developed that relies on multi-point diode measurements. Results: We found the WF is a function of wedge angle and field settings of the final sweep position. There is a nearly linear dependence of WF vs. field size thus allowing a minimal WF table. This eliminates a

  3. A modern approach to designing ice rinks and arenas

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, R.; Laitinen, A. [VTT Building Technology (Finland)

    1998-06-01

    Energy consumption and operating costs are important issues for ice-skating rinks, where they have to be considered alongside indoor climate and ice quality. The energy consumption of an ice area is determined by its construction characteristics, plant system and operational aspects. Another key factor is the ice; most energy flows are connected in some way to the refrigeration process. The potential for energy savings, design features that help to reduce operating costs, the energy audit programme coordinated by the Finnish Ice Hockey Association and the example of the renovation of an ice rink at Laitila in Finland are described. The components of energy efficient ice areas (lighting, ice resurfacing, ventilation, refrigeration, automation, construction and envelope) are summarised in a diagram.

  4. Fluxes and burial of particulate organic carbon along the Adriatic mud-wedge (Mediterranean Sea)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Giani, M.; Ravaioli, M.; Miserocchi, S.

    2012-04-01

    Clinoform-shaped deposits are ubiquitous sedimentological bodies of modern continental margins, including both carbonate and silicoclastic platforms. They formed after the attainment of the modern sea level high-stand (mid-late Holocene) when river outlets and shoreline migrated landward. As clinoform-shape deposits are essential building blocks of the infill of sedimentary basins, they are sites of intense organic carbon (OC) deposition and account for a significant fraction of OC burial in the ocean during interglacial periods. In this study, we focused on sigmoid clinoforms that are generally associated with low-energy environments. In particular, we characterized the modern accumulation and burial of OC along the late-Holocene sigmoid in the Western Adriatic Sea (Mediterranean Sea). This sedimentary body consists of a mud wedge recognizable on seismic profiles as a progradational unit lying on top the maximum flooding surface that marks the time of maximum landward shift of the shoreline attained around 5.5 kyr cal BP. In the last two decades, several projects have investigated sediment dynamics and organic geochemistry along the Adriatic mud wedge (e.g., PRISMA, EURODELTA, EuroSTRATAFORM, PASTA, CIPE, VECTOR). All these studies increased our understanding of strata formation and organic matter cycling in this epicontinental margin. The overarching goal of this study was to combine the results gained during these projects with newly acquired data to assess fluxes to seabed and burial efficiency of organic carbon along the uppermost strata of the Adriatic mud-wedge. Our study benefited of an extensive number of radionuclide-based (Pb-210, and Cs-137) sediment accumulation rates and numerous biogeochemical data of surface sediments and sediment cores (organic carbon, total nitrogen, radiocarbon measurements, carbon stable isotopes, and biomarkers). In addition, because the accumulation of river-borne sediment may or may not be linked to a specific source, another

  5. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    Science.gov (United States)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  6. Comparing virtual with physical wedge for the transmission factors

    International Nuclear Information System (INIS)

    Lin Kuei-Hua; Lin Jao-Perng; Chu Tieh-Chi; Liu Mu-Tai

    2000-01-01

    This paper investigates the discrepancies between virtual wedge and physical wedge at the standard wedge angles of 15, 30, 45, and 60 degrees. The dose distributions for virtual wedge and physics wedge were measured by using a commercial multichamber detector array. The transmission factors of each virtual wedge and physical wedge were measured for Siemens PRIMUS 3008 linear accelerator by single ion chamber. These factors were used to set-up the clinical treatment data tables for clinical dosimetry for virtual wedge utilization. The Wellhoefer IC15, 0.13cc chamber was installed on the chamber frame of Wellhoefer water phantom (48x48x40 cm 3 ). The surface of water was at 100 cm SSD. The output factor in water were measured on the central axis of each field at 5 cm depth for 6MV or 10 cm depth for 15MV X-ray on virtual wedge and physical wedge. Comparing virtual wedge with physical wedge for transmission factor as field size range from 4x4 to 25x25 cm 2 . We have measured the dose distributions using the chamber array for 25x25 cm 2 virtual wedge fields and physical wedge fields at wedge angles of 15deg to 60deg. The dose profiles at various depths were also measured using the chamber array. The transmission factors of each physical wedge were slowly increased as field sizes increase, and had different value for each wedge angle. The transmission factors of each virtual wedge were almost constant value as 1.0 for each wedge angle. The results show that the dose profiles including the penumbra dose measured by the chamber array for virtual wedge agree with those measured for the physical wedge. For transmission factors of virtual wedge were constant value as 1.0 for each angles, namely output without wedge is almost equal to output with wedge on the central axis. Virtual wedge has practical and dosimetric advantages over physical wedge. (author)

  7. Contralateral breast dose reduction using a virtual wedge

    International Nuclear Information System (INIS)

    Yeo, In Hwan; Kim, Dae Yong; Kim, Tae Hyun; Shin, Kyung Hwan; Chie, Eui Kyu; Park, Won; Lim, Do Hoon; Huh, Seung Jae; Ahn, Yong Chan

    2005-01-01

    To evaluate the contralateral breast dose using a virtual wedge compared with that using a physical wedge and an open beam in a Siemens linear accelerator. The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated 17 x 10 cm field was used. For the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedge medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 60-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side (2.70± 1.46%) compared to medial beam with a wedge (both physical and virtual) (3.25 ± 1.59%). The differences were larger with a physical wedge (0.99 ± 0.18%) than a virtual wedge (0.10 ± 0.01%) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the prescribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. The virtual wedge equipped

  8. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  9. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.

    2009-01-01

    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable for...

  10. A practical method to calculate head scatter factors in wedged rectangular and irregular MLC shaped beams for external and internal wedges

    International Nuclear Information System (INIS)

    Georg, Dietmar; Olofsson, Joergen; Kuenzler, Thomas; Aiginger, Hannes; Karlsson, Mikael

    2004-01-01

    Factor based methods for absorbed dose or monitor unit calculations are often based on separate data sets for open and wedged beams. The determination of basic beam parameters can be rather time consuming, unless equivalent square methods are applied. When considering irregular wedged beams shaped with a multileaf collimator, parametrization methods for dosimetric quantities, e.g. output ratios or wedge factors as a function of field size and shape, become even more important. A practical method is presented to derive wedged output ratios in air (S c,w ) for any rectangular field and for any irregular MLC shaped beam. This method was based on open field output ratios in air (S c ) for a field with the same collimator setting, and a relation f w between S c,w and S c . The relation f w can be determined from measured output ratios in air for a few open and wedged fields including the maximum wedged field size. The function f w and its parametrization were dependent on wedge angle and treatment head design, i.e. they were different for internal and external wedges. The proposed method was tested for rectangular wedged fields on three accelerators with internal wedges (GE, Elekta, BBC) and two accelerators with external wedges (Varian). For symmetric regular beams the average deviation between calculated and measured S c,w /S c ratios was 0.3% for external wedges and about 0.6% for internal wedges. Maximum deviations of 1.8% were obtained for elongated rectangular fields on the GE and ELEKTA linacs with an internal wedge. The same accuracy was achieved for irregular MLC shaped wedged beams on the accelerators with MLC and internal wedges (GE and Elekta), with an average deviation <1% for the fields tested. The proposed method to determine output ratios in air for wedged beams from output ratios of open beams, combined with equivalent square approaches, can be easily integrated in empirical or semi-empirical methods for monitor unit calculations

  11. Inclined indentation of smooth wedge in rock mass

    Science.gov (United States)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  12. Disintegration of a marine-based ice stream - evidence from the Norwegian Channel, north-eastern North Sea

    Science.gov (United States)

    Morén, Björn M.; Petter Sejrup, Hans; Hjelstuen, Berit O.; Haflidason, Haflidi; Schäuble, Cathrina; Borge, Marianne

    2014-05-01

    The Norwegian Channel Ice Stream repeatedly drained large part of the Fennoscandian Ice Sheet through Mid and Late Pleistocene glacial stages. During parts of Marine Isotope Stages 2 and 3, glacial ice from Fennoscandia and the British Isles coalesced in the central North Sea and the Norwegian Channel Ice Stream reached the shelf edge on multiple occasions. Through the last decades a large amount of acoustic and sediment core data have been collected from the Norwegian Channel, providing a good background for studies focussing on stability- and development-controlling parameters for marine-based ice streams, the retreat rate of the Norwegian Channel Ice Stream, and the behaviour of the Fennoscandian Ice Sheet. Further, this improved understanding can be used to develop more accurate numerical climate models and models which can be used to model ice-sheet behaviour of the past as well as the future. This study presents new acoustic records and data from sediment cores which contribute to a better understanding of the retreat pattern and the retreat rate of the last ice stream that occupied the Norwegian Channel. From bathymetric and TOPAS seismic data, mega-scale glacial lineations, grounding-zone wedges, and end moraines have been mapped, thereby allowing us to reconstruct the pro- and subglacial conditions at the time of the creation of these landforms. It is concluded that the whole Norwegian Channel was deglaciated in just over 1 000 years and that for most of this time the ice margin was located at positions reflected by depositional grounding-zone wedges. Further work will explore the influence of channel shape and feeding of ice from western Norwegian fjords on this retreat pattern through numerical modelling.

  13. Checking the virtual treatment modality Wedge from Siemens; Verificacion de la modalidad de tratamiento virtual WEDGE de SIEMENS

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The treatment modality Virtual Wedge (VW) or implemented by Siemens virtual wedge in electron linear accelerators achieved dose distributions are similar but not identical, to those obtained with physical wedges. Among the advantages against the latter is the greater ease of use, wedge factor close to one, and lower peripheral dose. However, these benefits are to be effective requires a through quality control dependence because a larger number of parameters that control the generation of the beam, the dose monitor system and the movement of the jaws of the collimator. We performed a study of the wedge taking into account different configurations that can affect their behavior from the dosimetric point of view.

  14. Effects of Lateral Heel Wedges and Lateral Forefoot Wedge on the Knee Adduction Moment in Healthy Male Students

    Directory of Open Access Journals (Sweden)

    Fatemeh Shamsi

    2012-01-01

    Full Text Available Objective: Lateral wedged insoles have been designed to decrease the force applied on the medial knee compartment. The aim of this study was to assess the effects of laterally wedged insoles regarding to the placement of the wedge under the sole (under the heel or under the forefoot on the knee adduction moment and the ground reaction forces. Material & Methods: In this pretest-posttest study, three-dimensional gait analysis was performed on 20 healthy men between 18-30 years old. Knee adduction moment and ground reaction forces were compared among following three types of insoles: a flat insole, a 6˚ laterally inclined heel wedged insole and a 6˚ laterally- inclined forefoot wedged insole. Results: there was no difference between three conditions (flat insole (9.72±1.501, lateral heel wedge (9.866±2.141 and lateral forefoot wedge (9.952±1.986 in peak knee adduction moment (P>0.05. Ground reaction forces and spatiotemporal parameters of gait were not affected by any types of these insoles (P>0.05. Conclusion: Based on the current finding, placement of the lateral wedge under the sole, that is, under the heel or under the forefoot has no effect on the efficacy of these insoles on the adduction moment of the knee and ground reaction forces.

  15. Dosimetry and clinical implementation of dynamic wedge

    International Nuclear Information System (INIS)

    Klein, Eric E.; Low, Daniel A.; Meigooni, Ali S.; Purdy, James A.

    1995-01-01

    Purpose: Wedge-shaped isodoses are desired in a number of clinical situations. Physical wedge filters have provided nominal angled isodoses with dosimetric consequences of beam hardening, increased peripheral dosing, nonidealized gradients at deep depths, along with the practical consequences of filter handling and placement problems. Dynamic wedging uses a combination of a moving jaw and changing dose rate to achieve angled isodoses. The clinical implementation of dynamic wedge and an accompanying quality assurance program are discussed in detail. Methods and Materials: The accelerator at our facility has two photon energies (6 MV and 18 MV), currently with dynamic wedge angles of 15 deg. , 30 deg. , 45 deg. , and 60 deg. . The segmented treatment tables (STT) that drive the jaw in concert with a changing dose rate are unique for field sizes ranging from 4.0 cm to 20.0 cm in 05 cm steps, resulting in 256 STTs. Transmission wedge factors were measured for each STT with an ion chamber. Isodose profiles were accumulated with film after dose conversion. For treatment-planning purposes, d max orthogonal dose profiles were measured for open and dynamic fields. Physical filters were assigned empirically via the ratio of open and wedge profiles. Results: A nonlinear relationship with wedge factor and field size was found. The factors were found to be independent of the stationary field setting or second order blocking. Dynamic wedging provided more consistent gradients across the field compared with physical filters. Percent depth doses were found to be closer to open field. The created physical filters provided planned isodoses that closely resembled measured isodoses. Comparative isodose plans show improvement with dynamic wedging. Conclusions: Dynamic weding has practical and dosimetric advantages over physical filters. Table collisions with physical filters are alleviated. Treatment planning has been solved with an empirical solution. Dynamic wedge is a positive

  16. Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge

    Science.gov (United States)

    Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.

    2013-12-01

    We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean

  17. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  18. Wedged multilayer Laue lens

    International Nuclear Information System (INIS)

    Conley, Ray; Liu Chian; Qian Jun; Kewish, Cameron M.; Macrander, Albert T.; Yan Hanfei; Maser, Joerg; Kang, Hyon Chol; Stephenson, G. Brian

    2008-01-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures

  19. Human locomotion on ice: the evolution of ice-skating energetics through history.

    Science.gov (United States)

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  20. Beam profiles in the nonwedged direction for dynamic wedges

    International Nuclear Information System (INIS)

    Lydon, J.M.; Rykers, K.L.

    1996-01-01

    One feature of the dynamic wedge is the improved flatness of the beam profile in the nonwedged direction when compared to fixed wedges. Profiles in the nonwedged direction for fixed wedges show a fall-off in dose away from the central axis when compared to the open field profile. This study will show that there is no significant difference between open field profiles and nonwedged direction profiles for dynamically wedged beams. The implications are that the dynamic wedge offers an improved dose distribution in the nonwedged direction that can be modelled by approximating the dynamically wedged field to an open field. This is possible as both the profiles and depth doses of the dynamically wedged fields match those of the open fields, if normalized to d max of the same field size. For treatment planning purposes the effective wedge factor (EWF) provides a normalization factor for the open field depth dose data set. Data will be presented to demonstrate that the EWF shows relatively little variation with depth and can be treated as being independent of field size in the nonwedged direction. (author)

  1. Manual cross check of computed dose times for motorised wedged fields

    International Nuclear Information System (INIS)

    Porte, J.

    2001-01-01

    If a mass of tissue equivalent material is exposed in turn to wedged and open radiation fields of the same size, for equal times, it is incorrect to assume that the resultant isodose pattern will be effectively that of a wedge having half the angle of the wedged field. Computer programs have been written to address the problem of creating an intermediate wedge field, commonly known as a motorized wedge. The total exposure time is apportioned between the open and wedged fields, to produce a beam modification equivalent to that of a wedged field of a given wedge angle. (author)

  2. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  3. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    OpenAIRE

    Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.; Gallagher, M. W.; Crosier, J.; Bower, K. N.; Ladkin, R. S.; Dorsey, J. R.

    2012-01-01

    In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phas...

  4. Oxygen isotope analyses of ground ice from North of West Siberia, from Yakutia and from Chukotka

    International Nuclear Information System (INIS)

    Vaikmaee, R.; Vassilchuk, Y.

    1991-01-01

    The aim of the present work is to make the large amount of original factual material obtained by studying the oxygen isotope composition in different types of permafrost and ground ice available to specialists. The samples analysed were systematically collected over a period of many years from different permafrost areas of the Soviet Union with the aim of elucidating and studying the regularities of isotope composition formation in different types of ground ice and selecting the most promising objects for paleoclimatic reconstructions. Much attention was paid on methodical problems of isotopic analysis starting with the collection, transportation and storage of samples up to the interpretation of the results obtained. Besides permafrost isotope data covering a large geographical area, a good deal of data concerns the isotopic composition of precipitation and surface water in permafrost areas. This is of great consequence as regards the understanding of the regularities of isotope compositions formation in permafrost. The largest chapter gives a brief account of the isotopic composition in different types of ground ice. The conclusion has been reached that in terms of paleoclimatic research syngenetic ice wedges are most promising. Grounding on the representative data bank it may be maintained with certainty that the isotopic composition provides a reliable basis for the differentiation of ice wedges originating in different epochs , however, it also reveals regional regularities. Much more complicated is the interpretation of textural ice isotopic composition. In some cases it is possible to use the distribution of 18 O in vertical sections of textural ice for their stratigraphic division. One has to consider here different mechanisms of textural ice formation as a result of which the initial isotopic composition of the ice-forming water can be in some cases highly modified. A problem of its own is the investigation of 18 O variations in the section of massive

  5. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    Science.gov (United States)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  6. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  7. Dosimetric parameters of enhanced dynamic wedge for treatment planning and verification

    International Nuclear Information System (INIS)

    Leavitt, Dennis D.; Lee, Wing Lok; Gaffney, David K.

    1996-01-01

    Purpose/Objective: Enhanced Dynamic Wedge (EDW) is an intensity-modulated radiotherapy technique in which one collimating jaw sweeps across the field to define a desired wedge dose distribution while dose rate is modified according to jaw position. This tool enables discrete or continuous wedge angles from zero to sixty degrees for field widths from three cm to 30 cm in the direction of the wedge, and up to 40 cm perpendicular to the wedge direction. Additionally, asymmetric wedge fields not centered on the line through isocenter can be created for applications such as tangential breast irradiation. The unique range of field shapes and wedge angles introduce a new set of dosimetric challenges to be resolved before routine clinical use of EDW, and especially require that a simple set of independent dose calculation and verification techniques be developed to check computerized treatment planning results. Using terminology in common use in treatment planning, this work defines the effective wedge factor vs. field width and wedge angle, evaluates the depth dose vs. open field values, defines primary intensity functions from which specific dynamic wedges can be calculated in treatment planning systems, and describes the technique for independent calculation of Monitor Units for EDW fields. Materials and Methods: Using 6- and 18-MV beams from a CI2100C, EDW beam profiles were measured in water phantom for depths from near-surface to 30 cm for the full range of field widths and wedge angles using a linear detector array of 25 energy-compensated diodes. Asymmetric wedge field profiles were likewise measured. Depth doses were measured in water phantom using an ionization chamber sequentially positioned to depths of 30 cm. Effective wedge factors for the full range of field widths and wedge angles were measured using an ionization chamber in water-equivalent plastic at a depth of 10 cm on central axis. Dose profiles were calculated by computer as the summation of a series

  8. Chevron closing base wedge bunionectomy.

    Science.gov (United States)

    Bruyn, J M

    1993-01-01

    The Chevron-base wedge Association for Osteosynthesis fixated bunionectomy provides a stable, aggressive correction of the severe hallux abducto valgus deformity. It is intended for the bunion requiring a double osteotomy in order to adequately reduce both intermetatarsal and proximal articular facet angle with minimal shortening and elevation. This article presents the rationale for the procedure, technique, and a 4-year follow-up of six patients with eight Chevron-base wedge bunionectomies.

  9. Dosimetry verifications of the physical parameters of virtual wedge on a Siemens accelerator

    International Nuclear Information System (INIS)

    Zhong Heli; Li Xiaodong; Li Longxing

    2002-01-01

    Objective: To verify the wedge angle of virtual wedge and the relation between wedge factor and beam energy, field size, wedge angle and to study the difference in percent depth dose (PDD) of virtual wedge field, hard wedge field and open field. Methods: Using wedge angle and wedge factor of 15 degree, 30 degree, 45 degree and 60 degree virtual wedge of Siemens Mevatron 6 MV and Primus 8 MV, 18 MV X rays were measured by RFA-plus 3D water phantom and RK finger chamber the PDD of the virtual wedge field, hard wedge field and open field were measured by Kodak XV-2 verifying film and FDM-300 film dosimeter. These PDDs were normalized to Dmax then compared. Results: There was good conformation between virtual wedge measured by four point method and set value. The virtual wedge was almost equal to 1, with a maximal variation of 0.031 no matter what the value of beam energy, field size or wedge angle was. Generally, for certain energy and field size, the wedge factor of larger wedge angle was slightly larger than smaller wedge angle. For certain energy and wedge angle, the wedge factor of larger field was also a little larger than smaller field. The PDD of virtual wedge field was similar to that of open field. Conclusions: The four point method measurement for virtual wedge angle is good for daily QA. Radiotherapy of virtual wedge field is not only simpler than hard wedge field, but also spares the beam output. The PDD conferment between virtual field and open field simplifies radiation treatment planning and increases the accuracy of wedge field therapy

  10. Ice gouging effects on the eastern Arctic shelf of Russia

    Directory of Open Access Journals (Sweden)

    Libina N. V.

    2018-03-01

    Full Text Available Results of the latest geological and geophysical marine cruises indicate activating of natural risks (or hazards processes connected with ice gouging, permafrost melting, landslides, coastal thermoerosion and seismic activity. These processes represent great risks for all human marine activities including exploitation of the Northern Sea Route (NSR. One of the most dangerous natural processes is ice gouging, which results in the ploughing of the seabed by an underwater part of ice bodies. Ice gouging processes can create some emergency situation in the construction and operation of any underwater engineering structures. Natural seismoacoustic data obtained within the eastern Arctic shelf of Russia have recorded numerous ice gouging trails both in the coastal shallow and deep parts of the shelf as well. Modern high-resolution seismic devices have allowed receive detailed morphology parameters of underwater ice traces. The actual depth and occurrence of traces of the effect of ice formations on the bottom significantly exceed the calculated probability of occurrence according to ice conditions. Seismic data have allowed classify all these traces and subdivide them on modern coastal and ancient (or relict deep ones. During Late Quaternary sea level down lifting the absence of cover glaciation did not exclude the presence of powerful drifting ice that produced ice gouging processes in the present deep part of the sea. Afterwards during sea level up lifting ice gouging follows to the sea level changes. In this case there could be destructed some dense clay dewatered sediment layer formed during the regression period. Further, during the repeated transgressive-regressive sea level fluctuations the generated ice traces could be frozen and thus preserved until our days. Modern coastal ice traces into marine shallow are the result of nowadays interaction of drifting ice and seabed that in conditions of global climate warming are activated and represent

  11. Diffraction by an immersed elastic wedge

    CERN Document Server

    Croisille, Jean-Pierre

    1999-01-01

    This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.

  12. Convolution-wedge product of fields

    International Nuclear Information System (INIS)

    Diep, D.N.; Duc, D.V.; Tan, H.V.; Viet, N.A.

    2007-07-01

    In this paper we use the pair of electric-magnetic (or GNO, or Langlands) duality groups G = Sp(1) and L G = SO(3) and the T-transformation in mirror symmetry (or the S-duality, or the Fourier-Mukai transformation) to define the wedge product of fields: first by using gauge transformation, we reduce the fields with values in LieG = sp(1) to the fields with values in the Lie algebra of the maximal torus t subset of LieG = sp(1). Next we use the Fourier-Mukai transformation of fields to have the images as fields with values in the Lie algebra of the Langlands dual torus L t in Lie L G = so(3). The desired wedge product of two fields is defined as the pre-image of the ordinary wedge product of images with values in L t subset of so(3). (author)

  13. Field size dependence of wedge factor: miniphantom vs full phantom measurements

    International Nuclear Information System (INIS)

    Allen Li, X.; Szanto, J.; Soubra, M.; Gerig, L. H.

    1995-01-01

    It is empirically known that the transmission factor for wedge in a high-energy photon beam is dependent upon field size and depth of measurement. The field-size dependence of wedge factors may be attributed to changes in (i) head scatter, (ii) phantom scatter, and (iii) backscatter from the wedge into the linac monitor chamber. In this work we present the results of studies designed to examine each of these factors in isolation. The wedge factors for wedges with nominal wedge angles of 15 deg. , 30 deg. , 45 deg. and 60 deg. were measured with a 3-g/cm 2 -diameter narrow cylindrical phantom (miniphantom), a brass cap with 1.5-g/cm 2 side-wall thickness and a full water phantom for 6-, 10- and 18-MV photon beams. The measurements were performed with and without flattening filter in place. The wedge factors measured with the miniphantom and the brass cap exclude the phantom scatter contribution. It has been found that the field-size behaviour of wedge factor measured with full water phantom is similar to that measured with the miniphantom and cap. This indicates that the head scatter radiation is the major contributor to the field size dependence of wedge factors. Wedge factors measured with water phantom are up to 5.0% smaller than those measured with miniphantom. This difference increases with wedge angle. When Measured with the flattening filter removed, the field size dependence of the wedge factor is reduced. This justify that the flattening filter is one of the major contributors to head scatters. The measurement results made with the brass cap agree well with those made by using the miniphantom. By measuring the monitor chamber output, it is found that the backscatters from the wedge into the linac ion chamber have little effect on the field size dependence of the wedge factor

  14. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  15. Group sequential designs for stepped-wedge cluster randomised trials.

    Science.gov (United States)

    Grayling, Michael J; Wason, James Ms; Mander, Adrian P

    2017-10-01

    The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs. Utilising the error spending approach to group sequential trial design, we detail the assumptions required for the determination of stepped-wedge cluster randomised trials with interim analyses. We consider early stopping for efficacy, futility, or efficacy and futility. We describe first how this can be done for any specified linear mixed model for data analysis. We then focus on one particular commonly utilised model and, using a recently completed stepped-wedge cluster randomised trial, compare the performance of several designs with interim analyses to the classical stepped-wedge design. Finally, the performance of a quantile substitution procedure for dealing with the case of unknown variance is explored. We demonstrate that the incorporation of early stopping in stepped-wedge cluster randomised trial designs could reduce the expected sample size under the null and alternative hypotheses by up to 31% and 22%, respectively, with no cost to the trial's type-I and type-II error rates. The use of restricted error maximum likelihood estimation was found to be more important than quantile substitution for controlling the type-I error rate. The addition of interim analyses into stepped-wedge cluster randomised trials could help guard against time-consuming trials conducted on poor performing treatments and also help expedite the implementation of efficacious treatments. In future, trialists should consider incorporating early stopping of some kind into

  16. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  17. Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice.

    Science.gov (United States)

    Tripati, Aradhna; Darby, Dennis

    2018-03-12

    Earth's modern climate is defined by the presence of ice at both poles, but that ice is now disappearing. Therefore understanding the origin and causes of polar ice stability is more critical than ever. Here we provide novel geochemical data that constrain past dynamics of glacial ice on Greenland and Arctic sea ice. Based on accurate source determinations of individual ice-rafted Fe-oxide grains, we find evidence for episodic glaciation of distinct source regions on Greenland as far-ranging as ~68°N and ~80°N synchronous with ice-rafting from circum-Arctic sources, beginning in the middle Eocene. Glacial intervals broadly coincide with reduced CO 2 , with a potential threshold for glacial ice stability near ~500 p.p.m.v. The middle Eocene represents the Cenozoic onset of a dynamic cryosphere, with ice in both hemispheres during transient glacials and substantial regional climate heterogeneity. A more stable cryosphere developed at the Eocene-Oligocene transition, and is now threatened by anthropogenic emissions.

  18. Tax wedge in Croatia, Austria, Hungary, Poland and Greece

    Directory of Open Access Journals (Sweden)

    Marin Onorato

    2016-06-01

    Full Text Available The aim of this paper is to compare the tax burden on labour income in Croatia, Austria, Greece, Hungary and Poland in 2013. The Taxing Wages methodology has been applied to hypothetical units across a range of gross wages in order to calculate net average tax wedge, net average tax rate, as well as other relevant indicators. When it comes to single workers without children, the smallest tax wedge for workers earning less than the average gross wage was found in Croatia, while Poland had the smallest tax wedge for above-average wages. Due to a progressive PIT system, the tax wedge for a single worker in Croatia reaches 50% at 400% of the average gross wage, equalling that of Austria, Greece and Hungary. Tax wedges for couples with two children show a similar trend.

  19. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  20. Dynamics of the ice mass in Antarctica in the time of warming

    Directory of Open Access Journals (Sweden)

    V. M. Kotlyakov

    2017-01-01

    Full Text Available The modern age of global warming affect the general state of the Antarctic ice sheet and its mass balance. Studies of the Southern polar region of the Earth during the International Geophysical Year  (1957–1958 called the assumption of growth in the modern ice mass in East Antarctica. However, with the development of new methods, this conclusion has been questioned. At the turn of the century the study of global processes Earth started to use the satellite radar or laser altimetry and satellite gravimetry, which allows determining change of different masses on the Earth, including ice bodies. From the beginning of the XXI century, these methods have been used to calculate the continental ice balance. In our study, we analyze different data of recent years, supporting the earlier conclusion on continued growth of the ice mass in East Antarctica. How‑ ever, in West Antarctica and the Antarctic Peninsula, on the contrary, there is increased loss of ice, leveling the increased income of ice mass of in the Central Antarctica. So all in all in the modern era of global warm‑ ing, the ice mass in Antarctica appears to be decreasing despite some growth of the East Antarctic ice sheet. Fluctuations of land ice mass reflect in the sea level variations, but in comparison with the scale of the Ant‑ arctic ice sheet its contribution to sea‑level rise is not so significant. The main reason for this is that the mass accumulation in East Antarctica with significant probability prevails over the ice outflow.

  1. Comparison of dosimetric methods for virtual wedge analysis

    International Nuclear Information System (INIS)

    Bailey, M.; Nelson, V.; Collins, O.; West, M.; Holloway, L.; Rajapaske, S.; Arts, J.; Varas, J.; Cho, G.; Hill, R.

    2004-01-01

    Full text: The Siemens Virtual Wedge (Concord, USA) creates wedged beam profile by moving a single collimator jaw across the specified field size whilst varying the dose rate and jaw speed for use in the delivery of radiotherapy treatments. The measurement of the dosimetric characteristics of the Siemens Virtual Wedge poses significant challenges to medical physicists. This study investigates several different methods for measuring and analysing the virtual wedge for data collection for treatment planning systems and ongoing quality assurance. The beam profiles of the Virtual Wedge (VW) were compared using several different dosimetric methods. Open field profiles were measured with Kodak X-Omat V (Rochester, NY, USA) radiographic film and compared with measurements made using the Sun Nuclear Profiler with a Motorized Drive Assembly (MDA) (Melbourne, FL, USA) and the Scanditronix Wellhofer CC13 ionisation chamber and 24 ion Chamber Array (CA24) (Schwarzenbruck, Germany). The resolution of each dosimetric method for open field profiles was determined. The Virtual Wedge profiles were measured with radiographic film the Profiler and the Scanditronix Wellhofer CA 24 ion Chamber Array at 5 different depths. The ease of setup, time taken, analysis and accuracy of measurement were all evaluated to determine the method that would be both appropriate and practical for routine quality assurance of the Virtual Wedge. The open field profiles agreed within ±2% or 2mm for all dosimetric methods. The accuracy of the Profiler and CA24 are limited to half of the step size selected for each of these detectors. For the VW measurements a step size of 2mm was selected for the Profiler and the CA24. The VW profiles for all dosimetric methods agreed within ±2% or 2mm for the main wedged section of the profile. The toe and heel ends of the wedges showed the significant discrepancies dependent upon the dosimetry method used, up to 7% for the toe end with the CA24. The dosimetry of the

  2. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    Science.gov (United States)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  3. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    Science.gov (United States)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  4. A review of modern instrumental techniques for measurements of ice cream characteristics.

    Science.gov (United States)

    Bahram-Parvar, Maryam

    2015-12-01

    There is an increasing demand of the food industries and research institutes to have means of measurement allowing the characterization of foods. Ice cream, as a complex food system, consists of a frozen matrix containing air bubbles, fat globules, ice crystals, and an unfrozen serum phase. Some deficiencies in conventional methods for testing this product encourage the use of alternative techniques such as rheometry, spectroscopy, X-ray, electro-analytical techniques, ultrasound, and laser. Despite the development of novel instrumental applications in food science, use of some of them in ice cream testing is few, but has shown promising results. Developing the novel methods should increase our understanding of characteristics of ice cream and may allow online testing of the product. This review article discusses the potential of destructive and non-destructive methodologies in determining the quality and characteristics of ice cream and similar products. Copyright © 2015. Published by Elsevier Ltd.

  5. Diffusion induced flow on a wedge-shaped obstacle

    International Nuclear Information System (INIS)

    Zagumennyi, Ia V; Dimitrieva, N F

    2016-01-01

    In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium. (paper)

  6. Physichal parameters for wedge filters used in radiotherapy

    International Nuclear Information System (INIS)

    Strunga, Emil

    1995-01-01

    Wedge filters using in radiotherapy up two important problems: attenuation of gamma rays introduced by the presence of wedge filters and spinning of isodoses curves plate. Depending of irradiation geometry, characterised by D w , - source filter distance, D c - source dose's estimate point distance, a - side of irradiation field; nature and size filter: α - wedge angle, μ - linear adsorption coefficient, ε - filter cover attenuation w - filter side, and nature of target volume characterised by μ' - linear absorption coefficient of medium has been estimated absorption factor of wedge filter (k w ) for two irradiation geometry: and spinning angle of isodose plate (Θ): 3) tg θ (μD w (μ'D c - 2 Calculated values has been compared with the experimental measured values, for a cobaltotherapy unit Rokus-M, and the result was that between the two series of dates it is a good concordance

  7. Generalized monitor unit calculation for the Varian enhanced dynamic wedge field

    International Nuclear Information System (INIS)

    Liu Chihray; Kim, Siyong; Kahler, Darren L.; Palta, Jatinder R.

    2003-01-01

    The generalized monitor unit (MU) calculation equation for the Varian enhanced dynamic wedge (EDW) is derived. The assumption of this MU calculation method is that the wedge factor of the EDW at the center of the field is a function of field size, the position of the center of the field in the wedge direction, and the final position of the moving jaw. The wedge factors at the center of the field in both symmetric and asymmetric fields are examined. The difference between calculated and measured wedge factors is within 1.0%. The method developed here is easy to implement. The only datum required in addition to the standard set of conventional physical wedge implementation data is the off-axis output factor for the open field in the reference condition. The off-center point calculation is also examined. For the off-center point calculation, the dose profile in the wedge direction for the largest EDW field is used to obtain the relative off-center ratio in any smaller wedge field. The accuracy of the off-center point calculation decreases when the point of calculation is too close to the field edge

  8. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  9. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour

    Science.gov (United States)

    Munoz, Yuribia P.; Wellner, Julia S.

    2018-01-01

    Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays: from glacial lineations and moraines in the inner bay to grounding zone wedges and drumlinoid features in the middle bay and streamlined features and meltwater channels in the outer bay areas. In addition, we analysed local variables in the bays and observed the following: (1) the number of landforms found in the bays scales to the size of the bay, but the geometry of the bays dictates the types of features that form; specifically, we observe a correlation between the bay width and the number of transverse features present in the bays. (2) The smaller seafloor features are present only in the smaller glacial systems, indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems. (3) Meltwater channels are abundant on the seafloor, but some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment. Lastly, based on geomorphological evidence, we propose the features found in some of the proximal bay areas were formed during a recent glacial advance, likely the Little Ice Age.

  10. Ice-Rich Yedoma Permafrost: A Synthesis of Circum-Arctic Distribution and Thickness

    Science.gov (United States)

    Strauss, J.; Fedorov, A. N.; Fortier, D.; Froese, D. G.; Fuchs, M.; Grosse, G.; Günther, F.; Harden, J. W.; Hugelius, G.; Kanevskiy, M. Z.; Kholodov, A. L.; Kunitsky, V.; Laboor, S.; Lapointe Elmrabti, L.; Rivkina, E.; Robinson, J. E.; Schirrmeister, L.; Shmelev, D.; Shur, Y.; Spektor, V.; Ulrich, M.; Veremeeva, A.; Walter Anthony, K. M.; Zimov, S. A.

    2015-12-01

    Vast portions of Arctic and sub-Arctic Siberia, Alaska and the Yukon Territory are covered by ice-rich silts that are penetrated by large ice wedges, resulting from syngenetic sedimentation and freezing. Accompanied by wedge-ice growth, the sedimentation process was driven by cold continental climatic and environmental conditions in unglaciated regions during the late Pleistocene, inducing the accumulation of the unique Yedoma permafrost deposits up to 50 meter thick. Because of fast incorporation of organic material into permafrost during formation, Yedoma deposits include low-decomposed organic matter. Moreover, ice-rich permafrost deposits like Yedoma are especially prone to degradation triggered by climate changes or human activity. When Yedoma deposits degrade, large amounts of sequestered organic carbon as well as other nutrients are released and become part of active biogeochemical cycling. This could be of global significance for the climate warming, as increased permafrost thaw is likely to cause a positive feedback loop. Therefore, a detailed assessment of the Yedoma deposit volume is of importance to estimate its potential future climate response. Moreover, as a step beyond the objectives of this synthesis study, our coverage (see figure for the Yedoma domain) and thickness estimation will provide critical data to refine the Yedoma permafrost organic carbon inventory, which is assumed to have freeze-locked between 83±12 and 129±30 gigatonnes (Gt) of organic carbon. Hence, we here synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma permafrost (see figure for the Yedoma domain) in the framework of an Action Group funded by the International Permafrost Association (IPA). The quantification of the Yedoma coverage is conducted by the digitization of geomorphological and Quaternary geological maps. Further data on Yedoma thickness is contributed from boreholes and exposures reported in the scientific literature.

  11. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  12. Irradiation of parametria by double-wedge

    International Nuclear Information System (INIS)

    Weisz, Csaba; Katona, Ernoe; Zarand, Pal; Polgar, Istvan; Nemeth, Gyoergy

    1984-01-01

    The dose distribution of a cobalt unit modified with a double-wedge as well as its combination with intracavitary radiotherapy was investigated. The measurements were made in both Alderson-Rando and wather phantom by using film densitometry, thermoluminescence dosimetry and ionization chambers. The dose distribution calculated on the basis of the Van de Geij program was in good agreement with the measurements. A homogeneous irradiation of the parametria can be obtained by using a combination of intracavitary and external double-wedge irradiation. (author)

  13. Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf

    Science.gov (United States)

    Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann

    2017-10-01

    High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.

  14. Enhanced performance of fast-response 3-hole wedge probes for transonic flows in axial turbomachinery

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)

    2011-01-15

    The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)

  15. The Tax Wedge in Slovenia: International Comparison and Policy Recommendations

    Directory of Open Access Journals (Sweden)

    Primož Dolenc

    2005-09-01

    Full Text Available When taxes on labor are introduced, a “tax wedge” appears between the labor costs paid by the employer (gross wage and the net wage received by an employee. At a certain level of wage, a higher tax wedge increases unemployment and decreases employment, all other things being equal. The paper tackles three main questions: the characteristics of the tax wedge, unemployment and employment rates in OECD countries in the recent past, tax wedge policy in the EU15 and the new EU members and the tax system and its effects on the unemployment and employment rates in Slovenia. We found that the OECD countries can be classified into two groups of countries if the tax wedge, the unemployment rate and the employment rate are taken into consideration. The first group is the high tax wedge, high unemployment rate and low employment rate group of countries, whereas the other group has the opposite characteristics. European member states (old and new have on average a higher tax burden on labor than the OECD average, consequently suffering from higher unemployment rates. Slovenia has an unreasonably high tax wedge; in the EU only Belgium and Germany have a higher tax burden. According to previous and our empirical findings we suggest that Slovenia could benefit from a reduction in the tax wedge.

  16. Innovative wedge axe in making split firewood

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1998-01-01

    Interteam Oy, a company located in Espoo, has developed a new method for making split firewood. The tools on which the patented System Logmatic are based are wedge axe and cylindrical splitting-carrying frame. The equipment costs about 495 FIM. The block of wood to be split is placed inside the upright carrying frame and split in a series of splitting actions using the innovative wedge axe. The finished split firewood remains in the carrying frame, which (as its name indicates) also serves as the means for carrying the firewood. This innovative wedge-axe method was compared with the conventional splitting of wood using an axe (Fiskars -handy 1400 splitting axe costing about 200 FIM) in a study conducted at TTS-Institute. There were eight test subjects involved in the study. In the case of the wedge-axe method, handling of the blocks to be split and of the finished firewood was a little quicker, but in actual splitting it was a little slower than the conventional axe method. The average productivity of splitting the wood and of the work stages related to it was about 0.4 m 3 per effective hour in both methods. The methods were also equivalent of one another in terms of the load imposed by the work when measured in terms of the heart rate. As regards work safety, the wedge-axe method was superior to the conventional method, but the continuous striking action and jolting transmitted to the arms were unpleasant (orig.)

  17. Three-dimensional wedge filling in ordered and disordered systems

    International Nuclear Information System (INIS)

    Greenall, M J; Parry, A O; Romero-Enrique, J M

    2004-01-01

    We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in shallow wedges based on a simple interfacial Hamiltonian model and is supported by detailed numerical investigations of filling within a more microscopic Landau-like density functional theory. Evidence is presented that classical wedge covariance is also obeyed for filling in more acute wedges in the asymptotic critical regime. For sufficiently short-ranged forces mean-field predictions for the filling critical exponents and covariance are destroyed by pseudo-one-dimensional interfacial fluctuations. We argue that in this filling fluctuation regime the critical exponents describing the divergence of length scales are related to values of the interfacial wandering exponent ζ(d) defined for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional (d = 3) systems. For the interfacial height l w ∼ θ-α) -β w , with θ the contact angle and α the wedge tilt angle, we find β w = ζ(2)/2(1-ζ(3)). For pure systems (thermal disorder) we recover the known result β w = 1/4 predicted by interfacial Hamiltonian studies whilst for random-bond disorder we predict the universal critical exponent β ∼ even in the presence of dispersion forces. We revisit the transfer matrix theory of three-dimensional filling based on an effective interfacial Hamiltonian model and discuss the interplay between breather, tilt and torsional interfacial fluctuations. We show that the coupling of the modes allows the problem to be mapped onto a quantum mechanical problem as conjectured by previous authors. The form of the interfacial height probability distribution function predicted by

  18. Seafloor geomorphology of western Antarctic Peninsula bays: a signature of ice flow behaviour

    Directory of Open Access Journals (Sweden)

    Y. P. Munoz

    2018-01-01

    Full Text Available Glacial geomorphology is used in Antarctica to reconstruct ice advance during the Last Glacial Maximum and subsequent retreat across the continental shelf. Analogous geomorphic assemblages are found in glaciated fjords and are used to interpret the glacial history and glacial dynamics in those areas. In addition, understanding the distribution of submarine landforms in bays and the local controls exerted on ice flow can help improve numerical models by providing constraints through these drainage areas. We present multibeam swath bathymetry from several bays in the South Shetland Islands and the western Antarctic Peninsula. The submarine landforms are described and interpreted in detail. A schematic model was developed showing the features found in the bays: from glacial lineations and moraines in the inner bay to grounding zone wedges and drumlinoid features in the middle bay and streamlined features and meltwater channels in the outer bay areas. In addition, we analysed local variables in the bays and observed the following: (1 the number of landforms found in the bays scales to the size of the bay, but the geometry of the bays dictates the types of features that form; specifically, we observe a correlation between the bay width and the number of transverse features present in the bays. (2 The smaller seafloor features are present only in the smaller glacial systems, indicating that short-lived atmospheric and oceanographic fluctuations, responsible for the formation of these landforms, are only recorded in these smaller systems. (3 Meltwater channels are abundant on the seafloor, but some are subglacial, carved in bedrock, and some are modern erosional features, carved on soft sediment. Lastly, based on geomorphological evidence, we propose the features found in some of the proximal bay areas were formed during a recent glacial advance, likely the Little Ice Age.

  19. Optical wedge method for spatial reconstruction of particle trajectories

    International Nuclear Information System (INIS)

    Asatiani, T.L.; Alchudzhyan, S.V.; Gazaryan, K.A.; Zograbyan, D.Sh.; Kozliner, L.I.; Krishchyan, V.M.; Martirosyan, G.S.; Ter-Antonyan, S.V.

    1978-01-01

    A technique of optical wedges allowing the full reconstruction of pictures of events in space is considered. The technique is used for the detection of particle tracks in optical wide-gap spark chambers by photographing in one projection. The optical wedges are refracting right-angle plastic prisms positioned between the camera and the spark chamber so that through them both ends of the track are photographed. A method for calibrating measurements is given, and an estimate made of the accuracy of the determination of the second projection with the help of the optical wedges

  20. SOFTWARE FOR COMPUTER-AIDED DESIGN OF CROSS-WEDGE ROLLING

    OpenAIRE

    A. A. Abramov; S. V. Medvedev

    2013-01-01

    The issues of computer technology creation of 3D-design and engineering analysis of metal forming processes using cross wedge rolling methods (CWR) are considered. The developed software for computer-aided design and simulation of cross-wedge rolling is described.

  1. Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis.

    Directory of Open Access Journals (Sweden)

    Sophie-Anne Scherrer

    Full Text Available Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity.Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50° participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20° from the moderate (20° and over spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body.Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it (F = 1.78, p = 0.101. Main effects of vertebral Positions (apex and above or below it (F = 4.20, p = 0.015 and wedging Planes (F = 34.36, p<0.001 were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6° than the superior group (2.9°, p = 0.019 and a significantly greater wedging (p≤0.03 along the sagittal plane (4.3°.Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim that scoliosis could be initiated

  2. Two brittle ductile transitions in subduction wedges, as revealed by topography

    Science.gov (United States)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  3. On the practice of the clinical implementation of enhanced dynamic wedges

    International Nuclear Information System (INIS)

    Koken, Phil W.; Heukelom, Stan; Cuijpers, Johan P.

    2003-01-01

    Practical aspects of the clinical implementation of enhanced dynamic wedges (EDW) replacing manual wedges are presented and discussed extensively. A comparison between measured and calculated data is also presented. Relative dose distributions and wedge factors were calculated with a commercially available treatment planning system and measured in a water-phantom and with an ionization chamber. Wedge factor calculations and measurements were also compared with an independent method of wedge factor calculations available from the literature. Aspects of the clinical implementation, such as safety and quality assurance, were evaluated. Measurements and calculations agreed very well and were slightly better than results of previous studies. Profiles and percentage depth doses (PDDs) agreed within 1% to 1.5% and within 0.5%, respectively. Measured and calculated wedge factors ratios agreed within 0.5% to 1%. Calculated and measured EDW dose distributions showed excellent agreement, both relative and absolute. However, for safe and practical use, specific aspects need to be taken into consideration. Once the treatment planning system is commissioned properly, the clinical implementation of EDW is rather straightforward

  4. Analysis of surface and build up region dose for motorized wedge and omni wedge

    International Nuclear Information System (INIS)

    Panta, Raj Kumar; Sundarum, T.

    2008-01-01

    Megavoltage x-ray beam exhibits the well known phenomenon of dose build-up within the first few millimeters of incident phantom surface or skin. The skin sparing effect of high energy gamma or x-ray photon may be reduced or even lost, if the beam is contaminated with electron or low energy photons. Since skin dose in the treatment of deeply seated tumor may be a limiting factor in the delivery of tumoricidal dose due to possible complications such as erythema, desquamation, fibrosis, necrosis and epilation, the dose distribution in the build up region should be known. The objective of this study was to measure and investigate the surface and build-up region dose for 6 MV and 15 MV photon beam for Motorized wedge and Omni wedge in Precise Digital Linear Accelerator (Elekta)

  5. Wedges of Anxiety

    DEFF Research Database (Denmark)

    Hellström, Maria; Brandt, Eva

    2005-01-01

    The Heraclitian notion of a reality in constant flux seems to have settled even in the public consciousness. We are, to an ever-increasing extent, on the move; in motion between different places of abode, between domiciles and places of residence, between temporary addresses and provisory settlem...... cones of light, as the cut their way into the unknown, like wedges of anxiety...

  6. Employment and productivity: The role of the tax wedge

    Directory of Open Access Journals (Sweden)

    Andrea FESTA

    2015-11-01

    Full Text Available After the economic crisis, many countries aim at reducing unemployment and foster productivity. To address these issues one of the most common policy indications recommends lowering the tax wedge on labour in order to increase employment and growth. As a consequence, a review of the empirical studies focused on the relation between tax wedge, employment and productivity is an useful and demanding exercise, especially in those European countries where the topic is on the front page of the domestic policy debate because the productivity growth is low and the tax wedge on labour is high.

  7. Casimir effect for a semitransparent wedge and an annular piston

    International Nuclear Information System (INIS)

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-01-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by δ-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  8. Are Pericentric Inversions Reorganizing Wedge Shell Genomes?

    Directory of Open Access Journals (Sweden)

    Daniel García-Souto

    2017-12-01

    Full Text Available Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA, 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells.

  9. Multiple phases and vicious walkers in a wedge

    Directory of Open Access Journals (Sweden)

    Gesualdo Delfino

    2015-12-01

    Full Text Available We consider a statistical system in a planar wedge, for values of the bulk parameters corresponding to a first order phase transition and with boundary conditions inducing phase separation. Our previous exact field theoretical solution for the case of a single interface is extended to a class of systems, including the Blume–Capel model as the simplest representative, allowing for the appearance of an intermediate layer of a third phase. We show that the interfaces separating the different phases behave as trajectories of vicious walkers, and determine their passage probabilities. We also show how the theory leads to a remarkable form of wedge covariance, i.e. a relation between properties in the wedge and in the half plane, which involves the appearance of self-Fourier functions.

  10. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    Science.gov (United States)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  11. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...... and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...

  12. Evaluation method of lead measurement accuracy of gears using a wedge artefact

    International Nuclear Information System (INIS)

    Komori, Masaharu; Takeoka, Fumi; Kubo, Aizoh; Okamoto, Kazuhiko; Osawa, Sonko; Sato, Osamu; Takatsuji, Toshiyuki

    2009-01-01

    The reduction of the vibration and noise of gears is an important issue in mechanical devices such as vehicles and wind turbines. The characteristics of the vibration and noise of gears are markedly affected by deviations of the tooth flank form of micrometre order; therefore, a strict quality control of the tooth flank form is required. The accuracy of the lead measurement for a gear-measuring instrument is usually evaluated using a master gear or a lead master. However, it is difficult to manufacture masters with high accuracy because the helix is a complicated geometrical form. In this paper, we propose a method of evaluating a gear-measuring instrument using a wedge artefact, which includes a highly precise plane surface. The concept of the wedge artefact is described and a mathematical model of the measuring condition of the wedge artefact is constructed. Theoretical measurement results for the wedge artefact are calculated. The wedge artefact is designed and produced on the basis of the theoretical measurement results. A measurement experiment using the wedge artefact is carried out and its effectiveness is verified

  13. Variation in Depth Dose Data between Open and Wedge Fields for 6 MV X-Rays

    International Nuclear Information System (INIS)

    U, Hong; Ryu, M. S. Samuel; Park, In Kyu

    1989-01-01

    Central axis depth dose data for 6 MV X-rays, including tissue maximum ratios, were measured for wedge fields according to Tatcher equation. In wedge fields, the differences in magnitude which increased with depth, field size, and wedge thickness increased when compared with the corresponding open field data. However, phantom scatter correction factors for wedge fields differed less that 1% from the corresponding open field factors. The differences in central axis percent depth dose between two types of fields indicated beam hardening by the wedge filter. The deviation of percent depth doses and scatter correction factors between the effective wedge field and the nominal wedge field at same angle was negligible. The differences were less than 3.26% between the nominal or effective wedge fields and the open fields for percent depth doses to the depth 7cm in 6cm x 6cm field. For larger (10cm x 10cm) field size, however, the deviation of percent depth doses between the nominal or effective wedge fields and the open fields were greater-dosimetric errors were 3.56% at depth 7cm and nearly 5.30% at 12cm. We suggest that the percent depth doses of individual wedge and wedge transmission factors should be considered for the dose calculation or monitor setting in the treatment of deep seated tumor

  14. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  15. Fault-dominated deformation in an ice dam during annual filling and drainage of a marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Anderson, S.P.; Anderson, R. Scott; Fountain, A.G.; Malm, A.

    2005-01-01

    Ice-dammed Hidden Creek Lake, Alaska, USA, outbursts annually in about 2-3 days. As the lake fills, a wedge of water penetrates beneath the glacier, and the surface of this 'ice dam' rises; the surface then falls as the lake drains. Detailed optical surveying of the glacier near the lake allows characterization of ice-dam deformation. Surface uplift rate is close to the rate of lake-level rise within about 400 m of the lake, then decreases by 90% over about 100 m. Such a steep gradient in uplift rate cannot be explained in terms of ice-dam flexure. Moreover, survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. Evidently, the zone of steep uplift gradient is a fault zone, with the faults penetrating the entire thickness of the ice dam. Fault motion is in a reverse sense as the lake fills, but in a normal sense as the lake drains. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  16. Localization of observables in the Rindler wedge

    Science.gov (United States)

    Asorey, M.; Balachandran, A. P.; Marmo, G.; de Queiroz, A. R.

    2017-11-01

    One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a nontrivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also by Balachandran et al. [Eur. Phys. J. C 75, 89 (2015), 10.1140/epjc/s10052-015-3305-0] (see also the work by Balachandran et al. [Mod. Phys. Lett. A 28, 1350028 (2013), 10.1142/S0217732313500284]. Localization of observables, for example in the Rindler wedge, uses Poincaré invariance in an essential way [Int. J. Geom. Methods Mod. Phys. 14, 1740008 (2017)., 10.1142/S0219887817400084]. Hence, in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.

  17. Pilot production of the wedge filter for the TBI (total body irradiation)

    International Nuclear Information System (INIS)

    Ikezaki, Hiromi; Ikeda, Ikuo; Maruyama, Yasushi; Nako, Yasunobu; Tonari, Ayako; Kusuda, Junko; Takayama, Makoto

    2007-01-01

    Total body irradiation (TBI) is performed by various methods, such as a long SSD method and a translational couch method. For patient safety in carrying out TBI, the patient should be placed on the supine position and prone position near the floor. TBI is performed from 2 opposite ports (AP/PA) with a linear accelerator (10 MV X-ray). We experimented with a wedge filter for TBI created by us, which makes dose distribution to a floor uniform. The wedge filter, made of iron alloy, was attached to the linear accelerator. In designing the wedge filter, thickness of the lead-made wedge filter can be calculated numerically from the ratio of linear attenuation coefficient of iron alloy and lead. In measuring the dose profile for a phantom of 20 cm thick, dose homogeneity less than 10% was proved by the wedge filter for TBI. (author)

  18. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    The increasing number of patients with developing osteoarthritis is accompanied by a growing scientific interest in non-operative early treatment strategies. It is generally believed that laterally wedged insoles can change the distribution of the knee loading, but the importance of footwear design...... shoe were revealed. Conclusion: Lateral wedging is effective regardless of shoe design. Differences between the four neutral walking conditions underline the importance of footwear choice in individuals. It is safe to apply lateral wedges without jeopardizing muscular control during walking regardless...

  19. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    Science.gov (United States)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  20. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  1. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  2. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    Science.gov (United States)

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.

  3. Investigation of turbulent wedges generated by different single surface roughness elements

    Science.gov (United States)

    Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd

    2013-11-01

    It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.

  4. Porous Titanium Wedges in Lateral Column Lengthening for Adult-Acquired Flatfoot Deformity.

    Science.gov (United States)

    Moore, Spencer H; Carstensen, S Evan; Burrus, M Tyrrell; Cooper, Truitt; Park, Joseph S; Perumal, Venkat

    2017-10-01

    Lateral column lengthening (LCL) is a common procedure for reconstruction of stage II flexible adult-acquired flatfoot deformity (AAFD). The recent development of porous titanium wedges for this procedure provides an alternative to allograft and autograft. The purpose of this study was to report radiographic and clinical outcomes achieved with porous titanium wedges in LCL. A retrospective analysis of 34 feet in 30 patients with AAFD that received porous titanium wedges for LCL from January 2011 to October 2014. Deformity correction was assessed using both radiographic and clinical parameters. Radiographic correction was assessed using the lateral talo-first metatarsal angle, the talonavicular uncoverage percentage, and the first metatarsocuneiform height. The hindfoot valgus angle was measured. Patients were followed from a minimum of 6 months up to 4 years (mean 16.1 months). Postoperative radiographs demonstrated significant correction in all 3 radiographic criteria and the hindfoot valgus angle. We had no cases of nonunion, no wedge migration, and no wedges have been removed to date. The most common complication was calcaneocuboid joint pain (14.7%). Porous titanium wedges in LCL can achieve good radiographic and clinical correction of AAFD with a low rate of nonunion and other complications. Level IV: Case series.

  5. Capillary surfaces in a wedge: Differing contact angles

    Science.gov (United States)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  6. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  7. Pilot Study: Foam Wedge Chin Support Static Tolerance Testing

    Science.gov (United States)

    2017-10-24

    AFRL-SA-WP-SR-2017-0026 Pilot Study: Foam Wedge Chin Support Static Tolerance Testing Austin M. Fischer, BS1; William W...COVERED (From – To) April – October 2017 4. TITLE AND SUBTITLE Pilot Study: Foam Wedge Chin Support Static Tolerance Testing 5a. CONTRACT NUMBER...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF School of Aerospace

  8. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; van Herk, Marcel; Mijnheer, Ben

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the

  9. Application of super-omni wedge concept to conformal radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Dai Jianrong; Fu Weihua; Hu Yimin

    2004-01-01

    Objective: To describe a method which can optimize beam weight, wedge angle, and wedge orientation simultaneously by combining the super-omni wedge (SOW) concept with the function of beam weight optimization provided by a commercial treatment planning system. Methods: A five-step procedure including: Step 1. To set up four 60 degree nominal wedged beams for each beam direction with the wedge orientations of 'LEFT', 'IN', 'RIGHT', 'OUT', respectively; Step 2. To define an optimization request, including an optimization goal and constraints. Authors use CMS Focus treatment planning system which allows us to choose 'maximize target dose' or 'minimize critical structure dose' as the optimization goal, and to set minimum target dose, maximum target dose, and maximum average dose of critical structures as constraints. Then the optimization process was launched as step 3; Step 4. To evaluate the plan using isodose distributions and dose-volume histograms. If acceptable, go to Step 5. Otherwise, go back to Step 2 to modify optimization constraints; and Step 5. Transform the SOW beams into the beams of omni wedge so as to reduce the number of to-be-delivered beams. Results: This procedure was found being able to demonstrate successfully in two clinical cases: an esophageal carcinoma and a brain tumor. Compared with manually designed plan, the optimized plan showed better dose homogeneity in the targets and better sparing of the critical structures. Conclusions: This method described is able to optimize beam weights while working with a treatment planning system. Not only does it improve treatment plans' quality, but also shorten the treatment planning process

  10. Variations in depth-dose data between open and wedge fields for 4-MV x-rays

    International Nuclear Information System (INIS)

    Sewchand, W.; Khan, F.M.; Williamson, J.

    1978-01-01

    Central-axis depth-dose data for 4-MV x rays, including tissue-maximum ratios, were measured for wedge fields. Comparison with corresponding open-field data revealed differences in magnitude which increased with depth, field size, and wedge thickness. However, phantom scatter correction factors for the wedge fields differed less than 1% from corresponding open-field factors. The differences in central-axis percent depth doses between the two types of fields indicate beam hardening by the wedge filter. This study also implies that the derivation of tissue-maximum ratios from central-axis percent depth is as valid for wedge as for open fields

  11. Simulations of the Scandinavian ice sheet and its subsurface conditions

    International Nuclear Information System (INIS)

    Boulton, G.S.; Caban, P.; Hulton, N.

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite different in extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated

  12. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  13. Decarbonization Wedges. November 2015. Report

    International Nuclear Information System (INIS)

    Alazard-Toux, N.; Criqui, P.; Devezeaux de Lavergne, J.G.; Chevallet, L.; Gentier, S.; Hache, E.; Le Net, E.; Menanteau, Ph.; Thais, Fr.; Achard, JL.; Allard, Fr.; Authier, O.; Babarit, A.; Badin, Fr.; Bazile, F.; Bernard, O.; Birat, JP.; Brault, P.; Burnol, A.; Carre, Fr.; Delrue, F.; Dufour, A.; Duplan, JL.; Durand, P.; Duval, O.; Fabriol, H.; Ferrant, P.; Flamant, G.; Forti, L.; Garnier, J.; Gimenez, M.; Goyeneche, O.; Hadj Said, N.; Jasserand, Fr.; Kalaydjian, F.; Le Boulluec, M.; Legrand, J.; Lorne, D.; Lucchese, P.; Magand, S.; Malbranche, Ph.; Mermillod, N.; Monot, F.; Olivier, B.; Pacaud, P.; Papillon, Ph.; Ponsot-Jacquin, C.; Quenard, D.; Rachez, X.; Rapin, M.; Rocher, Ph.; Sanjuan, B.; Sauvant-Moynot, V.; Tilagone, R.; Vinot, S.; Berthomieu, R.; Vajnovszki, A.

    2015-01-01

    2015 is a particularly eventful year in the field of energy. From 30 November through 11 December, France will host the 21. Conference of the Parties on Climate Change (COP21) in Paris. The expectations for this international event are high. Its main goal is to obtain an agreement to keep global warming below 2 deg. C by securing a set of voluntary commitments from the various countries and regions of the world to reduce global greenhouse gas emissions and by mobilizing $100 billion per year from 2020 onwards to finance climate change policies, especially in developing countries. In France, the year 2015 was also marked by the adoption of the Energy Transition and Green Growth Act that set a course and defined a road-map, through a set of objectives, aimed at helping our country reduce its CO 2 emissions in the field of energy. In this context, ANCRE (French National Alliance for Energy Research Coordination) would like to reiterate the major role of energy research and innovation in reducing anthropogenic (i.e. human induced) greenhouse gas emissions through research conducted on decarbonization wedges, a key technology in the fight against climate change in the field of energy on a planetary scale. Limiting the temperature increase on the earth's surface to 2 deg. C by 2100 is a challenging target, but it could be achievable with the rapid, sustained development and wide dissemination of a broad set of technologies. However, to achieve this goal, it is indispensable to conduct research aimed at speeding up low carbon technologies deployment and at reducing their cost. Through this joint report to which numerous researchers and experts contributed, ANCRE wishes to continue its efforts to build a global strategic vision that an Alliance comprising nearly 19 different research institutions can provide. This study follows the work conducted on energy transition scenarios for France and the road-maps drawn up by the ten programmatic groups structuring the

  14. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    Science.gov (United States)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  15. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    Science.gov (United States)

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  16. Utilization of an electronic portal imaging device for measurement of dynamic wedge data

    International Nuclear Information System (INIS)

    Elder, Eric S.; Miner, Marc S.; Butker, Elizabeth K.; Sutton, Danny S.; Davis, Lawrence W.

    1996-01-01

    Purpose/Objective: Due to the motion of the collimator during dynamic wedge treatments, the conventional method of collecting comprehensive wedge data with a water tank and a scanning ionization chamber is obsolete. It is the objective of this work to demonstrate the use of an electronic portal imaging device (EPID) and software to accomplish this task. Materials and Methods: A Varian Clinac[reg] 2300 C/D, equipped with a PortalVision TM EPID and Dosimetry Research Mode experimental software, was used to produce the radiation field. The Dosimetry Research Mode experimental software allows for a band of 10 of 256 high voltage electrodes to be continuously read and averaged by the 256 electrometer electrodes. The file that is produced contains data relating to the integrated ionization at each of the 256 points, essentially the cross plane beam profile. Software was developed using Microsoft C ++ to reformat the data for import into a Microsoft Excel spreadsheet allowing for easy mathematical manipulation and graphical display. Beam profiles were measured by the EPID with a 100 cm TSD for various field sizes. Each field size was measured open, steel wedged, and dynamically wedged. Scanning ionization chamber measurements performed in a water tank were compared to the open and steel wedged fields. Ionization chamber measurements taken in a water tank were compared with the dynamically wedged measurements. For the EPID measurements the depth was varied using Gammex RMI Solid Water TM placed directly above the EPID sensitive volume. Bolus material was placed between the Solid Water TM and the EPID to avoid an air gap. Results: Comparison of EPID measurements with those from an ion chamber in a water tank showed a discrepancy of ∼5%. Scans were successfully obtained for open, steel wedged and dynamically wedged beams. Software has been developed to allow for easy graphical display of beam profiles. Conclusions: Measurement of dynamic wedge data proves to be easily

  17. Slamming pressures on the bottom of a free-falling vertical wedge

    Science.gov (United States)

    Ikeda, C. M.; Judge, C. Q.

    2013-11-01

    High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.

  18. Wedge silicon detectors for the inner trackering system of CMS

    International Nuclear Information System (INIS)

    Catacchini, E.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Meschini, M.; Parrini, G.; Pieri, M.; Wheadon, R.

    1997-01-01

    One ''wedge'' double sided silicon detector prototype for the CMS forward inner tracker has been tested both in laboratory and on a high energy particle beam. The results obtained indicate the most reliable solutions for the strip geometry of the junction side. Three different designs of ''wedge'' double sided detectors with different solutions for the ohmic side strip geometry are presented. (orig.)

  19. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  20. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    Science.gov (United States)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (laws that can be used to predict fault spacing in

  1. New marine geophysical and sediment record of the Northeast Greenland Ice Stream.

    Science.gov (United States)

    Callard, L.; Roberts, D. H.; O'Cofaigh, C.; Lloyd, J. M.; Smith, J. A.; Dorschel, B.

    2017-12-01

    The NE Greenland Ice Stream (NEGIS) drains 16% of the Greenland Ice Sheet (GrIS) and has a sea-level equivalent of 1.1-1.4 m. Stabilised by two floating ice shelves, 79N and Zachariae Isstrom, until recently it has shown little response to increased atmospheric and oceanic warming. However, since 2010 it has experienced an accelerated rate of grounding line retreat ( 4 km) and significant ice shelf loss that indicates that this sector of the GrIS is now responding to current oceanic and/or climatic change and has the potential to be a major contributor to future global sea-level rise. The project `NEGIS', a collaboration between Durham University and AWI, aims to reconstruct the history of the NE Greenland Ice Stream from the Last Glacial Maximum (LGM) to present using both onshore and offshore geological archives to better understand past ice stream response to a warming climate. This contribution presents results and interpretations from an offshore dataset collected on the RV Polarstern, cruises PS100 and PS109 in 2016 and 2017. Gravity and box cores, supplemented by swath bathymetric and sub-bottom profiler data, were acquired and initial core analysis including x-radiographs and MSCL data logging has been performed. Data collection focused principally in the Norske Trough and the area directly in front of the 79N ice shelf, a sub-ice shelf environment as recently as two years ago. On the outer shelf streamlined subglacial bedforms, grounding-zone wedges and moraines as well as overconsolidated subglacial tills, record an extensive ice sheet advance to the shelf edge. On the inner shelf and in front of the 79N ice shelf, deep, glacially-eroded bedrock basins are infilled with stratified sediment. The stratified muds represent deglacial and Holocene glacimarine sedimentation, and capture the recent transition from sub-ice shelf to shelf free conditions. Multiproxy palaeoenvironmental reconstructions, including foraminifera and diatom analysis, and radiocarbon

  2. North Aegean core complexes, the gravity spreading of a thrust wedge

    NARCIS (Netherlands)

    Kydonakis, Konstantinos; Brun, Jean Pierre; Sokoutis, Dimitrios

    2015-01-01

    The North Aegean core complexes developed in middle Eocene soon after the end of continental block convergence and piling up of the Hellenic Thrust Wedge. They formed during back-arc extension, driven by the Hellenic slab rollback, at the back of the thrust wedge. A series of scaled laboratory

  3. Paleoclimates of Amazonia: An ice-age view

    NARCIS (Netherlands)

    Bush, M.B.; De Oliveira, P.E.; Raczka, M.F.; Gosling, W.D.; Mayle, F.E.; McMichael, C.H.; Urrego, D.H.; de Souza Carvalho, I.; Garcia, M.J.; Cunha Lana, C.; Strohschoen Jr., O.

    2014-01-01

    A growing body of evidence points to climatic complexity during the Ice-Ages. Amazonia does not respond uniformly to modern climatic forcing, and the same was true of the past. Although some climatic forcings were probably expressed everywhere, they were manifested differently. Consequently, climate

  4. Magnetization study of interlayer exchange in semiconductor EuS-PbS ferromagnetic wedge multilayers

    International Nuclear Information System (INIS)

    Kowalczyk, L.; Osinniy, V.; Chernyshova, M.; Dziawa, P.; Boratynski, A.; Story, T.; Smits, C.J.P.; Swagten, H.J.M.; Sipatov, A.Yu.; Volobuev, V.V.

    2006-01-01

    Interlayer coupling was experimentally studied in semiconductor EuS-PbS ferromagnetic superlattice wedge structures grown on KCl (0 0 1) substrates with the wedges covering the semiconductor nonmagnetic PbS spacer layer thickness from 0.3 to 6 nm. Structural parameters of the wedges were examined by X-ray diffraction analysis of EuS-PbS superlattice period. Measurements of magnetic hysteresis loops of EuS-PbS structures were performed by both SQUID (for small terminal parts of the wedge) and MOKE (magneto-optical analysis along the wedge) magnetometry. A strong decrease of magnetic remanence and an increase of saturation field observed for EuS-PbS structures with the PbS spacer thickness decreasing below about 1.5 nm is discussed in terms of the influence of antiferromagnetic interlayer coupling

  5. Scattering of wedges and cones with impedance boundary conditions

    CERN Document Server

    Lyalinov, Mikhail

    2012-01-01

    This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.

  6. New Transition Wedge Design Composed by Prefabricated Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Julia Real-Herráiz

    Full Text Available Abstract Important track degradation occurs in structure-embankment transitions, in which an abrupt change in track vertical stiffness arises, leading to a reduction in passengers comfort and safety. Although granular wedges are suggested by different railroad administrations as a solution to avoid these problems, they present some disadvantages which may affect track long-term performance. In this paper, a new solution designed with prefabricated reinforced concrete slabs is proposed. The aim of this solution is to guarantee a continuous and gradual track vertical stiffness transition in the vicinity of structures, overcoming granular wedges disadvantages. The aim of this study is to assess the performance of the novel wedge design by means of a 3-D FEM model and to compare it with the current solution.

  7. Seismic characterization of a `compound tectonic wedge` beneath the Rocky Mountain foreland basin, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D. C.; Sukaramongkol, C.; Spratt, D. A. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1996-06-01

    The detailed internal geometry of a `compound tectonic wedge` beneath an eastward-dipping homocline in the Sundre area of southern Alberta was described. Data for the description was obtained by interpreting reflection seismic data. The wedge has been driven into the foreland succession beneath the gently dipping upper detachment which occurs within coal horizons of the Upper Brazeau Group. Shape of the upper detachment near its toe indicates that rocks in its hanging wall were decoupled from strain associated with forward emplacement of the wedge. Folding of the upper detachment occurs in the hinterland region of the wedge, with a new upper detachment developing above the fold. Emplacement of the wedge is suspected to be the result of excess pore fluid pressure, although proof of this happening awaits quantification of the mechanical model. 25 refs., 8 figs.

  8. Tax wedge in Croatia, Belgium, Estonia, Germany and Slovakia

    Directory of Open Access Journals (Sweden)

    Ana Gabrilo

    2016-06-01

    Full Text Available The aim of this paper is to analyse the taxation of labour income in Croatia, Belgium,Estonia, Germany and Slovakia. Having presented an outline of tax system rules, the paper shows the decomposition of the net average tax wedge for different family types and different income levels based on the OECD methodology. The results show that all observed countries apply a progressive tax schedule, apart from Germany where taxation for higher gross wages is not progressive due to a  cap on the SIC base. When it comes to a taxpayer earning an average gross wage, a Croatian single worker without children has the lowest tax burden, followed by Estonia, Slovakia, Germany and Belgium. However, as regards taxpayers earning 400% of AGW, Estonia has the smallest tax wedge, followed by Slovakia, Germany, Croatia and Belgium. Similar results are obtained by analyzing the tax wedge for couples with two children where one spouse is out of work.

  9. Therapy by stationary photon fields from a 42 MeV betatron using wedge filters

    International Nuclear Information System (INIS)

    Wicke, L.; Kaercher, K.H.; Naesiger, H.; Prokosch, E.; Vienna Univ.

    1975-01-01

    The dose distribution in photon beams from a 42 MeV betatron using wedge filters of lead with different angles of slope is described. The wedge coefficient to be considered at a field size of 10 x 10 cm is given. The scope for isodoses modified by wedge filters is discussed with regard to stationary-field photon therapy. (orig.) [de

  10. Wedge geometry, frictional properties and interseismic coupling of the Java megathrust

    Science.gov (United States)

    Koulali, Achraf; McClusky, Simon; Cummins, Phil; Tregoning, Paul

    2018-06-01

    The mechanical interaction between rocks at fault zones is a key element for understanding how earthquakes nucleate and propagate. Therefore, estimating frictional properties along fault planes allows us to infer the degree of elastic strain accumulation throughout the seismic cycle. The Java subduction zone is an active plate boundary where high seismic activity has long been documented. However, very little is known about the seismogenic processes of the megathrust, especially its shallowest portion where onshore geodetic networks are insensitive to recover the pattern of elastic strain. Here, we use the geometry of the offshore accretionary prism to infer frictional properties along the Java subduction zone, using Coulomb critical taper theory. We show that large portions of the inner wedge in the eastern part of the Java subduction megathrust are in a critical state, where the wedge is on the verge of failure everywhere. We identify four clusters with an internal coefficient of friction μint of ∼ 0.8 and hydrostatic pore pressure within the wedge. The average effective coefficient of friction ranges between 0.3 and 0.4, reflecting a strong décollement. Our results also show that the aftershock sequence of the 1994 Mw 7.9 earthquake halted adjacent to a critical segment of the wedge, suggesting that critical taper wedge areas in the eastern Java subduction interface may behave as a permanent barrier to large earthquake rupture. In contrast, in western Java topographic slope and slab dip profiles suggest that the wedge is mechanically stable, i.e deformation is restricted to sliding along the décollement, and likely to coincide with a seismogenic portion of the megathrust. We discuss the seismic hazard implications and highlight the importance of considering the segmentation of the Java subduction zone when assessing the seismic hazard of this region.

  11. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2016-03-01

    Full Text Available We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms

  12. DIRECTION OF MODERNIZATION OF THE ARCTIC MARINE TRANSPORTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    N. I. Komkov

    2014-01-01

    Full Text Available The article deals with the modern processes of formation and development of the marine transportation system in the Russian Arctic, analyzes its problem areas and reserves growth. Shows the status and prospects of development of cargo specialized fl eet of ice-class and icebreakers. Particular attention is paid to infrastructure, port management, port The possibility of creating special economic zones. Systematized direction of modernization of the Arctic marine transportation system.

  13. Assessment of an amorphous silicon EPID for quality assurance of enhanced dynamic wedge

    International Nuclear Information System (INIS)

    Greer, P.

    2004-01-01

    Full text: Routine quality assurance (QA) of enhanced dynamic wedge (EDW) is usually performed weekly to monthly. Wedge factors are measured with ion-chamber, and profiles usually with diode-arrays such as the Profiler. The use of an electronic portal imaging device (EPID) for these measurements would combine these into a single rapid set-up and measurement. Currently the Varian EPID in standard imaging mode will not acquire integrated images during EDW treatments, and therefore has not been utilised for EDW dosimetry. Modification to image acquisition was made to enable imaging for EDW, and the performance of the EPID for suitability for quality assurance of EDW was investigated. The accuracy of EDW profiles measured with the EPID were assessed by comparison to Profiler measurements. The EPID was positioned at 105 cm to the detector surface, with 4 cm of additional solid water build-up to give total build-up including EPID inherent build-up of 5 cm. Images of EDW fields were acquired with continuous frame-averaging throughout the delivery. Field sizes of 10x10 cm, and 20x20 cm were used for 30 deg and 60 deg wedge angles for both 6 MV and 18 MV x-rays. Profiler measurements of the same fields were made with 5 cm of solid water build-up with 105 cm to the detector. Profiles in the wedged direction along the central axis of the beam were then compared. The reproducibility of the EPID measured profiles was assessed by three measurements made at weekly intervals. The accuracy of EPID measured wedge factors was investigated with the same experimental set-up. Three images of a 10x10 cm open field were acquired, and the mean pixel value in a 9x9 pixel region at the central axis was found. As the pixel value is the average of all acquired frames, this was multiplied by the number of frames to yield an integrated pixel value. This was repeated for three 10x10 cm 60 deg wedge irradiations. The wedge factor measured with the EPID was then compared to routine weekly

  14. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  15. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    Science.gov (United States)

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Calibration of the Wedge Prism

    Science.gov (United States)

    Charles B. Briscoe

    1957-01-01

    Since the introduction of plotless cruising in this country by Grosenbaugh and the later suggestion of using a wedge prism as an angle gauge by Bruce this method of determining basal area has been widely adopted in the South. One of the factors contributing to the occasionally unsatisfactory results obtained is failure to calibrate the prism used. As noted by Bruce the...

  17. A possible mechanism for earthquakes found in the mantle wedge of the Nazca subduction zone

    Science.gov (United States)

    Warren, L. M.; Chang, Y.; Prieto, G. A.

    2017-12-01

    Beneath Colombia, the Cauca cluster of intermediate-depth earthquakes extends for 200 km along the trench (3.5°N-5.5°N, 77.0°W-75.3°W) and, with 58 earthquakes per year with local magnitude ML >= 2.5, has a higher rate of seismicity than the subduction zone immediately to the north or south. By precisely locating 433 cluster earthquakes from 1/2010-3/2014 with data from the Colombian National Seismic Network, we found that the earthquakes are located both in a continuous Nazca plate subducting at an angle of 33°-43° and in the overlying mantle wedge. The mantle wedge earthquakes (12% of the earthquakes) form two isolated 40-km-tall columns extending perpendicular to the subducting slab. Using waveform inversion, we computed focal mechanisms for 69 of the larger earthquakes. The focal mechanisms are variable, but the intraslab earthquakes are generally consistent with an in-slab extensional stress axis oriented 25° counterclockwise from the down-dip direction. We suggest that the observed mantle wedge earthquakes are the result of hydrofracture in a relatively cool mantle wedge. This segment of the Nazca Plate is currently subducting at a normal angle, but Wagner et al. (2017) suggested that a flat slab slowly developed in the region between 9-5.9 Ma and persisted until 4 Ma. During flat slab subduction, the overlying mantle wedge typically cools because it is cut off from mantle corner flow. After hydrous minerals in the slab dehydrate, the dehydrated fluid is expelled from the slab and migrates through the mantle wedge. If a cool mantle wedge remains today, fluid dehydrated from the slab may generate earthquakes by hydrofracture, with the mantle wedge earthquakes representing fluid migration pathways. Dahm's (2000) model of water-filled fracture propagation in the mantle wedge shows hydrofractures propagating normal to the subducting slab and extending tens of km into the mantle wedge, as we observe.

  18. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    Science.gov (United States)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  19. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  20. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    Science.gov (United States)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  1. The synthesis and adsorption properties of some carbohydrate-terminated dendrimer wedges

    International Nuclear Information System (INIS)

    Ainsworth, Richard L.

    1997-01-01

    A range of dendritic molecules that are designed to bind to a cotton surface has been synthesised. The architecture of the molecules allows the location of various functional, property modifying units at the focus and the attachment of recognition groups at the periphery of a dendritic molecule with wedge topology. The synthesis and characterisation of dendrimer wedges up to the second generation using a divergent approach has been performed. These wedges are readily built up using a simple and efficient stepwise pathway from the central core, and surface recognising species are subsequently attached to the molecule utilising procedures developed in conjunction with Unilever Research Laboratories. Work has been carried out to assess their adsorption onto a cotton surface and the postulated adsorption mechanism is discussed. (author)

  2. Surgical quality of wedge resection affects overall survival in patients with early stage non-small cell lung cancer.

    Science.gov (United States)

    Ajmani, Gaurav S; Wang, Chi-Hsiung; Kim, Ki Wan; Howington, John A; Krantz, Seth B

    2018-07-01

    Very few studies have examined the quality of wedge resection in patients with non-small cell lung cancer. Using the National Cancer Database, we evaluated whether the quality of wedge resection affects overall survival in patients with early disease and how these outcomes compare with those of patients who receive stereotactic radiation. We identified 14,328 patients with cT1 to T2, N0, M0 disease treated with wedge resection (n = 10,032) or stereotactic radiation (n = 4296) from 2005 to 2013 and developed a subsample of propensity-matched wedge and radiation patients. Wedge quality was grouped as high (negative margins, >5 nodes), average (negative margins, ≤5 nodes), and poor (positive margins). Overall survival was compared between patients who received wedge resection of different quality and those who received radiation, adjusting for demographic and clinical variables. Among patients who underwent wedge resection, 94.6% had negative margins, 44.3% had 0 nodes examined, 17.1% had >5 examined, and 3.0% were nodally upstaged; 16.7% received a high-quality wedge, which was associated with a lower risk of death compared with average-quality resection (adjusted hazard ratio [aHR], 0.74; 95% confidence interval [CI], 0.67-0.82). Compared with stereotactic radiation, wedge patients with negative margins had significantly reduced hazard of death (>5 nodes: aHR, 0.50; 95% CI, 0.43-0.58; ≤5 nodes: aHR, 0.65; 95% CI, 0.60-0.70). There was no significant survival difference between margin-positive wedge and radiation. Lymph nodes examined and margins obtained are important quality metrics in wedge resection. A high-quality wedge appears to confer a significant survival advantage over lower-quality wedge and stereotactic radiation. A margin-positive wedge appears to offer no benefit compared with radiation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. The optimisation of wedge filters in radiotherapy of the prostate

    International Nuclear Information System (INIS)

    Oldham, Mark; Neal, Anthony J.; Webb, Steve

    1995-01-01

    A treatment plan optimisation algorithm has been applied to 12 patients with early prostate cancer in order to determine the optimum beam-weights and wedge angles for a standard conformal three-field treatment technique. The optimisation algorithm was based on fast-simulated-annealing using a cost function designed to achieve a uniform dose in the planning-target-volume (PTV) and to minimise the integral doses to the organs-at-risk. The algorithm has been applied to standard conformal three-field plans created by an experienced human planner, and run in three PLAN MODES: (1) where the wedge angles were fixed by the human planner and only the beam-weights were optimised; (2) where both the wedge angles and beam-weights were optimised; and (3) where both the wedge angles and beam-weights were optimised and a non-uniform dose was prescribed to the PTV. In the latter PLAN MODE, a uniform 100% dose was prescribed to all of the PTV except for that region that overlaps with the rectum where a lower (e.g., 90%) dose was prescribed. The resulting optimised plans have been compared with those of the human planner who found beam-weights by conventional forward planning techniques. Plans were compared on the basis of dose statistics, normal-tissue-complication-probability (NTCP) and tumour-control-probability (TCP). The results of the comparison showed that all three PLAN MODES produced plans with slightly higher TCP for the same rectal NTCP, than the human planner. The best results were observed for PLAN MODE 3, where an average increase in TCP of 0.73% (± 0.20, 95% confidence interval) was predicted by the biological models. This increase arises from a beneficial dose gradient which is produced across the tumour. Although the TCP gain is small it comes with no increase in treatment complexity, and could translate into increased cures given the large numbers of patients being referred. A study of the beam-weights and wedge angles chosen by the optimisation algorithm revealed

  4. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    Science.gov (United States)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  5. Physical optics-based diffraction coefficient for a wedge with different face impedances.

    Science.gov (United States)

    Umul, Yusuf Ziya

    2018-03-20

    A new diffraction field expression is introduced with the aid of the modified theory of physical optics for a wedge with different face impedances. First, the scattered geometrical optics fields are determined when both faces of the wedge are illuminated by the incident wave. The geometrical optics waves are then expressed in terms of the sum of two different fields that occur for different impedance wedges. The diffracted fields are determined for the two cases separately, and the total diffracted field is obtained as a sum of these waves. Lastly, the uniform field expressions are obtained, and the resultant fields are numerically compared with the solution of Maliuzhinets.

  6. Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2012-12-01

    Full Text Available The Snowball Earth bifurcation, or runaway ice-albedo feedback, is defined for particular boundary conditions by a critical CO2 and a critical sea-ice cover (SI, both of which are essential for evaluating hypotheses related to Neoproterozoic glaciations. Previous work has shown that the Snowball Earth bifurcation, denoted as (CO2, SI*, differs greatly among climate models. Here, we study the effect of bare sea-ice albedo, sea-ice dynamics and ocean heat transport on (CO2, SI* in the atmosphere–ocean general circulation model ECHAM5/MPI-OM with Marinoan (~ 635 Ma continents and solar insolation (94% of modern. In its standard setup, ECHAM5/MPI-OM initiates a~Snowball Earth much more easily than other climate models at (CO2, SI* ≈ (500 ppm, 55%. Replacing the model's standard bare sea-ice albedo of 0.75 by a much lower value of 0.45, we find (CO2, SI* ≈ (204 ppm, 70%. This is consistent with previous work and results from net evaporation and local melting near the sea-ice margin. When we additionally disable sea-ice dynamics, we find that the Snowball Earth bifurcation can be pushed even closer to the equator and occurs at a hundred times lower CO2: (CO2, SI* ≈ (2 ppm, 85%. Therefore, the simulation of sea-ice dynamics in ECHAM5/MPI-OM is a dominant determinant of its high critical CO2 for Snowball initiation relative to other models. Ocean heat transport has no effect on the critical sea-ice cover and only slightly decreases the critical CO2. For disabled sea-ice dynamics, the state with 85% sea-ice cover is stabilized by the Jormungand mechanism and shares characteristics with the Jormungand climate states. However, there is no indication of the Jormungand bifurcation and hysteresis in ECHAM5/MPI-OM. The state with 85% sea-ice cover therefore is a soft Snowball state rather than a true

  7. Detection of tundra trail damage near Barrow, Alaska using remote imagery

    Science.gov (United States)

    Hinkel, K. M.; Eisner, W. R.; Kim, C. J.

    2017-09-01

    In the past several decades, the use of all-terrain vehicles (ATVs) has proliferated in many Arctic communities in North America. One example is the village of Barrow, Alaska. This coastal community has only local roads, so all access to the interior utilizes off-road machines. These 4-wheel vehicles are the primary means of tundra traverse and transport in summer by hunters and berry-pickers, and by village residents accessing summer camps. Traveling cross-country is difficult due to the large number of thermokarst lakes, wetlands, and streams, and tundra trails tend to follow dryer higher ground while avoiding areas of high microrelief such as high-centered ice-wedge polygons. Thus, modern ATV trails tend to follow the margins of drained or partially drained thermokarst lake basins where it is flat and relatively dry, and these trails are heavily used. The deeply-ribbed tires of the heavy and powerful ATVs cause damage by destroying the vegetation and disturbing the underlying organic soil. Exposure of the dark soil enhances summer thaw and leads to local thermokarst of the ice-rich upper permafrost. The damage increases over time as vehicles continue to follow the same track, and sections eventually become unusable; this is especially true where the trail crosses ice-wedge troughs. Deep subsidence in the ponded troughs results in ATV users veering to avoid the wettest area, which leads to a widening of the damaged area. Helicopter surveys, site visits, and collection of ground penetrating radar data were combined with time series analysis of high-resolution aerial and satellite imagery for the period 1955-2014. The analysis reveals that there are 507 km of off-road trails on the Barrow Peninsula. About 50% of the total trail length was developed before 1955 in association with resource extraction, and an additional 40% were formed between 1979 and 2005 by ATVs. Segments of the more modern trail are up to 100 m wide. Damage to the tundra is especially pronounced

  8. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    Directory of Open Access Journals (Sweden)

    D. P. Grosvenor

    2012-12-01

    Full Text Available In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phase. The temperature range covered by the experiments was 0 to −21 °C. The clouds were found to contain supercooled liquid water in most regions and at heterogeneous ice formation temperatures ice crystal concentrations (60 s averages were often less than 0.07 l−1, although values up to 0.22 l−1 were observed. Estimates of observed aerosol concentrations were used as input into the DeMott et al. (2010 ice nuclei (IN parameterisation. The observed ice crystal number concentrations were generally in broad agreement with the IN predictions, although on the whole the predicted values were higher. Possible reasons for this are discussed and include the lack of IN observations in this region with which to characterise the parameterisation, and/or problems in relating ice concentration measurements to IN concentrations. Other IN parameterisations significantly overestimated the number of ice particles. Generally ice particle concentrations were much lower than found in clouds in middle latitudes for a given temperature.

    Higher ice crystal concentrations were sometimes observed at temperatures warmer than −9 °C, with values of several per litre reached. These were attributable to secondary ice particle production by the Hallett Mossop process. Even in this temperature range it was observed that there were regions with little or no ice that were dominated by supercooled liquid water. It is likely that in some cases this was due to a

  9. Improved field abutment-wedge design for 6-MV x-rays

    International Nuclear Information System (INIS)

    Nyerick, C.E.; Steadham, R.E.

    1989-01-01

    This paper presents an improved abutment wedge for matching large photon fields. The wedge is used with a 6-MV Linac accelerator and generates a 5-cm pseudopenumbra at the 50% relative dose juncture. The features allow treatment of fields up to 40 cm long in any fractional step of increment, simultaneous generation of two wide penumbrae or one wide and one sharp penumbra, and attachment of the device downstream of standard beam-shaping accessories in any 90 degrees angular orientation

  10. Tool life of ceramic wedges during precise turning of tungsten

    Directory of Open Access Journals (Sweden)

    Legutko Stanislaw

    2017-01-01

    Full Text Available Properties, application and machinability of tungsten and its alloys have been demonstrated. The comparison of the tool life and wear of the wedges made of SiAlON and whisker ceramics during the precise turning at different cutting parameters have been presented. The CNC lathe DMG CTX 310 Ecoline and tungsten of 99.7 % purity were used during the experiments. Only the wedge of whisker ceramics has proved to be sufficiently suitable and only for relatively low cutting speeds.

  11. Endmembers of Ice Shelf Melt

    Science.gov (United States)

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  12. Monte Carlo simulation of the Varian Clinac 600C accelerator using dynamic wedges

    International Nuclear Information System (INIS)

    Moreno, S.; Chaves, A.; Lopes, M.C.; Peralta, L.; Universidade de Lisboa

    2004-01-01

    The advent of linear accelerators (linac) with computer-controlled dynamic collimation systems and functional and anatomical imaging techniques allowed a more exact delimitation and localisation of the target volume. These advanced treatment techniques inevitably increase the complexity level of dose calculation because of the introduction of the temporal variable. On account of this, it is mandatory the usage of more accurate modelling techniques of the collimator components, as it is the case of Monte Carlo (MC) simulation, which has created an enormous interest in research and clinical practice. Because the patients bodies are not homogenous nor are their body surfaces plane and regular, the dose distribution may differ significantly from the standard distribution from the linac calibration. It is in the treatment planning systems, which include algorithms that are usually measured in homogeneous water phantoms specific for each correction that the dose distributions from each case are obtained. In a real treatment, exception made to superficial lesions, two or more radiation fields are used in order to obtain the recommended dose distributions. The simplest arrangement is made from two parallel and opposed fields that originate a homogeneous dose distribution in almost all the irradiated volume. The available resources are, for example, different types of energies and of radiation, the application of bolus, the protection of healthy structures, the usage of wedged filters and the application of dynamic wedges. A virtual or dynamic wedge, modelled through the movement of one of the jaws, when compared with a set of physical wedges offers an alternative calculation method of an arbitrary number of wedged fields, instead of the four traditional fields of 15 deg, 30 deg, 45 deg and 60 deg angle and obtained with physical wedges. The goal of this work consists in the study of the application of dynamic wedges in tailoring the radiation field by the Varian Clinac 600

  13. The application of wedge type compensation filter for uniform density on the endoscopic retrograde pancreatography

    International Nuclear Information System (INIS)

    Son, Soon Yong; Lee, Hee Jeong; Lee, Won Hong; Cho, Cheong Chan; Ryu, Meung Sun; Jung, Hong Ryang

    2001-01-01

    Over-density of pancreatic duct tail part on the endoscopic retrograde pancreatogram results from patient's position and inserted air during the study. The aim of this paper is to decide the filter angle to obtain an uniform density. Endoscopic retrograde pancratography was performed to 234 patients, and angled wedge filter was used differently. They are 10 deg (47), 20 deg (45), 30 deg (50). We also did not use wedge filter to 42 patients. We decided reliance degree in 95%. The statistical difference was p<0.05. The patients' sex rate was 1.8:1 between 18 and 87 years old(average age 58 years). Their body girth was 18.71 cm on the average. Of total 234 patients, difference of right and left average density was 0.01 by 30 deg wedge filter, -0.08 40 deg wedge filter and 0.27 non-wedge filter. These average values of difference density were very significant statistically, and standard deviation also was close to regular distribution. In conclusion, there is a usefulness of angled wedge filter for increasing diagnostic value of pancreatic duct tail part on the endoscopic retrograde pancreatogram

  14. Modeling Antarctic Ice Sheet retreat in warm climates: a historical perspective.

    Science.gov (United States)

    Pollard, D.; Deconto, R. M.; Gasson, E.

    2016-12-01

    Early modeling of Antarctic Ice Sheet size vs. climate focused on asymmetry between retreat and growth, with much greater warming needed to cause retreat from full ice cover, due to Height Mass Balance Feedback and albedo feedback. This led to a long-standing model-data conflict, with models needing 1000 to2000 ppmv atmospheric CO2 to produce retreat from full size, vs. proxy data of large ice fluctuations despite much lower CO2 since the Miocene.Subsequent modeling with marine ice physics found that the West Antarctic Ice Sheet could undergo repeated warm-period collapses with realistic past forcing. However, that yields only 3 to 7 m equivalent sea-level rise above modern, compared to 10 to 20 m or more suggested by some geologic data. Large subglacial basins in East Antarctica could be vulnerable to the same processes,but did not retreat in most models due to narrower and shallower sills.After recent modifications, some ice sheet models were able to produce warm-period collapse of major East Antarctic basins, with sea-level rise of up to 15 m. The modifications are (i) hydrofracturing by surface melt, and structural failure of ice cliffs, or (ii) numerical treatment at the grounding line. In these models, large retreat occurs both for past warmintervals, and also for future business-as-usual scenarios.Some interpretations of data in the late Oligocene and Miocene suggest yet larger fluctuations, between 50 to 100% of modern Antarctic size. That would require surface-melt driven retreat of some terrestrial East Antarctic ice, despite the hysteresis issue raised above. A recent study using a coupled climate-ice sheet model found that with a finer climate gridand more frequent coupling exchange, substantial retreat of terrestrial Antarctica can occur with 500 to 840 ppmv CO2, much lower than in earlier models. This will allow meaningful interactions between modeling and deeper-time geologic interpretations since the late Oligocene.

  15. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    Science.gov (United States)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  16. Ground ice conditions in Salluit, Northern Quebec

    Science.gov (United States)

    Allard, M.; Fortier, R.; Calmels, F.; Gagnon, O.; L'Hérault, E.

    2011-12-01

    large chunks of permafrost. Volumetric ice contents between 30 and 70% were measured in the till. In addition, low lying areas where till thickness exceeds ca 5 m contain polygons with ice wedges up to 2 m wide. Colluviums on slopes laid by sheet flow have been accumulating on two sectors of the study area, the source material being eroded clay at higher elevations; these slope sediments contain alternating layers of buried organics (C-14 date of 2300 BP at base of the sequence), silt and lenses of aggradational ice. Although the surface geophysical methods (electrical resistivity,GPR) were essential for mapping ice rich permafrost, the detailed appraisal of ground ice conditions was made truly possible by drilling and extracting intact cores. The use of the Cat-scan method proved very efficient for the precise and rapid measurement of ground ice contents and for imaging cryostructures on a large number of samples, thus providing exact information on permafrost composition and for interpreting permafrost history. The Salluit study also involves climate monitoring, thermal analysis and modeling, and intense community consultations.

  17. Wedge-shaped parenchymal enhancement peripheral to the hepatic hemangioma : two-phase spiral CT findings

    International Nuclear Information System (INIS)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han, Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Song, Chi Sung; Choi, Byung Ihn

    2000-01-01

    To determine the incidence of hepatic hemangiomas associated with wedge-shaped parenchymal enhancements adjacent to the tumors as seen on two-phase spiral CT images obtained during the hepatic arterial phase and to characterize the two-phase spiral CT findings of those hemangiomas. One hundred and eight consecutive hepatic hemangiomas in 63 patients who underwent two-phase spiral CT scanning during an 11-month period were included in this study. Two-phase spiral CT scans were obtained during the hepatic arterial phase (30-second delay) and portal venous phase (65-second delay) after injection of 120 mL of contrast material at a rate of 3 mL/sec. We evaluated the frequency with which wedge-shaped parenchymal enhancement was adjacent to the hemangiomas during the hepatic arterial phase and divided hemangiomas into two groups according to whether or not wedge-shaped parenchymal enhancement was noted (Group A and Group B). The presence of such enhancement in hemangiomas was correlated with tumor size and the grade of intratumoral enhancement. In 24 of 108 hemangiomas, wedge-shaped parenchymal enhancement adjacent to hepatic tumors was seen on two-phase CT images obtained during the hepatic arterial phase. Mean hemangioma size was 22mm in group A and 24mm in group B. There was no statistically significant relationship between lesion size and the presence of wedge-shaped parenchymal enhancement adjacent to a hemangioma. In 91.7% and 100% of tumors in Group A, and in 9.6% and 17.8% in Group B, hemangiomas showed more than 50% intratumoral enhancement during the arterial and portal venous phase, respectively. Wedge-shaped parenchymal enhancements peripheral to hepatic hemangiomas was more frequently found in tumors showing more than 50% intratumoral enhancement during these two phases (p less than 0.01). Wedge-shaped parenchymal enhancements is not uncommonly seen adjacent to hepatic hemangiomas on two-phase spiral CT images obtained during the hepatic arterial phase. A

  18. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

    International Nuclear Information System (INIS)

    Brown, Adrian J.; Michaels, Timothy I.; Byrne, Shane; Sun, Wenbo; Titus, Timothy N.; Colaprete, Anthony; Wolff, Michael J.; Videen, Gorden; Grund, Christian J.

    2015-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, potentially revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars. Such an instrument will address the following three major science themes, which we address in this paper: Science Theme 1. Surface. This would include global, night and day mapping of H 2 O and CO 2 surface ice properties. Science Theme 2. Ice Clouds. This would including unambiguous discrimination and seasonal mapping of CO 2 and H 2 O ice clouds. Science Theme 3. Dust Aerosols. This theme would include multiwavelength polarization measurements to infer dust grain shapes and size distributions. - Highlights: • We present the scientific rationale for a multi-wavelength, polarization sensitive lidar to be placed in orbit around Mars. • Scientific questions focus on the Martian climate and modern-day interactions between surface, ice clouds and dust aerosols. • What we would learn about volatile transport and deposition has implications for past, present and future life on Mars

  19. Cyclicity, episodicity, and continuity in accretionary wedge evolution: insights from geophysical imaging and physical analogue experiments

    Science.gov (United States)

    Kukowski, N.

    2009-04-01

    Geophysical profiles across active convergent margins reveal different styles and locations of sediment accretion, thrust slices dipping successively steeper towards the hinterland, splay faults, and blind thrusts as well as accumulation spaces e. g. thrust top basins and larger basins formed by regional subsidence, of very variable size and position. Morphologically, the continental slope at most margins can be sub-divided in a lower, middle, and upper slope, with often the middle slope being the most shallowly inclined, suggesting segmented wedges. Beneath the forearc, a subduction channel of a few hundred meters to a few km thickness marks a layer of material transport into greater depth that also hosts the plate interface and décollement zone. The petrographical composition of accretionary wedges and subduction channels as well as related pressures and temperatures are accessible through deep drilling or sampling fossil accretionary complexes now exhumed. The structure, lithology, and tectonic history of forearcs as identified from geophysical and geology field observations hint to parameters possibly controlling material transfer at convergent margins. Among them, sediment supply, which itself is largely controlled by climate, width of the subduction channel, and interplate frictional properties, which also exhibit control on plate coupling and therefore the seismic potential of a forearc, are suggested to be of major importance. These parameters further may undergo temporal fluctuation, e.g. when climate changes or when different material is entering the trench and therefore potentially also the subduction channel. High resolution monitoring of material flux and the evolution of fault zone kinematics of analogue experimental wedges made of granular materials exhibiting frictional behaviour equivalent to that of upper crustal rocks shows that accretionary cycles proceed as a chain of sub-processes, i.e. the development of a thrust slice from initial failure

  20. Review of ice and snow runway pavements

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-05-01

    Full Text Available Antarctica is the highest, driest, coldest, windiest, most remote and most pristine place on Earth. Polar operations depend heavily on air transportation and support for personnel and equipment. It follows that improvement in snow and ice runway design, construction and maintenance will directly benefit polar exploration and research. Current technologies and design methods for snow and ice runways remain largely reliant on work performed in the 1950s and 1960s. This paper reviews the design and construction of polar runways using snow and ice as geomaterials. The inability to change existing snow and ice thickness or temperature creates a challenge for polar runway design and construction, as does the highly complex mechanical behaviour of snow, including the phenomena known as sintering. It is recommended that a modern approach be developed for ice and snow runway design, based on conventional rigid and flexible pavement design principles. This requires the development on an analytical model for the prediction of snow strength, based on snow age, temperature history and density. It is also recommended that the feasibility of constructing a snow runway at the South Pole be revisited, in light of contemporary snow sintering methods. Such a runway would represent a revolutionary advance for the logistical support of Antarctic research efforts. Keywords: Runway, Pavement, Snow, Ice, Antarctic

  1. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  2. Multi-Decadal Averages of Basal Melt for Ross Ice Shelf, Antarctica Using Airborne Observations

    Science.gov (United States)

    Das, I.; Bell, R. E.; Tinto, K. J.; Frearson, N.; Kingslake, J.; Padman, L.; Siddoway, C. S.; Fricker, H. A.

    2017-12-01

    Changes in ice shelf mass balance are key to the long term stability of the Antarctic Ice Sheet. Although the most extensive ice shelf mass loss currently is occurring in the Amundsen Sea sector of West Antarctica, many other ice shelves experience changes in thickness on time scales from annual to ice age cycles. Here, we focus on the Ross Ice Shelf. An 18-year record (1994-2012) of satellite radar altimetry shows substantial variability in Ross Ice Shelf height on interannual time scales, complicating detection of potential long-term climate-change signals in the mass budget of this ice shelf. Variability of radar signal penetration into the ice-shelf surface snow and firn layers further complicates assessment of mass changes. We investigate Ross Ice Shelf mass balance using aerogeophysical data from the ROSETTA-Ice surveys using IcePod. We use two ice-penetrating radars; a 2 GHz unit that images fine-structure in the upper 400 m of the ice surface and a 360 MHz radar to identify the ice shelf base. We have identified internal layers that are continuous along flow from the grounding line to the ice shelf front. Based on layer continuity, we conclude that these layers must be the horizons between the continental ice of the outlet glaciers and snow accumulation once the ice is afloat. We use the Lagrangian change in thickness of these layers, after correcting for strain rates derived using modern day InSAR velocities, to estimate multidecadal averaged basal melt rates. This method provides a novel way to quantify basal melt, avoiding the confounding impacts of spatial and short-timescale variability in surface accumulation and firn densification processes. Our estimates show elevated basal melt rates (> -1m/yr) around Byrd and Mullock glaciers within 100 km from the ice shelf front. We also compare modern InSAR velocity derived strain rates with estimates from the comprehensive ground-based RIGGS observations during 1973-1978 to estimate the potential magnitude of

  3. The surface of the ice-age Earth.

    Science.gov (United States)

    1976-03-19

    In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.

  4. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  5. The influence of wedge diffuser blade number and divergence angle on the performance of a high pressure ratio centrifugal compressor

    Science.gov (United States)

    Wang, Yi; Han, Ge; Lu, Xingen; Zhu, Junqiang

    2018-02-01

    Wedge diffuser is widely used in centrifugal compressors due to its high performance and compact size. This paper is aimed to research the influence of wedge diffuser blade number and divergence angle on centrifugal compressor performance. The impact of wedge diffuser blade number on compressor stage performance is investigated, and then the wedge diffusers with different divergence angle are studied by varying diffuser wedge angle and blade number simultaneously. It is found that wedge diffuser with 27 blades could have about 0.8% higher adiabatic efficiency and 0.14 higher total pressure ratio than the wedge diffuser with 19 blades and the best compressor performance is achieved when diffuser divergence angle is 8.3°.These results could give some advices on centrifugal compressor design.

  6. Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.

    Science.gov (United States)

    Yu, Tai-Ho

    2015-09-01

    This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evaluation of off-axis wedge correction factor using diode dosimeters for estimation of delivered dose in external radiotherapy

    International Nuclear Information System (INIS)

    Allahverdi, Mahmoud; Shirazi, Alireza; Geraily, Ghazale; Mohammadkarim, Alireza; Esfehani, Mahbod; Nedaie, Hasanali

    2012-01-01

    An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges) and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics (field size, source-skin distance (SSD), thickness, backscatter), correction factors were applied to the diode reading when measuring conditions different from calibration situations. The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5%) and is a reliable method for patient dose control. (author)

  8. Evaluation of off-axis wedge correction factor using diode dosimeters for estimation of delivered dose in external radiotherapy

    Directory of Open Access Journals (Sweden)

    Mahmoud Allahverdi

    2012-01-01

    Full Text Available An in vivo dosimetry system, using p-type diode dosimeters, was characterized for clinical applications of treatment machines ranging in megavoltage energies. This paper investigates two different models of diodes for externally wedged beams and explains a new algorithm for the calculation of the target dose at various tissue depths in external radiotherapy. The values of off-axis wedge correction factors were determined at two different positions in the wedged (toward the thick and thin edges and in the non-wedged directions on entrance and exit surfaces of a polystyrene phantom in 60 Co and 6 MV photon beams. Depth transmission was defined on the entrance and exit surfaces to obtain the off-axis wedge correction factor at any depth. As the sensitivity of the diodes depends on physical characteristics [field size, source-skin distance (SSD, thickness, backscatter], correction factors were applied to the diode reading when measuring conditions different from calibration situations . The results indicate that needful correction factors for 60 Co wedged photons are usually larger than those for 6 MV wedged photon beams. In vivo dosimetry performed with the proposed algorithms at externally wedged beams has negligible probable errors (less than 0.5% and is a reliable method for patient dose control.

  9. Wedge and subselective pulmonary angiography in pulmonary hypertension secondary to venous obstruction

    International Nuclear Information System (INIS)

    Bowen, J.S.; Bookstein, J.J.; Johnson, A.D.; Peterson, K.L.; Moser, K.M.

    1985-01-01

    Pulmonary wedge or subselective angiography provided key diagnostic information in two cases of pulmonary hypertension secondary to pulmonary venous obstruction. Whereas conventional pulmonary angiograms and ventilation-perfusion lung scans were interpreted as showing embolism, plain radiographs demonstrated Kerley B lines, suggesting venous obstruction. Subselective or wedge angiography of nonopacified arteries verified their anatomical patency and also revealed venous stenoses, collaterals, and atrophy indicative of obstruction

  10. Radiographic Outcomes Following Lateral Column Lengthening With a Porous Titanium Wedge.

    Science.gov (United States)

    Gross, Christopher E; Huh, Jeannie; Gray, Joni; Demetracopoulos, Constantine; Nunley, James A

    2015-08-01

    Lateral column lengthening (LCL) is commonly utilized in treating stage II posterior tibialis tendon dysfunction. This study aimed to analyze the outcomes of LCL with porous titanium wedges compared to historic controls of iliac crest autograft and allograft. We hypothesized that the use of a porous titanium wedge would have radiographic improvement and union rates similar to those with the use of autograft and allograft in LCL. Between May 2009 and May 2014, 28 feet in 26 patients were treated with LCL using a porous titanium wedge. Of the 26 patients, 9 were males (34.6%). The average age for males was 43 years (range, 17.9-58.7), 48.7 years (range, 21-72.3) for females. Mean follow-up was 14.6 months. Radiographs were examined for correction of the flatfoot deformity and forefoot abduction. All complications were noted. Radiographically, the patients had a significant deformity correction in the anteroposterior talo-first metatarsal angle, talonavicular coverage angle, lateral talo-first metatarsal angle, and calcaneal pitch. All but 1 patient (96%) had bony incorporation of the porous titanium wedge. The average preoperative visual analog scale pain score was 5; all patients but 3 (12%) had improvements in their pain score, with a mean change of 3.4. LCL with porous titanium had low nonunion rates, improved radiographic correction, and pain relief. Level IV, case series. © The Author(s) 2015.

  11. Checks for quality control of wedge dynamics in treatment units and the planning system

    International Nuclear Information System (INIS)

    Mateos Salvador, P.; Rodriguez Lopez, B.; Font Gelabert, J.; Hernandez Rodriguez, J.; Arino Gil, A.

    2013-01-01

    The objective of this study is to verify the implementation of enhanced dynamic wedge (EDW) vary in the Eclipse planning system and the experimental determination of the parameters that define the dosimetry characteristics of enhanced dynamic wedge of our treatment units. (Author)

  12. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  13. Measurements of acetylene in air extracted from polar ice cores

    Science.gov (United States)

    Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.

    2016-12-01

    Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.

  14. Forces in Motzkin paths in a wedge

    International Nuclear Information System (INIS)

    Janse van Rensburg, E J

    2006-01-01

    Entropic forces in models of Motzkin paths in a wedge geometry are considered as models of forces in polymers in confined geometries. A Motzkin path in the square lattice is a path from the origin to a point in the line Y = X while it never visits sites below this line, and it is constrained to give unit length steps only in the north and east directions and steps of length √2 in the north-east direction. Motzkin path models may be generalized to ensembles of NE-oriented paths above the line Y = rX, where r > 0 is an irrational number. These are paths giving east, north and north-east steps from the origin in the square lattice, and confined to the r-wedge formed by the Y-axis and the line Y = rX. The generating function g r of these paths is not known, but if r > 1, then I determine its radius of convergence to be t r = min (r-1)/r≤y≤r/(r+1) [y y (1-r(1-y)) 1-r(1-y) (r(1-y)-y) r(1-y)-y ] and if r is an element of (0, 1), then t r = 1/3. The entropic force the path exerts on the line Y rX may be computed from this. An asymptotic expression for the force for large values of r is given by F(r) = log(2r)/r 2 - (1+2log(2r))/2r 3 + O (log(2r)/r 4 ). In terms of the vertex angle α of the r-wedge, the moment of the force about the origin has leading terms F(α) log(2/α) - (α/2)(1+2log(2/α)) + O(α 2 log(2/α)) as α → 0 + and F(α) = 0 if α is element of [π/4, π/2]. Moreover, numerical integration of the force shows that the total work done by closing the wedge is 1.085 07... lattice units. An alternative ensemble of NE-oriented paths may be defined by slightly changing the generating function g r . In this model, it is possible to determine closed-form expressions for the limiting free energy and the force. The leading term in an asymptotic expansions for this force agrees with the leading term in the asymptotic expansion of the above model, and the subleading term only differs by a factor of 2

  15. Comments related to infinite wedge representations

    OpenAIRE

    Grieve, Nathan

    2016-01-01

    We study the infinite wedge representation and show how it is related to the universal extension of $g[t,t^{-1}]$ the loop algebra of a complex semi-simple Lie algebra $g$. We also give an elementary proof of the boson-fermion correspondence. Our approach to proving this result is based on a combinatorial construction with partitions combined with an application of the Murnaghan-Nakayama rule.

  16. Family from a fairy tale. A model of the modern family on the example of the Ice Age tetralogy [Rodzina z bajki. O modelu współczesnej rodziny na przykładzie tetralogii Epoka Lodowcowa

    Directory of Open Access Journals (Sweden)

    Agnieszka GIL

    2017-11-01

    Full Text Available In this paper the transforming model of the modern family is considered as a key to the description emerging in Ice Age characters and the relationships between them. In the description of the characters a reference is made to the studies of Deborah S. David and Robert Brannon on the four imperatives used for constructing the traditional paradigm of masculinity and Arkadiusz Lewicki’s observations about modern animation heroes connected with them. There is also an attempt of reconstructing the family model proposed by the authors of these animations in combination with traditional and contemporary models presented in the reference books and papers. In the analysis of the issue there is also a reference to the wider background of the functioning of the modern family as well as cultural texts

  17. Climate adaptation wedges: a case study of premium wine in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah [Stanford University; White, Michael A [Utah State University (USU); Jones, Gregory V [Southern Oregon University, Ashland, OR; Ashfaq, Moetasim [ORNL

    2011-01-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000 39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030 9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate

  18. Climate adaptation wedges: a case study of premium wine in the western United States

    International Nuclear Information System (INIS)

    Diffenbaugh, Noah S; Ashfaq, Moetasim; White, Michael A; Jones, Gregory V

    2011-01-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000-39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030-9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation

  19. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    Science.gov (United States)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  20. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M

    2018-03-01

    One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.

  1. Spacing of Imbricated Thrust Faults and the Strength of Thrust-Belts and Accretionary Wedges

    Science.gov (United States)

    Ito, G.; Regensburger, P. V.; Moore, G. F.

    2017-12-01

    The pattern of imbricated thrust blocks is a prominent characteristic of the large-scale structure of thrust-belts and accretionary wedges around the world. Mechanical models of these systems have a rich history from laboratory analogs, and more recently from computational simulations, most of which, qualitatively reproduce the regular patterns of imbricated thrusts seen in nature. Despite the prevalence of these patterns in nature and in models, our knowledge of what controls the spacing of the thrusts remains immature at best. We tackle this problem using a finite difference, particle-in-cell method that simulates visco-elastic-plastic deformation with a Mohr-Coulomb brittle failure criterion. The model simulates a horizontal base that moves toward a rigid vertical backstop, carrying with it an overlying layer of crust. The crustal layer has a greater frictional strength than the base, is cohesive, and is initially uniform in thickness. As the layer contracts, a series of thrust blocks immerge sequentially and form a wedge having a mean taper consistent with that predicted by a noncohesive, critical Coulomb wedge. The widths of the thrust blocks (or spacing between adjacent thrusts) are greatest at the front of the wedge, tend to decrease with continued contraction, and then tend toward a pseudo-steady, minimum width. Numerous experiments show that the characteristic spacing of thrusts increases with the brittle strength of the wedge material (cohesion + friction) and decreases with increasing basal friction for low (laws that will illuminate the basic physical processes controlling systems, as well as allow researchers to use observations of thrust spacing as an independent constraint on the brittle strength of wedges as well as their bases.

  2. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-01

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions

  3. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    Science.gov (United States)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  4. A quantum hybrid with a thin antenna at the vertex of a wedge

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)

    2017-03-26

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.

  5. Interaction of Structure and Physical Properties in Accretionary Wedges: Examples from the Cascadia and Nankai Trough Subduction Zones

    Science.gov (United States)

    Webb, Susanna I.

    Subduction zones are capable of producing large, megathrust earthquakes that are sometimes tsunamigenic. Structure and physical properties in the accretionary wedge play a role in how far rupture can propagate and how the wedge deforms coseismically. In this dissertation, I use seismic reflection data and velocity models from the Cascadia subduction zone and logging data from the Nankai Trough, Japan, to interpret structure, link structure to the broader wedge deformation history, and investigate the material properties at depth. I present a full structural interpretation of newly acquired seismic reflection data in the central Cascadia margin, which is characterized by dominantly landward vergent faulting in the outer wedge, a very low wedge taper angle, and a broad, lightly deformed lower slope terrace. Two decollements are active: an upper decollement within the sedimentary section, and a basal decollement at the sediment-basement interface. These interpretations help delineate the spatial extent of decollements and suggest that supra-wedge sedimentation may influence the development of the wedge, including the formation of the lower slope terrace and out of sequence fault activity. I use velocity models from central Cascadia to estimate excess pore fluid pressure and overpressure ratio at depth, which do not exceed 5 MPa and 0.15, respectively. No excess pore pressure is documented in the underthrust sediment section, but modest overpressure is likely present in the incoming sediment section and the footwalls of thrust sheets. The analysis of pore pressure shows that (1) if the base of the wedge is weak, it is due to mechanical properties of the sediments or a relatively thin underthrust layer and (2) the Cascadia wedge is relatively well-drained, and thus potentially strong, which can lead to a low wedge taper angle. In the Nankai Trough, Japan, I reprocessed sonic log data to obtain P-wave and S-wave velocity values and estimate elastic moduli. The logs

  6. Elastic wave diffraction by infinite wedges

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Larissa; Zernov, Victor [Sound Mathematics Ltd., Cambridge CB4 2AS (United Kingdom); Gautesen, Arthur [Mathematics Department, Iowa State University and Ames Laboratory (United States); Darmon, Michel, E-mail: l.fradkin@soundmathematics.com [CEA-LIST, CEA-Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-01

    We compare two recently developed semi-analytical approaches to the classical problem of diffraction by an elastic two dimensional wedge, one based on the reciprocity principle and Fourier Transform and another, on the representations of the elastodynamic potentials in the form of Sommerfeld Integrals. At present, in their common region of validity, the approaches are complementary, one working better than the other at some isolated angles of incidence.

  7. Interannual observations and quantification of summertime H2O ice deposition on the Martian CO2 ice south polar cap

    Science.gov (United States)

    Brown, Adrian J.; Piqueux, Sylvain; Titus, Timothy N.

    2014-01-01

    The spectral signature of water ice was observed on Martian south polar cap in 2004 by the Observatoire pour l'Mineralogie, l'Eau les Glaces et l'Activite (OMEGA) ( Bibring et al., 2004). Three years later, the OMEGA instrument was used to discover water ice deposited during southern summer on the polar cap ( Langevin et al., 2007). However, temporal and spatial variations of these water ice signatures have remained unexplored, and the origins of these water deposits remains an important scientific question. To investigate this question, we have used observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) spacecraft of the southern cap during austral summer over four Martian years to search for variations in the amount of water ice. We report below that for each year we have observed the cap, the magnitude of the H2O ice signature on the southern cap has risen steadily throughout summer, particularly on the west end of the cap. The spatial extent of deposition is in disagreement with the current best simulations of deposition of water ice on the south polar cap (Montmessin et al., 2007). This increase in water ice signatures is most likely caused by deposition of atmospheric H2O ice and a set of unusual conditions makes the quantification of this transport flux using CRISM close to ideal. We calculate a ‘minimum apparent‘ amount of deposition corresponding to a thin H2O ice layer of 0.2 mm (with 70% porosity). This amount of H2O ice deposition is 0.6–6% of the total Martian atmospheric water budget. We compare our ‘minimum apparent’ quantification with previous estimates. This deposition process may also have implications for the formation and stability of the southern CO2 ice cap, and therefore play a significant role in the climate budget of modern day Mars.

  8. Study and evaluation of the Siemens virtual wedge factor: dosimetric monitor system and variable field effects

    Energy Technology Data Exchange (ETDEWEB)

    Sendon Rio, J R Sendon; Martinez, C Otero; GarcIa, M Sanchez; Busto, R Lobato; Vega, V Luna; Sueiro, J Mosquera; Camean, M Pombar [Servizo de Radiofisica e Proteccion Radioloxica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela (Spain)], E-mail: jose.ramon.sendon.del.rio@sergas.es

    2008-03-07

    In the year 1997 Siemens introduced the virtual wedge in its accelerators. The idea was that a dose profile similar to that of a physical wedge can be obtained by moving one of the accelerator jaws at a constant speed while the dose rate is changing. This work explores the observed behaviour of virtual wedge factors. A model is suggested which takes into account that at any point in time, when the jaw moves, the dose at a point of interest in the phantom is not only due to the direct beam. It also depends on the scattered radiation in the phantom, the head scatter and the behaviour of the monitoring system of the accelerator. Measurements are performed in a Siemens Primus accelerator and compared to the model predictions. It is shown that the model agrees reasonably well with measurements spanning a wide range of conditions. A strong dependence of virtual wedge factors on the dosimetric board has been confirmed and an explanation has been given on how the balance between different contributions is responsible for virtual wedge factors values.

  9. Assessment of the sea-ice carbon pump

    DEFF Research Database (Denmark)

    Grimm, R.; Notz, D.; Glud, Ronnie N.

    2016-01-01

    -induced oceanic CO2 uptake ranges from 2 to 14 Tg C yr−1, which is up to 7% of the simulated net CO2 uptake in polar regions, but far less than 1% of the cur-rent global oceanic CO2 uptake. Hence, while we find that the SICP plays a minor role in the modern global carbon cycle, it is of importance......It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total...... for the regional carbon cycle at high latitudes....

  10. Filling Transitions in Acute and Open Wedges.

    Czech Academy of Sciences Publication Activity Database

    Malijevský, Alexandr; Parry, A.O.

    2015-01-01

    Roč. 91, č. 5 (2015), s. 052401 ISSN 1539-3755 R&D Projects: GA ČR GA13-09914S Grant - others:EPSRC(GB) EP/J009636/1; EPSRC(GB) EP/I019111/1 Institutional support: RVO:67985858 Keywords : wetting transitions * wedges * density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.288, year: 2014

  11. Fixed Points of Maps of a Nonaspherical Wedge

    Directory of Open Access Journals (Sweden)

    Merrill Keith

    2009-01-01

    Full Text Available Abstract Let be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of .

  12. A multisatellite case study of the expansion of a substorm current wedge in the near-Earth magnetotail

    International Nuclear Information System (INIS)

    Lopez, R.E.; Lui, A.T.Y.

    1990-01-01

    This study presents observations made by four spacecraft (AMPTE CCE, AMPTE IRM, GOES 5, and GOES 6) and two ground stations (San Juan and Tucson) during a substorm that occurred at ∼0830 UT on April 19, 1985. The spacecraft were arrayed in a configuration that allows for the examination of the spatial evolution of the substorm current wedge, CCE was located between the GOES spacecraft in longitude, but at a radial distance of 8.0 R E . IRM was located west of the other three spacecraft in the same sector as Tucson, but at a radial distance of 11.6 R E . The relative times at which the signature of the substorm current wedge was first observed at the GOES spacecraft and the ground stations are consistent with a simple longitudinally expanding current wedge. However, the times at which IRM and CCE observed the current wedge are not consistent with a current wedge that expanded only longitudinally, IRM first observed the signature of the current wedge at about the same time the signature was observed by GOES 6 and Tucson, and CCE observed the current wedge only after both GOES satellites and the ground stations had done so. Moreover, both GOES spacecraft observed signatures consistent with entry into the central plasma sheet before CCE and IRM did, even though we estimate that CCE was slightly closer to the neutral sheet than the geosynchronous spacecraft. The sequence of events suggests that during this substorm the disruption of the cross-tail current sheet, the formation of the substorm current wedge, and the expansion of the plasma sheet began in the near-Earth region, and subsequently spread tailward as well as longitudinally

  13. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  14. Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events

    Science.gov (United States)

    Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.

    2017-12-01

    The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.

  15. Partially wedged beams improve radiotherapy treatment of urinary bladder cancer

    International Nuclear Information System (INIS)

    Muren, Ludvig Paul; Hafslund, Rune; Gustafsson, Anders; Smaaland, Rune; Dahl, Olav

    2001-01-01

    Background and purpose: Partially wedged beams (PWBs) having wedge in one part of the field only, can be shaped using dynamic jaw intensity modulation. The possible clinical benefit of PWBs was tested in treatment plans for muscle-infiltrating bladder cancer. Material and methods: Three-dimensional treatment plans for 25 bladder cancer patients were analyzed. The originally prescribed standard conformal four-field box technique, which includes the use of lateral ordinary wedge beams, was compared to a modified conformal treatment using customized lateral PWBs. In these modified treatment plans, only the anterior parts of the two lateral beams had a wedge. To analyze the potential clinical benefit of treatment with PWBs, treatment plans were scored and compared using both physical parameters and biological dose response models. One tumour control probability model and two normal tissue complication probability (NTCP) models were applied. Different parameters for normal tissue radiation tolerance presented in the literature were used. Results: By PWBs the dose homogeneity throughout the target volume was improved for all patients, reducing the average relative standard deviation of the target dose distribution from 2.3 to 1.8%. A consistent reduction in the maximum doses to surrounding normal tissue volumes was also found. The most notable improvement was demonstrated in the rectum where the volume receiving more than the prescribed tumour dose was halved. Treatment with PWBs would permit a target dose escalation of 2-6 Gy in several of the patients analyzed, without increasing the overall risk for complications. The number of patients suitable for dose escalation ranged from 3 to 15, depending on whether support from all or only one of the five applied NTCP model/parameter combinations were required in each case to recommend dose escalation. Conclusion: PWBs represent a simple dose conformation tool that may allow radiation dose escalation in the treatment of muscle

  16. Use of a wedge cuvette in thin layer photometry and its application to oximetry

    NARCIS (Netherlands)

    Spaan, J. A.; Garred, L. J.; van de Borne, P.

    1977-01-01

    A wedge cuvette was constructed by fixing 2 glass plates at a known angle with a spacer at one end. This resulted in a thin layer with thickness varying from 0 to 250 micrometer. By measuring the intensity of a beam of light through the thin layer as a function of distance along the wedge (and thus

  17. Direct FVM Simulation for Sound Propagation in an Ideal Wedge

    Directory of Open Access Journals (Sweden)

    Hongyu Ji

    2016-01-01

    Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.

  18. Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry

    Science.gov (United States)

    Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.

    1996-02-01

    The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.

  19. Ocean stratification reduces melt rates at the grounding zone of the Ross Ice Shelf

    Science.gov (United States)

    Begeman, C. B.; Tulaczyk, S. M.; Marsh, O.; Mikucki, J.; Stanton, T. P.; Hodson, T. O.; Siegfried, M. R.; Powell, R. D.; Christianson, K. A.; King, M. A.

    2017-12-01

    Ocean-driven melting of ice shelves is often invoked as the primary mechanism for triggering ice loss from Antarctica. However, due to the difficulty in accessing the sub-ice-shelf ocean cavity, the relationship between ice-shelf melt rates and ocean conditions is poorly understood, particularly near the transition from grounded to floating ice, known as the grounding zone. Here we present the first borehole oceanographic observations from the grounding zone of Antarctica's largest ice shelf. Contrary to predictions that tidal currents near grounding zones should mix the water column, driving high ice-shelf melt rates, we find a stratified sub-ice-shelf water column. The vertical salinity gradient dominates stratification over a weakly unstable vertical temperature gradient; thus, stratification takes the form of a double-diffusive staircase. These conditions limit vertical heat fluxes and lead to low melt rates in the ice-shelf grounding zone. While modern grounding zone melt rates may presently be overestimated in models that assume efficient tidal mixing, the high sensitivity of double-diffusive staircases to ocean freshening and warming suggests future melt rates may be underestimated, biasing projections of global sea-level rise.

  20. Flow Analysis for the Falkner–Skan Wedge Flow

    DEFF Research Database (Denmark)

    Bararnia, H; Haghparast, N; Miansari, M

    2012-01-01

    In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtai...

  1. Use of ice storage equipment in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Vries, H. de

    1984-01-01

    The manufacture of foods in its widest sense demands a 'balanced supply of cooling'. Whenever 'cold requirement' occurs in different ways during production, the ice storage equipment in particular for 'cooling supplies'. The cooling performance (amount of cold from horizontal tubes and slabs or from horizontal pipes given off to the water flowing past) that can be expected from modern ice storage equipment, is made clear numerically. The way the storage vessel is constructed and its design have particular influence on the energy-saving quality (stirring mechanism with high performance at low pump capacity). Optimisation results for a plate evaporator design combined with a heat exchange system are presented. These include running cost savings of up to 18% in a yoghurt factory, a maltery and an ice cream factory. By means of this heat pump compound, environmental energy can be used in cold storage.

  2. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    Science.gov (United States)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes

  3. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  4. Three-dimensional semi-analytical solution to groundwater flow in confined and unconfined wedge-shaped aquifers

    Science.gov (United States)

    Sedghi, Mohammad Mahdi; Samani, Nozar; Sleep, Brent

    2009-06-01

    The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471-80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.

  5. Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips

    DEFF Research Database (Denmark)

    Johansen, Peter Meincke

    1996-01-01

    New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well behaved for all directions of incidence and observation and take a finite...... value for zero strip length. This means that the expressions are well suited for implementation in general computer codes. The new expressions are expressed as the difference between two terms. The first term is obtained by integrating the exact fringe wave current on a wedge along an untruncated...

  6. Dose conformation to the spine during palliative treatments using dynamic wedges

    Energy Technology Data Exchange (ETDEWEB)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States); Herndon, R. Craig; Kaczor, Joseph G. [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States)

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  7. Cementless Hip Stem Anteversion in the Dysplastic Hip: A Comparison of Tapered Wedge vs Metaphyseal Filling.

    Science.gov (United States)

    Taniguchi, Naofumi; Jinno, Tetsuya; Koga, Daisuke; Hagino, Tetsuo; Okawa, Atsushi; Haro, Hirotaka

    2017-05-01

    Appropriate stem anteversion is important for achieving stability of the prosthetic joint in total hip arthroplasty. Anteversion of a cementless femoral stem is affected by the femoral canal morphology and varies according to stem geometry. We investigated the difference and variation of the increase in anteversion between 2 types of cementless stems, and the correlation between each stem and the preoperative femoral anteversion. We retrospectively compared 2 groups of hips that underwent total hip arthroplasty using a metaphyseal filling stem (78 hips) or a tapered wedge stem (83 hips). All the patients had osteoarthritis due to hip dysplasia. Computed tomography was used to measure preoperative femoral anteversion at 5 levels and postoperative stem anteversion. The increase in anteversion of the tapered wedge stem group (22.7° ± 11.6°) was more than that of the metaphyseal filling stem group (17.2° ± 8.3°; P = .0007). The variation of the increase in the tapered wedge stem group was significantly larger than that in the metaphyseal filling stem group (P = .0016). The metaphyseal filling stem group was more highly and positively correlated with femoral anteversion than the tapered wedge stem group. Femoral anteversion affects stem anteversion differently according to stem geometry. The tapered wedge stems had greater variation of the increase in anteversion than did the metaphyseal filling stems. Based on the results of this study, it is difficult to preoperatively estimate the increase in stem anteversion for tapered wedge stems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Linking Serpentinite Geochemistry with Possible Alteration and Evolution of Supra-Subduction Wedge Mantle

    Science.gov (United States)

    Scambelluri, M.; Cannaò, E.; Agostini, S.; Gilio, M.

    2016-12-01

    Serpentinites are able to transport and release volatiles and fluid-mobile elements (FME) found in arc magmas. Constraining the trace element compositions of these rocks and of fluids released by de-serpentinization improves our knowledge of mass transfer from subduction zones to volcanic arcs, and of the role of slab and wedge mantle in this global process. Studies of high-pressure ultramafic rocks exhumed from plate interface settings reveal the fluid/rock interactions atop the slab and the processes that can affect the mantle wedge. Alpine eclogite-facies antigorite serpentinite (Voltri Massif) and fully de-serpentinized meta-peridotite (Cima di Gagnone) are enriched in sediment-derived As, Sb, U, Pb before peak dehydration. Their Sr, Pb and B isotopic compositions are reset during prograde (forearc) interaction with slab fluids. The eclogitic garnet and olivine from the Cima di Gagnone metaperidotite trap primary inclusions of the fluid released during breakdown of antigorite and chlorite. The inclusions display FME enrichments (high Cl, S; variable Cs, Rb, Ba, B, Pb, As, Sb) indicating element release from rocks to fluids during dehydration under subarc conditions. Our studies show that serpentinized mantle rocks from subduction zones sequester FME from slab fluids and convey these components and radiogenic isotopes into the mantle wedge upon dehydration. The geochemical processes revealed by such plate-interface rocks can apply to the supra-subduction mantle. Shallow element release from slabs to mantle wedge, downdrag of this altered mantle and its subsequent (subarc) dehydration transfers crust-derived FMEs to the arc magma sources without the need of concomitant subarc dehydration/melting of metasedimentary slab components. The slab signature detected in arc lavas can thus result from geochemical mixing of sediment, oceanic crust and ultramafic reservoirs into altered wedge-mantle rocks, rather than being attributed to multiple fluids.

  9. Proximal Opening Wedge Osteotomy Provides Satisfactory Midterm Results With a Low Complication Rate.

    Science.gov (United States)

    Oravakangas, Rami; Leppilahti, Juhana; Laine, Vesa; Niinimäki, Tuukka

    2016-01-01

    Hallux valgus is one of the most common foot deformities. Proximal opening wedge osteotomy is used for the treatment of moderate and severe hallux valgus with metatarsus primus varus. However, hypermobility of the first tarsometatarsal joint can compromise the results of the operation, and a paucity of midterm results are available regarding proximal open wedge osteotomy surgery. The aim of the present study was to assess the midterm results of proximal open wedge osteotomy in a consecutive series of patients with severe hallux valgus. Thirty-one consecutive adult patients (35 feet) with severe hallux valgus underwent proximal open wedge osteotomy. Twenty patients (35.5%) and 23 feet (34.3%) were available for the final follow-up examination. The mean follow-up duration was 5.8 (range 4.6 to 7.0) years. The radiologic measurements and American Orthopaedic Foot and Ankle Society hallux-metatarsophalangeal-interphalangeal scores were recorded pre- and postoperatively, and subjective questionnaires were completed and foot scan analyses performed at the end of the follow-up period. The mean hallux valgus angle decreased from 38° to 23°, and the mean intermetatarsal angle correction decreased from 17° to 10°. The mean improvement in the American Orthopaedic Foot and Ankle Society hallux metatarsophalangeal-interphalangeal score increased from 52 to 84. Two feet (5.7%) required repeat surgery because of recurrent hallux valgus. No nonunions were identified. Proximal open wedge osteotomy provided satisfactory midterm results in the treatment of severe hallux valgus, with a low complication rate. The potential instability of the first tarsometatarsal joint does not seem to jeopardize the midterm results of the operation. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  11. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    Science.gov (United States)

    Liu, Zhongxian; Liu, Lei

    2015-02-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  12. Characterizing and configuring motorized wedge for a new generation telecobalt machine in a treatment planning system

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2007-01-01

    Full Text Available A new generation telecobalt unit, Theratron Equinox-80, (MDS Nordion, Canada has been evaluated. It is equipped with a single 60-degree motorized wedge (MW, four universal wedges (UW for 150, 300, 450 and 600. MW was configured in Eclipse (Varian, Palo Alto, USA 3D treatment planning system (TPS. The profiles and central axis depth doses (CADD were measured with radiation field analyzer blue water phantom for MW. These profiles and CADD for MW were compared with UW in a homogeneous phantom generated in Eclipse for various field sizes. The absolute dose was measured for a field size of 10 x 10 cm2 only in a MEDTEC water phantom at 10 cm depth with a 0.13 cc thimble ion chamber (Scanditronix Wellhofer, Uppsala, Sweden and a NE electrometer (Nuclear Enterprises, UK. Measured dose with ion chamber was compared with the TPS predicted dose. MW angle was verified on the Equinox for four angles (15o, 30o, 45o and 60o. The variation in measured and calculated dose at 10 cm depth was within 2%. The measured and the calculated wedge angles were in well agreement within 2o. The motorized wedges were successfully configured in Eclipse for four wedge angles.

  13. Nature of the Coastal Range Wedge Along the Rupture Area of the 2015, Illapel Chile Earthquake Mw 8.4

    Science.gov (United States)

    Farías, M.; Comte, D.; Roecker, S. W.; Brandon, M. T.

    2017-12-01

    Wedge theory is usually applied to the pro-side of active subduction margins, where fold-and-thrust belts related to frontal accretion develop, but rarely to the entire wedge, where the retro-side is also relevant. We present a new 3D body wave tomographic image that combines data from the Chile-Illapel Aftershock Experiment (CHILLAX) with previous temporary seismic networks, with the aim of illuminating the nature of the wedge of the continental margin above the seismogenic part of the subducting slab. The downdip extent of the coupled part, called the S-point in the wedge theory, corresponds to the place where upper plate completely decouples from the subducting slab. This point is characterized by a Vp/Vs contrast at about 60 km depth that extends upward-and-eastward in a west-dipping ramp-like geometry. This ramp emerges about 180 km from the trench, near the topographic break related to the front of the Andean retro-side. The Coastal wedge domain is characterized by a monotonous east-dipping homocline with the older rocks of this region along the coast. The offshore region, corresponding to the pro-side, exhibits normal faulting and a very small frontal accretionary complex. Normal faulting in this region is related to rapid uplift of marine terraces since ca. 2 Ma, suggesting strong basal accretion and thus high friction on the thrust. In fact, the epicentral region of the 2015 Illapel Earthquake coincides with the highest elevations along the coast, i.e., the region with the highest slope of the margin. In this region, the lack of a continental forearc basin suggests an overlapping between the Andean and Coastal wedges. The western edge of the Andean wedge is also part of the homocline about 10 km east of the topographic boundary between both wedges, suggesting that the Coastal wedge has been deforming a part of the retro-side of the Andean wedge during the Miocene. The east-ward tilting of the retro-side was acquired mainly before the late Miocene, since at

  14. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  15. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  16. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  17. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-01-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  18. Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems

    Science.gov (United States)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2012-01-01

    The accretion of ice particles in the core of commercial aircraft engines has been an ongoing aviation safety challenge. While no accidents have resulted from this phenomenon to date, numerous engine power loss events ranging from uneventful recoveries to forced landings have been recorded. As a first step to enabling mitigation strategies during ice accretion, a detection scheme must be developed that is capable of being implemented on board modern engines. In this paper, a simple detection scheme is developed and tested using a realistic engine simulation with approximate ice accretion models based on data from a compressor design tool. These accretion models are implemented as modified Low Pressure Compressor maps and have the capability to shift engine performance based on a specified level of ice blockage. Based on results from this model, it is possible to detect the accretion of ice in the engine core by observing shifts in the typical sensed engine outputs. Results are presented in which, for a 0.1 percent false positive rate, a true positive detection rate of 98 percent is achieved.

  19. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  20. Perturbation solutions for flow through symmetrical hoppers with inserts and asymmetrical wedge hoppers

    Science.gov (United States)

    Cox, G. M.; Mccue, S. W.; Thamwattana, N.; Hill, J. M.

    Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45°.

  1. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  2. Complex Anisotropic Structure of the Mantle Wedge Beneath Kamchatka Volcanoes

    Science.gov (United States)

    Levin, V.; Park, J.; Gordeev, E.; Droznin, D.

    2002-12-01

    A wedge of mantle material above the subducting lithospheric plate at a convergent margin is among the most dynamic environments of the Earth's interior. Deformation and transport of solid and volatile phases within this region control the fundamental process of elemental exchange between the surficial layers and the interior of the planet. A helpful property in the study of material deformation and transport within the upper mantle is seismic anisotropy, which may reflect both microscopic effects of preferentialy aligned crystals of olivine and orthopyroxene and macroscopic effects of systematic cracks, melt lenses, layering etc. Through the mapping of anisotropic properties within the mantle wedge we can establish patterns of deformation. Volatile content affects olivine alignment, so regions of anomalous volatile content may be evident. Indicators of seismic anisotropy commonly employed in upper mantle studies include shear wave birefringence and mode-conversion between compressional and shear body waves. When combined together, these techniques offer complementary constraints on the location and intensity of anisotropic properties. The eastern coast of southern Kamchatka overlies a vigorous convergent margin where the Pacific plate descends at a rate of almost 80 mm/yr towards the northwest. We extracted seismic anisotropy indicators from two data sets sensitive to the anisotropic properties of the uppermost mantle. Firstly, we evaluated teleseismic receiver functions for a number of sites, and found ample evidence for anisotropicaly-influenced P-to-S mode conversion. Secondly, we measured splitting in S waves of earthquakes with sources within the downgoing slab. The first set of observations provides constraints on the depth ranges where strong changes in anisotropic properties take place. The local splitting data provides constraints on the cumulative strength of anisotropic properties along specific pathways through the mantle wedge and possibly parts of

  3. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  4. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Easan; Denholm, Paul [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Margolis, Robert M, E-mail: easan.drury@nrel.go [National Renewable Energy Laboratory, 901 D Street SW, Suite 930, Washington, DC 20024 (United States)

    2009-09-15

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  6. Monoplanar versus biplanar medial open-wedge proximal tibial osteotomy for varus gonarthrosis: a comparison of clinical and radiological outcomes.

    Science.gov (United States)

    Elmalı, Nurzat; Esenkaya, Irfan; Can, Murat; Karakaplan, Mustafa

    2013-12-01

    We compared clinical and radiological results of two proximal tibial osteotomy (PTO) techniques: monoplanar medial open-wedge osteotomy and biplanar retrotubercle medial open-wedge osteotomy, stabilised by a wedged plate. We evaluated 88 knees in 78 patients. Monoplanar medial open-wedge PTO was performed on 56 knees in 50 patients with a mean age of 55 ± 9 years. Biplanar retrotubercle medial open-wedge PTO was performed on 32 knees in 28 patients with a mean age of 57 ± 7 years. Mean follow-up periods were 40.6 ± 7 months for the monoplanar PTO group and 38 ± 5 months for the biplanar retrotubercle PTO group. Clinical outcome was evaluated using the hospital for special surgery scoring system, and radiological outcome was evaluated by the measurements of femorotibial angle (FTA), patellar height and tibial slope changes. In both groups, post-operative HSS scores increased significantly. No significant difference was found between groups in FTA alteration, but the FTA decreased significantly in both groups. Patellar index ratios decreased significantly in the monoplanar PTO group (Insall-Salvati Index by 0.07, Blackburne-Peel Index by 0.07), but not in the biplanar retrotubercle PTO group. Tibial slopes were increased significantly in the monoplanar PTO group, but not in the retrotubercle PTO group. Biplanar retrotubercle medial open-wedge osteotomy and monoplanar medial open-wedge osteotomy are both clinically effective for the treatment for varus gonarthrosis. Retrotubercle osteotomy also prevents patella infera and tibial slope changes radiologically.

  7. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  8. Application of Green's differential equation to the analysis of ion-matrix sheaths around wedge-shaped cathodes

    International Nuclear Information System (INIS)

    Donolato, C

    2005-01-01

    A relation between the gradient of the electric field and mean curvature of equipotential surfaces (Green's differential equation) is applied to a two-dimensional free-boundary problem arising in the study of ion sheaths around wedge-shaped cathodes. With the assumption that the equipotential lines are hyperbolae, this relation leads to a nonlinear ordinary differential equation for the potential along the bisector line of the wedge. An approximate solution is found, which yields, in particular, the sheath width along this line as a function of the wedge angle. The resulting values are in good agreement with published results obtained by numerically solving Poisson's equation

  9. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  10. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  11. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    Science.gov (United States)

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent

  12. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Directory of Open Access Journals (Sweden)

    Kim Hak-Jun

    2008-08-01

    Full Text Available Abstract Background Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter and conversely, reduced pressure accelerates the growth (Volkmann. Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body. Methods This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve 30° to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae. Results In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation. Conclusion From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the

  13. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    Science.gov (United States)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  14. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  15. Low-Centred Polygons and Alas-Like Basins as Geological Markers of Warming Trends Late in Mars' History

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.; Godin, E.; Osinski, G.; Hawkswell, J.; Bina, A.

    2017-12-01

    Expansive assemblages of low/high centred (ice-wedge) polygons and (polygonised) flat-floored thermokarst-basins (alases) are ubiquitous on Earth where the permafrost is continuous, metres to decametres-thick and ice rich, i.e. the Tuktoyaktuk Coastlands of northern Canada and the Yamal Peninsula of eastern Russia. These assemblages are geological bellwethers of transient and on occasion, long-term rises of sub-aerial and thaw-generating mean temperatures, for two principal reasons. First, high-centred (ice-wedge) polygons evolve from low-centred (ice-wedge) polygons when ice wedges that have aggraded and uplift overlying sediments above the elevation datum at the polygon centres, degrade, by thaw, and induce the loss of elevation below that datum. Second, thermokarst terrain comprises sediments whose pore volume is exceeded by the presence of water ice. A thermokarst basin (an alas) forms if and only when this ice undergoes thermal destabilisation and where thaw-generated meltwater is lost by evaporation or drainage. Spatially-associated and morphologically-similar assemblages of polygons and basins are commonplace throughout the mid-latitudes of eastern Utopia Planitia (UP), Mars. Under current conditions of extreme aridity, low atmospheric-pressure and frigid mean-temperatures, the widespread formation of ice-rich terrain by freeze-thaw cycling, let alone of near-surface ice-wedges and/or thermokarst basins, seems implausible. Against this environmental backdrop, sublimation seemingly stands alone in being able to revise ice-rich landscapes. However, multiple strands of data point to the possible periglacial-assemblages (PPAs) being youthful but not current in their formation. First, the sub-regional and dark-toned terrain incised by the PPAs is cratered more densely than would be expected. Second, the PPAs reside at a lower relative and absolute elevation than a light-toned and region-wide latitude-dependent mantle that is generally thought to be very recent in

  16. MODERN CHARACTERISTICS OF THE ICE REGIME OF RUSSIAN ARCTIC RIVERS AND THEIR POSSIBLE CHANGES IN THE 21ST CENTURE

    Directory of Open Access Journals (Sweden)

    S. A. Agafonova

    2017-01-01

    Full Text Available Changes in rivers ice regime features and the climatic resources of the winter period were examined for the territory of Russia northward from 60° N. Datasets from 220 gauging stations for the period from 1960 to 2014 have been used in the study both with the results of numerical experiments carried out using climate models in the framework of the international project CMIP5. A change in the duration of the ice phenomena period, the ice cover period and the maximum thickness of ice on the rivers for the scenario RCP 8.5 by the end of the 21st century for a spatial grid with a distance between the nodes of 1.75x1.75 degrees in latitude and longitude has been estimated. We elaborated series of the maps. Main features of the ice regime changes are consistent with the expected changes in the duration of the cold season and the accumulated negative air temperatures. The significant changes are expected for the rivers of the Kola Peninsula and the lower reaches of the rivers Northern Dvina and Pechora, whereas the lowest changes - for the center of Eastern Siberia. 

  17. The Oldman River triangle zone: a complicated tectonic wedge delineated by new structural mapping and seismic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Stockmal, G. S. [Geological Survey of Canada, Calgary, AB (Canada). Inst. of Sedimentary and Petroleum Geology; Lawton, D. C.; Spratt, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; MacKay, P. A.

    1996-06-01

    The triangle zone exposed along and adjacent to the Alberta Foothills was characterized on the basis of new structural mapping and seismic surveys. Results indicate that the zone is comprised of a complicated structure involving significant deformation in the hanging wall of the upper detachment, including orogenic thrusts and large orogen-vergent folds, as well as secondary orogen-directed tectonic wedging. This structure is considered to be an example of a `nested` triangle zone, where an `outer` tectonic wedge with modest shortening encases an `inner` counterpart with substantially more shortening. Both of these wedges show evidence of synchronous deformation. 23 refs., 9 figs.

  18. A paired wedge filter system for compensation in dose differences

    International Nuclear Information System (INIS)

    Kobayashi, H.; Sakurai, Y.; Kondo, S.; Abe, S.; Hayakawa, N.; Aoyama, Y.; Obata, Y.; Ishigaki, T.

    1998-01-01

    Objective: In radiotherapy, it is important to conform the high dose volume to the planned target volume. A variable thickness paired wedge filter system was developed to compensate for dose inhomogeneity arising from field width segment variation in conformal irradiation. Materials and methods: The present study used a 6 MV linear accelerator equipped with multileaf collimator leaves and a paired wedge compensating filter system. The dose variation due to field width was measured in each field segment width. The variation in attenuation of the compensators was measured as a function of filter position. As the field width increases, the relative absorbed dose also increases; this is the point of requiring compensation, so it can be in reverse proportion. Results: As the field width increases, the relative absorbed dose also increases; this is why compensation is required and thus it must be in reverse proportion. Attenuation of the absorbed dose by the paired filters was in proportion to the filter position. The filter position to compensate for the difference of absorbed doses was defined by the square root of the field width. For a field varying in width from 4 to 16 cm, the variation in the absorbed dose across the field was reduced from 12% to 2.7%. Conclusion: This paired wedge filter system reduced absorbed dose variations across multileaf collimator shaped fields and can facilitate treatment planning in conformal therapy. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  20. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of

  1. Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.

    2015-01-01

    Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  2. Kinematic segmentation of accretive wedges based on scaled sandbox experiments and their application to nature

    Science.gov (United States)

    Lohrmann, J.; Kukowski, N.; Oncken, O.

    2003-04-01

    Recording the incremental displacement field of scaled analogue simulations provides detailed data on wedge kinematics and timing of internal deformation. This is a very efficient tool to develop kinematic concepts and test mechanical theories, e.g. the critical-taper theory. Such models could not be validated until now by the available geological and geophysical data, since there was no information about the incremental displacement field. Recent GPS measurements and seismological investigations at convergent margins provide well-constrained strain-rates and kinematics of short-termed processes. These data allow the kinematic models that are based on analogue simulations to be tested against field observations. We investigate convergent accretive sand wedges in scaled analogue simulations. We define three kinematic segments based on distinctive wedge taper, displacement field and timing of deformation (recorded at a slow sampling rate, which represents the geological scale). Only one of these segments is in a critical state of stress, whereas the other segments are either in a sub-critical or stable state of stress. Such a kinematic segmentation is not predicted for ideally homogeneous wedge-shaped bodies by the critical-taper theory, but can be explained by the formation of localised weak shear zones, which preferentially accommodate deformation. These weak zones are formed in granular analogue materials, and also in natural rocks, since these materials show a strain-softening phase prior to the achievement of stable mechanical conditions. Therefore we suggest that the kinematic segmentation of convergent sand wedges should also be observed in natural settings, such as accretionary wedges, foreland fold-and-thrust belts and even entire orogens. To validate this hypothesis we compare strain rates from GPS measurements and kinematics deduced from focal mechanisms with the respective data from sandbox experiments. We present a strategy to compare strain rates and

  3. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  4. Evaluation of the necessity for chest drain placement following thoracoscopic wedge resection.

    Science.gov (United States)

    Lu, Ting-Yu; Chen, Jian-Xun; Chen, Pin-Ru; Lin, Yu-Sen; Chen, Chien-Kuang; Kao, Pei-Yu; Huang, Tzu-Ming; Fang, Hsin-Yuan

    2017-05-01

    To evaluate the outcomes of patients who underwent thoracoscopic wedge resection without chest drain placement. The subjects of this retrospective study were 89 patients, who underwent thoracoscopic wedge resection at our hospital between January, 2013 and July, 2015. A total of 45 patients whose underlying condition did not meet the following criteria were assigned to the "chest drain placement group" (group A): peripheral lesions, healthy lung parenchyma, no intraoperative air leaks, hemorrhage or effusion accumulation, and no pleural adhesion. The other 44 patients whose underlying condition met the criteria were assigned to the "no chest drain placement group" (group B). Patient characteristics, specimen data, and postoperative conditions were analyzed and compared between the groups. Group A patients had poorer forced expiratory volume in one second (FEV1) values, less normal spirometric results, significantly higher resected lung volume, a greater maximum tumor-pleura distance, and a larger maximum tumor size. They also had a longer postoperative hospital stay. There was no difference between the two groups in postoperative complications. Avoiding chest drain placement after a thoracoscopic wedge resection appears to be safe and beneficial for patients who have small peripheral lesions and healthy lung parenchyma.

  5. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap

    Science.gov (United States)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur

    2018-06-01

    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  6. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    Science.gov (United States)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent

  7. SU-E-T-362: Enhanced Dynamic Wedge Output Factors for Varian 2300CD and the Case for a Reference Database

    International Nuclear Information System (INIS)

    Njeh, C

    2015-01-01

    Purpose: Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the short comings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby adding credence to the case of the validity of reference databases. Methods: The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6 MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian Linac models were found in the literature. Results: The EDWOF for 6 MV varied from 0.980 for a 5×5 cm 10 degree wedge to 0.424 for 20×20 cm 60 degree wedge. Similarly for 20 MV, the EDWOF varied from 0.986 for 5×5 cm 10 degree wedge to 0.529 for 20×20 cm 60 degree wedge. EDWOF are highly dependent on field size. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF with the percentage differences ranging from 0.01% to 0.57% with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18MV photon energies respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. Conclusion: The consistency of EDWOF across models and institution provide further support that, a standard data set of basic photon and electron dosimetry could be established, as a guide for future commissioning, beam modeling and quality assurance purposes

  8. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  9. Volcanic terrain and the possible periglacial formation of "excess ice" at the mid-latitudes of Utopia Planitia, Mars

    Science.gov (United States)

    Soare, R. J.; Horgan, B.; Conway, S. J.; Souness, C.; El-Maarry, M. R.

    2015-08-01

    At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of

  10. Duodenal Wedge Resection for Large Gastrointestinal Stromal Tumour Presenting with Life-Threatening Haemorrhage

    Directory of Open Access Journals (Sweden)

    Alexander Shaw

    2013-01-01

    Full Text Available Background. Duodenal gastrointestinal stromal tumours (GISTs are an uncommon malignancy of the gastrointestinal (GI tract. We present a case of life-threatening haemorrhage caused by a large ulcerating duodenal GIST arising from the third part of the duodenum managed by a limited duodenal wedge resection. Case Presentation. A 61-year-old patient presented with acute life-threatening gastrointestinal bleeding. After oesophagogastroduodenoscopy failed to demonstrate the source of bleeding, a 5 cm ulcerating exophytic mass originating from the third part of the duodenum was identified at laparotomy. A successful limited wedge resection of the tumour mass was performed. Histopathology subsequently confirmed a duodenal GIST. The patient remained well at 12-month followup with no evidence of local recurrence or metastatic spread. Conclusion. Duodenal GISTs can present with life-threatening upper GI haemorrhage. In the context of acute haemorrhage, even relatively large duodenal GISTs can be treated by limited wedge resection. This is a preferable alternative to duodenopancreatectomy with lower morbidity and mortality but comparable oncological outcome.

  11. CALICE: Calibrating Plant Biodiversity in Glacier Ice

    Science.gov (United States)

    Festi, Daniela; Cristofori, Antonella; Vernesi, Cristiano; Zerbe, Stefan; Wellstein, Camilla; Maggi, Valter; Oeggl, Klaus

    2017-04-01

    The objective of the project is to reconstruct plant biodiversity and its trend archived in Alpine glacier ice by pollen and eDNA (environmental DNA) during the last five decades by analyzing a 40 m ice core. For our study we chose the Adamello glacier (Trentino - Südtirol, Lombardia) because of i) the good preservation conditions for pollen and eDNA in ice, ii) the thickness of the ice cap (270m) and iii) the expected high time resolution. The biodiversity estimates gained by pollen analysis and eDNA will be validated by historical biodiversity assessments mainly based on vegetation maps, aerial photos and vegetation surveys in the catchment area of the Adamello glacier for the last five decades. This historical reconstruction of biodiversity trends will be performed on a micro-, meso- and macro-scale (5, 20-50 and 50-100 Km radius, respectively). The results will serve as a calibration data set on biodiversity for future studies, such as the second step of the coring by the POLLiCE research consortium (pollice.fmach.it). In fact, arrangements are currently been made to drill the complete ice cap and retrieve a 270 m thick core which has the potential to cover a time span of minimum 400 years up to several millennia. This second stage will extend the time scale and enable the evaluation of dissimilarity/similarity of modern biodiversity in relation to Late Holocene trends. Finally, we believe this case study has the potential to be applied in other glaciated areas to evaluate biodiversity for large regions (e.g. central Asian mountain ranges, Tibet and Tian Shan or the Andes).

  12. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    Science.gov (United States)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    ice and sediments of unit C. Pollen data show that spruce forests and wetlands dominated the area. The macrofossil remains of Picea, Larix, and Alnus incana ssp. tenuifolia also prove the existence of boreal coniferous forests during the mid-Wisconsin interstadial, which were replaced by treeless tundra-steppe vegetation during the late Wisconsin stadial. Unit C is discordantly overlain by the 2-m-thick late Holocene deposits of unit D. The pollen record of unit D indicates boreal forest vegetation similar to the modern one. The permafrost record from the Vault Creek tunnel reflects more than 90 ka of periglacial landscape dynamics triggered by fluvial and eolian accumulation, and formation of ice-wedge polygons and post-depositional deformation by slope processes. The record represents a typical Wisconsin valley-bottom facies in Central Alaska.

  13. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  14. Dependence of wedge transmission factor on co-60 teletherapy ...

    African Journals Online (AJOL)

    Measuring the wedge factor (WF) for radiation field of 10 x 10 cm2 at a specified depth and Source to Surface Distance (SSD), and applying the value to all treatment depths and technique could introduce errors > ± 5 % of threshold stipulated for patient radiation dose delivery. Therefore, some Treatment Planning Systems ...

  15. Thoracoscopic pulmonary wedge resection without post-operative chest drain

    DEFF Research Database (Denmark)

    Holbek, Bo Laksafoss; Hansen, Henrik Jessen; Kehlet, Henrik

    2016-01-01

    %) patients had a pneumothorax of mean size 12 ± 12 mm on supine 8-h post-operative X-ray for which the majority resolved spontaneously within 2-week control. There were no complications on 30-day follow-up. Median length of stay was 1 day. CONCLUSIONS: The results support that VATS wedge resection...

  16. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications

    Science.gov (United States)

    Ilao, Kimberly A.; Morley, Christopher K.; Aurelio, Mario A.

    2018-04-01

    The Pagasa Wedge is a poorly imaged deepwater orogenic wedge that has been variously interpreted as representing an accretionary prism, a former accretionary prism modified by thrusting onto a thinned continental margin, and a gravity-driven fold-thrust belt. This study, using 2D and 3D seismic data, together with well information indicates that at least the external part of the wedge is dominantly composed of mass transport complexes, capped by syn-kinematic sediments that have thrusts and normal faults superimposed upon them. Drilling shows that despite stratigraphic repetition of Eocene Middle Miocene units, there is stratigraphic omission of Oligocene and Early Miocene units. This absence suggests that mass transport processes have introduced the Eocene section into the wedge rather than tectonic thrusting. The accretionary prism stage (Oligocene) of the Central Palawan Ophiolite history appears to be marked by predominantly north-vergent deformation. The Deep Regional Unconformity (∼17 Ma) likely indicates the approximate time when obduction ceased in Palawan. The Pagasa Wedge is a late-stage product of the convergence history that was active in its final phase sometime above the top of the Nido Limestone (∼16 Ma) and the base of the Tabon Limestone in the Aboabo-A1X well (∼9 Ma). The top of the wedge is traditionally associated with the Middle Miocene Unconformity (MMU), However the presence of multiple unconformities, diachronous formation tops, local tectonic unconformities and regional diachronous events (e.g. migrating forebulges) all suggest simply giving a single age (or assigning a single unconformity, such as the MMU as defining the top of the Pagasa Wedge is inappropriate. The overall NE-SW trend of the wedge, and the dominant NW transport of structures within the wedge diverge from the more northerly transport direction determined from outcrops in Palawan, and also from the Nido Limestone in the SW part of the Pagasa Wedge. Possibly this NW

  17. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    Science.gov (United States)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry

  18. Review of levoglucosan in glacier snow and ice studies: Recent progress and future perspectives.

    Science.gov (United States)

    You, Chao; Xu, Chao

    2018-03-01

    Levoglucosan (LEV) in glacier snow and ice layers provides a fingerprint of fire activity, ranging from modern air pollution to ancient fire emissions. In this study, we review recent progress in our understanding and application of LEV in glaciers, including analytical methods, transport and post-depositional processes, and historical records. We firstly summarize progress in analytical methods for determination of LEV in glacier snow and ice. Then, we discuss the processes influencing the records of LEV in snow and ice layers. Finally, we make some recommendations for future work, such as assessing the stability of LEV and obtaining continuous records, to increase reliability of the reconstructed ancient fire activity. This review provides an update for researchers working with LEV and will facilitate the further use of LEV as a biomarker in paleo-fire studies based on ice core records. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  20. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    Science.gov (United States)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  1. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  2. THE PHYSICS OF MELTING IN EARLY MODERN LOVE POETRY

    Directory of Open Access Journals (Sweden)

    Andrea Brady

    2014-12-01

    Full Text Available Melting is a familiar trope in early modern erotic poetry, where it can signify the desire to transform the beloved from icy chastity through the warmth of the lover’s passion. However, this Petrarchan convention can be defamiliarised by thinking about the experiences of freezing and melting in this period. Examining melting in the discourses of early modern meteorology, medicine, proverb, scientific experiments, and preservative technologies, as well as weather of the Little Ice Age and the exploration of frozen hinterlands, this essay shows that our understanding of seeming constants – whether they be the physical properties of water or the passions of love – can be modulated through attention to the specific histories of cognition and of embodiment.

  3. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    Science.gov (United States)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  4. Pulmonary abnormalities in mitral valve disease. Comparison between pulmonary wedge pressure, regional pulmonary blood flow and chest films

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, L H; Andersen, Jr, P E [Odense Univ. (Denmark)

    1978-01-01

    Chest films, right sided heart catheterization, and measurement of the regional lung perfusion, using /sup 133/Xe, were carried out 31 times on patients with mitral valve disease. A relationship was found between the radiologic evaluation in 3 grades, and the values of pulmonary wedge pressure and the apical and basal perfusion. Changes in flow distribution as reflected in altered appearance of the vessels and the presence of interstitial edema were found to be the most sensitive factors in the evaluation of pulmonary wedge pressure. Chest radiography was thus found suitable for the evaluation of pulmonary wedge pressure in mitral valve disease.

  5. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    2014-01-01

    The increasing number of patients with developing osteoarthritis is accompanied by a growing scientific interest in non-operative early treatment strategies. It is generally believed that laterally wedged insoles can change the distribution of knee loading. However, the importance of footwear...... wedging is effective regardless of shoe design. Differences between the three neutral walking conditions underline the importance of footwear choice in individuals. It is safe to apply lateral wedges without jeopardising muscular control during walking regardless of shoe type. Possible effects of altering...

  6. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  7. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  8. Intensity-Modulated Radiotherapy Results in Significant Decrease in Clinical Toxicities Compared With Conventional Wedge-Based Breast Radiotherapy

    International Nuclear Information System (INIS)

    Harsolia, Asif; Kestin, Larry; Grills, Inga; Wallace, Michelle; Jolly, Shruti; Jones, Cortney; Lala, Moinaktar; Martinez, Alvaro; Schell, Scott; Vicini, Frank A.

    2007-01-01

    Purpose: We have previously demonstrated that intensity-modulated radiotherapy (IMRT) with a static multileaf collimator process results in a more homogenous dose distribution compared with conventional wedge-based whole breast irradiation (WBI). In the present analysis, we reviewed the acute and chronic toxicity of this IMRT approach compared with conventional wedge-based treatment. Methods and Materials: A total of 172 patients with Stage 0-IIB breast cancer were treated with lumpectomy followed by WBI. All patients underwent treatment planning computed tomography and received WBI (median dose, 45 Gy) followed by a boost to 61 Gy. Of the 172 patients, 93 (54%) were treated with IMRT, and the 79 patients (46%) treated with wedge-based RT in a consecutive fashion immediately before this cohort served as the control group. The median follow-up was 4.7 years. Results: A significant reduction in acute Grade 2 or worse dermatitis, edema, and hyperpigmentation was seen with IMRT compared with wedges. A trend was found toward reduced acute Grade 3 or greater dermatitis (6% vs. 1%, p = 0.09) in favor of IMRT. Chronic Grade 2 or worse breast edema was significantly reduced with IMRT compared with conventional wedges. No difference was found in cosmesis scores between the two groups. In patients with larger breasts (≥1,600 cm 3 , n = 64), IMRT resulted in reduced acute (Grade 2 or greater) breast edema (0% vs. 36%, p <0.001) and hyperpigmentation (3% vs. 41%, p 0.001) and chronic (Grade 2 or greater) long-term edema (3% vs. 30%, p 0.007). Conclusion: The use of IMRT in the treatment of the whole breast results in a significant decrease in acute dermatitis, edema, and hyperpigmentation and a reduction in the development of chronic breast edema compared with conventional wedge-based RT

  9. From 14C/12C measurements towards radiocarbon dating of ice

    NARCIS (Netherlands)

    Oerlemans, J.; Wal, R.S.W. van de; Roijen, J.J. van; Raynaud, D.; Borg, K. van der; Jong, A.F.M. de; Lipenkov, V.; Huybrechts, P.

    1994-01-01

    A dry extraction method of CO2 included in glacier ice adds a contamination equivalent to 1.8 μg modern carbon for a 35 μg C sample. This enables radiocarbon dating by accelerator mass spectrometry of 35 μg C samples to about 25 000 BP. Measured 14C/12C ratios are presented for a part of the Vostok

  10. Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive Properties

    Directory of Open Access Journals (Sweden)

    H. Ozturk

    2017-04-01

    Full Text Available Electromagnetic scattering from a layered capped wedge is studied. The wedge is assumed infinite in z-direction (longitudinal and capped with arbitrary layers of dielectric with varying thicknesses and dielectric properties including conductive loss. Scalar Helmholtz equation in two dimensions is formulated for each solution region and a matrix of unknown coefficients are arrived at for electric field representation. Closed form expressions are derived for 2- and 3-layer geometries. Numerical simulations are performed for different wedge shapes and dielectric layer properties and compared to PEC-only case. It has been shown that significant reduction in scattered electric field can be obtained with 2- and 3-layered cap geometries. Total electric field in the far field normalized to incident field is also computed as a precursor to RCS analysis. Analytical results can be useful in radar cross section analysis for aerial vehicles.

  11. The IceProd (IceCube Production) Framework

    International Nuclear Information System (INIS)

    Díaz-Vélez, J C

    2014-01-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  12. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  13. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    Science.gov (United States)

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  14. Orthothermographies and 3D modeling as potential tools in ice caves studies: the Peña Castil Ice Cave (Picos de Europa, Northern Spain

    Directory of Open Access Journals (Sweden)

    Fernando Berenguer-Sempere

    2014-01-01

    Full Text Available Currently there are many studies focused on the investigation of climatic and glaciological condition of ice caves. Here we present another way to address these studies, applying some methods already used in fields other than geomorphology. The versatility and accuracy provided by the use of modern topography and thermography techniques, using Terrestrial Laser Scanner and current thermographic cameras- and the creation of 3D thermographic models and orthothermographies derived from them - is shown to be a useful tool as it is difficult to obtain data from fieldwork and traditional methods used in caves. This paper presents the potential uses of combined TLS and thermographic techniques for monitoring some important climatological parameters in the sensitive periglacial environment of the Iberian Atlantic high mountains: Peña Castil Ice Cave (Picos de Europa, Northern Spain. A systematic application of such combined technologies to these kind of caves, is expected to contribute to a quantitative and concise characterization of the evolution of the ice as shown by the results of this study.

  15. Physical Analysis of Cross-Wedge Rolling Process of a Stepped Shaft

    Directory of Open Access Journals (Sweden)

    Łukasz Wójcik

    2017-12-01

    Full Text Available The paper presents experimental- model research results on the process of cross-wedge rolling of an axially-symmetrical element (stepped shaft. During research was used plastic mass on the basis of waxes in black and white colour. The aim of this experimental research was to determine the best option of forming in terms of values obtained and the course of forces. Physical examination was carried out using specialist machines, that is model and laboratory cross-wedge rolling mill. Experimental analysis was carried out using billets with the temperature of 15°C, whereas the actual process was carried out for billet from C45 carbon steel of temperature 1150°C. The study compared the dimensions of the components obtained during rolling tests and forming forces obtained in the result of physical modeling with forces obtained during real tests.

  16. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  17. [A Patient with a Wedge-shaped Pulmonary Lesion Associated with Streptococcus parasanguinis].

    Science.gov (United States)

    Miyamoto, Hiroya; Gomi, Harumi; Ishioka, Haruhiko; Shirokawa, Taijiro

    2016-05-01

    An 84-year-old man was admitted to our hospital with bloody sputum. He was found to have a right lower lobe wedge-shaped nodular lesion with chest X-ray and computed tomography of the chest. Ceftriaxone and minocycline were started empirically based on a working diagnosis of community-acquired pneumonia. Streptococcus parasanguinis was isolated with sputum cultures obtained on three consecutive days and was identified based on its biochemical properties. S. parasanguinis is a member of the sanguinis group of viridans Streptococci. It is known as a causative pathogen for endocarditis. There are very few reports of S. parasanguinis associated with pulmonary infections. The present report describes the association of S. parasanguinis with a wedge-shaped nodular lesion in the lungs.

  18. Early weight bearing versus delayed weight bearing in medial opening wedge high tibial osteotomy: a randomized controlled trial.

    Science.gov (United States)

    Lansdaal, Joris Radboud; Mouton, Tanguy; Wascher, Daniel Charles; Demey, Guillaume; Lustig, Sebastien; Neyret, Philippe; Servien, Elvire

    2017-12-01

    The need for a period of non-weight bearing after medial opening wedge high tibial osteotomy remains controversial. It is hypothesized that immediate weight bearing after medial opening wedge high tibial osteotomy would have no difference in functional scores at one year compared to delayed weight bearing. Fifty patients, median age 54 years (range 40-65), with medial compartment osteoarthritis, underwent a medial opening wedge high tibial osteotomy utilizing a locking plate without bone grafting. Patients were randomized into an Immediate or a Delayed (2 months) weight bearing group. All patients were assessed at one-year follow-up and the two groups compared. The primary outcome measure was the IKS score. Secondary outcome measures included the IKDC score, the VAS pain score and rate of complications. The functional scores significantly improved in both groups. The IKS score increased from 142 ± 31 to 171 ± 26 in the Immediate group (p bearing after medial opening wedge high tibial osteotomy had no effect on functional scores at 1 year follow-up and did not significantly increase the complication rate. Immediate weight bearing after medial opening wedge high tibial osteotomy appears to be safe and can allow some patients a quicker return to activities of daily living and a decreased convalescence period. II.

  19. Spatial resolution of wedge shaped silicon microstrip detectors

    International Nuclear Information System (INIS)

    Anticic, T.; Barnett, B.; Blumenfeld, B.; Chien, C.Y.; Fisher, P.; Gougas, A.; Krizmanic, J.; Madansky, L.; Newman, D.; Orndorff, J.; Pevsner, A.; Spangler, J.

    1995-01-01

    Several wedge-shaped silicon microstrip detectors with pitches from 30 to 100 μm have been designed by our group and beam tested at the CERN SPS. We find the spatial resolution σ becomes larger at the rate of 0.21 μm per 1 μm increase in pitch, but the number of strips per cluster remains about the same as the pitch varies from 30 to 100 μm. (orig.)

  20. Estimating effective wedge factor for enhanced dynamic wedge 2100CD a Varian Clinac; Calculo De factor cuna efectiva para cuna dinamica mejorada de un Clinac 2100CD de Varian

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro Trigo, F.; Morillas Ruiz, J.; Nunuz Martinez, L.; Sanchez Jimenez, J.

    2011-07-01

    The purpose of this paper is to compare different methods of calculating the effective factor enhanced dynamic wedge (EDWF) with the values ??obtained in measurements of symmetric and asymmetric fields.

  1. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  2. Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska

    Science.gov (United States)

    McNamara, D.E.; Pasyanos, M.E.

    2002-01-01

    Arc volcanism in Alaska is strongly correlated with the 100 km depth contour of the western Aluetian Wadati-Benioff zone. Above the eastern portion of the Wadati-Benioff zone however, there is a distinct lack of volcanism (the Denali volcanic gap). We observe high Poisson's ratio values (0.29-0.33) over the entire length of the Alaskan subduction zone mantle wedge based on regional variations of Pn and Sn velocities. High Poisson's ratios at this depth (40-70 km), adjacent to the subducting slab, are attributed to melting of mantle-wedge peridotites, caused by fluids liberated from the subducting oceanic crust and sediments. Observations of high values of Poisson's ratio, beneath the Denali volcanic gap suggest that the mantle wedge contains melted material that is unable to reach the surface. We suggest that its inability to migrate through the overlying crust is due to increased compression in the crust at the northern apex of the curved Denali fault.

  3. Adakitic magmas: modern analogues of Archaean granitoids

    Science.gov (United States)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine+clinopyroxene+orthopyroxene, such that the partial melts are HREE-rich (low La/Yb and Sr

  4. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten Møller; Kersting, Uwe G.

    2013-01-01

    and second peak knee adduction moments. However, the variability of this moment between shoe designs was of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for gastrocnemius when walking with the wedged Oxford shoe were revealed. Conclusion: Lateral...

  5. Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERA-20C Reanalysis

    Science.gov (United States)

    Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun

    2017-11-01

    This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.

  6. The genetic history of Ice Age Europe

    Science.gov (United States)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P.; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; González Morales, Manuel R.; Straus, Lawrence G.; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A.; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J.; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G.; Svoboda, Jiří; Richards, Michael P.; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-01-01

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history. PMID:27135931

  7. The genetic history of Ice Age Europe.

    Science.gov (United States)

    Fu, Qiaomei; Posth, Cosimo; Hajdinjak, Mateja; Petr, Martin; Mallick, Swapan; Fernandes, Daniel; Furtwängler, Anja; Haak, Wolfgang; Meyer, Matthias; Mittnik, Alissa; Nickel, Birgit; Peltzer, Alexander; Rohland, Nadin; Slon, Viviane; Talamo, Sahra; Lazaridis, Iosif; Lipson, Mark; Mathieson, Iain; Schiffels, Stephan; Skoglund, Pontus; Derevianko, Anatoly P; Drozdov, Nikolai; Slavinsky, Vyacheslav; Tsybankov, Alexander; Cremonesi, Renata Grifoni; Mallegni, Francesco; Gély, Bernard; Vacca, Eligio; Morales, Manuel R González; Straus, Lawrence G; Neugebauer-Maresch, Christine; Teschler-Nicola, Maria; Constantin, Silviu; Moldovan, Oana Teodora; Benazzi, Stefano; Peresani, Marco; Coppola, Donato; Lari, Martina; Ricci, Stefano; Ronchitelli, Annamaria; Valentin, Frédérique; Thevenet, Corinne; Wehrberger, Kurt; Grigorescu, Dan; Rougier, Hélène; Crevecoeur, Isabelle; Flas, Damien; Semal, Patrick; Mannino, Marcello A; Cupillard, Christophe; Bocherens, Hervé; Conard, Nicholas J; Harvati, Katerina; Moiseyev, Vyacheslav; Drucker, Dorothée G; Svoboda, Jiří; Richards, Michael P; Caramelli, David; Pinhasi, Ron; Kelso, Janet; Patterson, Nick; Krause, Johannes; Pääbo, Svante; Reich, David

    2016-06-09

    Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. Here we analyse genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3-6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas there is no evidence of the earliest modern humans in Europe contributing to the genetic composition of present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. An ~35,000-year-old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe at the height of the last Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a genetic component related to present-day Near Easterners became widespread in Europe. These results document how population turnover and migration have been recurring themes of European prehistory.

  8. The optimal design of stepped wedge trials with equal allocation to sequences and a comparison to other trial designs.

    Science.gov (United States)

    Thompson, Jennifer A; Fielding, Katherine; Hargreaves, James; Copas, Andrew

    2017-12-01

    Background/Aims We sought to optimise the design of stepped wedge trials with an equal allocation of clusters to sequences and explored sample size comparisons with alternative trial designs. Methods We developed a new expression for the design effect for a stepped wedge trial, assuming that observations are equally correlated within clusters and an equal number of observations in each period between sequences switching to the intervention. We minimised the design effect with respect to (1) the fraction of observations before the first and after the final sequence switches (the periods with all clusters in the control or intervention condition, respectively) and (2) the number of sequences. We compared the design effect of this optimised stepped wedge trial to the design effects of a parallel cluster-randomised trial, a cluster-randomised trial with baseline observations, and a hybrid trial design (a mixture of cluster-randomised trial and stepped wedge trial) with the same total cluster size for all designs. Results We found that a stepped wedge trial with an equal allocation to sequences is optimised by obtaining all observations after the first sequence switches and before the final sequence switches to the intervention; this means that the first sequence remains in the control condition and the last sequence remains in the intervention condition for the duration of the trial. With this design, the optimal number of sequences is [Formula: see text], where [Formula: see text] is the cluster-mean correlation, [Formula: see text] is the intracluster correlation coefficient, and m is the total cluster size. The optimal number of sequences is small when the intracluster correlation coefficient and cluster size are small and large when the intracluster correlation coefficient or cluster size is large. A cluster-randomised trial remains more efficient than the optimised stepped wedge trial when the intracluster correlation coefficient or cluster size is small. A

  9. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  10. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  11. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  12. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  13. Comparison between dose calculation in XiO® and dosimetric measurements in virtual wedge photon beams

    International Nuclear Information System (INIS)

    Almeida, Laila G.; Amaral, Leonardo L.; Oliveira, Harley F.; Maia, Ana F.

    2012-01-01

    The virtual wedge is useful tool in the radiation treatment planning since it has series of advantages over the hard wedge. Quality control tests ensure correct performance of the planning done in treatment planning systems (TPS). This study aimed to compare doses calculated by TPS and doses measured by ionization chamber (CI) and an ionization chambers array in virtual wedge photon beams of 6 MV. Measures carried out in Primus linear accelerator with a solid water phantom and dosimeter positioned at 10 cm depth with gantry at 0° in many fields sizes and angles in the virtual wedge. Measurements on the central axis used as dosimeter an IC and on off-axis used an IC array. The simulation in CMS-XiO used the CT images of the phantom in the same configuration of the irradiation. Maximum and minimum values of the percentage differences between the doses provided by TPS and measurements with ionization chamber on the central axis were 1.43 and -0.10%, respectively, with average percentage difference of 0.08% and confidence limit of Δ=1.72%. In the region off-axis, the average percentage difference was 0.04%, with a maximum of 1.9%, minimum of 0% and confidence limit of Δ=1.91%. All values for dose percentage differences were below 2% and lower confidence limit of 3% are thus, according to the recommendations of the Technical Report Series - TRS-430. (author)

  14. Rapid grounding line migration induced by internal variability of a marine-terminating ice stream

    Science.gov (United States)

    Robel, A.; Schoof, C.; Tziperman, E.

    2013-12-01

    Numerous studies have found significant variability in the velocity of ice streams to be a prominent feature of geomorphologic records in the Siple Coast (Catania et al. 2012) and other regions in West Antarctica (Dowdeswell et al. 2008). Observations indicate that grounding line position is strongly influenced by ice stream variability, producing rapid grounding line migration in the recent past (Catania et al. 2006) and the modern (Joughin & Tulaczyk 2002). We analyze the interaction of grounding line mass flux and position in a marine-terminating ice stream using a stretch-coordinate flowline model. This model is based on that described in Schoof (2007), with a mesh refined near the grounding line to ensure accurate resolution of the mechanical transition zone. Here we have added lateral shear stress (Dupont & Alley 2005) and an undrained plastic bed (Tulaczyk et al. 2000). The parameter dependence of ice stream variability seen in this model compares favorably to both simpler (Robel et al. 2013) and more complex (van der Wel et al. 2013) models, though with some key differences. We find that thermally-induced internal ice stream variability can cause very rapid grounding line migration even in the absence of retrograde bed slopes or external forcing. Activation waves propagate along the ice stream length and trigger periods of rapid grounding line migration. We compare the behavior of the grounding line due to internal ice stream variability to changes triggered externally at the grounding line such as the rapid disintegration of buttressing ice shelves. Implications for Heinrich events and the Marine Ice Sheet Instability are discussed.

  15. Dosimetry of normal and wedge fields for a cobalt-60 teletherapy unit

    International Nuclear Information System (INIS)

    Tripathi, U.B.; Kelkar, N.Y.

    1980-01-01

    A simple analytical method for computation of dose distributions for normal and wedge fields is described and the use of the method in planning radiation treatment is outlined. Formulas has been given to compute: (1) depth dose along central axis of cobalt-60 beam, (2) dose to off-axis points, and (3) dose distribution for a wedge field. Good agreement has been found between theoretical and experimental values. With the help of these formulae, the dose at any point can be easily and accurately calculated and radiotherapy can be planned for tumours of very odd shape and sizes. The limitation of the method is that the formulae have been derived for 50% field definition. For cobalt-60 machine having any other field definition, appropriate correction factors have to be applied. (M.G.B.)

  16. Surgeons’ Volume-Outcome Relationship for Lobectomies and Wedge Resections for Cancer Using Video-Assisted Thoracoscopic Techniques

    Directory of Open Access Journals (Sweden)

    Guy David

    2012-01-01

    Full Text Available This study examined the effect of surgeons’ volume on outcomes in lung surgery: lobectomies and wedge resections. Additionally, the effect of video-assisted thoracoscopic surgery (VATS on cost, utilization, and adverse events was analyzed. The Premier Hospital Database was the data source for this analysis. Eligible patients were those of any age undergoing lobectomy or wedge resection using VATS for cancer treatment. Volume was represented by the aggregate experience level of the surgeon in a six-month window before each surgery. A positive volume-outcome relationship was found with some notable features. The relationship is stronger for cost and utilization outcomes than for adverse events; for thoracic surgeons as opposed to other surgeons; for VATS lobectomies rather than VATS wedge resections. While there was a reduction in cost and resource utilization with greater experience in VATS, these outcomes were not associated with greater experience in open procedures.

  17. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  18. Stress Analysis and Model Test of Rock Breaking by Arc Blade Wedged Hob

    Directory of Open Access Journals (Sweden)

    Ying-chao Liu

    2016-07-01

    Full Text Available Based on rock compression-shear damage theory, the mechanical characteristics of an arc blade wedged hob were analyzed to study the rock fragmentation mechanism of hob during excavation, and rock fragmentation forecasting model of the arc blade wedged hob was improved. A spoke type cutter model which is similar to the tunnel boring machine (TBM cutter head was designed to study the rock fragmentation efficiency in different cutter spacing by adjusting the bearing sleeve size to obtain different distances between the hobs. The results show that the hob-breaking rock force mainly comes from three directions. The vertical force along the direction of the tunnel excavation, which is associated with uniaxial compressive strength of rock mass, plays a key role in the process of rock fragmentation. Field project data shows that the prediction model’s results of rock fragmentation in this paper are closer to the measured results than the results of the traditional linear cutting model. The optimal cutter spacing exists among different cutter spacings to get higher rock fragmentation rate and lower energy consumption during rock fragmentation. It is of great reference significance to design the arc blade wedged hob and enhance the efficiency of rock fragmentation in rock strata.

  19. Percutaneous dorsal closing wedge osteotomy of the metatarsal neck in management of metatarsalgia.

    Science.gov (United States)

    Lui, Tun Hing

    2014-12-01

    Metatarsalgia can be caused by plantarflexion of a central metatarsal or discrepancies in the metatarsals' length. Nonsurgical management is usually sufficient to achieve satisfactory results. For those recalcitrant cases, metatarsal osteotomy is needed to relieve the pain. We describe a technique of percutaneous dorsal closing wedge osteotomy of the metatarsal to manage the recalcitrant metatarsalgia. A case series was reviewed retrospectively. From March 2010 to March 2013, percutaneous dorsal closing wedge osteotomy of the metatarsal neck has been performed in 33 patients. Thirty six feet with 63 metatarsals were operated on. Thirty two second metatarsals, 22 third metatarsals, 5 fourth metatarsals and 4 fifth metatarsals were operated on. All the osteotomy sites healed up without any transverse plane deformity. The painful callosities subsided except in one operated metatarsal. Recurrence of painful callosities occurred in 2 operated metatarsals. Transfer metatarsalgia occurred in 2 feet. Floating toe deformity occurred in 2 operated rays. There was no nerve injury noted. Two patients had delayed wound healing with serous discharge and the wounds were eventually healed up with wound dressing. Percutaneous dorsal closing wedge osteotomy of the metatarsal neck is an effective and safe surgical treatment of recalcitrant metatarsalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ryan T Lewinson

    Full Text Available Determine if a change in internal knee abduction angular impulse (KAAI is related to pain reduction for runners with patellofemoral pain (PFP by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups.Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110.Biomechanics laboratory and community.Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed.Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI, as well as predictors of pain reduction.Percent change in KAAI relative to neutral, and % change in pain over six weeks.Clinically meaningful reductions in pain (>33% were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697. When participants were regrouped based on KAAI change (i.e., increase or decrease, again, no significant differences in pain reduction were noted (p = 0.146. Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030, after adjusting for baseline pain levels.The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were similar in effectiveness for treatment of PFP.Altering KAAI should be a focus of future

  1. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  2. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  3. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  4. NHL Heavyweights: Narratives of Violence and Masculinity in Ice Hockey

    Directory of Open Access Journals (Sweden)

    Tjønndal Anne

    2016-06-01

    Full Text Available Sport is often considered a masculine area of social life, and few sports are more commonly associated with traditional norms of masculinity than ice hockey. Ice hockey is played with a great level of intensity and body contact. This is true for both men and women’s hockey. However, men’s ice hockey in particular has been subjected to criticism for its excessive violence. Sport has also been analyzed as an arena where boys and men learn masculine values, relations, and rituals, and is often linked to orthodox masculinity in particular. Tolerance for gender diversity and diverse forms of masculinity has generally increased during the last 30 years. However, orthodox masculinity seems to maintain a dominate position in sports, particularly in hyper-masculine sports such as ice hockey. In this article, narratives of masculinity and violence in professional ice hockey are a central focus. Through a narrative analysis of the biographies of two former National Hockey League (NHL players, Bob Probert and Derek Boogaard, this article explores how narratives of masculinity and violence among hockey players have been described and how these narratives tell stories of the interplay between masculinity and violence in modern sport. The analysis illustrates how the narratives of the lives and careers of these athletes provide insight into the many personal risks and implications athletes in highly masculine sporting environments face. The analysis also illustrates how the common acceptance (and sometimes encouragement of player violence and ‘violence against the self’ in ice hockey has led to many broken bodies, lives, and careers among professional male athletes.

  5. The Hardy inequality and the heat flow in curved wedges

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2016-01-01

    Roč. 73, č. 2 (2016), s. 91-113 ISSN 0032-5155 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Hardy inequality * heat equation * large-time behaviour * curved wedges * Dirichlet Laplacian * conical singularities * Brownian motion * subcriticality Subject RIV: BE - Theoretical Physics Impact factor: 0.735, year: 2016

  6. Modern technology of the specialists in the figure skating on ice.

    Directory of Open Access Journals (Sweden)

    Medvedeva I.M.

    2010-12-01

    Full Text Available The process of teaching of future specialists is presented in the complex - coordinated types of sport in higher educational establishments, as a system of knowledge for future teachers-trainers. Basic approaches are exposed in forming of their pedagogical trade. It is certain that they are based on the study of the modern system of preparation of sportsmen, built taking into account features and their progress trends, directed on achievement of maximally possible sporting result.

  7. Impact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM

    Directory of Open Access Journals (Sweden)

    Erich Roeckner

    2012-09-01

    Full Text Available The impact of melt ponds on Arctic sea ice is estimated from model simulations of the historical and future climate. The simulations were performed with and without the effect of melt ponds on sea ice melt, respectively. In the last thirty years of the historical simulations, melt ponds develop predominantly in the continental shelf regions and in the Canadian archipelago. Accordingly, the ice albedo in these regions is systematically smaller than in the no-pond simulations, the sea ice melt is enhanced, and both the ice concentration and ice thickness during the September minimum are reduced. Open ponds decrease the ice albedo, resulting in enhanced ice melt, less sea ice and further pond growth. This positive feedback entails a more realistic representation of the seasonal cycle of Northern Hemisphere sea ice area. Under the premise that the observed decline of Arctic sea ice over the period of modern satellite observations is mainly externally driven and, therefore, potentially predictable, both model versions underestimate the decline in Arctic sea ice. This presupposition, however, is challenged by our model simulations which show a distinct modulation of the downward Arctic sea ice trends by multidecadal variability. At longer time scales, an impact of pond activation on Arctic sea ice trends is more evident: In the Representative Concentration Pathway scenario RCP45, the September sea ice is projected to vanish by the end of the 21st century. In the active-pond simulation, this happens up to two decades earlier than in the no-pond simulations.

  8. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

    International Nuclear Information System (INIS)

    Prabhakar, R.; Julka, P.K.; Rath, G.K.

    2008-01-01

    The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D 2 ) and 98% (D 9 8) of the target volume, volume receiving greater than 107% of the prescribed dose (V>107%), volume receiving less than 95% of the prescribed dose (V 2 , V>107% and CI for more of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.

  9. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  10. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay

    Directory of Open Access Journals (Sweden)

    P. Itkin

    2017-10-01

    Full Text Available Ice retreat in the eastern Eurasian Arctic is a consequence of atmospheric and oceanic processes and regional feedback mechanisms acting on the ice cover, both in winter and summer. A correct representation of these processes in numerical models is important, since it will improve predictions of sea ice anomalies along the Northeast Passage and beyond. In this study, we highlight the importance of winter ice dynamics for local summer sea ice anomalies in thickness, volume and extent. By means of airborne sea ice thickness surveys made over pack ice areas in the south-eastern Laptev Sea, we show that years of offshore-directed sea ice transport have a thinning effect on the late-winter sea ice cover. To confirm the preconditioning effect of enhanced offshore advection in late winter on the summer sea ice cover, we perform a sensitivity study using a numerical model. Results verify that the preconditioning effect plays a bigger role for the regional ice extent. Furthermore, they indicate an increase in volume export from the Laptev Sea as a consequence of enhanced offshore advection, which has far-reaching consequences for the entire Arctic sea ice mass balance. Moreover we show that ice dynamics in winter not only preconditions local summer ice extent, but also accelerate fast-ice decay.

  11. Analysis of Ventilation Regimes of the Oblique Wedge-Shaped Surface Piercing Hydrofoil During Initial Water Entry Process

    Directory of Open Access Journals (Sweden)

    Ghadimi Parviz

    2018-03-01

    Full Text Available The suction side of a surface piercing hydrofoil, as a section of a Surface Piercing Propeller (SPP, is usually exposed to three phases of flow consisting air, water, and vapour. Hence, ventilation and cavitation pattern of such section during the initial phase of water entry plays an essential role for the propeller’s operational curves. Accordingly, in the current paper a numerical simulation of a simple surface piercing hydrofoil in the form of an oblique wedge is conducted in three-phase environment by using the coupled URANS and VOF equations. The obtained results are validated against water entry experiments and super-cavitation tunnel test data. The resulting pressure curves and free surface profiles of the wedge water entry are presented for different velocity ratios ranging from 0.12 to 0.64. Non-dimensional forces and efficiency relations are defined in order to present the wedge water entry characteristics. Congruent patterns are observed between the performance curves of the propeller and the wedge in different fully ventilated or partially cavitated operation modes. The transition trend from fully ventilated to partially cavitated operation of the surface piercing section of a SPP is studied and analyzed through wedge’s performance during the transitional period.

  12. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  13. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  14. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  15. Geographic Names of Iceland's Glaciers: Historic and Modern

    Science.gov (United States)

    Sigurðsson, Oddur; Williams, Richard S.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  16. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  17. Environmental and ice volume changes based on seismic stratigraphy in Sabrina Coast, East Antarctica: Preliminary results from NBP1402

    Science.gov (United States)

    Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Frederick, B.; Saustrup, S., Sr.; Domack, E. W.; Lavoie, C.; Shevenell, A.; Blankenship, D. D.; Leventer, A.

    2014-12-01

    In 2014, the R/V Nathaniel B. Palmer (NBP1402) sailed to a virtually unexplored continental shelf along the Sabrina Coast, East Antarctica. The shelf contains the sedimentary record of environmental and ice volume changes within the Aurora Subglacial Basin (ASB), which is presently occupied by ~7 m sea level-rise equivalent of ice. We acquired 750 km of high-resolution seismic data proximal to the Reynolds Trough and Moscow University Ice Shelf glacial systems west of the Dalton Ice Tongue using dual 45/45 cu. in. G.I. guns and a 24 ch. streamer with 3.125 m groups providing a vertical resolution of ~3 m simultaneously with CHIRP data. These are the first images of this margin acquired and show a remarkable set of sequence stratigraphic transitions. Crystalline basement is at the seafloor landward and buried seaward with a transition to smoother reflection interface. Reflective sedimentary strata overlie the basement, dip seaward, and are capped by a landward-dipping regional angular unconformity. Above this are a series of transparent seismic facies that, along with the middle to outer shelf seafloor, dip landward towards a shelf-oblique glacial trough. The older, seaward-dipping strata include a deeper series of units that display at least three stratal architectures interpreted to be shelf deltas implying a pre-glacial, fluvial environment within the drainage basin. Above these sequences, the seismic facies transition to surfaces exhibiting significant erosion, small u-shaped valleys, and channel fill sequences, all of which are reminiscent of temperate glacial features. We interpret these sequences as including sub-ice tunnel valleys and grounding zone wedges with interspersed non-glacial to pro-glacial deposits. Increasing glaciogenic facies upsection suggests a gradual fluvial to glacial transition and increasing glacial extent with time. The subsequent transition to ice sheets is marked by erosion to basement landward and the angular unconformity seaward

  18. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    Science.gov (United States)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  19. Changes in patellofemoral alignment do not cause clinical impact after open-wedge high tibial osteotomy.

    Science.gov (United States)

    Lee, Yong Seuk; Lee, Sang Bok; Oh, Won Seok; Kwon, Yong Eok; Lee, Beom Koo

    2016-01-01

    The objectives of this study were (1) to evaluate the clinical and radiologic outcomes of open-wedge high tibial osteotomy focusing on patellofemoral alignment and (2) to search for correlation between variables and patellofemoral malalignment. A total of 46 knees (46 patients) from 32 females and 14 males who underwent open-wedge high tibial osteotomy were included in this retrospective case series. Outcomes were evaluated using clinical scales and radiologic parameters at the last follow-up. Pre-operative and final follow-up values were compared for the outcome analysis. For the focused analysis of the patellofemoral joint, correlation analyses between patellofemoral variables and pre- and post-operative weight-bearing line (WBL), clinical score, posterior slope, Blackburn Peel ratio, lateral patellar tilt, lateral patellar shift, and congruence angle were performed. The minimum follow-up period was 2 years and median follow-up period was 44 months (range 24-88 months). The percentage of weight-bearing line was shifted from 17.2 ± 11.1 to 56.7 ± 12.7%, and it was statistically significant (p patellofemoral malalignment, the pre-operative weight-bearing line showed an association with the change in lateral patellar tilt and lateral patellar shift (correlation coefficient: 0.3). After open-wedge high tibial osteotomy, clinical results showed improvement, compared to pre-operative values. The patellar tilt and lateral patellar shift were not changed; however, descent of the patella was observed. Therefore, mild patellofemoral problems should not be a contraindication of the open-wedge high tibial osteotomy. Case series, Level IV.

  20. Ice Chemistry in Interstellar Dense Molecular Clouds, Protostellar Disks, and Comets

    Science.gov (United States)

    Sandford, Scott A.

    2015-01-01

    Despite the low temperatures (T less than 20K), low pressures, and low molecular densities found in much of the cosmos, considerable chemistry is expected to occur in many astronomical environments. Much of this chemistry happens in icy grain mantles on dust grains and is driven by ionizing radiation. This ionizing radiation breaks chemical bonds of molecules in the ices and creates a host of ions and radicals that can react at the ambient temperature or when the parent ice is subsequently warmed. Experiments that similar these conditions have demonstrated a rich chemistry associated with these environments that leads to a wide variety of organic products. Many of these products are of considerable interest to astrobiology. For example, the irradiation of simple ices has been shown to abiotically produce amino acids, nucleobases, quinones, and amphiphiles, all compounds that play key roles in modern biochemistry. This suggests extraterrestrial chemistry could have played a role in the origin of life on Earth and, by extension, do so on planets in other stellar systems.

  1. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  2. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  3. Sea ice roughness: the key for predicting Arctic summer ice albedo

    Science.gov (United States)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  4. A comparison of the present and last interglacial periods in six Antarctic ice cores

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2011-04-01

    Full Text Available We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC, EPICA Dronning Maud Land (EDML, Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.

  5. Wave–ice interactions in the neXtSIM sea-ice model

    Directory of Open Access Journals (Sweden)

    T. D. Williams

    2017-09-01

    Full Text Available In this paper we describe a waves-in-ice model (WIM, which calculates ice breakage and the wave radiation stress (WRS. This WIM is then coupled to the new sea-ice model neXtSIM, which is based on the elasto-brittle (EB rheology. We highlight some numerical issues involved in the coupling and investigate the impact of the WRS, and of modifying the EB rheology to lower the stiffness of the ice in the area where the ice has broken up (the marginal ice zone or MIZ. In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice (concentration around 70 % – up to 36 km, depending on the material parameters of the ice that are used and the dynamical model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (≳ 0.9. Swell waves (monochromatic waves with low frequency do not affect the ice edge location (even for loose ice, as they are attenuated much less than the higher-frequency components of a wind wave spectrum, and so consequently produce a much lower WRS (by about an order of magnitude at least.In the presence of wind, we find that the wind stress dominates the WRS, which, while large near the ice edge, decays exponentially away from it. This is in contrast to the wind stress, which is applied over a much larger ice area. In this case (when wind is present the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.

  6. High density amorphous ice and its phase transition to ice XII

    International Nuclear Information System (INIS)

    Kohl, I.

    2001-07-01

    1998 Lobban et al. reported the neutron diffraction data of a new phase of ice, called ice XII, which formed at 260 K on compression of water within the domain of ice V at a pressure of 0.5 GPa. Surprisingly ice XII forms as an incidental product in the preparation of high-density amorphous ice (HDA) on compression of hexagonale ice (ice Ih) at 77 K up to pressures = 1.3 GPa. A decisive experimental detail is the use of an indium container: when compressing ice Ih in a pressure vessel with indium linings, then reproducibly HDA (high density amorphous ice) forms, but without indium randomly scattered relative amounts of ice XII and HDA form. Ice XII forms on compression of ice Ih at 77 K only via HDA, and not directly from ice Ih. Its formation requires a sudden pronounced apparent pressure drop of ca 0.18 GPa at pressures ca 1.1 GPa. These apparent pressure drops can be caused by buildup friction between the piston and the pressure vessel and its sudden release on further compression. I propose that shock-waves generated by apparent pressure drops cause transient local heating and that this induces nucleation and crystal growth. A specific reproducible method to prepare ice XII is heating HDA in a pressure vessel with indium linings at constant pressures (or constant volume). The ice XII (meta-)stability domain extends between ca 158 and 212 K from ca 0.7 to ca 1.5 GPa. DSC (differential scanning calorimetry) and x-ray powder diffraction revealed, that on heating at atmospheric pressure ice XII transforms directly into cubic ice (ice Ic) at 154 K (heating rate 10 K min - 1) and not into an amorphous form before transition to ice Ic. The enthalpy of the ice XII - ice Ic transition is -1.21 ± 0.07 kJ mol -1 . An estimation of the Gibbs free energy at atmospheric pressure and about 140 K results that ice XII is thermodynamically more stable than ice VI. In the heating curve of ice XII a reversible endothermic step can be found at the onset temperature (heating rate

  7. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  8. Inadequacy of ethical conduct and reporting of stepped wedge cluster randomized trials: Results from a systematic review.

    Science.gov (United States)

    Taljaard, Monica; Hemming, Karla; Shah, Lena; Giraudeau, Bruno; Grimshaw, Jeremy M; Weijer, Charles

    2017-08-01

    Background/aims The use of the stepped wedge cluster randomized design is rapidly increasing. This design is commonly used to evaluate health policy and service delivery interventions. Stepped wedge cluster randomized trials have unique characteristics that complicate their ethical interpretation. The 2012 Ottawa Statement provides comprehensive guidance on the ethical design and conduct of cluster randomized trials, and the 2010 CONSORT extension for cluster randomized trials provides guidelines for reporting. Our aims were to assess the adequacy of the ethical conduct and reporting of stepped wedge trials to date, focusing on research ethics review and informed consent. Methods We conducted a systematic review of stepped wedge cluster randomized trials in health research published up to 2014 in English language journals. We extracted details of study intervention and data collection procedures, as well as reporting of research ethics review and informed consent. Two reviewers independently extracted data from each trial; discrepancies were resolved through discussion. We identified the presence of any research participants at the cluster level and the individual level. We assessed ethical conduct by tabulating reporting of research ethics review and informed consent against the presence of research participants. Results Of 32 identified stepped wedge trials, only 24 (75%) reported review by a research ethics committee, and only 16 (50%) reported informed consent from any research participants-yet, all trials included research participants at some level. In the subgroup of 20 trials with research participants at cluster level, only 4 (20%) reported informed consent from such participants; in 26 trials with individual-level research participants, only 15 (58%) reported their informed consent. Interventions (regardless of whether targeting cluster- or individual-level participants) were delivered at the group level in more than two-thirds of trials; nine trials (28

  9. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  10. Response of faults to climate-driven changes in ice and water volumes on Earth's surface.

    Science.gov (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios

    2010-05-28

    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  11. Open-Source Python Modules to Estimate Level Ice Thickness from Ice Charts

    Science.gov (United States)

    Geiger, C. A.; Deliberty, T. L.; Bernstein, E. R.; Helfrich, S.

    2012-12-01

    A collaborative research effort between the University of Delaware (UD) and National Ice Center (NIC) addresses the task of providing open-source translations of sea ice stage-of-development into level ice thickness estimates on a 4km grid for the Interactive Multisensor Snow and Ice Mapping System (IMS). The characteristics for stage-of-development are quantified from remote sensing imagery with estimates of level ice thickness categories originating from World Meteorological Organization (WMO) egg coded ice charts codified since the 1970s. Conversions utilize Python scripting modules which transform electronic ice charts with WMO egg code characteristics into five level ice thickness categories, in centimeters, (0-10, 10-30, 30-70, 70-120, >120cm) and five ice types (open water, first year pack ice, fast ice, multiyear ice, and glacial ice with a reserve slot for deformed ice fractions). Both level ice thickness categories and ice concentration fractions are reported with uncertainties propagated based on WMO ice stage ranges which serve as proxy estimates for standard deviation. These products are in preparation for use by NCEP, CMC, and NAVO by 2014 based on their modeling requirements for daily products in near-real time. In addition to development, continuing research tests the value of these estimated products against in situ observations to improve both value and uncertainty estimates.

  12. Arc-parallel extension and fluid flow in an ancient accretionary wedge: The San Juan Islands, Washington

    Science.gov (United States)

    Schermer, Elizabeth R.; Gillaspy, J.R.; Lamb, R.

    2007-01-01

    Structural analysis of the Lopez Structural Complex, a major Late Cretaceous terrane-bounding fault zone in the San Juan thrust system, reveals a sequence of events that provides insight into accretionary wedge mechanics and regional tectonics. After formation of regional ductile flattening and shear-related fabrics, the area was crosscut by brittle structures including: (1) southwest-vergent thrusts, (2) extension veins and normal faults related to northwest-southeast extension, and (3) conjugate strike-slip structures that record northwest-southeast extension and northeast-southwest shortening. Aragonite-bearing veins are associated with thrust and normal faults, but only rarely with strike-slip faults. High-pressure, low-temperature (HP-LT) minerals constrain the conditions for brittle deformation to ???20 km and formed in an accretionary prism during active subduction, which suggests that these brittle structures record internal wedge deformation at depth and early during uplift of the San Juan nappes. The structures are consistent with orogen-normal shortening and vertical thickening followed by vertical thinning and along-strike extension. The kinematic evolution may be related initially to changes in wedge strength, followed by response to overthickening of the wedge in an unbuttressed, obliquely convergent setting. The change in vein mineralogy indicates that exhumation occurred prior to the strike-slip event. The pressure and temperature conditions and spatial and temporal extent of small faults associated with fluid flow suggest a link between these structures and the silent earthquake process. ?? 2007 Geological Society of America.

  13. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  14. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  15. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    to the wedge splitting test and that it is well suited for the interpretation of test results in terms of s(w). A fine agreement between the hinge and FEM-models has been found. It has also been found that the test and the hinge model form a solid basis for inverse analysis. The paper also discusses possible...... three dimensional problems in the experiment as well as the influence of specimen size....

  16. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    Science.gov (United States)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  18. Dark ice dynamics of the south-west Greenland Ice Sheet

    Science.gov (United States)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from

  19. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  20. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  1. MAGA MAGAZINOVIC: THE MAIN CONCEPTS OF MODERN DANCE

    Directory of Open Access Journals (Sweden)

    Milos Marijan

    2018-02-01

    Full Text Available Marija Maga Magazinovic (Užice,1882- Belgrade, 1968, a choreographer, dancer, modern dance theorist, philosopher, feminist, librarian and journalist, was the founder of modern dance in Serbia. In her efforts to introduce modern dance, Magazinovic demanded emancipation of art, “pure” dance, a beauty of simple movements, which had no need for story, scenography, costume, even music, nothing but naked dancer’s body. Maga, who graduated philosophy at the Belgrade University in 1904, and was a journalist by vocation, working as the first woman journalist in the daily newspaper “Politica” as a columnist, also fought for women’s rights and emancipation. By bringing modern artistic view into the patriarchal Serbian society, she contributed to the social and cultural development, and to the understanding and adopting of the modern dance at the very time when it was developed and brought on stage in the West. Stemmed from the schools of Max Reinhardt and ballet school of Isadora Duncan, she brought their views and pedagogical methods to Serbia when she returned from Berlin and Munich to Belgrade, where she opened the first school of modern dance in 1910. She was the first to advocate for the necessity of female education, particularly of engaging girls in doing rhythmic gymnastics and dance as a form of bodily and spiritual education. Given that Marija Maga Magazinovic was the first who opened the door for the progress and changes in the fields of dance and women’s rights by bringing concepts of those movements, in which she directly participated, to Serbia, these concepts had to be explained. Therefore, the main goal of the paper is to examine these concepts, such as modern dance, rhythmic gymnastic, body culture, Ausdruckstanz, expressionism, and women emancipation, which is crucial if we want to understand early period of modern dance development, and to understand Magazinovic’s efforts and achievements and her place and historical

  2. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  3. Fabrication of customizable wedged multilayer Laue lenses by adding a stress layer

    International Nuclear Information System (INIS)

    Niese, Sven; Krüger, Peter; Kubec, Adam; Laas, Roman; Gawlitza, Peter; Melzer, Kathleen; Braun, Stefan; Zschech, Ehrenfried

    2014-01-01

    Diffractive optics for hard X-rays feature superior properties in terms of resolution and efficiency, if volume diffraction effects are exploited all-over the aperture. For multilayer Laue lenses, preferably a wedged geometry is required to obtain this effect. We present an approach utilizing an additional stress layer to realize the necessary geometrical modifications where each lens can be customized to a selected photon energy independently of the given multilayer deposition. The quality of the deposition of the stress layer is evaluated using a laboratory X-ray microscope prior to its application at synchrotron radiation facilities with a special approach to measure the relative layer tilt at high spatial resolution. - Highlights: • Wedged multilayer Laue lenses were fabricated using an additional stress layer. • Each lens can be customized to any photon energy independently of the multilayer. • The relative layer tilt is measured using laboratory X-ray microscopy

  4. The Last Permafrost Maximum (LPM) map of the northern hemisphere: permafrost extent and mean annual air temperatures, 25-17 ka BP

    NARCIS (Netherlands)

    Vandenberghe, J.; French, H.M.; Gorbunov, A.; Velichko, A.A.; Jin, H.; Cui, Z.; Zhang, T.; Wan, X.

    2014-01-01

    This paper accompanies a map that shows the extent of permafrost in the Northern Hemisphere between 25 and 17 thousand years ago. The map is based upon existing archival data, common throughout the Northern Hemisphere, that include ice-wedge pseudomorphs, sand wedges and large cryoturbations. Where

  5. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  6. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  7. Polymer gel measurement of dose homogeneity in the breast: comparing MLC intensity modulation with standard wedged delivery

    International Nuclear Information System (INIS)

    Love, P A; Evans, P M; Leach, M O; Webb, S

    2003-01-01

    Polymer gel dosimetry has been used to measure the radiotherapy dose homogeneity in a breast phantom for two different treatment methods. The first 'standard' method uses two tangential wedged fields while the second method has three static fields shaped by multileaf collimators (MLCs) in addition to the standard wedged fields to create intensity modulated fields. Gel dose distributions from the multileaf modulation treatment show an improved dose uniformity in comparison to the standard treatment with a decreased volume receiving doses over 105%

  8. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    Science.gov (United States)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  9. Effects of Added Mass and Structural Damping on Dynamic Responses of a 3D Wedge Impacting on Water

    Directory of Open Access Journals (Sweden)

    Pengyao Yu

    2018-05-01

    Full Text Available The impact between the wave and the bottom of a high-speed vessel is often simplified as water-entry problems of wedges. Most investigations focus on the water entry of two dimensional (2D wedges. The effects of added mass and structural damping are still not fully investigated. By combining the normal mode method, the hydrodynamic impact model of rigid wedges and the potential flow theory, a dynamic model for predicting the response of a three dimensional (3D wedge impacting on water with a constant velocity is established in this paper. The present model can selectively consider the effects of the added mass and the structural damping. The present method has been validated through comparisons with results of published literatures and commercial software. It is found that the added mass can increase the stress response before the flow separation, and reduce the vibration frequency after the flow separation. Due to the effect of the added mass, the stress response of some positions after the flow separation is even higher than that before the flow separation. The structural damping has a negligible effect on the stress before the flow separation, but it can reduce vibration stress after the flow separation.

  10. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  11. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  12. A new field experiment in the Greenland ice cap to test Newton's inverse square law

    International Nuclear Information System (INIS)

    Ander, M.E.; Nieto, M.M.; Zumberge, M.A.; Parker, R.L.; Lautzenhiser, T.; Aiken, C.L.V.; Ferguson, J.F.; McMechan, G.A.

    1989-01-01

    Recent experimental evidence suggests that Newton's law of gravity may not be precise. There are modern theories of quantum gravity that, in their attempts to unify gravity with other forces of nature, predict non-Newtonian gravitational forces that could have ranges on the order of 10 2 --10 5 m. If they exist, these forces would be apparent as violations of Newton's inverse square law. A geophysical experiment was carried out to search for possible finite-range, non-Newtonian gravity over depths of 213--1673 m in the glacial ice of the Greenland ice cap. The principal reason for this choice of experimental site is that a hole drilled through the ice cap already existed and the uniformity of the ice eliminates one of the major sources of uncertainty arising in the first of earlier studies, namely, the heterogeneity of the rocks through which a mine shaft or drill hole passes. This paper presents observations made in the summer of 1987 at Dye 3, Greenland, in the 2033-m-deep borehole, which reached the basement rock

  13. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  14. Low-latitude ice cores and freshwater availability

    Science.gov (United States)

    Kehrwald, Natalie Marie

    2009-12-01

    the glacier surface and melting the upper ice. The application of a novel technique of measuring and radiocarbon-dating ultra-small samples (Peru (13'56'S; 70°50'W; 5670 m a.s.l.). A marked increase in modern BC and TOC was measured since 1880 AD. No increase in radiocarbon-dead (> 60,000 ka) BC or TOC was noted, suggesting that the source of the carbon was from biomass burning, with a possible contribution of Amazon slash and burn clearing, rather than the input of fossil fuel combustion. The age of the BC and TOC is thousands of years older than the age of the surrounding ice, and should not be used to date the ice core. Although Naimona'nyi provides challenges for constructing an ice core chronology due to its lack of independent horizons such as volcanic activity, methane gas measurements, 14C dates, 3H, 36Cl, or beta radioactivity, the oxygen isotopic record can be correlated with the neighboring Dasuopu and Guliya ice cores. Naimona'nyi contains a pronounced positive ˜10‰ shift in delta18O in the basal 37 m of the core which mimics similar isotopic shifts in regional speleothems, lacustrian sediments, and planktonic foraminifera proxy records. This distinct shift is attributed to amplified monsoon intensity caused by increased summer insolation at 30°N. This correlation between regional proxy records results in a basal age of ˜8.6 ka for Naimona'nyi, suggesting that the ice field grew as a response to tropical rather than polar climate forcings.

  15. Modern teaching for modern education

    OpenAIRE

    Mirascieva, Snezana

    2016-01-01

    Carrying the epithet of being contemporary education today means modern teaching. If modern education is a state in the field of education of all its elements, then teaching will also be a state with its own special features defining it as modern. The main issues of concern in this paper relate to what constitutes modern teaching, which features determine it as being modern, and how much is teaching today following the trend of modernization.

  16. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  17. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  18. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  19. GIS-based maps and area estimates of Northern Hemisphere permafrost extent during the Last Glacial Maximum

    NARCIS (Netherlands)

    Lindgren, A.; Hugelius, G.; Kuhry, P.; Christensen, T.R.; Vandenberghe, J.F.

    2016-01-01

    This study presents GIS-based estimates of permafrost extent in the northern circumpolar region during the Last Glacial Maximum (LGM), based on a review of previously published maps and compilations of field evidence in the form of ice-wedge pseudomorphs and relict sand wedges. We focus on field

  20. Pre-clinical test of the virtual wedge option of a PRIMUS linear accelerator and verification of the calculation algorithm in the treatment planning system HEAX-TMS

    International Nuclear Information System (INIS)

    Gesheva-Atanassova, N.; Balabanova, A.

    2006-01-01

    Full text: The purpose of the study is to check the long-time stability of the wedge angle and the wedge factor (WF) of Virtual Wedges for 6 and 18 MV photon beams, and the accuracy of the TPS HELAX-TMS, in order to accept the virtual wedge technique for patient treatment. All measurements - dose profiles, central axis dose distributions and applied dose for pre-calculated monitor units, have been performed in water, applying a calibrated 0.3 cm 3 ion chamber, 47 ion chamber array LA48 and the beam analyzing system MP3. The measured data has been compared with the corresponding planned data. During a four years time period the long time stability checking revealed no changes in the central axis distributions and variations of the wedge angles are within ± 2 deg. The values of WFs and the differences between calculated and measured dose values are in the acceptable limits, except for the 6 MV beam with wedge angle 60 deg and field size 20x20 cm 2 , where the deviation reaches 6.5%. The dose profile for depth up to 10 cm showed a good coincidence. Non acceptable deviations have been found for beam profiles at depth 20 cm and field size 20x20 cm 2 for both 6 and 18 MV. The Virtual Wedge Option of PRIMUS in combination with HELAX-TMS can be applied with confidence for radiotherapy with wedged beams except for the combination of field 20x20 cm 2 and angle 60 deg

  1. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom

    2018-03-01

    Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.

  2. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    Science.gov (United States)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  3. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  4. State of Arctic Sea Ice North of Svalbard during N-ICE2015

    Science.gov (United States)

    Rösel, Anja; King, Jennifer; Gerland, Sebastian

    2016-04-01

    The N-ICE2015 cruise, led by the Norwegian Polar Institute, was a drift experiment with the research vessel R/V Lance from January to June 2015, where the ship started the drift North of Svalbard at 83°14.45' N, 21°31.41' E. The drift was repeated as soon as the vessel drifted free. Altogether, 4 ice stations where installed and the complex ocean-sea ice-atmosphere system was studied with an interdisciplinary Approach. During the N-ICE2015 cruise, extensive ice thickness and snow depth measurements were performed during both, winter and summer conditions. Total ice and snow thickness was measured with ground-based and airborne electromagnetic instruments; snow depth was measured with a GPS snow depth probe. Additionally, ice mass balance and snow buoys were deployed. Snow and ice thickness measurements were performed on repeated transects to quantify the ice growth or loss as well as the snow accumulation and melt rate. Additionally, we collected independent values on surveys to determine the general ice thickness distribution. Average snow depths of 32 cm on first year ice, and 52 cm on multi-year ice were measured in January, the mean snow depth on all ice types even increased until end of March to 49 cm. The average total ice and snow thickness in winter conditions was 1.92 m. During winter we found a small growth rate on multi-year ice of about 15 cm in 2 months, due to above-average snow depths and some extraordinary storm events that came along with mild temperatures. In contrast thereto, we also were able to study new ice formation and thin ice on newly formed leads. In summer conditions an enormous melt rate, mainly driven by a warm Atlantic water inflow in the marginal ice zone, was observed during two ice stations with melt rates of up to 20 cm per 24 hours. To reinforce the local measurements around the ship and to confirm their significance on a larger scale, we compare them to airborne thickness measurements and classified SAR-satellite scenes. The

  5. Optical necklaces generated by the diffraction on a stack of dielectric wedges

    Energy Technology Data Exchange (ETDEWEB)

    Izdebskaya, Yana [Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, V.I. Vernandsky Taurida National University, Simferopol 95007, Crimea (Ukraine)], E-mail: yvi124@rsphysse.anu.edu.au

    2008-05-19

    We demonstrate that the regular ring-shaped arrays of Gaussian beams, or optical necklaces, can be generated using diffraction on a stack of dielectric wedges. A condition for self-similarity and structural stability of the beams has been derived and shows good comparison with experimental data.

  6. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  7. A non-deltaic clinoform wedge fed by multiple sources off São Sebastião Island, southeastern Brazilian Shelf

    Science.gov (United States)

    Vieira, Ivo; Lobo, Francisco José; Montoya-Montes, Isabel; Siegle, Eduardo; Passos, Jorge Luiz; De Mahiques, Michel Michaelovitch

    2018-02-01

    São Sebastião Island (SSI) marks the latitudinal boundary between two sedimentological and geochemical provinces in the São Paulo Bight, an arc-shaped sector of the southeastern Brazilian Shelf. The island is separated from the continent by the narrow, deep São Sebastião Channel (SSC). A relatively thick sediment wedge—the São Sebastião Wedge (SSW)—has been formed offshore SSI. This study explores the possible genetic and evolutionary mechanisms of the wedge, bearing in mind that clinoform wedges can form at considerable distances from major fluvial sources. For that, a marine geological database has been interpreted comprising high-resolution seismic data, a surficial sediment map and several sediment cores, from which radiocarbon dates were obtained and sedimentation rates deduced. A wave model was also applied to obtain the dominant wave directions. The SSW is a wedge-shaped deposit, and its internal structure presents three seismic units. The two lowest are wedge shaped and arranged in a backstepping pattern. The most recent unit is mostly aggradational and can be divided into three seismic subunits. Sedimentological data show that at least the most recent unit is composed of a mixture of sands and silts. Modeled wave conditions indicate a major influence from southerly waves that are able to remobilize shelf sediments and to create a bypass sediment zone until the foreset of the deposit is reached at the water depths where the SSW is found. Taken together, these data suggest that the SSW formed through contributions from different sediment sources, and should be regarded as an intermediate case of a non-deltaic clinoform wedge. Sand transport in the area involves wind-driven currents passing through the SSC and sediment remobilization by energetic southerly waves. Fine-grained sediment is derived mostly from the joint contributions of many minor catchments located north of the island, and this sediment is later transported southwestward by the

  8. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  9. Geometrical determinations of IMRT photon pencil-beam path in radiotherapy wedges and limit divergence angle with the Anisotropic Analytic Algorithm (AAA

    Directory of Open Access Journals (Sweden)

    Francisco Casesnoves

    2014-08-01

    Full Text Available Purpose: Static wedge filters (WF are commonly used in radiation therapy, forward and/or inverse planning. We calculated the exact 2D/3D geometrical pathway of the photon-beam through the usual alloy WF, in order to get a better dose related to the beam intensity attenuation factor(s, after the beam has passed through the WF. The objective was to provide general formulation into the Anisotropic Analytical Algorithm (AAA model coordinates system (depending on collimator/wedge angles that also can be applied to other models. Additionally, second purpose of this study was to develop integral formulation for 3D wedge exponential factor with statistical approximations, with introduction for the limit angle/conformal wedge.Methods: The radiotherapy model used to develop this mathematical task is the classical superposition-convolution algorithm, AAA (developed by Ulmer and Harder. We worked with optimal geometrical approximations to make the computational IMRT calculations quicker/reduce the planning-system time. Analytic geometry/computational-techniques to carry out simulations (for standard wedges are detailed/developed sharply. Integral developments/integral-statistical approximations are explained. Beam-divergence limit Angle for optimal wedge filtration formulas is calculated/sketched, with geometrical approximations. Fundamental trigonometry is used for this purpose.Results: Extent simulation tables for WF of 15º, 30º, 45º, and 60º are shown with errors. As a result, it is possible to determine the best individual treatment dose distribution for each patient. We presented these basic simulations/numerical examples for standard manufacturing WF of straight sloping surface, to check the accuracy/errors of the calculations. Simulations results give low RMS/Relative Error values (formulated for WF of 15º, 30º, 45º, and 60º.Conclusion: We obtained a series of formulas of analytic geometry for WF that can be applied for any particular dose

  10. Tropospheric characteristics over sea ice during N-ICE2015

    Science.gov (United States)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  11. Arctic multiyear ice classification and summer ice cover using passive microwave satellite data

    Science.gov (United States)

    Comiso, J. C.

    1990-08-01

    The ability to classify and monitor Arctic multiyear sea ice cover using multispectral passive microwave data is studied. Sea ice concentration maps during several summer minima have been analyzed to obtain estimates of ice surviving the summer. The results are compared with multiyear ice concentrations derived from data the following winter, using an algorithm that assumes a certain emissivity for multiyear ice. The multiyear ice cover inferred from the winter data is approximately 25 to 40% less than the summer ice cover minimum, suggesting that even during winter when the emissivity of sea ice is most stable, passive microwave data may account for only a fraction of the total multiyear ice cover. The difference of about 2×106 km2 is considerably more than estimates of advection through Fram Strait during the intervening period. It appears that as in the Antarctic, some multiyear ice floes in the Arctic, especially those near the summer marginal ice zone, have first-year ice or intermediate signatures in the subsequent winter. A likely mechanism for this is the intrusion of seawater into the snow-ice interface, which often occurs near the marginal ice zone or in areas where snow load is heavy. Spatial variations in melt and melt ponding effects also contribute to the complexity of the microwave emissivity of multiyear ice. Hence the multiyear ice data should be studied in conjunction with the previous summer ice data to obtain a more complete characterization of the state of the Arctic ice cover. The total extent and actual areas of the summertime Arctic pack ice were estimated to be 8.4×106 km2 and 6.2×106 km2, respectively, and exhibit small interannual variability during the years 1979 through 1985, suggesting a relatively stable ice cover.

  12. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina

    Science.gov (United States)

    Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.

    2017-12-01

    This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.

  13. Wedge cutting of mild steel by CO 2 laser and cut-quality assessment in relation to normal cutting

    Science.gov (United States)

    Yilbas, B. S.; Karatas, C.; Uslan, I.; Keles, O.; Usta, Y.; Yilbas, Z.; Ahsan, M.

    2008-10-01

    In some applications, laser cutting of wedge surfaces cannot be avoided in sheet metal processing and the quality of the end product defines the applicability of the laser-cutting process in such situations. In the present study, CO 2 laser cutting of the wedge surfaces as well as normal surfaces (normal to laser beam axis) is considered and the end product quality is assessed using the international standards for thermal cutting. The cut surfaces are examined by the optical microscopy and geometric features of the cut edges such as out of flatness and dross height are measured from the micrographs. A neural network is introduced to classify the striation patterns of the cut surfaces. It is found that the dross height and out of flatness are influenced significantly by the laser output power, particularly for wedge-cutting situation. Moreover, the cut quality improves at certain value of the laser power intensity.

  14. Novel Ordered Stepped-Wedge Cluster Trial Designs for Detecting Ebola Vaccine Efficacy Using a Spatially Structured Mathematical Model.

    Directory of Open Access Journals (Sweden)

    Ibrahim Diakite

    2016-08-01

    Full Text Available During the 2014 Ebola virus disease (EVD outbreak, policy-makers were confronted with difficult decisions on how best to test the efficacy of EVD vaccines. On one hand, many were reluctant to withhold a vaccine that might prevent a fatal disease from study participants randomized to a control arm. On the other, regulatory bodies called for rigorous placebo-controlled trials to permit direct measurement of vaccine efficacy prior to approval of the products. A stepped-wedge cluster study (SWCT was proposed as an alternative to a more traditional randomized controlled vaccine trial to address these concerns. Here, we propose novel "ordered stepped-wedge cluster trial" (OSWCT designs to further mitigate tradeoffs between ethical concerns, logistics, and statistical rigor.We constructed a spatially structured mathematical model of the EVD outbreak in Sierra Leone. We used the output of this model to simulate and compare a series of stepped-wedge cluster vaccine studies. Our model reproduced the observed order of first case occurrence within districts of Sierra Leone. Depending on the infection risk within the trial population and the trial start dates, the statistical power to detect a vaccine efficacy of 90% varied from 14% to 32% for standard SWCT, and from 67% to 91% for OSWCTs for an alpha error of 5%. The model's projection of first case occurrence was robust to changes in disease natural history parameters.Ordering clusters in a step-wedge trial based on the cluster's underlying risk of infection as predicted by a spatial model can increase the statistical power of a SWCT. In the event of another hemorrhagic fever outbreak, implementation of our proposed OSWCT designs could improve statistical power when a step-wedge study is desirable based on either ethical concerns or logistical constraints.

  15. Outbreak of Listeria monocytogenes infections linked to a pasteurized ice cream product served to hospitalized patients.

    Science.gov (United States)

    Rietberg, K; Lloyd, J; Melius, B; Wyman, P; Treadwell, R; Olson, G; Kang, M-G; Duchin, J S

    2016-10-01

    Two cases of hospital-acquired listeriosis were linked to a commercially produced, pasteurized ice cream mix. Manufacturers should implement safety measures from the Food Safety Modernization Act to minimize the risk of Listeria contamination. Dietary guidelines for persons at high risk of listeriosis may need revision to recognize the potential risk from pasteurized products.

  16. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case

    Science.gov (United States)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.

    2016-12-01

    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  17. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    Science.gov (United States)

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. There goes the sea ice: following Arctic sea ice parcels and their properties.

    Science.gov (United States)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  19. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    Directory of Open Access Journals (Sweden)

    Xiang Zhi

    2015-03-01

    Full Text Available This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  20. Development of a capacitive ice sensor to measure ice growth in real time.

    Science.gov (United States)

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  1. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  2. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Directory of Open Access Journals (Sweden)

    V. Dansereau

    2017-09-01

    Full Text Available This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB, is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr–Coulomb damage criterion that allows for pure (uniaxial and biaxial tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  3. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    Science.gov (United States)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  4. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Stratification and salt-wedge in the Seomjin river estuary under the idealized tidal influence

    Science.gov (United States)

    Hwang, Jin Hwan; Jang, Dongmin; Kim, Yong Hoon

    2017-12-01

    Advection, straining, and vertical mixing play primary roles in the process of estuarine stratification. Estuaries can be classified as salt-wedge, partially-mixed or well-mixed depending on the vertical density structure determined by the balancing of advection, mixing and straining. In particular, straining plays a major role in the stratification of the estuarine water body along the estuarine channel. Also, the behavior of a salt wedge with a halocline shape in a stratified channel can be controlled by the competition between straining and mixing induced by buoyancy from the riverine source and tidal forcing. The present study uses Finite Volume Coastal Ocean Model (FVCOM) to show that straining and vertical mixing play major roles in controlling along-channel flow and stratification structures in the Seomjin river estuary (SRE) under idealized conditions. The Potential Energy Anomaly (PEA) dynamic equation quantifies the governing processes thereby enabling the determination of the stratification type. By comparing terms in the equation, we examined how the relative strengths of straining and mixing alter the stratification types in the SRE due to changes in river discharge and the depth resulting from dredging activities. SRE under idealized tidal forcing tends to be partially-mixed based on an analysis of the balance between terms and the vertical structure of salinity, and the morphological and hydrological change in SRE results in the shift of stratification type. While the depth affects the mixing, the freshwater discharge mainly controls the straining, and the balance between mixing and straining determines the final state of the stratification in an estuarine channel. As a result, the development and location of a salt wedge along the channel in a partially mixed and highly stratified condition is also determined by the ratio of straining to mixing. Finally, our findings confirm that the contributions of mixing and straining can be assessed by using the

  6. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  7. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  8. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  9. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  10. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  11. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  12. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  13. Thrust initiation and its control on tectonic wedge geometry: An insight from physical and numerical models

    Science.gov (United States)

    Bose, Santanu; Mandal, Nibir; Saha, Puspendu; Sarkar, Shamik; Lithgow-Bertelloni, Carolina

    2014-10-01

    We performed a series of sandbox experiments to investigate the initiation of thrust ramping in tectonic wedges on a mechanically continuous basal decollement. The experiments show that the decollement slope (β) is the key factor in controlling the location of thrust initiation with respect to the backstop (i.e. tectonic suture line). For β = 0, the ramping begins right at the backstop, followed by sequential thrusting in the frontal direction, leading to a typical mono-vergent wedge. In contrast, the ramp initiates away from the backstop as β > 0. Under this boundary condition an event of sequential back thrusting takes place prior to the onset of frontal thrust progression. These two-coupled processes eventually give rise to a bi-vergent geometry of the thrust wedge. Using the Drucker-Prager failure criterion in finite element (FE) models, we show the location of stress intensification to render a mechanical basis for the thrust initiation away from the backstop if β > 0. Our physical and FE model results explain why the Main Central Thrust (MCT) is located far away from the Indo-Tibetan plate contact (ITSZ) in the Himalayan fold-and-thrust belts.

  14. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  15. Little Ice Age Fluctuations of Quelccaya Ice Cap, Peru

    Science.gov (United States)

    Stroup, J. S.; Kelly, M. A.; Lowell, T.

    2009-12-01

    A record of the past extents of Quelccaya Ice Cap (QIC) provides valuable information about tropical climate change from late glacial to recent time. Here, we examine the timing and regional significance of fluctuations of QIC during the Little Ice Age (LIA; ~1300-1850 AD). One prominent set of moraines, known as the Huancane I moraines, is located ~1 km from the present-day western ice cap margin and provides a near-continuous outline of the most recent advance of QIC. This moraine set was radiocarbon dated (~298 ± 134 and 831 ± 87 yr BP) by Mercer and Palacios (1977) and presented as some of the first evidence for cooling in the tropics during the Little Ice Age. Recent field investigations in the QIC region focused on refining the chronology of the Huancane I moraines. In 2008, new stratigraphic sections exposed by local lake-flooding events revealed multiple layers of peat within the Huancane I moraines. In both 2008 and 2009, samples were obtained for 10Be dating of boulders on Huancane I moraines. A combination of radiocarbon and 10Be ages indicate that the Huancane I moraines were deposited by ice cap expansion after ~3800 yr BP and likely by multiple advances at approximately 1000, 600, 400, and 200 yr BP. Radiocarbon and 10Be chronologies of the Huancane I moraines are compared with the Quelccaya ice core records (Thompson et al., 1985; 1986; 2006). Accumulation data from the ice core records are interpreted to indicate a significant wet period at ~1500-1700 AD followed by a significant drought at ~1720-1860 AD. We examine ice marginal fluctuations during these times to determine influence of such events on the ice cap extent.

  16. Automated Mounting of Pole-Shoe Wedges in Linear Wave Power Generators—Using Industrial Robotics and Proximity Sensors

    Directory of Open Access Journals (Sweden)

    Tobias Kamf

    2017-03-01

    Full Text Available A system for automatic mounting of high tolerance wedges inside a wave power linear generator is proposed. As for any renewable energy concept utilising numerous smaller generation units, minimising the production cost per unit is vital for commercialization. The linear generator in question uses self-locking wedges, which are challenging to mount using industrial robots due to the high tolerances used, and because of the fact that any angular error remaining after calibration risks damaging the equipment. Using two types of probes, mechanical touch probes and inductive proximity sensors, combined with a flexible robot tool and iterative calibration routines, an automatic mounting system that overcomes the challenges of high tolerance wedge mounting is presented. The system is experimentally verified to work at mounting speeds of up to 50mm/s, and calibration accuracies of 0.25mmand 0.1 ∘ are achieved. The use of a flexible robot tool, able to move freely in one Cartesian plane, was found to be essential for making the system work.

  17. Little Ice Age glacial geomorphology and sedimentology of Portage Glacier, South-Central Alaska

    Directory of Open Access Journals (Sweden)

    Carlos Córdova

    2009-06-01

    Full Text Available The study of glacial landforms and deposits is important, as it isdifficult to observe processes under modern glaciers and ice-sheets. Thus landscapes and sediments that are the product of present glaciation can give insight into processes that occurred during Pleistocene times. This study investigates the genesis of little ice age glacial landforms present in Portage Glacier, South-Central Alaska. The present day moraine morphology and sedimentology in Portage Glacier valley reveals the presence of two types of till and moraines. The clast-rich sandy diamicton present on the 1852 moraine is interpreted to be a basal till indicating this feature is a pushmoraine representing an advance or a standstill position of Portage Glacier in 1852. The moderately sorted gray sandy boulder gravel present on the 1900 and 1922 moraines is interpreted to be an ice-marginal deposit (ablation till with a mixture of supraglacial and glaciofluvial sediments deposited by slumping and stream sortingprocesses. All of these features are interpreted to be ablation moraines representing glacier retreat and moraine building in 1900 and1922.

  18. New Transition Wedge Design Composed by Prefabricated Reinforced Concrete Slabs

    OpenAIRE

    Real-Herráiz, Julia; Zamorano-Martín, Clara; Real-Herráiz, Teresa; Morales-Ivorra, Silvia

    2016-01-01

    [EN] Important track degradation occurs in structure-embankment transitions, in which an abrupt change in track vertical stiffness arises, leading to a reduction in passengers comfort and safety. Although granular wedges are suggested by different railroad administrations as a solution to avoid these problems, they present some disadvantages which may affect track long-term performance. In this paper, a new solution designed with prefabricated reinforced concrete slabs is proposed. The aim of...

  19. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  20. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  1. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  2. Factors Affecting the Changes of Ice Crystal Form in Ice Cream

    Science.gov (United States)

    Wang, Xin; Watanabe, Manabu; Suzuki, Toru

    In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

  3. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    Science.gov (United States)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  4. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    Science.gov (United States)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  5. Theoretical research of probability of wedging of particulate matters at polishing

    Directory of Open Access Journals (Sweden)

    V.F. Molchanov

    2017-12-01

    Full Text Available The mechanism of formation of mikroprofile of the polished surface is expounded taking into account influence of particulate matters, contained in lubricating-coolings liquids. Probability of wedging of abrasive particles is investigational in the area of contact of diamond-impregnated with the surface of detail. It is set that for determination of probability of event, when a particle, getting together with a liquid in the area of contact, abandons track-scratch on a superficial layer, it is necessary to take into account, that three mutual locations of hard particle are possible in the area of contact of diamond-impregnated with the surface of detail. It is set researches, that a hard particle, getting together with a liquid in the area of contact, abandons track-scratch on-the-spot in that case, when the sizes of particle are equal or a few exceed distance from the surface of detail to the ledges on-the-spot diamond-impregnated. Researches allow mathematically to define probability of wedging of particulate matters in the area of contact of diamond-impregnated with the surface of the polished detail.

  6. SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge

    Science.gov (United States)

    Mishin, E. V.

    2017-12-01

    We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.

  7. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  8. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  9. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  10. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  11. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  12. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  13. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  14. Late Holocene sea ice conditions in Herald Canyon, Chukchi Sea

    Science.gov (United States)

    Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.

    2017-12-01

    Sea ice in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea ice minimum edge, and is thus an ideal location for the reconstruction of past sea ice variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea ice and surface water productivity indicate stable sea ice conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea ice to open water biota. Most importantly, our results indicate that the ongoing rapid ice retreat in the Chukchi Sea of recent decades was unprecedented during the

  15. Metamaterials based on wedge-shaped electrodynamic structures

    Directory of Open Access Journals (Sweden)

    Mitrokhin Vladimir

    2017-01-01

    Full Text Available The paper studies a possibility of simulation of artificial composite media with negative values of the real part of the equivalent dielectric (magnetic permittivity, by the use of segments of hollow composite waveguides with cylindrical guided waves in evanescent mode. Reactive evanescent fields of wedge-shaped waveguide eigenmodes are formed in the evanescent region before the critical section of the waveguide which separates the quasistatic field region from the distributing field of the evanescent waveguide mode. The possibility of simulation is determined by the equivalence of dispersion equation of the eigenmode propagation constant and the dispersion equation for the electric (magnetic permittivity of plasma-like medium if cut-off frequency and electric (magnetic plasma frequency of the medium are equal.

  16. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  17. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  18. SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils

    Science.gov (United States)

    Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.

    2008-01-01

    The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.

  19. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  20. Removable cruciform for ice condenser ice basket

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Mazza, G.E.; Golick, L.R.; Pomaibo, P.

    1987-01-01

    A removable cruciform for use in an ice basket having a generally cylindrical sidewall defining a central, vertical axis of the ice basket and plural, generally annular retaining rings secured to the interior of the cylindrical sidewall of the ice basket at predetermined, spaced elevations throughout the axial height of the ice basket is described comprising: a pair of brackets, each comprising a central, base portion having parallel longitudinal edges and a pair of integral legs extending at corresponding angles relative to the base portion from the perspective parallel longitudinal edges thereof; a pair of support plate assemblies secured to and extending in parallel, spaced relationship from one of the pair of brackets; a pair of slide support plates secured to the other of the pair of brackets and extending therefrom in spaced, parallel relationship; and spring means received within the housing and engaging the base portions of the brackets and applying a resilient biasing force thereto for maintaining the spaced relationship thereof

  1. Open wedge metatarsal osteotomy versus crescentic osteotomy to correct severe hallux valgus deformity

    DEFF Research Database (Denmark)

    Wester, Jens Ulrik; Hamborg-Petersen, Ellen; Herold, Niels

    2016-01-01

    BACKGROUND: Different techniques of proximal osteotomies have been introduced to correct severe hallux valgus. The open wedge osteotomy is a newly introduced method for proximal osteotomy. The aim of this prospective randomized study was to compare the radiological and clinical results after...... operation for severe hallux valgus, comparing the open wedge osteotomy to the crescentic osteotomy which is our traditional treatment. METHODS: Forty-five patients with severe hallux valgus (hallux valgus angle >35̊, and intermetatarsal angle >15̊) were included in this study. The treatment was proximal...... and 12 months after the operation. RESULTS: In group 1 the hallux valgus angle decreased from 39.0̊ to 24.1̊ after 4 months and 27.9̊ after 12 months. In group 2 the angle decreased from 38.3̊ to 21.4̊ after 4 months and 27.0̊ after 12 months. The intermetatarsal angle in group 1 was 19.0̊ preoperatively...

  2. The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation

    Science.gov (United States)

    Hazra, Anupam; Padmakumari, B.; Maheskumar, R. S.; Chen, Jen-Ping

    2016-05-01

    This study investigates the influence of different ice nuclei (IN) species and their number concentrations on cloud ice production. The numerical simulation with different species of ice nuclei is investigated using an explicit bulk-water microphysical scheme in a Mesoscale Meteorological Model version 5 (MM5). The species dependent ice nucleation parameterization that is based on the classical nucleation theory has been implemented into the model. The IN species considered include dust and soot with two different concentrations (Low and High). The simulated cloud microphysical properties like droplet number concentration and droplet effective radii as well as macro-properties (equivalent potential temperature and relative humidity) are comparable with aircraft observations. When higher dust IN concentrations are considered, the simulation results showed good agreement with the cloud ice and cloud water mixing ratio from aircraft measurements during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX) and Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. Relative importance of IN species is shown as compared to the homogeneous freezing nucleation process. The tendency of cloud ice production rates is also analyzed and found that dust IN is more efficient in producing cloud ice when compared to soot IN. The dust IN with high concentration can produce more surface precipitation than soot IN at the same concentration. This study highlights the need to improve the ice nucleation parameterization in numerical models.

  3. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  4. Diffraction of an inhomogeneous plane wave by an impedance wedge in a lossy medium

    CSIR Research Space (South Africa)

    Manara, G

    1998-11-01

    Full Text Available The diffraction of an inhomogeneous plane wave by an impedance wedge embedded in a lossy medium is analyzed. The rigorous integral representation for the field is asymptotically evaluated in the context of the uniform geometrical theory...

  5. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and

  6. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  7. Thermodynamics of high-pressure ice polymorphs : ices III and V

    NARCIS (Netherlands)

    Tchijov, [No Value; Ayala, RB; Leon, GC; Nagornov, O

    Thermodynamic properties of high-pressure ice polymorphs, ices III and V, are studied theoretically. The results of TIP4P molecular dynamics simulations in the NPT ensemble are used to calculate the temperature dependence of the specific volume of ices III and V at pressures 0.25 and 0.5 GPa,

  8. Export of Ice-Cavity Water from Pine Island Ice Shelf, West Antarctica

    Science.gov (United States)

    Thurnherr, Andreas; Jacobs, Stanley; Dutrieux, Pierre

    2013-04-01

    Stability of the West Antarctic Ice Sheet is sensitive to changes in melting at the bottom of floating ice shelves that form the seaward extensions of Antarctic glaciers flowing into the ocean. Not least because observations in the cavities beneath ice shelves are difficult, heat fluxes and melt rates have been inferred from oceanographic measurements obtained near the ice edge (calving fronts). Here, we report on a set of hydrographic and velocity data collected in early 2009 near the calving front of the Amundsen Sea's fast-moving and (until recently) accelerating Pine Island Glacier and its associated ice shelf. CTD profiles collected along the southern half of the meridionally-trending ice front show clear evidence for export of ice-cavity water. That water was carried in the upper ocean along the ice front by a southward current that is possibly related to a striking clockwise gyre that dominated the (summertime) upper-ocean circulation in Pine Island Bay. Signatures of ice-cavity water appear unrelated to current direction along most of the ice front, suggesting that cross-frontal exchange is dominated by temporal variability. However, repeated hydrographic and velocity measurements in a small "ice cove" at the southern end of the calving front show a persistent strong (mean velocity peaking near 0.5 ms-1) outflow of ice-cavity water in the upper 500 m. While surface features (boils) suggested upwelling from deep below the ice shelf, vertical velocity measurements reveal 1) that the mean upwelling within the confines of the cove was too weak to feed the observed outflow, and 2) that large high-frequency internal waves dominated the vertical motion of water inside the cove. These observations indicate that water exchange between the Pine Island Ice Shelf cavity and the Amundsen sea is strongly asymmetric with weak broad inflow at depth and concentrated surface-intensified outflow of melt-laden deep water at the southern edge of the calving front. The lack of

  9. Observation and modeling of snow melt and superimposed ice formation on sea ice

    OpenAIRE

    Nicolaus, Marcel; Haas, Christian

    2004-01-01

    Sea ice plays a key role within the global climate system. It covers some 7% of earths surface and processes a strong seasonal cycle. Snow on sea ice even amplifies the importance of sea ice in the coupled atmosphere-ice-ocean system, because it dominates surface properties and energy balance (incl. albedo).Several quantitative observations of summer sea ice and its snow cover show the formation of superimposed ice and a gap layer underneath, which was found to be associated to high standing ...

  10. Degradation of ground ice in a changing climate: the potential impact of groundwater flow

    Science.gov (United States)

    de Grandpré, I.; Fortier, D.; Stephani, E.

    2011-12-01

    Climate changes affecting the North West portion of Canada alter the thermal state of the permafrost and promote ground ice degradation. Melting of ground ice leads to greater water flow into the ground and to significant hydraulic changes (i.e. drainage of peatland and lakes, triggering of thermokarst and new groundwater flow patterns). Road infrastructures built on permafrost are particularly sensitive to permafrost degradation. Road construction and maintenance induce heat flux into the ground by the increase of solar radiation absorption (comparing to natural ground), the increase of snow cover on side slopes, the infiltration of water in embankment material and the migration of surface water in the active layer. The permafrost under the roads is therefore submitted to a warmer environment than in natural ground and his behavior reflects how the permafrost will act in the future with the global warming trend. The permafrost degradation dynamic under a road was studied at the Beaver Creek (Yukon) experimental site located on the Alaska Highway. Permafrost was characterized as near-zero Celcius and highly susceptible to differential thaw-settlement due to the ground ice spatial distribution. Ice-rich cryostructures typical of syngenetic permafrost (e.g. microlenticular) were abundant in the upper and lower cryostratigraphic units of fine-grained soils (Units 1, 2A, and 2C). The middle ice-poor silt layer (Unit 2B) characterized by porous cryostructure comprised the top of a buried ice-wedge network extending several meters in the underlying layers and susceptible to degradation by thermo-erosion. These particular features of the permafrost at the study site facilitated the formation of taliks (unfrozen zones) under the road which leaded to a greater water flow. We believe that water flow is promoting an acceleration of permafrost degradation by advective heat transfer. This process remains poorly studied and quantified in permafrost environment. Field data on

  11. The effect of ice-cream-scoop water on the hygiene of ice cream.

    Science.gov (United States)

    Wilson, I. G.; Heaney, J. C.; Weatherup, S. T.

    1997-01-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples. PMID:9287941

  12. On the role of lateral waves in the radiation from the dielectric wedge

    DEFF Research Database (Denmark)

    Balling, Peter

    1973-01-01

    The field on the dielectric wedge is approximated by a plane-wave expansion as in [1]. Contributions from this solution to both the surface field and the radiation field are examined. Finally, an experimental radiation field is compared with the plane-wave solution and with a geometric-optical...

  13. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  14. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  15. Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers

    Science.gov (United States)

    Perovich, D. K.; Holland, M. M.

    2016-12-01

    The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.

  16. Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction

    Science.gov (United States)

    Gudmundsson, M. T.

    2005-12-01

    In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.

  17. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    Science.gov (United States)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.

  18. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. V. [Fermilab; Stratakis, D. [Fermilab; Bradley, J. [Fermilab

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  19. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  20. Simulation of an extended surface detector IceVeto for IceCube-Gen2

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Tim; Auffenberg, Jan; Haack, Christian; Hansmann, Bengt; Kemp, Julian; Konietz, Richard; Leuner, Jakob; Raedel, Leif; Stahlberg, Martin; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a neutrino observatory located at the geographic South Pole. The main backgrounds for IceCube's primary goal, the measurement of astrophysical neutrinos, are muons and neutrinos from cosmic-ray air showers in the Earth's atmosphere. Strong supression of these backgrounds from the Southern hemisphere has been demonstrated by coincident detection of these air showers with the IceTop surface detector. For an extended instrument, IceCube-Gen2, it is considered to build an enlarged surface array, IceVeto, that will improve the detection capabilities of coincident air showers. We will present simulation studies to estimate the IceVeto capabilities to optimize the IceCube-Gen2 design.

  1. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  2. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  3. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  4. Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Brian E. J. [Department of Atmospheric and Environmental Sciences, University at Albany (State University of New York), 1400 Washington Avenue, Albany, NY 12222 (United States); Cronin, Timothy W. [Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bitz, Cecilia M., E-mail: brose@albany.edu [Department of Atmospheric Sciences, MS 351640, University of Washington, Seattle, WA 98195-1640 (United States)

    2017-09-01

    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.

  5. Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rods

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Smith, Scott T.; Täljsten, Björn

    2011-01-01

    . Recently, an integrated sleeve-wedge anchorage has been successfully developed specifically for CFRP rods. This paper in turn presents a numerical simulation of the newly developed anchorage using ABAQUS. The three-dimensional finite element (FE) model, which considers material non-linearity, uses...

  6. A study to compare the motorised wedge output factor of an elekta synergy linear accelerator with reference data (TPS Data)

    International Nuclear Information System (INIS)

    Akosah, Kinsley

    2016-07-01

    For external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficient cancer treatment. The dose delivered to the patient might not be uniform and therefore need to be compensated for. In treatment these inhomogeneities are taken care of by using wedge filters and incorporating wedge factors in the Treatment Planning System. Computer controlled wedges were alternatives introduced by different manufacturers of which Motorized wedges (MW) is one of them. The MW was introduced by ELEKTA and this helps to overcome some of the shortcomings of physical wedges. The objectives of this study were to measure MW output factors for 6 MV and 15 MV photon energies for an ELEKTA Synergy. Secondly, to compare the results of MWOF obtained to that of the treatment planning system data. The Motorized Wedge Output Factors (MWOF) were measured for the ELEKTA Synergy for both 6 MV and 15 MV photon energies. With the help of PMMA solid water slabs phantom, the Elekta synergy, thermometer, barometer, PTW farmer type ionization chamber 30010 charges were collected at 100 cm source to surface distance for various square field sizes from 5x5 cm to 30x30 cm and depth of 1.5 cm and 2.5 cm for 6 MV and 15 MV photon energies. Comparing the results with the TPS data, an excellent agreement was found for 6 MV MWOF, with the percentage differences ranging from 0.03% to 1.50%, with a mean of 0.03%. The coefficient of variation of MWOF ranged from 0.023% to 1.07% and 0.001% to 12.89% for the two beams (6 MV and 15 MV) respectively. The relative differences between the calculated and the measured MWOFs increases with field size. In conclusion, there was general agreement between the calculated and measured MWOFs. The consistency of values provide further support that a standard dataset of photon and electron dosimetry could be established as a guide for future commissioning, beam modeling

  7. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    Science.gov (United States)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  8. Long-term outcomes of wedge resection at the limbus for high irregular corneal astigmatism after repaired corneal laceration

    Directory of Open Access Journals (Sweden)

    Jun Du

    2016-06-01

    Full Text Available AIM: To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS: Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA and best corrected distance visual acuities (BCVA, pre- and post-operation astigmatism, spherical equivalent (SE, safety and complications were evaluated. RESULTS: Ten eyes (10 patients were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo. The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000 and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000. The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310. The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601. Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION: Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable.

  9. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  10. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  11. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    Science.gov (United States)

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  12. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area

    International Nuclear Information System (INIS)

    Gustafsson, Oe.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Koemp, P.; McLachlan, M.S.; Sobek, A.; Thoerngren, J.-O.

    2005-01-01

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l -1 in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC -1 in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K ow (ice log K oc -log K ow regressions: p 2 =0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration gradients, both

  13. Total Hip Intraoperative Femur Fracture: Do the Design Enhancements of a Second-Generation Tapered-Wedge Stem Reduce the Incidence?

    Science.gov (United States)

    Colacchio, Nicholas D; Robbins, Claire E; Aghazadeh, Mehran S; Talmo, Carl T; Bono, James V

    2017-10-01

    Intraoperative femur fracture (IFF) is a well-known complication in primary uncemented total hip arthroplasty (THA). Variations in implant instrumentation design and operative technique may influence the risk of IFF. This study investigates IFF between a standard uncemented tapered-wedge femoral stem and its second-generation successor with the following design changes: size-specific medial curvature, proportional incremental stem growth, modest reduction in stem length, and distal lateral relief. A single experienced surgeon's patient database was retrospectively queried for IFF occurring during primary uncemented THA using a standard tapered-wedge femoral stem system or a second-generation stem. All procedures were performed using soft tissue preserving anatomic capsule repair and posterior approach. The primary outcome measure was IFF. A z-test of proportions was performed to determine significant difference between the 2 stems with respect to IFF. Patient demographics, Dorr classification, and implant characteristics were also examined. Forty-one of 1510 patients (2.72%) who received a standard tapered-wedge femoral stem sustained an IFF, whereas 5 of 800 patients (0.63%) using the second-generation stem incurred an IFF. No other significant associations were found. A standard tapered-wedge femoral stem instrumentation system resulted in greater than 4 times higher incidence of IFF than its second-generation successor used for primary uncemented THA. Identifying risk factors for IFF is necessary to facilitate implant system improvements and thus maximize patient outcomes. Copyright © 2017. Published by Elsevier Inc.

  14. Monte Carlo simulation of the Varian Clinac 600C accelerator using dynamic wedges; Simulacao Monte Carlo do acelerador Varian Clinac 600C utilizando cunhas dinamicas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, S. [Universidade da Beira Interior (UBI), Covilha (Portugal); Chaves, A.; Lopes, M.C. [Instituto Portugues de Oncologia Doutor Francisco Gentil (IPO), Coimbra (Portugal); Peralta, L. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisboa (Portugal)]|[Universidade de Lisboa (Portugal). Faculdade de Ciencias

    2004-07-01

    The advent of linear accelerators (linac) with computer-controlled dynamic collimation systems and functional and anatomical imaging techniques allowed a more exact delimitation and localisation of the target volume. These advanced treatment techniques inevitably increase the complexity level of dose calculation because of the introduction of the temporal variable. On account of this, it is mandatory the usage of more accurate modelling techniques of the collimator components, as it is the case of Monte Carlo (MC) simulation, which has created an enormous interest in research and clinical practice. Because the patients bodies are not homogenous nor are their body surfaces plane and regular, the dose distribution may differ significantly from the standard distribution from the linac calibration. It is in the treatment planning systems, which include algorithms that are usually measured in homogeneous water phantoms specific for each correction that the dose distributions from each case are obtained. In a real treatment, exception made to superficial lesions, two or more radiation fields are used in order to obtain the recommended dose distributions. The simplest arrangement is made from two parallel and opposed fields that originate a homogeneous dose distribution in almost all the irradiated volume. The available resources are, for example, different types of energies and of radiation, the application of bolus, the protection of healthy structures, the usage of wedged filters and the application of dynamic wedges. A virtual or dynamic wedge, modelled through the movement of one of the jaws, when compared with a set of physical wedges offers an alternative calculation method of an arbitrary number of wedged fields, instead of the four traditional fields of 15 deg, 30 deg, 45 deg and 60 deg angle and obtained with physical wedges. The goal of this work consists in the study of the application of dynamic wedges in tailoring the radiation field by the Varian Clinac 600

  15. Translating hydrologically-relevant variables from the ice sheet model SICOPOLIS to the Greenland Analog Project hydrologic modeling domain

    Science.gov (United States)

    Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard

    2013-04-01

    Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.

  16. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  17. HF wedge #1" detail of the wedge tip taken at VNIITF in the construction workshop. The jig mounted on top is used to measure the conformity to the drawings.

    CERN Multimedia

    Official photographer of VNIITF (photo scanned by T. Camporesi)

    2001-01-01

    The photo has been taken as documetation of the acceptance procedure of the first wedge for the very forward calorimeter of CMS (HF). The detail shows the holes where the quartz fibers are going to be stuffed and the jig used to measure that the geometry was within the specified tolerances and that the geometry alignement track was conforming to the specifications.

  18. Technical note: A new wedge-shaped ionization chamber component module for BEAMnrc to model the integral quality monitoring system®

    Science.gov (United States)

    Oderinde, Oluwaseyi Michael; du Plessis, FCP

    2017-12-01

    The purpose of this study was to develop a new component module (CM) namely IQM to accurately model the integral quality monitoring (IQM) system® to be used in the BEAMnrc Monte Carlo (MC) code. The IQM is essentially a double wedge ionization chamber with the central electrode plate bisecting the wedge. The IQM CM allows the user to characterize the double wedge of this ionization chamber and BEAMnrc can then accurately calculate the dose in this CM including its enclosed air regions. This has been verified against measured data. The newly created CM was added into the standard BEAMnrc CMs, and it will be made available through the NRCC website. The BEAMnrc graphical user interface (GUI) and particle ray-tracing techniques were used to validate the IQM geometry. In subsequent MC simulations, the dose scored in the IQM was verified against measured data over a range of square fields ranging from 1 × 1-30 × 30 cm2. The IQM system is designed for the present day need for a device that could verify beam output in real-time during treatment. This CM is authentic, and it can serve as a basis for researchers that have an interest in real-time beam delivery checking using wedge-shaped ionization chamber based instruments like the IQM.

  19. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Directory of Open Access Journals (Sweden)

    H. J. Punge

    2012-11-01

    Full Text Available Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP and the Eemian (126 kyr BP. While being limited by the low resolution of the general circulation model (GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.

  20. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  1. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  2. Ross Sea Polynyas: Response of Ice Concentration Retrievals to Large Areas of Thin Ice

    Science.gov (United States)

    Kwok, R.; Comiso, J. C.; Martin, S.; Drucker, R.

    2007-01-01

    For a 3-month period between May and July of 2005, we examine the response of the Advanced Microwave Scanning Radiometer (AMSR-E) Enhanced NASA Team 2 (NT2) and AMSR-E Bootstrap (ABA) ice concentration algorithms to large areas of thin ice of the Ross Sea polynyas. Coincident Envisat Synthetic Aperture Radar (SAR) coverage of the region during this period offers a detailed look at the development of the polynyas within several hundred kilometers of the ice front. The high-resolution imagery and derived ice motion fields show bands of polynya ice, covering up to approximately 105 km(sup 2) of the Ross Sea, that are associated with wind-forced advection. In this study, ice thickness from AMSR-E 36 GHz polarization information serves as the basis for examination of the response. The quality of the thickness of newly formed sea ice (<10 cm) from AMSR-E is first assessed with thickness estimates derived from ice surface temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The effect of large areas of thin ice in lowering the ice concentration estimates from both NT2/ABA approaches is clearly demonstrated. Results show relatively robust relationships between retrieved ice concentrations and thin ice thickness estimates that differ between the two algorithms. These relationships define the approximate spatial coincidence of ice concentration and thickness isopleths. Using the 83% (ABA) and 91% (NT2) isopleths as polynya boundaries, we show that the computed coverage compares well with that using the estimated 10-cm thickness contour. The thin ice response characterized here suggests that in regions with polynyas, the retrieval results could be used to provide useful geophysical information, namely thickness and coverage.

  3. Determining the ice seasons severity during 1982-2015 using the ice extents sum as a new characteristic

    Science.gov (United States)

    Rjazin, Jevgeni; Pärn, Ove

    2016-04-01

    Sea ice is a key climate factor and it restricts considerably the winter navigation in sever seasons on the Baltic Sea. So determining ice conditions severity and describing ice cover behaviour at severe seasons interests scientists, engineers and navigation managers. The present study is carried out to determine the ice seasons severity degree basing on the ice seasons 1982 to 2015. A new integrative characteristic is introduced to describe the ice season severity. It is the sum of ice extents of the ice season id est the daily ice extents of the season are summed. The commonly used procedure to determine the ice season severity degree by the maximal ice extent is in this research compared to the new characteristic values. The remote sensing data on the ice concentrations on the Baltic Sea published in the European Copernicus Programme are used to obtain the severity characteristic values. The ice extents are calculated on these ice concentration data. Both the maximal ice extent of the season and a newly introduced characteristic - the ice extents sum are used to classify the winters with respect of severity. The most severe winter of the reviewed period is 1986/87. Also the ice seasons 1981/82, 1984/85, 1985/86, 1995/96 and 2002/03 are classified as severe. Only three seasons of this list are severe by both the criteria. They are 1984/85, 1985/86 and 1986/87. We interpret this coincidence as the evidence of enough-during extensive ice cover in these three seasons. In several winters, for example 2010/11 ice cover extended enough for some time, but did not endure. At few other ice seasons as 2002/03 the Baltic Sea was ice-covered in moderate extent, but the ice cover stayed long time. At 11 winters the ice extents sum differed considerably (> 10%) from the maximal ice extent. These winters yield one third of the studied ice seasons. The maximal ice extent of the season is simple to use and enables to reconstruct the ice cover history and to predict maximal ice

  4. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  5. Secondary Subacromial Impingement after Valgus Closing-Wedge Osteotomy for Proximal Humerus Varus

    Directory of Open Access Journals (Sweden)

    Hirotaka Sano

    2015-01-01

    Full Text Available A 31-year-old construction worker had been suffering from both the motion pain and the restriction of elevation in his right shoulder due to severe varus deformity of humeral neck, which occurred after proximal humeral fracture. The angle for shoulder flexion and abduction was restricted to 50 and 80 degrees, respectively. Valgus closing-wedge osteotomy followed by the internal fixation using a locking plate was carried out at 12 months after injury. Postoperatively, the head-shaft angle of the humerus improved from 65 to 138 degrees. Active flexion and abduction angles improved from 80 to 135 degrees and from 50 to 135 degrees, respectively. However, the patient complained from a sharp pain with a clicking sound during shoulder abduction even after removal of the locking plate. Since subacromial steroid injection temporarily relieved his shoulder pain, we assumed that the secondary subacromial impingement was provoked after osteotomy. Thus, arthroscopic subacromial decompression was carried out at 27 months after the initial operation, which finally relieved his symptoms. In the valgus closing-wedge osteotomy, surgeons should pay attention to the condition of subacromial space to avoid causing the secondary subacromial impingement.

  6. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  7. Momentum Exchange Near Ice Keels in the Under Ice Ocean Boundary Layer

    National Research Council Canada - National Science Library

    Bleidorn, John C

    2008-01-01

    .... Understanding ice-ocean momentum exchange is important for accurate predictive ice modeling. Due to climate change, increased naval presence in the Arctic region is anticipated and ice models will become necessary for tactical and safety reasons...

  8. Measuring linac photon beam energy through EPID image analysis of physically wedged fields

    Energy Technology Data Exchange (ETDEWEB)

    Dawoud, S. M., E-mail: samir.dawoud@leedsth.nhs.uk; Weston, S. J.; Bond, I.; Ward, G. C.; Rixham, P. A.; Mason, J.; Huckle, A. [Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom); Sykes, J. R. [Institute of Medical Physics, School of Physics, The University of Sydney, New South Wales 2006, Australia and Department of Medical Physics and Engineering, St. James Institute of Oncology, St. James University Hospital, Leeds LS9 7TF (United Kingdom)

    2014-02-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful tools for measuring several parameters of interest in linac quality assurance (QA). However, a method for measuring linac photon beam energy using EPIDs has not previously been reported. In this report, such a method is devised and tested, based on fitting a second order polynomial to the profiles of physically wedged beams, where the metric of interest is the second order coefficientα. The relationship between α and the beam quality index [percentage depth dose at 10 cm depth (PDD{sub 10})] is examined to produce a suitable calibration curve between these two parameters. Methods: Measurements were taken in a water-tank for beams with a range of energies representative of the local QA tolerances about the nominal value 6 MV. In each case, the beam quality was found in terms of PDD{sub 10} for 100 × 100 mm{sup 2} square fields. EPID images of 200 × 200 mm{sup 2} wedged fields were then taken for each beam and the wedge profile was fitted in MATLAB 2010b (The MathWorks, Inc., Natick, MA). α was then plotted against PDD{sub 10} and fitted with a linear relation to produce the calibration curve. The uncertainty in α was evaluated by taking five repeat EPID images of the wedged field for a beam of 6 MV nominal energy. The consistency of measuring α was found by taking repeat measurements on a single linac over a three month period. The method was also tested at 10 MV by repeating the water-tank crosscalibration for a range of energies centered approximately about a 10 MV nominal value. Finally, the calibration curve from the test linac and that from a separate clinical machine were compared to test consistency of the method across machines in a matched fleet. Results: The relationship betweenα and PDD{sub 10} was found to be strongly linear (R{sup 2} = 0.979) while the uncertainty in α was found to be negligible compared to that associated with measuring PDD{sub 10} in the water-tank (

  9. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  10. The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

    Science.gov (United States)

    Cox, C. J.; Morris, S. M.

    2017-12-01

    Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, "icing") frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiaġvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be

  11. The results of high tibial open wedge osteotomy in patients with varus deformity

    Directory of Open Access Journals (Sweden)

    Mahmood Jabalameli

    2013-07-01

    Full Text Available Background: High tibial open wedg osteotomy is one of the most important modality for treatment of varus deformity in order to correct deformity and improving signs and symptoms of patients with primary degenerative osteoarthritis. The aim of this study was to investigate the results of high tibial open wedge osteotomy in patients with varus deformities.Methods: This retrospective study conducted on twenty nine patients (36 knees undergone proximal tibial osteotomy operation in Shafa Yahyaian University Hospital from 2004 to 2010. Inclusion criteria were: age less than 60 years, high physical activity, varus deformity and involvement of medical compartment of knee. Patients with obesity, smoking, patelofemoral pain, lateral compartment lesion, deformity degree more than 20 degree, extension limitation and range of motion less than 90 degree were excluded. The clinical and radiologic characteristics were measured before and after operation.Results: Fourteen patients were females. All of them were younger than 50 years, with mean (±SD 27.64 (±10.88. The mean (±SD of follow up time was 4.33 (±1.7. All the patients were satisfied with the results of operation. Tenderness and pain decreased in all of them. In all patients autologus bone graft were used, in 15 cases (42.5% casting and in the rest T.Buttress plate were used for fixation of fractures. In both groups of primary and double varus the International knee documentation committee (IKDC and modified Larson indices were improved after operation, but there was no significant difference between two groups.Conclusion: High tibial open wedge osteotomy can have satisfying results in clinical signs and symptoms of patients with primary medial joint degenerative osteoarthritis. This procedure also may correct the deformity and improves the radiologic parameters of the patients.

  12. Hydroelastic slamming of flexible wedges: Modeling and experiments from water entry to exit

    Science.gov (United States)

    Shams, Adel; Zhao, Sam; Porfiri, Maurizio

    2017-03-01

    Fluid-structure interactions during hull slamming are of great interest for the design of aircraft and marine vessels. The main objective of this paper is to establish a semi-analytical model to investigate the entire hydroelastic slamming of a wedge, from the entry to the exit phase. The structural dynamics is described through Euler-Bernoulli beam theory and the hydrodynamic loading is estimated using potential flow theory. A Galerkin method is used to obtain a reduced order modal model in closed-form, and a Newmark-type integration scheme is utilized to find an approximate solution. To benchmark the proposed semi-analytical solution, we experimentally investigate fluid-structure interactions through particle image velocimetry (PIV). PIV is used to estimate the velocity field, and the pressure is reconstructed by solving the incompressible Navier-Stokes equations from PIV data. Experimental results confirm that the flow physics and free-surface elevation during water exit are different from water entry. While water entry is characterized by positive values of the pressure field, with respect to the atmospheric pressure, the pressure field during water exit may be less than atmospheric. Experimental observations indicate that the location where the maximum pressure in the fluid is attained moves from the pile-up region to the keel, as the wedge reverses its motion from the entry to the exit stage. Comparing experimental results with semi-analytical findings, we observe that the model is successful in predicting the free-surface elevation and the overall distribution of the hydrodynamic loading on the wedge. These integrated experimental and theoretical analyses of water exit problems are expected to aid in the design of lightweight structures, which experience repeated slamming events during their operation.

  13. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  14. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  15. Adopting wedge hepatic venography with CO2 during transjugular intrahepatic portosystemic shunt procedures

    International Nuclear Information System (INIS)

    Zhang Linpeng; Chen Songtao; Shi Xiulan

    2012-01-01

    Objective: To renovate angiography in identifying portal vein anatomy during transjugular intrahepatic portosystemic shunt (TIPS) procedures, saving the time of TIPS procedures, decreasing the risk of the complications of the post-procedure. Methods: The difference between the Wedge hepatic venography with Carbon Dioxide in 6 cases and Inferior Mesenteric artery angiography in 7 cases during TIPS procedures were compared in the identification of portal vein anatomy. The quality of images, their effects on the procedures, the complications and the recovery post-procedure were evaluated. Results: Using CO 2 , the portal veins were opacified in all 6 cases. TIPS procedures succeeded in all cases except 1 case because of poor coagulation function. Using Inferior Mesenteric artery angiography, the portal veins were opacified in all 7 cases. TIPS procedure succeeded in all cases except 1 case because of chronic portal occlusion. Puncture-site hematoma occurred in 1 case after TIPS procedure. Conclusion: Wedge hepatic venography with Carbon Dioxide is superior, safer and more convenient than Inferior Mesenteric Artery angiography in identifying portal vein anatomy during TIPS. (authors)

  16. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  17. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Eldiwany, B.; Alvarez, P.D. [Kalsi Engineering Inc., Sugar Land, TX (United States); Wolfe, K. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  18. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    International Nuclear Information System (INIS)

    Eldiwany, B.; Alvarez, P.D.; Wolfe, K.

    1996-01-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during ΔP closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data

  19. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    Science.gov (United States)

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.