WorldWideScience

Sample records for moderator phonon expansion

  1. Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

    Science.gov (United States)

    Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa

    2014-05-21

    We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.

  2. Unravelling the fundamentals of thermal and chemical expansion of BaCeO3 from first principles phonon calculations.

    Science.gov (United States)

    Løken, Andreas; Haugsrud, Reidar; Bjørheim, Tor S

    2016-11-16

    Differentiating chemical and thermal expansion is virtually impossible to achieve experimentally. While thermal expansion stems from a softening of the phonon spectra, chemical expansion depends on the chemical composition of the material. In the present contribution, we, for the first time, completely decouple thermal and chemical expansion through first principles phonon calculations on BaCeO 3 , providing new fundamental insights to lattice expansion. We assess the influence of defects on thermal expansion, and how this in turn affects the interpretation of chemical expansion and defect thermodynamics. The calculations reveal that the linear thermal expansion coefficient is lowered by the introduction of oxygen vacancies being 10.6 × 10 -6 K -1 at 300 K relative to 12.2 × 10 -6 K -1 for both the protonated and defect-free bulk lattice. We further demonstrate that the chemical expansion coefficient upon hydration varies with temperature, ranging from 0.070 to 0.115 per mole oxygen vacancy. Ultimately, we find that, due to differences in the thermal expansion coefficients under dry and wet conditions, the chemical expansion coefficients determined experimentally are grossly underestimated - around 55% lower in the case of 10 mol% acceptor doped BaCeO 3 . Lastly, we evaluate the effect of these volume changes on the vibrational thermodynamics.

  3. Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.

    Science.gov (United States)

    Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L

    2012-12-19

    Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.

  4. An Enhanced Plane Wave Expansion Method to Solve Piezoelectric Phononic Crystal with Resonant Shunting Circuits

    Directory of Open Access Journals (Sweden)

    Ziyang Lian

    2016-01-01

    Full Text Available An enhanced plane wave expansion (PWE method is proposed to solve piezoelectric phononic crystal (PPC connected with resonant shunting circuits (PPC-C, which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.

  5. Speed of thermal expansion of a long, thin insulating bar and the physical momentum of acoustic phonons

    International Nuclear Information System (INIS)

    Lee, Y C

    2008-01-01

    Thermal expansion is an everyday phenomenon. One would naturally be curious to see how fast the expansion proceeds. While the theory of thermal expansion in statistical thermal equilibrium is well known, the time-dependent process during thermal expansion is a more complex statistical dynamical problem. Contrary to intuitive expectations, it will be seen that the dynamical expansion process is generally different from the process of merely establishing temperature equilibration (thermal-kinetic equilibrium) because two vastly disparate timescales are at work. It will be shown that the finite speed of thermal expansion hinges upon a recently derived result that an acoustic phonon of wavevector q-vector≠0 does carry a finite physical momentum; it arises from anharmonicity, provided translational symmetry is broken. While the eventual mathematical formulation seems pedestrian, it is arrived at after several layers of physical thinking. Our final result shows that the time required for thermal expansion of a thin bar of length L by ΔL due to a given temperature increase ΔT is given by Δt L ∝ (L/ΔL) (L/c s ), where c s is the speed of sound. Its physical origin as well as its classical and quantum limits are fully discussed

  6. Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals.

    Science.gov (United States)

    Tang, Jau

    2008-04-28

    In this study, we examine the ultrafast structural dynamics of metals induced by a femtosecond laser-heating pulse as probed by time-resolved electron diffraction. Using the two-temperature model and the Grüneisen relationship we calculate the electron temperature, phonon temperature, and impulsive force at each atomic site in the slab. Together with the Fermi-Pasta-Ulam anharmonic chain model we calculate changes of bond distance and the peak shift of Bragg spots or Laue rings. A laser-heated thin slab is shown to exhibit "breathing" standing-wave behavior, with a period equal to the round-trip time for sound wave and a wavelength twice the slab thickness. The peak delay time first increases linearly with the thickness (linear thermal expansion due to lattice temperature jump are shown to contribute to the overall structural changes. Differences between these two mechanisms and their dependence on film thickness and other factors are discussed.

  7. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Suobin; Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Li, Yinggang [Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan, 430070 (China); Chen, Weihua [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2016-06-03

    We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the “analogous rigid mode” of the stub and the anti-symmetric Lamb modes of the plate. The “analogous rigid mode” of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The “analogous rigid mode” of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear. - Highlights: • Expansion of lower-frequency locally resonant BGs using novel composite phononic crystals plates. • The proposed structure expands the relative bandwidth 1.5 times compared to classic doubled-sided stubbed PC plates. • The opening location of the first complete BG decreases 3 times compared to the classic doubled-sided stubbed PC plates. • The concept “analogous rigid mode” is put forward to explain the expansion of lower-frequency BGs.

  8. The part of acoustic phonons in the negative thermal expansion of the layered structures and nanotubes based on them

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Sirenko, V.A.; Dolbin, A.V.; Gospodarev, I.A.; Syrkin, E.S.; Feodos'ev, S.B.; Bondar', I.S.; Sirenko, A.F.; Minakova, K.A.

    2016-01-01

    A negative linear thermal expansion observed experimentally in a number of crystalline compounds with a complicated lattice and anisotropic interaction between atoms. The nature of negative linear thermal expansion along a number of directions is explained on the basis of calculations which were carried out at a microscopic level. We analyze anomalies in the temperature dependence of the coefficients of linear thermal expansion (the LTEC) along different directions: in layered crystals, formed as a monoatomic layers (graphite and carbon nanofilms) and multilayer ''sand-wiches'' (dichalcogenides of transition metals); in multilayer crystal structures such as high-temperature superconductors in which the anisotropy of the interatomic interaction is not saved in the long-range order; in carbon nanotubes. The results of theoretical calculations are compared with the data of x-ray, neutron diffraction and dilatometric measurements.

  9. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    International Nuclear Information System (INIS)

    Arantes, A; Anjos, V

    2016-01-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon–phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials. (paper)

  10. Surface phonons

    CERN Document Server

    Wette, Frederik

    1991-01-01

    In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech­ niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen­ tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...

  11. Phonon manipulation with phononic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  12. Holographic Phonons

    Science.gov (United States)

    Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol

    2018-04-01

    We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.

  13. Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.

    Science.gov (United States)

    Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J

    2014-10-17

    An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.

  14. Optimizing phonon space in the phonon-coupling model

    Science.gov (United States)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2017-08-01

    We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.

  15. Manipulation of Phonons with Phononic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)

    2015-07-09

    There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.

  16. Electromagnetic decay of two-phonon states

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.; Van Giai, N.; Paris-11 Univ., 91 - Orsay

    1991-01-01

    The electromagnetic decay of two-phonon states corresponding to the multi-excitation of giant resonances is studied. The calculations are performed within a boson expansion approach and the elementary modes are constructed in random phase approximation (RPA). The rates for direct transition of two-phonon states to the ground state turn out to be not negligibly smaller than those from the (single) giant resonances. The former transitions are accompanied by a γ-ray whose energy is equal to the sum of the two phonon energies. Thus the detection of such high energy γ-rays could provide a signature of the excitation of two-phonon states. (author) 9 refs., 3 tabs

  17. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  18. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  19. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  20. Phonon engineering for nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen

    2010-01-01

    Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.

  1. Probing phonons in plutonium

    International Nuclear Information System (INIS)

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-01-01

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: α → β → γ → (delta) → (delta)(prime) → (var e psilon) → liquid. Unalloyed Pu melts at a relatively low temperature ∼640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS

  2. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  3. Theory of the Influence of Phonon-Phonon and Electron-Phonon Interactions on the Scattering of Neutrons by Crystals

    International Nuclear Information System (INIS)

    Kokkedee, J.J.J.

    1963-01-01

    As predicted by harmonic theory the coherent inelastic spectrums of neutrons, scattered by a single, non-conducting crystal, for a particular angle of scattering consists of a number of delta-function peaks superposed on a continuous background. The peaks correspond to one-phonon processes in which one phonon is absorbed or emitted by the neutron; the background arises from multi-phonon processes. When anharmonic forces (phonon-phonon interactions) are present, the delta-function peaks are broadened into finite peaks, while their central frequencies are shifted with respect to the harmonic values. In the case of a metal there is in addition to phonon-phonon interactions an interaction between phonons and conduction electrons, which also gives a contribution to the displacement and broadening oftheone-phononpeaks. Continuing earlier work of Van Hove (sho considered the relatively simple case of a non-conductin crystal in its ground state (T = 0 o K) ), we have studied the shifts and widths of the scattering peaks as a 'result of the above-mentioned interactions by means of many particle perturbation theory, making extensive use of diagram techniques. Prerequisite to the entire discussion is the assumption that, independent of the strength of the interactions, the width of each peak is small compared to the value of the frequency at its centre; only then the peaks can be considered as being well defined with respect to the background to higher order in the interactions. This condition is expected to be fulfilled for temperatures which are not too high and values of the phonon wave vector which are not too large. Our procedure yields closed formulae for the partial scattering function describing the peaks, which can be evaluated to arbitrarily high accuracy. In particular an expansion for calculating the line shift and line width in powers of u/d and in terms of simple connected diagrams is obtained (u is an average atomic or ionic displacement, d is the smallest

  4. Birefringent phononic structures

    Directory of Open Access Journals (Sweden)

    I. E. Psarobas

    2014-12-01

    Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.

  5. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.

    1989-05-01

    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  6. Contribution of thermal expansion and

    Directory of Open Access Journals (Sweden)

    O.I.Pursky

    2007-01-01

    Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.

  7. Phonon dispersion in vanadium

    International Nuclear Information System (INIS)

    Ivanov, A.S.; Rumiantsev, A.Yu.

    1999-01-01

    Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)

  8. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  9. Phonon superradiance and phonon laser effect in nanomagnets.

    Science.gov (United States)

    Chudnovsky, E M; Garanin, D A

    2004-12-17

    We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.

  10. Preface: Phonons 2007

    Science.gov (United States)

    Perrin, Bernard

    2007-06-01

    logo.jpg" ALT="Conference logo"/> The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328

  11. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    Science.gov (United States)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  12. Thermodynamics of phonon-modulated tunneling centers

    International Nuclear Information System (INIS)

    Junker, W.; Wagner, M.

    1989-01-01

    In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups

  13. Phonons as building blocks in nuclear structure

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    1980-01-01

    The structure of a nuclear system in terms of eigenmodes (phonons) of subsystems is investigated in three different approaches. In the frame of nuclear field theory the three identical particle system is analysed and the elimination of spurious states due to the violation of the Pauli principle is emphasized. In terms of weak coupling, a new approach of the shell model is proposed which is shown to be rapidly convergent with the number of basis vectors. Applications of three particle systems in the lead region are made. Lastly, a microscopic multiphonon theorie of collective K=0 states in deformed nuclei based on a Tamm Dancoff phonon is developed. The role of the Pauli principle as well as comparisons with boson expansion methods are deeply analysed [fr

  14. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  15. Freeform Phononic Waveguides

    Directory of Open Access Journals (Sweden)

    Georgios Gkantzounis

    2017-11-01

    Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.

  16. Nuclear data generation for cryogenic moderators and high temperature moderators

    International Nuclear Information System (INIS)

    Petriw, Sergio

    2007-01-01

    The commonly used processing codes for nuclear data only allow the generation of cross section data for a limited number of materials and physical conditions.At present, one of the most used computer codes for the generation of neutron cross sections is N J O Y, which is based on a phonon expansion of the scattering function starting from the frequency spectrum.Therefore, the information related to the system's density of states is crucial to produce the required data of interest. In this work the formalism of the Synthetic Model for Molecular Solids (S M M S) was implemented, which is in turn based on the Synthetic Frequency Spectrum (S F S) concept.The synthetic spectrum is central in the present work, and it is built from simple, relevant parameters of the moderator, thus conforming an alternative tool when no information on the actual frequency spectrum of the moderator material is available.S F S 's for several material of interest where produced in this work, for both cryogenic and high temperature moderators.We studied some materials of special interest, like solid methane, ice, methyl clathrate and two which are of special interest in the nuclear industry: graphite and beryllium.The libraries generated in the present work for the materials considered, in spite of their synthetic origin, are able to produce results that are even in better agreement with available information [es

  17. Phonon properties of americium phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Arya, B. S., E-mail: bsarya13@yahoo.com [Department of Physics, Govt. Narmada P G College, Hoshangabad -461001 (India); Aynyas, Mahendra [Department of Physics, C. S. A. Govt. P. G. College Sehore-46601 (India); Sanyal, S. P. [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-23

    Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  18. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  19. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  20. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  1. Electronic Contributions to the Phonon Damping in Metals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rune

    1968-07-15

    An imaginary part of the dielectric matrix is derived based on a first order perturbation expansion of the valence electron states in a local potential model of the crystal. The results are used to estimate the electronic contributions to the phonon damping in aluminum and lead. The corrections which have been obtained are of the same order of magnitude at small phonon momenta as the damping earlier calculated for the free electrons. However, the discrepancies between the theoretical and experimental results still remain. The major contribution to damping seems to originate in anharmonic effects, even at 80 deg K.

  2. Detecting the phonon spin in magnon-phonon conversion experiments

    Science.gov (United States)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  3. Phonon-induced optical superlattice.

    Science.gov (United States)

    de Lima, M M; Hey, R; Santos, P V; Cantarero, A

    2005-04-01

    We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.

  4. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  5. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  6. Superfluidity of nuclei and the nucleon--phonon interaction

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Luk'yanovich, P.A.

    1989-01-01

    The Lehmann expansion for the exact one-particle Green function in a system with superfluidity is obtained. Expressions for the correlation function and mass operator are derived with allowance for a retarded nucleon--phonon interaction. Within the scope of the formalism developed, equations for the superfluidity of nuclei allowing for quasiparticle fragmentation effects are derived. It is concluded that the retarded nucleon--phonon interaction in the particle--particle channel causes a decrease of the fragmentation of the one-particle force in the vicinity of the Fermi surface. It is shown that inclusion of a nonretarded vacuum interaction of two nucleons and of a retarded interaction due to the exchange between two nucleons of low-lying highly collectivized quadrupole phonons is sufficient to provide the necessary scale of attraction in the description of pair correlations of nucleons in nuclei with developed superfluidity

  7. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  8. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  9. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  10. Quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1977-01-01

    The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strenght functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval

  11. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  12. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2013-01-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  13. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  14. Creation of high-energy phonons by four-phonon processes in anisotropic phonon system of He II

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Kitsenko, Yu.A.; Wyatt, A.F.G.

    2007-01-01

    The problem of the creation of high-energy phonons (h-phonons) by a pulse of low-energy phonons (I-phonons) moving from a heater to a detector in superfluid helium, is solved. The rate of h-phonon creation is obtained and it is shown that created h-phonons occupy a much smaller solid angle in momentum space, than the I-phonons. Analytical expression for the creation rate of h-phonon, along the symmetry axis of a pulse, are derived. It allows us to get useful approximate analytical expressions for creation rate of h-phonons. The time dependences of the parameters which describe the I-phonon pulse are obtained. This shows that half of the initial energy of I-phonon pulse can be transferred into h-phonons. The results of the calculations are compared with experimental data and we show that this theory explains a number of experimental results. The value of the momentum, which separates the I- and h-phonon subsystems, is found

  15. Enhancing of optic phonon contribution in hydrodynamic phonon transport

    Science.gov (United States)

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2015-10-01

    In the framework of the kinetic-collective model of phonon heat transport, we analyze how each range of the phonon frequency spectrum contributes to the total thermal conductivity both in the macro and the nanoscale. For this purpose, we use two case study samples: naturally occurring bulk silicon and a 115 nm of diameter silicon nanowire. We show that the contribution of high-energy phonons (optic branches) is non-negligible only when N-collisions are strongly present. This contribution increases when the effective size of the sample decreases, and it is found to be up to a 10% at room temperature for the 115 nm nanowire, corroborating preliminar ab-initio predictions.

  16. Scattering of phonons by dislocations

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10 9 Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations

  17. Detecting phonon blockade with photons

    International Nuclear Information System (INIS)

    Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.

    2011-01-01

    Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.

  18. Phonon and thermodynamical properties of CuSc: A DFT study

    Science.gov (United States)

    Jain, Ekta; Pagare, Gitanjali; Dubey, Shubha; Sanyal, S. P.

    2018-05-01

    A detailed systematic theoretical investigation of phonon and thermodynamical behavior of CuSc intermetallic compound has been carried out by uing first-principles density functional theory in B2-type (CsCl) crystal structure. Phonon dispersion curve and phonon density of states (PhDOS) are studied which confirm the stability of CuSc intermetallic compound in B2 phase. It is found that PhDOS at high frequencies mostly composed of Sc states. We have also presented some temperature dependent properties such as entropy, free energy, heat capacity, internal energy and thermal displacement, which are computed under PHONON code. The various features of these quantities are discussed in detail. From these results we demonstrate that the particular intermetallic have better ductility and larger thermal expansion.

  19. Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12.

    Science.gov (United States)

    Rimmer, Leila H N; Dove, Martin T

    2015-05-13

    A simulation study of negative thermal expansion in Y2W3O12 was carried out using calculations of phonon dispersion curves through the application of density functional perturbation theory. The mode eigenvectors were mapped onto flexibility models and results compared with calculations of the mode Grüneisen parameters. It was found that many lower-frequency phonons contribute to negative thermal expansion in Y2W3O12, all of which can be described in terms of rotations of effectively rigid WO4 tetrahedra and Y-O rods. The results are strikingly different from previous phonon studies of higher-symmetry materials that show negative thermal expansion.

  20. Sound and heat revolutions in phononics

    Science.gov (United States)

    Maldovan, Martin

    2013-11-01

    The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

  1. A holographic perspective on phonons and pseudo-phonons

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Andrea [Institute of Theoretical Physics and Astrophysics, University of Würzburg,97074 Würzburg (Germany); Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [Departamento de Física de Partículas, Universidade de Santiago de Compostelaand Instituto Galego de Física de Altas Enerxías (IGFAE),E-15782, Santiago de Compostela (Spain); Zayas, Leopoldo A. Pando [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)

    2017-05-10

    We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.

  2. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  3. Engineering dissipation with phononic spectral hole burning

    Science.gov (United States)

    Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.

    2017-03-01

    Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

  4. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  5. Phonon lineshapes in atom-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)

    2010-08-04

    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.

  6. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  7. Tunable infrared reflectance by phonon modulation

    Science.gov (United States)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  8. Electron-phonon coupling in one dimension

    International Nuclear Information System (INIS)

    Apostol, M.; Baldea, I.

    1981-08-01

    The Ward identity is derived for the electron-phonon coupling in one dimension and the spectrum of elementary excitations is calculated by assuming that the Fermi distribution is not strongly distorted by interaction. The electron-phonon vertex is renormalized in the case of the forward scattering and Migdal's theorem is discussed. A model is proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and found to be in agreement with the experimental data for KCP. (author)

  9. Tunable infrared reflectance by phonon modulation

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.

    2018-03-06

    The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.

  10. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  11. Effect of magnon-phonon interaction on transverse acoustic phonon excitation at finite temperature

    International Nuclear Information System (INIS)

    Cheng Taimin; Li Lin; Xianyu Ze

    2007-01-01

    A magnon-phonon interaction model is developed on the basis of two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory transverse acoustic phonon excitation is studied and transverse acoustic phonon excitation dispersion curves is calculated on the main symmetric point and line in the first Brillouin zone. On line Σ it is found that there is hardening for transverse acoustic phonon on small wave vector zone (nearby point Γ), there is softening for transverse acoustic phonon on the softening zone and there is hardening for transverse acoustic phonon near point M. On line Δ it is found there is no softening and hardening for transverse acoustic phonon. On line Z it is found that there is softening for transverse acoustic phonon on small wave vector zone (nearby point X) and there is hardening for transverse acoustic phonon nearby point M. The influences of various parameters on transverse acoustic phonon excitation are also explored and it is found that the coupling of the magnon-phonon and the spin wave stiffness constant play an important role for the softening of transverse acoustic phonon

  12. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  13. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  14. The moderator's moderator

    International Nuclear Information System (INIS)

    Williamson, G.K.

    1990-01-01

    A brief account is given of the development of graphite moderators for Magnox and advanced gas cooled reactors. The accident at Windscale in 1957 brought to worldwide attention the importance of irradiation damage in graphite and the consequent storage of Wigner energy. In spite of the Windscale setback, preparations for the civil programme of Magnox reactors went ahead apace. Some of the background to the disastrous Dungeness B tender is presented. In spite of all the difficulties and uncertainties, the graphite in UK reactors has performed well. In all cases, as far as the author is aware, the behaviour of the graphite moderators will not prevent design life being achieved. (author)

  15. Splash, pop, sizzle: Information processing with phononic computing

    Directory of Open Access Journals (Sweden)

    Sophia R. Sklan

    2015-05-01

    Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.

  16. Resonant tunneling in a pulsed phonon field

    DEFF Research Database (Denmark)

    Kral, P.; Jauho, Antti-Pekka

    1999-01-01

    , The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...

  17. Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling

    Science.gov (United States)

    Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun

    2018-05-01

    Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.

  18. Phononic crystals and elastodynamics: Some relevant points

    Directory of Open Access Journals (Sweden)

    N. Aravantinos-Zafiris

    2014-12-01

    Full Text Available In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

  19. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  20. Mutual interactions of phonons, rotons, and gravity

    Science.gov (United States)

    Nicolis, Alberto; Penco, Riccardo

    2018-04-01

    We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.

  1. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  2. Phonon excitations in multicomponent amorphous solids

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.

    1988-01-01

    The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated

  3. One-dimensional hypersonic phononic crystals.

    Science.gov (United States)

    Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G

    2010-03-10

    We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.

  4. Electron–phonon superconductivity in YIn3

    International Nuclear Information System (INIS)

    Billington, D; Llewellyn-Jones, T M; Maroso, G; Dugdale, S B

    2013-01-01

    First-principles calculations of the electron–phonon coupling were performed on the cubic intermetallic compound YIn 3 . The electron–phonon coupling constant was found to be λ ep = 0.42. Using the Allen–Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a T c of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron–phonon coupling is capable of producing the superconductivity in this compound. (paper)

  5. Electron-phonon superconductivity in YIn3

    Science.gov (United States)

    Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.

    2013-08-01

    First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.

  6. Normal processes of phonon-phonon scattering and thermal conductivity of germanium crystals with isotopic disorder

    CERN Document Server

    Kuleev, I G

    2001-01-01

    The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees

  7. Topological chiral phonons in center-stacked bilayer triangle lattices

    Science.gov (United States)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  8. Evidence for phonon-mediated coupling in superconducting Ba0.6K0.4BiO3

    International Nuclear Information System (INIS)

    Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.

    1989-01-01

    Superconducting Ba 0.6 K 0.4 BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Infrared reflectivity measurements indicate a value for the superconducting gap consistent with moderate coupling (2Δ/k T c = 3.5 ± 0.5). A mediating energy for pairing of about 40 meV would be required to obtain a T c of 30 K. Strong coupling of electrons by optical phonons (which are present in this material with energies up to 80 meV) could account for the observed transition temperature. Recent tunneling spectroscopy shows the presence of strongly coupled optical phonons in the 40 to 70 meV region, indicating that superconductivity in this material may be phonon mediated

  9. Toward stimulated interaction of surface phonon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, B. D.; Trew, R. J.; Kim, K. W., E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)

    2013-12-21

    Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.

  10. Phonon limited electronic transport in Pb

    Science.gov (United States)

    Rittweger, F.; Hinsche, N. F.; Mertig, I.

    2017-09-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \

  11. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  12. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  13. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  14. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  15. Low-temperature thermal properties and features of the phonon spectrum of lutetium tetraboride

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Mitroshenkov, N.V., E-mail: weerm@yandex.ru [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Matovnikov, A.V.; Avdashchenko, D.V. [Bryansk Petrovsky State University, 14 Bezhitskaya St., Bryansk 241037, Russia, (Russian Federation); Morozov, A.V. [Russian Timiryazev State Agrarian University, 49 Timiryazevskaya St., Moscow 127550 (Russian Federation); Pavlova, L.M.; Koltsov, V.B. [National Research University of Electronic Technology “MIET”, Moscow 124498 (Russian Federation)

    2014-11-15

    Highlights: • The coefficients of thermal expansion (α{sub ‖}, α{sub ⊥}) were measured for lutetium tetraboride. • The simplified Lutetium tetraboride phonon spectrum model is developed. • The Grüneisen parameters Γ, Γ{sub ‖}, Γ{sub ⊥} for lutetium tetraboride is calculated. • The anomalies of Γ{sub ‖}(T), Γ{sub ⊥}(T) at about 25 K are due to Einstein vibrations of boron sublattices. - Abstract: The coefficients of thermal expansion to the c axis (α{sub ‖}, α{sub ⊥}) were measured for lutetium tetraboride over the temperature range 4.2–300 K. The heat capacity data for lutetium tetraboride were used for the calculation of tetraboride phonon spectrum moments and also for the development of a simplified tetraboride spectrum model. The use of the heat capacity and thermal expansion data allowed the temperature changes of the Grüneisen parameters Γ, Γ{sub ‖}, Γ{sub ⊥} for tetraboride to be calculated. As a result of the approximation of Γ{sub ⊥}(T), Γ{sub ‖}(T) temperature dependencies in accordance with the chosen phonon spectrum model have been found: the anomalies of Γ{sub ⊥}(T), Γ{sub ‖}(T) are at about 25 K and then drop at lower temperatures due to the Einstein vibrations of boron sublattices.

  16. Nonlinear electron-phonon heat exchange

    International Nuclear Information System (INIS)

    Woods, L.M.; Mahan, G.D.

    1998-01-01

    A calculation of the energy exchange between phonons and electrons is done for a metal at very low temperatures. We consider the energy exchange due to two-phonon processes. Second-order processes are expected to be important at temperatures less than 1 K. We include two different second-order processes: (i) the Compton-like scattering of phonons, and (ii) the electron-dual-phonon scattering from the second-order electron-phonon interaction. It is found that the Compton-like process contains a singular energy denominator. The singularity is removed by introducing quasiparticle damping. For pure metals we find that the energy exchange depends upon the lifetime of the electrons and it is proportional to the temperature of the lattice as T L 8 . The same calculation is performed for the electron-dual-phonon scattering and it is found that the temperature dependence is T L 9 . The results can be applied to quantum dot refrigerators. copyright 1998 The American Physical Society

  17. Waveguiding in supported phononic crystal plates

    International Nuclear Information System (INIS)

    Vasseur, J; Hladky-Hennion, A-C; Deymier, P; Djafari-Rouhani, B; Duval, F; Dubus, B; Pennec, Y

    2007-01-01

    We investigate, with the help of the finite element method, the existence of absolute band gaps in the band structure of a free-standing phononic crystal plate and of a phononic crystal slab deposited on a substrate. The two-dimensional phononic crystal is constituted by a square array of holes drilled in an active piezoelectric (PZT5A or AlN) matrix. For both matrix materials, an absolute band gap occurs in the band structure of the free-standing plate provided the thickness of the plate is on the order of magnitude of the lattice parameter. When the plate is deposited on a Si substrate, the absolute band gap still remains when the matrix of the phononic crystal is made of PZT5A. The AlN phononic crystal plate losses its gap when supported by the Si substrate. In the case of the PZT5A matrix, we also study the possibility of localized modes associated with a linear defect created by removing one row of air holes in the deposited phononic crystal plate

  18. Lattice instability and soft phonons in single-crystal La/sub 2-//sub x/Sr/sub x/CuO4

    International Nuclear Information System (INIS)

    Boeni, P.; Axe, J.D.; Shirane, G.

    1988-01-01

    The dispersion of the low-lying phonon branches of several doped and undoped single crystals of La/sub 2-//sub x/Sr/sub x/CuO 4 have been investigated by using inelastic-neutron-scattering techniques. The zone-center modes are in good agreement with Raman measurements. The reported peaks in the phonon density of states show up at energies that correspond to extrema in the dispersion curves of the transverse and longitudinal acoustic branches near the zone boundary. The tetragonal-to-orthorhombic phase transition is caused by a softening of transverse-optic-phonon mode at the X point. The rotational nature of the soft mode leads to moderate weak electron-phonon coupling and the mode is unlikely to enhance significantly conventional phonon mediated superconductivity. We did not observe any evidence for the predicted breathing-mode instability near the zone boundary

  19. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  20. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  1. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  2. Electron-phonon contribution to the phonon and excited electron (hole) linewidths in bulk Pd

    International Nuclear Information System (INIS)

    Sklyadneva, I Yu; Leonardo, A; Echenique, P M; Eremeev, S V; Chulkov, E V

    2006-01-01

    We present an ab initio study of the electron-phonon (e-ph) coupling and its contribution to the phonon linewidths and to the lifetime broadening of excited electron and hole states in bulk Pd. The calculations, based on density-functional theory, were carried out using a linear-response approach in the plane-wave pseudopotential representation. The obtained results for the Eliashberg spectral function α 2 F(ω), e-ph coupling constant λ, and the contribution to the lifetime broadening, Γ e-ph , show strong dependence on both the energy and momentum of an electron (hole) state. The calculation of phonon linewidths gives, in agreement with experimental observations, an anomalously large broadening for the transverse phonon mode T 1 in the Σ direction. In addition, this mode is found to contribute most strongly to the electron-phonon scattering processes on the Fermi surface

  3. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  4. Ionizing particle detection based on phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  5. Phonon dynamics of graphene on metals

    Science.gov (United States)

    Taleb, Amjad Al; Farías, Daniel

    2016-03-01

    The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

  6. Electrons and Phonons in Semiconductor Multilayers

    Science.gov (United States)

    Ridley, B. K.

    1996-11-01

    This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.

  7. Phonon tunneling through a double barrier system

    International Nuclear Information System (INIS)

    Villegas, Diosdado; León-Pérez, Fernando de; Pérez-Álvarez, R.; Arriaga, J.

    2015-01-01

    The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices

  8. Single-photon indistinguishability: influence of phonons

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2012-01-01

    of indistinguishability, absent in the approximate theories. The maximum arises due to virtual processes in the highly non-Markovian short-time regime, which dominate the decoherence for small QD-cavity coupling, and phonon-mediated real transitions between the upper and lower polariton branches in the long-time regime......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... as a function of the QD-cavity coupling strength for light emitted from the QD and the cavity, respectively, for all the employed methods. Both the Lindblad and TCL theories deviate significantly from our exact results, where, importantly, the exact results predict a pronounced maximum in the degree...

  9. Phonon tunneling through a double barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)

    2015-04-15

    The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.

  10. Theory of Raman scattering in coupled electron-phonon systems

    Science.gov (United States)

    Itai, K.

    1992-01-01

    The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.

  11. Collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Y.

    1982-01-01

    The Pauli principle in the two-phonon components of the wave functions is taken into account within the framework of the quasiparticle-phonon model of the nucleus with phonon operators depending on the sign of the projection of the angular momentum. The centroid energies of collective two-phonon states in even-even deformed nuclei are calculated and it is shown that the inclusion of the Pauli principle shifts them by 1--3 MeV to higher energies. The shifts of the three-phonon poles due to the inclusion of the Pauli principle in the three-phonon components of the wave functions are calculated. Strong fragmentation of collective two-phonon states whose energy centroids are 3--5 MeV should be expected. It is concluded that collective two-phonon states need not exist in deformed nuclei. The situation with the 168 Er nucleus and the Th and U isotopes is analyzed

  12. Situation with collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.; Shirikova, N.Yu.

    1982-01-01

    Within the quasiparticle-phonon nuclear model with the operators of phonons depending on the sign of the angular momentum projection, the Pauli principle is taken into account in the two-phonon components of the wave functions. The centroid energies of the collective two-phonon states in even-even deformed nuclei are calculated. It is shown that the inclusion of the Pauli principle leads to their shift by 1-3 MeV towards high energies. The shifts of three-phonon poles due to the Pauli principle are calculated in the three-phonon components of the wave functions. The collective two-phonon states, the centroid energies of which are 3-5 MeV, are expected to be strongly fragmented. The conclusion is confirmed that the collective two-phonon states should not exist in deformed nuclei. The situation in 168 Er and in the 228 Th isotopes is analysed

  13. Phonon dispersion curves for CsCN

    International Nuclear Information System (INIS)

    Gaur, N.K.; Singh, Preeti; Rini, E.G.; Galgale, Jyostna; Singh, R.K.

    2004-01-01

    The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique. (author)

  14. Phonon structure in proximity tunnel junctions

    International Nuclear Information System (INIS)

    Zarate, H.G.; Carbotte, J.P.

    1985-01-01

    We have iterated to convergence, for the first time, a set of four coupled real axis Eliashberg equations for the superconducting gap and renormalization functions on each side of a proximity sandwich. We find that the phenomenological procedures developed to extract the size of the normal side electron-phonon interaction from tunneling data are often reasonable but may in some cases need modifications. In all the cases considered the superconducting phonon structure reflected on the normal side, as well as other structures, shows considerable agreement with experiment as to size, shape, and variation with barrier transmission coefficient. Finally, we study the effects of depairing on these structures

  15. Evidence for second-phonon nuclear wobbling

    International Nuclear Information System (INIS)

    Jensen, D.R.; Hagemann, G.B.; Herskind, B.; Sletten, G.; Wilson, J.N.; Hamamoto, I.; Odegaard, S.W.; Spohr, K.; Huebel, H.; Bringel, P.; Neusser, A.; Schoenwasser, G.; Singh, A.K.; Ma, W.C.; Amro, H.; Bracco, A.; Leoni, S.; Benzoni, G.; Maj, A.; Petrache, C.M.

    2002-01-01

    The nucleus 163 Lu has been populated through the reaction 139 La( 29 Si,5n) with a beam energy of 157 MeV. Three triaxial, strongly deformed (TSD) bands have been observed with very similar rotational properties. The first excited TSD band has earlier been assigned as a one-phonon wobbling excitation built on the lowest-lying (yrast) TSD band. The large B(E2) out /B(E2) in value obtainable for one of four observed transitions between the second and first excited TSD bands is in good agreement with particle-rotor calculations for a two-phonon wobbling excitation

  16. Self-consistency in the phonon space of the particle-phonon coupling model

    Science.gov (United States)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  17. Phonon emission in a degenerate semiconductor at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S.; Nag, S.; Bhattacharya, D.P.

    2015-01-01

    The characteristics of phonon growth in a degenerate semiconductor at low lattice temperatures have been studied for inelastic interaction of non-equilibrium electrons with the intravalley acoustic phonons. The energy of the phonon and the full form of the phonon distribution are taken into account. The results reveal significant changes in the growth characteristics compared to the same for a non-degenerate material

  18. A Monte Carlo Sampling Technique for Multi-phonon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Thure

    1961-12-15

    A sampling technique for selecting scattering angle and energy gain in Monte Carlo calculations of neutron thermalization is described. It is supposed that the scattering is separated into processes involving different numbers of phonons. The number of phonons involved is first determined. Scattering angle and energy gain are then chosen by using special properties of the multi-phonon term.

  19. Optical pumping of hot phonons in GaAs

    International Nuclear Information System (INIS)

    Collins, C.L.; Yu, P.Y.

    1982-01-01

    Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated

  20. Frictional drag between quantum wells mediated by phonon exchange

    DEFF Research Database (Denmark)

    Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1998-01-01

    We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...

  1. Electron-phonon interactions and the phonon anomaly in β-phase NiTi

    International Nuclear Information System (INIS)

    Zhao, G.L.; Harmon, B.N.

    1993-01-01

    The electronic structure of β-phase NiTi has been calculated using a first-principles linear-combination-of-atomic-orbitals method. The resulting band structure was fitted with a nonorthogonal tight-binding Hamiltonian from which electron-phonon matrix elements were evaluated. The soft phonon near Q 0 =(2/3, 2) / (3 ,0)π/a, which is responsible for the premartensitic phase transition in β-phase NiTi, is found to arise from the strong electron-phonon coupling of nested electronic states on the Fermi surface. Thermal vibrations and changes in electronic occupation cause a smearing of the nested features, which in turn cause a hardening of the phonon anomaly

  2. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  3. Large calculated electron-phonon interactions in La2-xMxCuO4

    International Nuclear Information System (INIS)

    Krakauer, H.; Pickett, W.E.; Cohen, R.E.

    1993-01-01

    Results of self-consistent linearized-augmented-plane-wave calculations within the local-density-functional approximation (LDA) are presented of the electron-phonon-induced linewidths and interaction strength of selected phonons in La 2-xMx CuO 4 at x=0.15. Through the use of a supercell geometry, rigid-ion-type approximations are avoided and the full electron-phonon matrix elements are determined from finite differences of the LDA potentials corresponding to frozen-in phonon at Γ X, and Z. At the X point, all fully symmetric A g modes (i.e., having the symmetry of the oxygen planar-breathing mode) as well as three modes having B 3g symmetry are examined. Small linewidths were found for the three B 3g modes, and moderate linewidths for the A g modes, the largest corresponding to ratios γ q,ν /ω q,ν =0.02 for the oxygen breathing and axial modes

  4. Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance

    Directory of Open Access Journals (Sweden)

    A. Aizaz

    2010-09-01

    Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.

  5. Damping of acoustic flexural phonons in silicene: influence on high-field electronic transport

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Mokhtar Hamham, El; Martín, María J.

    2018-06-01

    Silicene is a two-dimensional buckled material with broken horizontal mirror symmetry and Dirac-like dispersion. Under such conditions, flexural acoustic (ZA) phonons play a dominant role. Consequently, it is necessary to consider some suppression mechanism for electron–phonon interactions with long wavelengths in order to reach mobilities useful for electronic applications. In this work, we analyze, by means of an ensemble Monte Carlo simulator, the influence of several possibilities for the description of the effect of ZA phonon damping on electronic transport in silicene. The results show that a hard cutoff situation (total suppression for phonons with a wavelength longer than a critical one), as it has been proposed in the literature, does not yield a realistic picture regarding the electronic distribution function, and it artificially induces a negative differential resistance at moderate and high fields. Sub-parabolic dispersions, on the other hand, may provide a more realistic description in terms of the behavior of the electron distribution in the momentum space, but need extremely short cutoff wavelengths to reach functional mobility and drift velocity values.

  6. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  7. Phonon limited electronic transport in Pb

    DEFF Research Database (Denmark)

    Rittweger, Florian; Hinsche, Nicki Frank; Mertig, Ingrid

    2017-01-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the k-dependent structure of the Éliashberg spectral function, the coupling strength...

  8. Phonon affected transport through molecular quantum

    Czech Academy of Sciences Publication Activity Database

    Loos, Jan; Koch, T.; Alvermann, A.; Bishop, A. R.; Fehske, H.

    2009-01-01

    Roč. 21, č. 39 (2009), 395601/1-395601/18 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  9. Electron-phonon interactions in correlated systems

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1996-01-01

    There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)

  10. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  11. Anomalous Doppler effects in bulk phononic crystal

    International Nuclear Information System (INIS)

    Cai Feiyan; He Zhaojian; Zhang Anqi; Ding Yiqun; Liu Zhengyou

    2010-01-01

    Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.

  12. Phonon scattering in graphene over substrate steps

    DEFF Research Database (Denmark)

    Sevincli, Haldun; Brandbyge, Mads

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...

  13. Phonon dispersion curves of fcc La

    International Nuclear Information System (INIS)

    Stassis, C.; Loong, C.; Zarestky, J.

    1982-01-01

    Large single crystals of fcc La were grown in situ and were used to study the lattice dynamics of this phase of La by coherent inelastic neutron scattering. The phonon dispersion curves have been measured along the [xi00], [xixi0], [xixixi], and [0xi1] symmetry directions at 660 and 1100 K. The T[xixixi] branch exhibits anomalous dispersion for xi>0.25 and, in addition, close to the zone boundary, the phonon frequencies of this branch decrease with decreasing temperature. This soft-mode behavior may be related to the #betta→α# transformation in La, an assumption supported by recent band-theoretical calculations of the generalized susceptibility of fcc La. At X the frequencies of the L[xi00] branch are considerably lower than those of the corresponding branch of #betta#-Ce; a similar but not as pronounced effect is observed for the frequencies of the L[xixixi] branch close to the point L. Since the calculated generalized susceptibility of fcc La exhibits strong peaks at X and L, these anomalies may be due to the renormalization of the phonon frequencies by virtual fbold-arrow-left-rightd transitions to the unoccupied 4f level in La. The data were used to evaluate the elastic constants, the phonon density of states, and the lattice specific heat at constant pressure C/sub P//sup

  14. Phononic band gap structures as optimal designs

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...

  15. Kohn anomaly in phonon driven superconductors

    International Nuclear Information System (INIS)

    Das, M P; Chaudhury, R

    2014-01-01

    Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.

  16. Quasiparticles, phonons and beyond. Enlargement the basis of quasiparticle-phonon model

    International Nuclear Information System (INIS)

    Stoyanov, Ch.

    2000-01-01

    The version of Quasiparticle-Phonon Model (QPM) which accounts up to three-phonons is discussed. The new basis is used to study the low-lying isovector mode and the low-energy E1 transitions forbidden in the ideal boson picture. The coupling to the continuum is incorporated in the formalism of QPM. The phenomenon of trapping of states is studied in the case of high-lying states with large angular momentum. (author)

  17. Mapping momentum-dependent electron-phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering

    Science.gov (United States)

    Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.

    2018-04-01

    Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.

  18. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  19. Phonon Scattering and Confinement in Crystalline Films

    Science.gov (United States)

    Parrish, Kevin D.

    The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling

  20. Theory of the Influence of Phonon-Phonon and Electron-Phonon Interactions on the Scattering of Neutrons by Crystals; Theorie de l'influence des interactions phonon-phonon et electron-phonon sur la diffusion des neutrons par des cristaux; Teoriya vliyaniya vzaimodejstvij fonon-fonon iehlvktron-fonon na rasseyanie nejtronov kristalla-; Teoria de la influencia de las interacciones fonon-fonon y electron-fonon en la dispersion de neutrones por cristales

    Energy Technology Data Exchange (ETDEWEB)

    Kokkedee, J J.J. [Institute for Theoretical Physics of the University of Utrecht (Netherlands)

    1963-01-15

    As predicted by harmonic theory the coherent inelastic spectrums of neutrons, scattered by a single, non-conducting crystal, for a particular angle of scattering consists of a number of delta-function peaks superposed on a continuous background. The peaks correspond to one-phonon processes in which one phonon is absorbed or emitted by the neutron; the background arises from multi-phonon processes. When anharmonic forces (phonon-phonon interactions) are present, the delta-function peaks are broadened into finite peaks, while their central frequencies are shifted with respect to the harmonic values. In the case of a metal there is in addition to phonon-phonon interactions an interaction between phonons and conduction electrons, which also gives a contribution to the displacement and broadening oftheone-phononpeaks. Continuing earlier work of Van Hove (sho considered the relatively simple case of a non-conductin crystal in its ground state (T = 0{sup o}K) ), we have studied the shifts and widths of the scattering peaks as a 'result of the above-mentioned interactions by means of many particle perturbation theory, making extensive use of diagram techniques. Prerequisite to the entire discussion is the assumption that, independent of the strength of the interactions, the width of each peak is small compared to the value of the frequency at its centre; only then the peaks can be considered as being well defined with respect to the background to higher order in the interactions. This condition is expected to be fulfilled for temperatures which are not too high and values of the phonon wave vector which are not too large. Our procedure yields closed formulae for the partial scattering function describing the peaks, which can be evaluated to arbitrarily high accuracy. In particular an expansion for calculating the line shift and line width in powers of u/d and in terms of simple connected diagrams is obtained (u is an average atomic or ionic displacement, d is the smallest

  1. Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.

    2016-08-16

    A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.

  2. Electron-phonon coupling at metal surfaces

    International Nuclear Information System (INIS)

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  3. Phonon spectroscopy with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Grimshaw, J.M.

    1984-02-01

    Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr

  4. Electron and Phonon Transport in Molecular Junctions

    DEFF Research Database (Denmark)

    Li, Qian

    Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... transmission at the Fermi energy. We propose and analyze a way of using π   stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific...

  5. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2017-01-01

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  6. Magnon rainbows filtered through phonon clouds

    Science.gov (United States)

    Boona, Stephen R.

    2016-06-01

    The study of heat flow in magnetic insulators is a topic of significant interest in spin caloritronics, especially for understanding the nuanced origins of the spin Seebeck effect (SSE). Recent work by Diniz and Costa (2016 New J. Phys. 18 052002) provides insight into this subject by presenting a microscopic model for the spectral dependence of magnon-phonon interactions in magnetic insulators, which has been a challenging puzzle for decades. Their new paper shows that phonon-mediated magnon-magnon interactions affect the lifetime of magnons differently depending on the magnon wavelength. As a result, low energy magnons transport spin more efficiently, and are more sensitive to applied magnetic fields. These results help explain some unexpected behavior in the SSE recently reported in several experiments.

  7. Beryllium phonon spectrum from cold neutron measurements

    International Nuclear Information System (INIS)

    Bulat, I.A.

    1979-01-01

    The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer

  8. From Planck's quanta to phonon in solids

    International Nuclear Information System (INIS)

    Martinez- Duart, J. M; Melo, O. de

    2008-01-01

    Planck's 1900 published results on the black body radiation had the first application in the quantification of radiation. This quantum hypothesis explained several noteworthy light- matter interaction effects in 1905. These were the electron emission, Stokes law and gas ionization. As soon as two years later, A. Einstein derived an expression for the specific heat of solids, applying the quantum hypothesis to the mechanical oscillation of the atoms. In the present work, the main ideas which led to the concept of phonon are discussed. From an historical point of view, the developments due to Einstein, Born, Debye, among others are analyzed and most important properties of the phonons are presented. Finally, the importance of this entity in the theory of solids is explained, in particular regarding the thermal and optical properties as well as the electrical conductivity

  9. Multiple topological phases in phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-20

    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.

  10. Phonon heat transport through periodically stubbed waveguides

    International Nuclear Information System (INIS)

    Li Wenxia; Chen Keqiu

    2006-01-01

    We investigate the acoustic phonon band structure, transmission spectrum and thermal conductance in a periodically stubbed waveguide structure by use of the transfer matrix method and the scattering matrix method. We find that the existence of stop-frequencies or dips in the transmission spectrum, which corresponds to the stop bands or gaps in the acoustic band structure. The dependence of the stop band width and the dip width on the stub height is also demonstrated. We also find that the universal quantum thermal conductance can be clearly observed and the thermal conductance increases monotonically with increasing temperature. Our results show that the acoustic phonon band structure, transmission spectrum and thermal conductance can be artificially controlled by adjusting the height of the stub

  11. Photon-phonon interaction in photonic crystals

    International Nuclear Information System (INIS)

    Ueta, T

    2010-01-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analysed and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers increases. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration.

  12. Electron-optical phonon coupling in superconductors

    International Nuclear Information System (INIS)

    Rietschel, H.

    1975-01-01

    The role of the optical phonons in superconductivity is investigated in the case of compounds with different atomic masses Msub(k). It is shown that the electron mass enhancement factor lambda is independent of Msub(k) if the force constant matrix is mass independent. However, when using lambda to calculate Tsub(c), it must be decomposed into its acoustical and optical contributions, which depend separately on Msub(k). Interference scattering from a light and a heavy mass is studied and its contributions to lambda within the free electron approximation. Numerical results are presented for a rocksalt structure crystal with nearest and next nearest neighbour coupling. These results indicate that the optical phonon contributions to lambda may substantially increase Tsub(c). (orig.) [de

  13. Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering

    International Nuclear Information System (INIS)

    Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.

    2015-01-01

    We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice

  14. Understanding photon sideband statistics and correlation for determining phonon coherence

    Science.gov (United States)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-01-01

    Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.

  15. Soft phonon anomalies in relaxor ferroelectrics

    International Nuclear Information System (INIS)

    Shirane, Gen; Gehring, Peter M.

    2001-01-01

    A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)

  16. Soft phonon anomalies in relaxor ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Shirane, Gen [Department of Physics, Brookhaven National Laboratory, Upton, New York (United States); Gehring, Peter M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland (United States)

    2001-03-01

    A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)

  17. Phonon dispersion relations for caesium thiocyanate

    International Nuclear Information System (INIS)

    Irving, M.A.; Smith, T.F.; Elcombe, M.M.

    1984-01-01

    Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations

  18. Quantum mode phonon forces between chainmolecules

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2001-01-01

    bimolecular interaction is a truly many-body force that is temperature dependent and can be of the order of 1 eV. These phonon forces depend on molecular shape, composition, and density. They may therefore also be important for large molecular conformational changes, including the unfolding of chain molecules....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....

  19. Comments on exciton-phonon coupling. II

    International Nuclear Information System (INIS)

    Allen, J.W.; Silbey, R.

    1979-01-01

    Two variational calculations of the energy and correlation functions for a simple exciton-phonon coupled system are presented and contrasted to the adiabatic solution and the exact solution. The simpler variational solution leads to two minima and abrupt changes in the properties of the system; an asymmetric variational wavefunction, motivated by the form of perturbation theory for this problem, leads to smooth behavior in agreement with the exact result. (Auth.)

  20. Phonon studies of intercalated conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)

    1992-06-01

    The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).

  1. Nuclear wobbling-phonon excitations with alignments

    International Nuclear Information System (INIS)

    Hamamoto, I.

    2003-01-01

    Wobbling-phonon excitations, which are recently observed in 71 163 Lu 92 , are studied. The presence of alignments in nuclei makes it easier for wobbling excitations to appear at lower angular momenta of the yrast spectra. A family of rotational bands with wobbling excitations, which have nearly the same nuclear intrinsic structure, have been pinned down by observing specific electromagnetic decay properties between them. The triaxiality parameter γ = +20 deg. is obtained for the nuclear shape from measured E2 transition probabilities

  2. Novel information theory techniques for phonon spectroscopy

    International Nuclear Information System (INIS)

    Hague, J P

    2007-01-01

    The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities

  3. Phonons: Theory and experiments II. Volume 2

    International Nuclear Information System (INIS)

    Bruesch, P.

    1986-01-01

    The present second volume titled as ''Phonons: Theory and Experiments II'', contains, a thorough study of experimental techniques and the interpretation of experimental results. This three-volume set tries to bridge the gap between theory and experiment, and is addressed to those working in both camps in the vast field of dynamical properties of solids. Topics presented in the second volume include; infrared-, Raman and Brillouin spectroscopy, interaction of X-rays with phonons, and inelastic neutron scattering. In addition an account is given of some other techniques, including ultrasonic methods, inelastic electron tunneling spectroscopy, point contact spectroscopy, and spectroscopy of surface phonons, thin films and adsorbates. Both experimental aspects and theoretical concepts necessary for the interpretation of experimental data are discussed. An attempt is made to present the descriptive as well as the analytical aspects of the topics. Simple models are often used to illustrate the basic concepts and more than 100 figures are included to illustrate both theoretical and experimental results. Many chapters contain a number of problems with hints and results giving additional information

  4. Optimization of phononic filters via genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M I [University of Colorado, Department of Aerospace Engineering Sciences, Boulder, Colorado 80309-0429 (United States); El-Beltagy, M A [Cairo University, Faculty of Computers and Information, 5 Dr. Ahmed Zewail Street, 12613 Giza (Egypt)

    2007-12-15

    A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.

  5. Optimization of phononic filters via genetic algorithms

    International Nuclear Information System (INIS)

    Hussein, M I; El-Beltagy, M A

    2007-01-01

    A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering

  6. Blue and red shifted temperature dependence of implicit phonon shifts in graphene

    Science.gov (United States)

    Mann, Sarita; Jindal, V. K.

    2017-07-01

    We have calculated the implicit shift for various modes of frequency in a pure graphene sheet. Thermal expansion and Grüneisen parameter which are required for implicit shift calculation have already been studied and reported. For this calculation, phonon frequencies are obtained using force constants derived from dynamical matrix calculated using VASP code where the density functional perturbation theory (DFPT) is used in interface with phonopy software. The implicit phonon shift shows an unusual behavior as compared to the bulk materials. The frequency shift is large negative (red shift) for ZA and ZO modes and the value of negative shift increases with increase in temperature. On the other hand, blue shift arises for all other longitudinal and transverse modes with a similar trend of increase with increase in temperature. The q dependence of phonon shifts has also been studied. Such simultaneous red and blue shifts in transverse or out plane modes and surface modes, respectively leads to speculation of surface softening in out of plane direction in preference to surface melting.

  7. Two-phonon absorption spectra in CuInSe2

    International Nuclear Information System (INIS)

    Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.

    1981-01-01

    An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies

  8. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    Directory of Open Access Journals (Sweden)

    Ketata H.

    2012-06-01

    Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  9. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)

    2008-08-13

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.

  10. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    Kandemir, B S; Keskin, M

    2008-01-01

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction

  11. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  12. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  13. NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics

    CERN Document Server

    1985-01-01

    Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...

  14. Phonon response of some heavy Fermion systems in dynamic limit

    Science.gov (United States)

    Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya

    2017-05-01

    The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.

  15. Superconductivity in a Fermi liquid from repulsive interactions: The role of electron–phonon interaction

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • The sign reversal of pair interaction in momentum space is proved. • It is also shown that electron-phonon interaction in fact leads to the pairing-break effect. • Transition temperature into superconductivity depends on competition between electron-phonon and Coulomb interactions. • Calculated exponent α of the isotope effect shows the possibility equal to, greater or less than 0.5, and even negative. -- Abstract: Based on our previously proven theorem that the interaction between a pair of quasiparticles in the normal Fermi liquid has an opposite sign to the interaction between particles, we consider pair correlation between a pair of quasiparticles when the interaction between particles is repulsive. For the convenience of statements, we have presented in this article once again the proof of the theorem in terms of an exact equation for the thermodynamic potential due to interaction between particles and based on the Green’s function method. Further, we have derived the Landau expansion of the thermodynamic potentials in terms of the variation of the quasiparticle distribution function. We have also derived the expansion of the thermodynamic potential in terms of the variation of an exact single particle (not quasiparticles), these derivations lead to the relationship between the interaction function for two quasiparticles and the interaction energy between two particles as shown. According to the proven theorem the interaction between a pair of quasiparticles is attractive in this case, the pairing – Cooper’s pairing between a pair of quasiparticles is possible. We solve the Bethe–Salpeter type equation for paring of two quasiparticles when both interactions – the Coulomb repulsive and electron–phonon interaction are present. We show that the electron–phonon interaction, in fact, leads to the pair breaking effect, in contrast to the common belief that electron–phonon interaction is the main mechanism for Cooper’s pair

  16. Phonon anharmonicity and Gruneisen parameters of alpha-plutonium

    International Nuclear Information System (INIS)

    Filanovich, A.N.; Povzner, A.A.

    2015-01-01

    A self-consistent thermodynamic model of alpha-phase of plutonium is constructed. The calculations of thermal and elastic properties of α-Pu, carried out within this model, demonstrate that anomalously strong temperature dependence of the bulk modulus and unusually high value of the coefficient of thermal expansion of α-Pu are caused by its strong lattice anharmonicity. The isothermal and isobaric Gruneisen parameters of α-Pu and δ-Pu Pu_0_._9_6Ga_0_._0_4 are calculated. It is shown that wide spread of the values of Gruneisen parameter of α-Pu, obtained previously from different experimental data, is explained by the dependence of Gruneisen parameter of α-Pu on temperature. - Highlights: • A self-consistent thermodynamic model of alpha-plutonium is developed. • Thermal and elastic properties of alpha-plutonium are calculated. • The reason of spread in the values of Gruneisen parameter of alpha-Pu is established. • Different types of phonon anharmonicity in alpha-Pu and delta-Pu are revealed.

  17. Long-wavelength optical phonon behavior in uniaxial strained graphene: Role of electron-phonon interaction

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia

    2014-01-01

    We derive the frequency shifts and the broadening of $\\Gamma$ point longitudinal optical (LO) and transverse optical (TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of the electron density and the disorder amount. We show that, in the absence of a shear strain component, such interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting of the G Raman band. The anisotropy of the electronic...

  18. Acoustic phonon dispersion of CoSi2

    International Nuclear Information System (INIS)

    Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.

    1985-01-01

    The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained

  19. Computational modeling of geometry dependent phonon transport in silicon nanostructures

    Science.gov (United States)

    Cheney, Drew A.

    Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.

  20. Phonon-assisted tunneling and its dependence on pressure

    International Nuclear Information System (INIS)

    Roy, P.N.; Singh, A.P.; Thakur, B.N.

    1999-01-01

    First the mechanism of phonon-assisted tunneling has been investigated. The indirect tunnel current density has been computed after taking the amplitude of the time dependent perturbation as the energy of the lattice vibration. Later the pressure dependence of the phonon-assisted tunnel current has been computed using Payne's expression for the dependence of phonon frequency on pressure. Very good qualitative agreements are obtained between predicted and observed characteristics. (author)

  1. Interface phonon effect on optical spectra of quantum nanostructures

    International Nuclear Information System (INIS)

    Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.

    2009-01-01

    This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.

  2. Investigation on maximum transition temperature of phonon mediated superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)

    1989-05-01

    Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.

  3. Moderate Bravery

    DEFF Research Database (Denmark)

    Majgaard, Klaus

    2016-01-01

    Purpose: The ability to act in a purposeful and effective way amid institutional tensions and paradoxes is, right now, a highly prized quality in public leadership. The purpose of this chapter is to qualify moderately brave acts as a learning format that combines the analytical and performative...

  4. Lifetime of the phonons in the PLT ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Barba-Ortega, J., E-mail: jjbarba@unal.edu.co; Joya, M. R., E-mail: mrinconj@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, carrera 30 # 45-03, Bogotá 1149 (Colombia); Londoño, F. A., E-mail: flondono@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, Calle 67 #53-108 Of.6-105, Medellin (Colombia)

    2014-11-05

    The lifetimes at higher temperatures on lanthanum-modified lead titanate (PLT) are mainly due to the anharmonic decay of optical phonons into low-energy phonons. The temperature-independent contributions from inherent crystal defects and from boundary scattering become comparable to the phonon scattering contribution at lower temperatures. The thermal interaction is large at higher temperatures which decreases the phonon mean free path, and so the decay lifetime decreases as the temperature of the system is increased. This leads to the increased line width at higher temperatures. We made an estimate of the lifetimes for different concentrations and temperatures in PLT.

  5. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  6. Hot-phonon generation in THz quantum cascade lasers

    Science.gov (United States)

    Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.

    2007-12-01

    Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.

  7. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  8. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    Science.gov (United States)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  9. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  10. Phonon scattering in graphene over substrate steps

    International Nuclear Information System (INIS)

    Sevinçli, H.; Brandbyge, M.

    2014-01-01

    We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.

  11. Semi-Dirac points in phononic crystals

    KAUST Repository

    Zhang, Xiujuan

    2014-01-01

    A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in

  12. Large scale phononic metamaterials for seismic isolation

    International Nuclear Information System (INIS)

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-01-01

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials

  13. Electron-phonon coupling in the rare-earth metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Mertig, I.

    1990-01-01

    -phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...

  14. Quasiparticle-phonon coupling in inelastic proton scattering

    International Nuclear Information System (INIS)

    Weissbach, B.

    1980-01-01

    Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)

  15. Multiple interruption of optically generated acoustic phonons in ruby

    International Nuclear Information System (INIS)

    Dijkhuis, J.I.

    1979-01-01

    This thesis clarifies the rate-determining processes which tend to equilibrate the bottlenecked 29 cm -1 phonons with the temperature bath in stationary experiments. In addition, the direct relaxation between the Zeeman components of E is measured, revealing at high pumping, both continuous and time-resolved, a strong phonon bottleneck. (Auth.)

  16. Remarkable reduction of thermal conductivity in phosphorene phononic crystal

    International Nuclear Information System (INIS)

    Xu, Wen; Zhang, Gang

    2016-01-01

    Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the ‘non-square’ pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene. (paper)

  17. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai; Qiu, Chunyin; Liu, Zhengyou; Wu, Ying

    2014-01-01

    waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic

  18. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  19. Phonon thermal transport through tilt grain boundaries in strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.

  20. One-phonon scattering of ultra cold neutrons in copper

    International Nuclear Information System (INIS)

    Holas, A.

    1977-01-01

    Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN

  1. Interplay between electron-phonon and electron-electron interactions

    International Nuclear Information System (INIS)

    Roesch, O.; Gunnarsson, O.; Han, J.E.; Crespi, V.H.

    2005-01-01

    We discuss the interplay between electron-electron and electron-phonon interactions for alkali-doped fullerides and high temperature superconductors. Due to the similarity of the electron and phonon energy scales, retardation effects are small for fullerides. This raises questions about the origin of superconductivity, since retardation effects are believed to be crucial for reducing effects of the Coulomb repulsion in conventional superconductors. We demonstrate that by treating the electron-electron and electron-phonon interactions on an equal footing, superconductivity can be understood in terms of a local pairing. The Jahn-Teller character of the important phonons in fullerides plays a crucial role for this result. To describe effects of phonons in cuprates, we derive a t-J model with phonons from the three-band model. Using exact diagonalization for small clusters, we find that the anomalous softening of the half-breathing phonon as well as its doping dependence can be explained. By comparing the solution of the t-J model with the Hartree-Fock approximation for the three-band model, we address results obtained in the local-density approximation for cuprates. We find that genuine many-body results, due to the interplay between the electron-electron and electron-phonon interactions, play an important role for the the results in the t-J model. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Effect of thermal phonons on the superconducting transition temperature

    International Nuclear Information System (INIS)

    Leavens, C.R.; Talbot, E.

    1983-01-01

    There is no consensus in the literature on whether or not thermal phonons depress the superconducting transition temperature T/sub c/. In this paper it is shown by accurate numerical solution of the real-frequency Eliashberg equations for the pairing self-energy phi and renormalization function Z that thermal phonons in the kernel for phi raise T/sub c/ but those in Z lower it by a larger amount so that the net effect is to depress T/sub c/. (A previous calculation which ignored the effect of thermal phonons in phi overestimated the suppression of T/sub c/ by at least a factor of 3.) It is shown how to switch off the thermal phonons in the imaginary-frequency Eliashberg equations, exactly for Z and approximately for phi. The real-frequency and approximate imaginary-frequency results for the depression of T/sub c/ by thermal phonons are in very satisfactory agreement. Thermal phonons are found to depress the transition temperature of Nb 3 Sn by only 2%. It is estimated that the suppression of T/sub c/ by thermal phonons saturates at about 50% in the limit of very strong electron-phonon coupling

  3. Phonons and charge-transfer excitations in HTS superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    Some of the experimental and theoretical evidence implicating phonons and charge-transfer excitations in HTS superconductors is reviewed. It is suggested that superconductivity may be driven by a synergistic interplay of (anharmonic) phonons and electronic degrees of freedom (e.g., charge fluctuations, excitons). 47 refs., 5 figs

  4. Modelling exciton–phonon interactions in optically driven quantum dots

    DEFF Research Database (Denmark)

    Nazir, Ahsan; McCutcheon, Dara

    2016-01-01

    We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...

  5. Specularity of longitudinal acoustic phonons at rough surfaces

    Science.gov (United States)

    Gelda, Dhruv; Ghossoub, Marc G.; Valavala, Krishna; Ma, Jun; Rajagopal, Manjunath C.; Sinha, Sanjiv

    2018-01-01

    The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin (36-205 nm) suspended silicon membranes at room temperature over the frequency range ˜20 -118 GHz. Phonon surface scattering dominates intrinsic Akhiezer damping at frequencies ≳60 GHz, enabling measurements of phonon boundary scattering time over wavelengths ˜72 -140 nm . We obtain detailed statistics of the surface roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding of phonon scattering at the surfaces of nanostructures.

  6. Phonon-assisted decoherence and tunneling in quantum dot molecules

    DEFF Research Database (Denmark)

    Grodecka-Grad, Anna; Foerstner, Jens

    2011-01-01

    processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...

  7. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  8. Phonon thermal transport through tilt grain boundaries in strontium titanate

    International Nuclear Information System (INIS)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr

    2014-01-01

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies

  9. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu

    2017-01-01

    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  10. Phonon bottleneck identification in disordered nanoporous materials

    Science.gov (United States)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  11. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  12. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  13. Phonon squeezed states: quantum noise reduction in solids

    Science.gov (United States)

    Hu, Xuedong; Nori, Franco

    1999-03-01

    This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.

  14. Controllable photon and phonon localization in optomechanical Lieb lattices.

    Science.gov (United States)

    Wan, Liang-Liang; Lü, Xin-You; Gao, Jin-Hua; Wu, Ying

    2017-07-24

    The Lieb lattice featuring flat band is not only important in strongly-correlated many-body physics, but also can be utilized to inspire new quantum devices. Here we propose an optomechanical Lieb lattice, where the flat-band physics of photon-phonon polaritons is demonstrated. The tunability of the band structure of the optomechanical arrays allows one to obtain an approximate photon or phonon flat band as well as the transition between them. This ultimately leads to the result that the controllable photon or phonon localization could be realized by the path interference effects. This study offers an alternative approach to explore the exotic photon and phonon many-body effects, which has potential applications in the future hybrid-photon-phonon quantum network and engineering new type solid-state quantum devices.

  15. Electron-phonon interaction on an Al(001) surface

    International Nuclear Information System (INIS)

    Sklyadneva, I Yu; Chulkov, E V; Echenique, P M

    2008-01-01

    We report an ab initio study of the electron-phonon (e-ph) interaction and its contribution to the lifetime broadening of excited hole (electron) surface states on Al(001). The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The obtained results show that both the electron-phonon coupling and the linewidth experience a weak variation with the energy and momentum position of a hole (electron) surface state in the energy band. An analysis of different contributions to the e-ph coupling reveals that bulk phonon modes turn out to be more involved in the scattering processes of excited electrons and holes than surface phonon modes. It is also shown that the role of the e-ph coupling in the broadening of the Rayleigh surface phonon mode is insignificant compared to anharmonic effects

  16. Thermal rectification based on phonon hydrodynamics and thermomass theory

    Directory of Open Access Journals (Sweden)

    Dong Yuan

    2016-06-01

    Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.

  17. Magnon and phonon thermometry with inelastic light scattering

    Science.gov (United States)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  18. Search for the 3-phonon state of 40Ca

    International Nuclear Information System (INIS)

    Fallot, M.

    2002-09-01

    We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in 40 Ca, with the reaction 40 Ca + 40 Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4π array. The analysis confirms the previous results about the GQR and the 2-phonon state in 40 Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in 40 Ca and 208 Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)

  19. Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.

    Science.gov (United States)

    Mehta, Sushrut Madhukar

    Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.

  20. Basic equations of quasiparticle-phonon model of nucleus with account of Pauli principle and phonons interactions in ground state

    International Nuclear Information System (INIS)

    Voronov, V.V.; Dang, N.D.

    1984-01-01

    the system of equations, enabling to calculate the energy and the structure of excited states, described by the wave function, containing one- and two-phon components was obtained in the framework of quasiparticlephonon model. The requirements of Pauli principle for two-phonon components and phonon correlation in the ground nucleus state are taken into account

  1. Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model

    International Nuclear Information System (INIS)

    Liu Bin; Goree, J.

    2005-01-01

    Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an experiment. The phonons correspond to random particle motion in the chain; no external manipulation was applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional damping due to gas, which affects the propagation of externally excited phonons differently from phonons that correspond to random particle motion. A model is developed and fit to the experiment to explain the features of the autocorrelation function, phonon spectrum, and the dispersion relation

  2. Analysis of Lattice Thermal Conductivity of Si Considering the Effect of Phonon Dispersion on Three-phonon Processes

    Science.gov (United States)

    He, Ping; Li, Zhijian

    2001-03-01

    In this work we present the new relaxation time expressions considering the detailed information of the phonon dispersion. For the three-phonon processes, it is found that only limited types of three-phonon processes are allowed to occur and the attenuation of phonon that conduct heat varies roughly with the fifth power of frequency. By using these expressions, the data of thermal conductivity of bulk silicon is well fitted. And further, the data for thin films of single crystal silicon which cannot be well fitted by the widely used model that proposed by Holland is also well fitted using the new expressions for three-phonon processes and parameters got at the previous step.

  3. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, Warawat

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  4. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    Science.gov (United States)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  5. Pseudogap in the Eliashberg approach based on electron-phonon and electron-electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Szczesniak, R. [Institute of Physics, Czestochowa University of Technology (Poland); Institute of Physics, Jan Dlugosz University in Czestochowa (Poland); Durajski, A.P.; Duda, A.M. [Institute of Physics, Czestochowa University of Technology (Poland)

    2017-04-15

    The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron-phonon and the electron-electron-phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter (φ/Z) has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ - the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Long-wavelength optical phonon behavior in uniaxial strained graphene: Role of electron-phonon interaction

    Science.gov (United States)

    Assili, M.; Haddad, S.

    2014-09-01

    We derive the frequency shifts and the broadening of Γ-point longitudinal optical (LO) and transverse optical (TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of the electron density and the disorder amount. We show that, in the absence of a shear strain component, such interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting of the G Raman band. The anisotropy of the electronic spectrum, induced by the strain, results in a polarization dependence of the LO and TO modes. This dependence is in agreement with the experimental results showing a periodic modulation of the Raman intensity of the split G peak. Moreover, the anomalous behavior of the frequency shift reported in undeformed graphene is found to be robust under strain.

  7. Low temperature thermal expansion of liquid Helium-4

    International Nuclear Information System (INIS)

    Berthold, J.E.

    1976-01-01

    Results of a measurement of the thermal expansion of liquid He-4 are presented along the saturated vapor pressure curve at low temperatures (0.1 - 0.6 0 K). The thermal expansion is related to the low momentum region of the He-4 excitation spectrum, and the results of this measurement are analyzed to gain information concerning deviations from linearity in the phonon region of the spectrum. The data is also compared with theoretical predictions of Alrich and Bhatt and McMillan and with the thermal expansion measurement of Van Degrift. In addition a discussion of previous experimental evidence on the shape of the low momentum region of the dispersion relation is presented

  8. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  9. Surface phonons and elastic surface waves

    Science.gov (United States)

    Büscher, H.; Klein-Heßling, W.; Ludwig, W.

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.

  10. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de

    1981-01-01

    A theory of inelastic light scattering by surface acoustic phonons in homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, namely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin lineshapes are also presented and their features discussed. (Author) [pt

  11. Cavity-type hypersonic phononic crystals

    International Nuclear Information System (INIS)

    Sato, A; Fytas, G; Pennec, Y; Djafari-Rouhani, B; Yanagishita, T; Masuda, H; Knoll, W

    2012-01-01

    We report on the engineering of the phonon dispersion diagram in monodomain anodic porous alumina (APA) films through the porosity and physical state of the material residing in the nanopores. Lattice symmetry and inclusion materials are theoretically identified to be the main factors which control the hypersonic acoustic wave propagation. This involves the interaction between the longitudinal and the transverse modes in the effective medium and a flat band characteristic of the material residing in the cavities. Air and filled nanopores, therefore, display markedly different dispersion relations and the inclusion materials lead to a locally resonant structural behavior uniquely determining their properties under confinement. APA films emerge as a new platform to investigate the rich acoustic phenomena of structured composite matter. (paper)

  12. Light scattering by surface phonons in crystals

    International Nuclear Information System (INIS)

    Albuquerque, D.L.

    1980-01-01

    Theory of inelastic light scattering by surface acoustic phonons homogeneous crystals is presented. The Green functions are determined by the use of a classical linear response method and used to evaluate the Brillouin cross section. The acoustic modes are found from solutions to the acoustical-wave equation and boundary conditions appropriated. Two light-scattering mechanisms, amely the surface corrugation and bulk elasto-optic effect are analyzed by deriving optical fields which satisfy both the acousto-optically driven wave equation and the electromagnetic boundary conditions. No restrictions are imposed concerning the angle of incidence of the light. Some representative computed Brillouin ineshapes are also presented and their features discussed. (author) [pt

  13. Self-consistent phonons in disordered systems

    International Nuclear Information System (INIS)

    Das, M.P.

    1990-01-01

    The time is now ripe for the development of a microscopic theory of the disordered systems in the context of phonons. The adiabatic approximation has helped to separate the electronic motion from that of the ions. In the microscopic dielectric formulation we have been able to obtain the interatomic forces for ordered systems by incorporating the effect of the electronic motion. The nature of the electronic states in disordered systems is now better understood with realistic coherent potential approximation calculations. Therefore, it will not be too ambitious to construct an average dielectric function for a disordered system. Then we can obtain a properly screened pair potential in terms of this dielectric function. In view of the availability of super fast computers, the development of the microscopic theories are expected to get a new direction. (author). 36 refs

  14. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan; Wu, Ying; Mei, Jun

    2014-01-01

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  15. Acoustic phonon emission by two dimensional plasmons

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1990-06-01

    Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig

  16. Surface phonons and elastic surface waves

    International Nuclear Information System (INIS)

    Buescher, H.; Klein-Hessling, W.; Ludwig, W.

    1993-01-01

    Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag(100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. was not very accurate. (orig.)

  17. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    Science.gov (United States)

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-07

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

  18. Phonon structures of GaN-based random semiconductor alloys

    Science.gov (United States)

    Zhou, Mei; Chen, Xiaobin; Li, Gang; Zheng, Fawei; Zhang, Ping

    2017-12-01

    Accurate modeling of thermal properties is strikingly important for developing next-generation electronics with high performance. Many thermal properties are closely related to phonon dispersions, such as sound velocity. However, random substituted semiconductor alloys AxB1-x usually lack translational symmetry, and simulation with periodic boundary conditions often requires large supercells, which makes phonon dispersion highly folded and hardly comparable with experimental results. Here, we adopt a large supercell with randomly distributed A and B atoms to investigate substitution effect on the phonon dispersions of semiconductor alloys systematically by using phonon unfolding method [F. Zheng, P. Zhang, Comput. Mater. Sci. 125, 218 (2016)]. The results reveal the extent to which phonon band characteristics in (In,Ga)N and Ga(N,P) are preserved or lost at different compositions and q points. Generally, most characteristics of phonon dispersions can be preserved with indium substitution of gallium in GaN, while substitution of nitrogen with phosphorus strongly perturbs the phonon dispersion of GaN, showing a rapid disintegration of the Bloch characteristics of optical modes and introducing localized impurity modes. In addition, the sound velocities of both (In,Ga)N and Ga(N,P) display a nearly linear behavior as a function of substitution compositions. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80481-0.

  19. Diamond family of colloidal supercrystals as phononic metamaterials

    Science.gov (United States)

    Aryana, Kiumars; Zanjani, Mehdi B.

    2018-05-01

    Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.

  20. Observation of magnon-phonon interaction at short wavelengths

    International Nuclear Information System (INIS)

    Dolling, G.; Cowley, R.A.

    1966-01-01

    Measurements have been made of the magnon and phonon dispersion relations in uranium dioxide at 9 o K. These measurements provide evidence of a strong interaction between the magnon and phonon excitations and enable a value to be deduced for the coupling constant. The interaction of long-wavelength magnons in ferromagnetic materials has been studied previously with ultrasonic techniques; however, inelastic scattering of slow neutrons enables both the magnon and phonon dispersion relations to be determined for short wavelengths. In those magnetic materials which have been studied by earlier workers, the magnons and phonons either interacted with one another very weakly or else their frequencies were very different. The results could then be understood without introducing any magnon-phonon interaction. In this note we report measurements of both the magnon and the phonon spectra of antiferromagnetic uranium dioxide, which lead to a magnon-phonon coupling constant of 9.6 ± 1.6 o K. Since the Neel temperature is 30.8 o K, this coupling constant is of a similar magnitude to the direct magnetic interactions. (author)

  1. Mean free path dependent phonon contributions to interfacial thermal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yi; Liu, Chenhan; Chen, Weiyu; Cai, Shuang; Chen, Chen; Wei, Zhiyong; Bi, Kedong; Yang, Juekuan; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn

    2017-06-15

    Interfacial thermal conductance as an accumulation function of the phonon mean free path is rigorously derived from the thermal conductivity accumulation function. Based on our theoretical model, the interfacial thermal conductance accumulation function between Si/Ge is calculated. The results show that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that for phonons contributing to the thermal conductivity. The interfacial thermal conductance is mainly contributed by phonons with shorter MFPs, and the size effects can be observed only for an interface constructed by nanostructures with film thicknesses smaller than the MFPs of those phonons mainly contributing to the interfacial thermal conductance. This is why most experimental measurements cannot detect size effects on interfacial thermal conductance. A molecular dynamics simulation is employed to verify our proposed model. - Highlights: • A model to account for the interfacial thermal conductance as an accumulation function of phonon mean free path is proposed; • The model predicts that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that contributing to the thermal conductivity; • This model can be conveniently implemented to estimate the size effects on the interfacial thermal conductance for the interfaces formed by a nanostructure contacting a substrate.

  2. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  3. Investigation of the Full Spectrum Phonon Lifetime in Thin Silicon Films from the Bulk Spectral Phonon Mean-Free-Path Distribution by Using Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)

    2017-03-15

    Phonon dynamics in nanostructure is critically important to thermoelectric and optoelectronic devices because it determines the transport and other crucial properties. However, accurately evaluating the phonon lifetimes is extremely difficult. This study reports on the development of a new semi-empirical method to estimate the full-spectrum phonon lifetimes in thin silicon films at room temperature based on the experimental data on the phonon mean-free-path spectrum in bulk silicon and a phenomenological consideration of phonon transport in thin films. The bulk of this work describes the theory and the validation; then, we discuss the trend of the phonon lifetimes in thin silicon films when their thicknesses decrease.

  4. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  5. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  6. Band structures in fractal grading porous phononic crystals

    Science.gov (United States)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  7. The anharmonic phonon decay rate in group-III nitrides

    International Nuclear Information System (INIS)

    Srivastava, G P

    2009-01-01

    Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by considering three-phonon anharmonic interaction processes. The basic ingredients of the theory include full phonon dispersion relations obtained from the application of an adiabatic bond charge model and crystal anharmonic potential within the isotropic elastic continuum model. The role of various decay routes, such as Klemens, Ridley, Vallee-Bogani and Barman-Srivastava channels, in determining the lifetimes of the Raman active zone-centre longitudinal optical (LO) modes in BN (zincblende structure) and A 1 (LO) modes in AlN, GaN and InN (wurtzite structure) has been quantified.

  8. Proposal for an optomechanical traveling wave phonon-photon translator

    Energy Technology Data Exchange (ETDEWEB)

    Safavi-Naeini, Amir H; Painter, Oskar, E-mail: safavi@caltech.edu, E-mail: opainter@caltech.edu [Thomas J Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-01-15

    In this paper, we describe a general optomechanical system for converting photons to phonons in an efficient and reversible manner. We analyze classically and quantum mechanically the conversion process and proceed to a more concrete description of a phonon-photon translator (PPT) formed from coupled photonic and phononic crystal planar circuits. The application of the PPT to RF-microwave photonics and circuit QED, including proposals utilizing this system for optical wavelength conversion, long-lived quantum memory and state transfer from optical to superconducting qubits, is considered.

  9. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons......-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry...

  10. Broadband sound blocking in phononic crystals with rotationally symmetric inclusions.

    Science.gov (United States)

    Lee, Joong Seok; Yoo, Sungmin; Ahn, Young Kwan; Kim, Yoon Young

    2015-09-01

    This paper investigates the feasibility of broadband sound blocking with rotationally symmetric extensible inclusions introduced in phononic crystals. By varying the size of four equally shaped inclusions gradually, the phononic crystal experiences remarkable changes in its band-stop properties, such as shifting/widening of multiple Bragg bandgaps and evolution to resonance gaps. Necessary extensions of the inclusions to block sound effectively can be determined for given incident frequencies by evaluating power transmission characteristics. By arraying finite dissimilar unit cells, the resulting phononic crystal exhibits broadband sound blocking from combinational effects of multiple Bragg scattering and local resonances even with small-numbered cells.

  11. Resonant Magnon-Phonon Polaritons in a Ferrimagnet

    Science.gov (United States)

    2000-09-29

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11604 TITLE: Resonant Magnon -Phonon Polaritons in a Ferrimagnet...part numbers comprise the compilation report: ADP011588 thru ADP011680 UNCLASSIFIED 75 Resonant Magnon -Phonon Polaritons in a Ferrimagnet I. E...susceptibilities X"aa and X’m << X’m appear, where 77 xem - DPx igEo0 i_ Xxy - hy- C1 (0)2 _ 00t2) 4= -7• 4 3. Phonon and magnon polaritons We solve the

  12. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.

  13. Electron-phonon interaction in Chevrel-phase compounds

    International Nuclear Information System (INIS)

    Rainer, D.; Pobell, F.

    1981-03-01

    Experiments on the electron-phonon interaction in Chevrel-phase compounds (CPC) and a theoretical discussion of their results are presented. The authors particularly discuss measurements of the isotope effect of the transition temperature in Mo 6 Se 8 and SnMo 6 S 8 and tunneling spectroscopy experiments on Cu 1 . 8 Mo 6 S 8 and PbMo 6 S 8 . These investigations have been performed to get information about the strength of the electron-phonon interaction in CPC, and about the question whether there are phonon modes which couple particularly strongly to the electrons in these compounds. (orig./GSCH)

  14. Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene

    Science.gov (United States)

    Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred

    2012-02-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.

  15. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene

    Science.gov (United States)

    Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.

    2012-07-01

    Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.

  16. Quasiparticle--phonon model of the nucleus. V. Odd spherical nuclei

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Voronov, V.V.; Solov'ev, V.G.; Stoyanov, C.

    1985-01-01

    The formalism of the quasiparticle--phonon model of the nucleus for odd spherical nuclei is presented. The exact commutation relations of the quasiparticle and phonon operators together with the anharmonic corrections for the phonon excitations are taken into account in the derivation of equations for the energies and structure coefficients of the wave functions of excited states, which include quasiparticle--phonon and quasiparticle--two-phonon components. The influence of various physical effects and of the dimension of the phonon basis on the fragmentation of the single-quasiparticle and quasiparticle-phonon states is investigated

  17. Designing broad phononic band gaps for in-plane modes

    Science.gov (United States)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  18. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-01-01

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering

  19. Detection of dark matter particles with low temperature phonon sensors

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1988-03-01

    Taking as an example the development effort in Berkeley, the author discusses for nonspecialists (Astronomers and Particle Physicists) the promises of phonon sensing at low temperature for the detection of dark matter particles and the difficulties faced. 31 refs

  20. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...

  1. Anharmonic, dimensionality and size effects in phonon transport

    Science.gov (United States)

    Thomas, Iorwerth O.; Srivastava, G. P.

    2017-12-01

    We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.

  2. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.; Otelaja, O. O.; Yoshida, N. J.; Robinson, R. D.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel

  3. Phonon thermal conductance of disordered graphene strips with armchair edges

    International Nuclear Information System (INIS)

    Shi Lipeng; Xiong Shijie

    2009-01-01

    Based on the model of lattice dynamics together with the transfer matrix technique, we investigate the thermal conductances of phonons in quasi-one-dimensional disordered graphene strips with armchair edges using Landauer formalism for thermal transport. It is found that the contributions to thermal conductance from the phonon transport near von Hove singularities is significantly suppressed by the presence of disorder, on the contrary to the effect of disorder on phonon modes in other frequency regions. Besides the magnitude, for different widths of the strips, the thermal conductance also shows different temperature dependence. At low temperatures, the thermal conductance displays quantized features of both pure and disordered graphene strips implying that the transmission of phonon modes at low frequencies are almost unaffected by the disorder

  4. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  5. Fluid phonons, protoinflationary dynamics and large-scale gravitational fluctuations

    CERN Document Server

    Giovannini, Massimo

    2013-01-01

    We explore what can be said on the effective temperature and sound speed of a statistical ensemble of fluid phonons present at the onset of a conventional inflationary phase. The phonons are the actual normal modes of the gravitating and irrotational fluid that dominates the protoinflationary dynamics. The bounds on the tensor to scalar ratio result in a class of novel constraints involving the slow roll parameter, the sound speed of the phonons and the temperature of the plasma prior to the onset of inflation. If the current size of the Hubble radius coincides with the inflationary event horizon redshifted down to the present epoch, the sound speed of the phonons can be assessed from independent measurements of the tensor to scalar ratio and of the tensor spectral index.

  6. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  7. Quantum decoherence of phonons in Bose-Einstein condensates

    Science.gov (United States)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  8. On-chip photonic-phononic emitter-receiver apparatus

    Science.gov (United States)

    Cox, Jonathan Albert; Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Wang, Zheng; Shin, Heedeuk; Siddiqui, Aleem; Starbuck, Andrew Lea

    2017-07-04

    A radio-frequency photonic devices employs photon-phonon coupling for information transfer. The device includes a membrane in which a two-dimensionally periodic phononic crystal (PnC) structure is patterned. The device also includes at least a first optical waveguide embedded in the membrane. At least a first line-defect region interrupts the PnC structure. The first optical waveguide is embedded within the line-defect region.

  9. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  10. Band structures of phononic crystal composed of lattices with different periodic constants

    International Nuclear Information System (INIS)

    Hu, Jia-Guang; Xu, Wen

    2014-01-01

    With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.

  11. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Oral Oltulu

    2016-12-01

    Full Text Available In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC containing an organic ferroelectric (PVDF-polyvinylidene fluoride and topological insulator (SnTe was investigated by the plane-wave-expansion (PWE method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave were plotted vs. the wavevector k along the Г–X–M–Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103–106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of “topological phononics”.

  12. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  13. Strong-coupling superconductivity in the two-dimensional t-J model supplemented by a hole-phonon interaction

    International Nuclear Information System (INIS)

    Sherman, A.; Schreiber, M.

    1995-01-01

    We use the Eliashberg formalism for calculating T c in a model of cuprate perovskites with pairing mediated by both magnons and apex-oxygen vibrations. The influence of strong correlations on the energy spectrum is taken into account in the spin-wave approximation. It is shown that the hole-magnon interaction alone cannot yield high T c . But together with a moderate hole-phonon interaction it does lead to d-wave superconductivity at temperatures and hole concentrations observed in cuprates. High T c are connected with a large density of states due to extended Van Hove singularities, a conformity of the two interactions for the d symmetry, and high phonon frequencies

  14. Topological phononic insulator with robust pseudospin-dependent transport

    Science.gov (United States)

    Xia, Bai-Zhan; Liu, Ting-Ting; Huang, Guo-Liang; Dai, Hong-Qing; Jiao, Jun-Rui; Zang, Xian-Guo; Yu, De-Jie; Zheng, Sheng-Jie; Liu, Jian

    2017-09-01

    Topological phononic states, which facilitate unique acoustic transport around defects and disorders, have significantly revolutionized our scientific cognition of acoustic systems. Here, by introducing a zone folding mechanism, we realize the topological phase transition in a double Dirac cone of the rotatable triangular phononic crystal with C3 v symmetry. We then investigate the distinct topological edge states on two types of interfaces of our phononic insulators. The first one is a zigzag interface which simultaneously possesses a symmetric mode and an antisymmetric mode. Hybridization of the two modes leads to a robust pseudospin-dependent one-way propagation. The second one is a linear interface with a symmetric mode or an antisymmetric mode. The type of mode is dependent on the topological phase transition of the phononic insulators. Based on the rotatability of triangular phononic crystals, we consider several complicated contours defined by the topological zigzag interfaces. Along these contours, the acoustic waves can unimpededly transmit without backscattering. Our research develops a route for the exploration of the topological phenomena in experiments and provides an excellent framework for freely steering the acoustic backscattering-immune propagation within topological phononic structures.

  15. Phonon Dispersion and the Competition between Pairing and Charge Order

    Science.gov (United States)

    Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.

    2018-05-01

    The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.

  16. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  17. Phononic crystals of spherical particles: A tight binding approach

    Energy Technology Data Exchange (ETDEWEB)

    Mattarelli, M., E-mail: maurizio.mattarelli@fisica.unipg.it [NiPS Laboratory, Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06100 Perugia (Italy); Secchi, M. [CMM - Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy); Montagna, M. [Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento (Italy)

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  18. On the equivalence of quadrupole phonon model and interacting boson model

    International Nuclear Information System (INIS)

    Kyrchev, G.

    1980-01-01

    A rigorous proof of the quadrupole phonon model (QPM) and the interacting boson model (IBM) equivalence (the Hamiltonians and the relevant operators of both models are identical) is presented. Within the theory of classical Lie algebras the Schwinger representation (SR) construction of SU(6)-algebra, generated by QPM collective coordinates, conjugated momenta and their commutators, is given. Having the explicit form of SU(6) generators in SR, we get the QPM collective Hamiltonian in SR (previously Holstein-Primakoff infinite Boson expansion has been applied for this Hamiltonian). The Hamiltonian of QPM thus obtained contains all Boson structures, which are present in the Hamiltonian of IBM and under definite relations between their parameters, both Hamiltonians coincide identically. The relevant operators are identical too. Thus, though QPM and IBM, being advanced independently, have been developed in a different fashion, they are essentially equivalent

  19. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  20. Anharmonic phonon-phonon scattering modeling of three-dimensional atomistic transport: An efficient quantum treatment

    Science.gov (United States)

    Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.

    2018-05-01

    We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.

  1. Polarization dependent behavior of CdS around the first and second LO-phonon modes

    International Nuclear Information System (INIS)

    Frausto-Reyes, C.; Molina-Contreras, J.R.; Lopez-Alvarez, Y.F.; Medel-Ruiz, C.I.; Perez Ladron de Guevara, H.; Ortiz-Morales, M.

    2010-01-01

    The present work report studies on resonant Raman experimental line shape for CdS around the first and second LO-phonon modes. The application of our method to the study of LO-phonon modes of CdS suggests that the scattered intensity is dominated by the surface and dependent on polarization. Results showed that the Raman spectra for CdS, roughly fall into three groups: a broad line-wing with apparent maxima around 194 cm -1 in the range of 140 and 240 cm -1 which can be ascribed to overtone scattering from acoustic phonons; a band near the 1LO phonon mode which can be attributed to a combination of one-phonon scattering and peak acoustic phonon and finally, a band near the 2LO phonon mode which can be attributed to a combination of two-phonon scattering and peak acoustic phonon.

  2. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    OpenAIRE

    Wei Wang; Wei Wang; Huiming Liu; Rongjin Huang; Rongjin Huang; Yuqiang Zhao; Chuangjun Huang; Shibin Guo; Yi Shan; Laifeng Li; Laifeng Li; Laifeng Li

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K) environment easily. This paper describes the design and ...

  3. Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V

    2017-11-15

    Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Quantum Phonon Optics: Squeezing Quantum Noise in the Atomic Displacements.

    Science.gov (United States)

    Hu, X.; Nori, F.

    1996-03-01

    We have investigated(X. Hu and F. Nori, Physical Review B, in press; preprints.) coherent and squeezed quantum states of phonons. Squeezed states are interesting because they allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of phonon vacuum states. We have studiedfootnotemark[1] the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach and also a method based on the three-phonon anharmonic interaction. Our focus here is on the first approach. We have diagonalized the polariton Hamiltonian and calculated the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators (the later is the phonon analog of the electric field operator for photons). Our results shows that squeezing of quantum fluctuations in the atomic displacements can be achieved with appropriate initial states of both photon and phonon fields. The degree of squeezing is directly related to the crystal susceptibility, which is indicative of the interaction strength between the incident light and the crystal.

  5. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  6. Toward single electron resolution phonon mediated ionization detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mirabolfathi, Nader, E-mail: mirabolfathi@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University (United States); Harris, H. Rusty; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew [Department of Physics and Astronomy, Texas A& M University (United States); Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard [Department of Physics, University of California at Berkeley (United States)

    2017-05-21

    Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ∼14 eV{sub ee}. CDMSlite is currently the most sensitive experiment to WIMPs of mass ∼5 GeV/c{sup 2} but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a×2 Luke phonon gain, world best RMS resolution of sigma ∼7 eV{sub ee} for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applied voltage, appropriately robust interface blocking material combined with thicker substrate (25 mm) will reach a resolution of ∼2.8 eV{sub ee}. In order to achieve better resolution of ∼ eV, we are investigating a layer of insulator between the phonon readout surface and the semiconductor crystals.

  7. Reduction of thermal conductivity in phononic nanomesh structures

    KAUST Repository

    Yu, Jen-Kan

    2010-07-25

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.

  8. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  9. Spin waves in terbium. II. Magnon-phonon interaction

    International Nuclear Information System (INIS)

    Jensen, J.; Houmann, J.G.

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating in the c direction of Tb have been studied experimentally by means of inelastic neutron scatttering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed by Liu. The coupled magnon--transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory

  10. Reduction of thermal conductivity in phononic nanomesh structures.

    Science.gov (United States)

    Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R

    2010-10-01

    Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.

  11. Interaction between confined phonons and photons in periodic silicon resonators

    Science.gov (United States)

    Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.

    2018-03-01

    In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.

  12. Phonon dispersion evolution in uniaxially strained aluminum crystal

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi

    2018-04-01

    The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.

  13. Phonon anomalies and electron-phonon coupling of metal surfaces and thin films; Phononenanomalien und Elektron-Phonon-Kopplung an Metalloberflaechen und duennen Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Flach, B.

    2000-01-01

    This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)

  14. Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena

    Science.gov (United States)

    Jin, Yongmei M.; Wang, Yu U.; Ren, Yang

    2015-12-01

    Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.

  15. Thermal transport in phononic crystals: The role of zone folding effect

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  16. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  17. Exchange Enhancement of the Electron-Phonon Interaction: The Case of Weakly Doped Two-Dimensional Multivalley Semiconductors

    Science.gov (United States)

    Pamuk, Betül; Zoccante, Paolo; Baima, Jacopo; Mauri, Francesco; Calandra, Matteo

    2018-04-01

    The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the cases, exchange tends to enhance the electron-phonon interaction, although the motivations for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in LixZrNCl and that much larger Tcs could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.

  18. Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides

    Directory of Open Access Journals (Sweden)

    Razi Dehghannasiri

    2016-12-01

    Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.

  19. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  20. Active tuning of surface phonon polariton resonances via carrier photoinjection

    Science.gov (United States)

    Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.

    2018-01-01

    Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (electronic and phononic excitations.

  1. Anharmonic phonons and the isotope effect in superconductivity

    International Nuclear Information System (INIS)

    Crespi, V.H.; Cohen, M.L.; Penn, D.R.

    1991-01-01

    Anharmonic interionic potentials are examined in an Einstein model to study the unusual isotope-effect exponents for the high-T c oxides. The mass dependences of the electron-phonon coupling constant λ and the average phonon frequency √ left-angle ω 2 right-angle are computed from weighted sums over the oscillator levels. The isotope-effect exponent is depressed below 1/2 by either a double-well potential or a potential with positive quadratic and quartic parts. Numerical solutions of Schroedinger's equation for double-well potentials produce λ's in the range 1.5--4 for a material with a vanishing isotope-effect parameter α. However, low phonon frequencies limit T c to roughly 15 K. A negative quartic perturbation to a harmonic well can increase α above 1/2. In the extreme-strong-coupling limit, α is 1/2, regardless of anharmonicity

  2. Anharmonic phonons and magnons in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill

    2012-01-01

    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.

  3. Interaction Between Electrons, Magnons and Phonons in Nickel. RCN Report

    International Nuclear Information System (INIS)

    Frikkee, E.

    1971-02-01

    By means of inelastic neutron scattering, a localized electron excitation was observed in Ni and (4% Fe). The excitation interacts with magnons and phonons, and is assumed to correspond with transitions between the nearly-degenerate electronstates Δ 6 ↑ and Δ 7 ↑ near X, which are situated just below the Fermi level.Selection rules for electron-phonon and electronmagnon scattering are determined by means of group theory. It is found that in particular the transverse (Δ 5 ) phonons in the [100] direction are perturbed. The observed neutron-electron scattering turns out to be an indirect process, which is only possible due to the interaction between the (Δ 6 , Δ 7 ) electrons and the lattice. The basic mechanism for the observed effects is the electron spin-orbit coupling, which establishes the interaction between the electron spin system and the lattice. (author)

  4. Photon control of phonons in mixed crystal quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ingale, Alka

    2003-12-15

    Coherent phonon oscillations in solids can be excited impulsively by a single femtosecond laser pulse whose duration is shorter than a phonon period. In the impulsive stimulated Raman scattering (ISRS) experiment, scattering of probe is monitored as a function of time with respect to pump to generate time domain spectra of coherent phonons. In this paper, we present one such study of CdSe{sub 0.68}Te{sub 0.32} (d{approx}80 A) quantum dots in glass matrix, i.e semiconductor-doped glass (SDG) RG780 from Schott, USA and the experiment was performed at Prof. Merlin's laboratory at the University of Michigan, USA. Here, we present first report of selectively driving only CdSe-like modes in these mixed crystal quantum dots using photon control with two pump beams.

  5. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    Directory of Open Access Journals (Sweden)

    Junichiro Shiomi

    2016-10-01

    Full Text Available Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  6. Enhancement of phononic band gaps in ternary/binary structure

    International Nuclear Information System (INIS)

    Aly, Arafa H.; Mehaney, Ahmed

    2012-01-01

    Based on the transfer matrix method (TMM) and Bloch theory, the interaction of elastic waves (normal incidence) with 1D phononic crystal had been studied. The transfer matrix method was obtained for both longitudinal and transverse waves by applying the continuity conditions between the consecutive unit cells. Dispersion relations are calculated and plotted for both binary and ternary structures. Also we have investigated the corresponding effects on the band gaps values for the two types of phononic crystals. Furthermore, it can be observed that the complete band gaps are located in the common frequency stop-band regions. Numerical simulations are performed to investigate the effect of different thickness ratios inside each unit cell on the band gap values, as well as unit cells thickness on the central band gap frequency. These phononic band gap materials can be used as a filter for elastic waves at different frequencies values.

  7. Phonon density of states and anharmonicity of UO2

    Science.gov (United States)

    Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.

    2014-03-01

    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.

  8. Surface phonon polaritons in semi-infinite semiconductor superlattices

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1986-07-01

    Surface phonon polaritons in a semi-infinite semiconductor superlattice bounded by vacuum are studied. The modes associated with the polaritons are obtained and used to obtain the dispersion relation. Numerical results show that polariton bands exist between the TO and LO phonon frequencies, and are found to approach two surface mode frequencies in the limit of large tangential wave vector. Dependency of frequencies on the ratio of layer thicknesses is shown. Results are illustrated by a GaAs-GaP superlattice bounded by vacuum. (author)

  9. Topology optimization of two-dimensional asymmetrical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hao-Wen [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Su, Xiao-Xing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2014-01-17

    The multiple elitist genetic algorithm with the adaptive fuzzy fitness granulation (AFFG) is used to design the phononic crystals with large relative bandgap width (BGW) for combined out-of-plane and in-plane wave modes. Without assumption on the symmetry of the unit-cell, we obtain an asymmetrical phononic crystal with the relative BGW which is quite larger than that of the optimized symmetrical structure. With the help of AFFG, the number of the fitness function evaluations is reduced by over 50% and the procedure converges 5 times faster than the conventional evolutionary algorithm to reach the same final fitness values.

  10. Unraveling the acoustic electron-phonon interaction in graphene

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    Using a first-principles approach we calculate the electron-phonon couplings in graphene for the transverse and longitudinal acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first...... that the intrinsic effective acoustic deformation potential of graphene is Ξeff=6.8 eV and that the temperature dependence of the mobility μ~T-α in the Bloch-Gru¨neisen regime increases beyond an α=4 dependence even in the absence of screening when the true coupling matrix elements are considered. The α>4...

  11. Berry Curvature in Magnon-Phonon Hybrid Systems.

    Science.gov (United States)

    Takahashi, Ryuji; Nagaosa, Naoto

    2016-11-18

    We study theoretically the Berry curvature of the magnon induced by the hybridization with the acoustic phonons via the spin-orbit and dipolar interactions. We first discuss the magnon-phonon hybridization via the dipolar interaction, and show that the dispersions have gapless points in momentum space, some of which form a loop. Next, when both spin-orbit and dipolar interactions are considered, we show anisotropic texture of the Berry curvature and its divergence with and without gap closing. Realistic evaluation of the consequent anomalous velocity is given for yttrium iron garnet.

  12. Effect of Holstein phonons on the electronic properties of graphene

    International Nuclear Information System (INIS)

    Stauber, T; Peres, N M R

    2008-01-01

    We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons within the first Born approximation. This leads to a renormalization of the Fermi velocity of 1%. We further compute the optical conductivity of the system at the Dirac point and at finite doping within the Kubo formula. We argue that the effects due to Holstein phonons are negligible and that the Boltzmann approach, which does not include inter-band transitions and can thus not treat optical phonons due to their high energy of ℎω 0 ∼ 0.1-0.2 eV, remains valid

  13. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  14. Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN) 4 : Neutron inelastic scattering and lattice dynamics studies

    Science.gov (United States)

    Gupta, Mayanak K.; Singh, Baltej; Mittal, Ranjan; Zbiri, Mohamed; Cairns, Andrew B.; Goodwin, Andrew L.; Schober, Helmut; Chaplot, Samrath L.

    2017-12-01

    We present temperature-dependent inelastic-neutron-scattering measurements, accompanied by ab initio calculations of the phonon spectra and elastic properties as a function of pressure to quantitatively explain an unusual combination of negative thermal expansion and negative linear compressibility behavior of ZnAu2(CN) 4 . The mechanism of the negative thermal expansion is identified in terms of specific anharmonic phonon modes that involve bending of the -Zn-NC-Au-CN-Zn- linkage. The soft phonon at the L point at the Brillouin zone boundary quantitatively relates to the high-pressure phase transition at about 2 GPa. The ambient pressure structure is also found to be close to an elastic instability that leads to a weakly first-order transition.

  15. Study on frugmentation of one-quasiparticle and one-phonon states in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1980-01-01

    The general assumptions of the quasiparticle-phonon nuclear model are given. This model describes the few-quasiparticle components of the wave functions at low, intermediate and high excitation energies. The method of strength functions which plays a key role in describing complex nuclei is also presented. A further development of the quasiparticle-phonon nuclear model is outlined. The fragmentation of one-quasiparticle and one-phonon states over nuclear levels is studied. The results on the fragmentation of deep hole states in spherical nuclei are presented, which describe well the experimental data. The neutron strength functions and their spin dependence are calculated. A good agreement with experiment is obtained. The energies and widths of the giant resonances are calculated in spherical and deformed nuclei. The information on the many-quasiparticle components of excited state wave functions is shown to be very scarce. The necessity of studying the few-quasiparticle configurations is pointed out

  16. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    Science.gov (United States)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  17. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  18. Quantum non-demolition phonon counter with a hybrid optomechnical system

    Science.gov (United States)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  19. Microstructure-Induced Phonon Focusing Effects and Opportunities for Improved Material Quantification (Postprint)

    Science.gov (United States)

    2012-02-01

    phonon interactions with electrons , electron -hole pairs, defects, super- lattices, and interfaces [1-4]. As pointed out by Hauser et. al. [3], and...phonon-phonon and electron - phonon scattering processes placed limits on the methods applicability. More recently, the advantages of using lower...texture effects. In particular, the elongated grains result in colonies that are largely cigar -shaped or cylindrical in their form, where elastic

  20. The rate of thermal expansion of a thin metallic slab of arbitrary shape.

    Science.gov (United States)

    Lee, Y C

    2009-08-12

    In a previous paper the rate of thermal expansion of a long, slender insulating bar has been worked out. Our present aim is to extend that work to the thermal expansion rate of not only a long metallic bar, but to further generalize it to a thin metallic slab of arbitrary shape. Assuming that the thickness of the slab is small compared to the linear dimension of its area we again take advantage of the two distinct, disparate timescales to turn the familiar problem of thermal expansion into a time-dependent problem of the rate of the expansion. Based on the previously established finite physical momentum of an acoustic phonon when translational invariance is broken, we show that the combined pressure of the phonons and the free electrons due to their outward momenta would suffer a Doppler reduction as the specimen expands upon heating. This Doppler reduction gives rise to damping of the expanding motion, thus yielding as a first result the time of thermal expansion of a long slender metal bar. The generalization to the important case of a thin metallic slab of any shape is then worked out in detail before a concluding section containing a long physical discussion and summary.

  1. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  2. Rotations as coherent states of SU(6) quadrupole phonons in the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Paar, V [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Rio de Janeiro Univ. (Brazil). Inst. de Fisica)

    1981-06-18

    Analytic expressions for the wavefunctions of the ground-state rotational band for even and odd nuclei are derived in terms of spherical quadrupole phonons truncated at N(max) phonons. For N(max) ..-->.. infinite the Bohr-Mottelson rotational states are generated as an asymptotic gaussian distribution of quadrupole phonons.

  3. Ultrafast X-ray absorption study of longitudinal-transverse phonon coupling in electrolyte aqueous solution

    DEFF Research Database (Denmark)

    Jiao, Yishuo; Adams, Bernhard W.; Dohn, Asmus Ougaard

    2017-01-01

    Ultrafast X-ray absorption spectroscopy is applied to study the conversion of longitudinal to transverse phonons in aqueous solution. Permanganate solutes serve as X-ray probe molecules that permit the measurement of the conversion of 13.5 GHz, longitudinal phonons to 27 GHz, transverse phonons...

  4. Two-phonon states in nuclei - from surface vibrations to wobbling motion

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    2003-01-01

    Being stimulated by the recent identification of the two-phonon wobbling excitation, first I make a brief survey of various two-phonon states in nuclear physics, in connection with experimental observations. Then, I discuss the wobbling-phonon excitation in the presence of particle alignments, which is nicely pinned down in the recent experiments of the nucleus 71 163 Lu 92 . (author)

  5. Optical-phonon-induced frictional drag in coupled two-dimensional electron gases

    DEFF Research Database (Denmark)

    Hu, Ben Yu-Kuang

    1998-01-01

    The role of optical phonons in frictional drag between two adjacent but electrically isolated two-dimensional electron gases is investigated. Since the optical phonons in III-V materials have a considerably larger coupling to electrons than acoustic phonons (which are the dominant drag mechanism ...

  6. Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, P.

    2012-01-01

    of the physics and emphasize the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions, we present the parameter regimes where phonon effects are expected to be important. Also, we include...

  7. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  8. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  9. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  10. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  11. Phonon Measurements and Model Calculations for Naphtalene-d8

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Pawley, G. S.; Dietrich, O. W.

    1977-01-01

    Measurements of the phonon dispersion curves in naphthalene-d8, (deuteration >99%), taken at 77K are presented. The experiments were done on two crystals, using the triple-axis neutron spectrometers at the medium flux reactor, DR3 at Riso. Most of the external or lattice modes have been measured...

  12. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  13. Phonons in face-centred cubic calcium and strontium

    International Nuclear Information System (INIS)

    Singh, S.P.; Rathore, R.P.S.

    1984-01-01

    The axially symmetric and unpaired forces are employed to analyse the phonon dispersion and elastic behaviour of face centred cubic calcium and strontium which have so far not been studied adequately. The model with three parameters predicts the results which agree marvellously with the recently measured data. (author)

  14. Phonon-enhanced crystal growth and lattice healing

    Science.gov (United States)

    Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna

    2013-05-28

    A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.

  15. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  16. Phonons and solitons in the "thermal" sine-Gordon system

    DEFF Research Database (Denmark)

    Salerno, Mario; Jørgensen, E.; Samuelsen, Mogens Rugholm

    1984-01-01

    Standard methods of stochastic processes are used to study the coupling of the sine-Gordon system with a heat reservoir. As a result we find thermal phonons with an average energy of kB T per mode. The translational mode (zero mode) is found to carry an average energy of 1 / 2kBT. This last value...

  17. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  18. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  19. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering...... of the very-short-range nature of interactions in a covalent semiconductor....

  20. Phonon anomalies in trilayer high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Dubroka, Adam; Munzar, Dominik

    2004-01-01

    We present an extension of the model proposed recently to account for dramatic chAes below T c (anomalies) of some c-axis polarized infrared-active phonons in bilayer cuprate superconductors, that applies to trilayer high-T c compounds. We discuss several types of phonon anomalies that can occur in these systems and demonstrate that our model is capable of explaining the spectral chAes occurring upon entering the superconducting state in the trilayer compound Tl 2 Ba 2 Ca 2 Cu 3 O 10 . The low-temperature spectra of this compound obtained by Zetterer and coworkers display an additional broad absorption band, similar to the one observed in underdoped YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . In addition, three phonon modes are strongly anomalous. We attribute the absorption band to the transverse Josephson plasma resonance, similar to that of the bilayer compounds. The phonon anomalies are shown to result from a modification of the local fields induced by the formation of the resonance. The spectral chAes in Tl 2 Ba 2 Ca 2 Cu 3 O 10 are compared with those occurring in Bi 2 Sr 2 Ca 2 Cu 3 O 10 , reported recently by Boris and coworkers

  1. Phonon dispersions in graphene sheet and single-walled carbon ...

    Indian Academy of Sciences (India)

    Abstract. In the present research paper, phonons in graphene sheet have been calculated by con- structing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic. X-ray scattering as well as ...

  2. Optical phonons in PbTe/CdTe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N.; Yakovlev, V. A. [Russian Academy of Sciences, Institute for Spectroscopy (Russian Federation); Kucherenko, I. V., E-mail: kucheren@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karczewski, G. [Polish Academy of Sciences, Institute of Physics (Poland); Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  3. Phonon dispersion relations in monoatomic superlattices: a transfer matrix theory

    International Nuclear Information System (INIS)

    Albuquerque, E.L. de; Fulco, P.

    1986-01-01

    We present a lattice dynamical theory for monoatomic superlattices consisting of alternating layers of two different materials. Using a transfer matrix method we obtain explicit the equation for dispersion of the phonon's bulk modes, including the well known result in the long wave-length limit which can be obtained by elasticity theory. An illustation is shown and its features discussed. (Author) [pt

  4. Photon-phonon laser on crystalline silicon: a feasibility study

    International Nuclear Information System (INIS)

    Zadernovsky, A A

    2015-01-01

    We discuss a feasibility of photon-phonon laser action in bulk silicon with electron population inversion. It is well known, that only direct gap semiconductors are used as an active medium in optical lasers. In indirect gap semiconductors, such as crystalline silicon, the near-to-gap radiative electron transitions must be assisted by emission or absorption of phonons to conserve the momentum. The rate of such two-quantum transitions is much less than in direct gap semiconductors, where the similar radiative transitions are single-quantum. As a result, the quantum efficiency of luminescence in silicon is too small to get it as a laser material. Numerous proposals to overcome this problem are aimed at increasing the rate of radiative recombination. We suggest enhancing the quantum efficiency of luminescence in silicon by stimulating the photon part of the two-quantum transitions by light from an appropriate external laser source. This allows us to obtain initially an external-source-assisted lasing in silicon and then a true photon-phonon lasing without any external source of radiation. Performed analysis revealed a number of requirements to the silicon laser medium (temperature, purity and perfection of crystals) and to the intensity of stimulating radiation. We discuss different mechanisms that may hinder the implementation of photon-phonon lasing in silicon

  5. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  6. Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)

    Science.gov (United States)

    Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.

    2016-09-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).

  7. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  8. Phonon excess heating in electronic relaxation theory in quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Lin, Ch. Y.

    2008-01-01

    Roč. 22, č. 20 (2008), s. 3439-3460 ISSN 0217-9792 R&D Projects: GA MŠk ME 866 Institutional research plan: CEZ:AV0Z10100520 Keywords : quantum dots * electron -phonon interaction * electron ic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.558, year: 2008

  9. Phonon, magnon and electron contributions to low temperature ...

    Indian Academy of Sciences (India)

    method to estimate the specific heat contributions of phonons and magnons. .... Dstiff (or D) is the spin stiffness, which is a linear combination of the exchange .... relevant as it is a direct measurement of fundamental pro- perty of metallic ...

  10. A CPA study of the phonon structure of disordered superlattices

    International Nuclear Information System (INIS)

    Shijie Xiong; Gendi Pang; Chienhua Tsai.

    1985-08-01

    The phonon structure of superlattices or modulated alloys with substitutional disorder is studied in the Coherent Phase Approximation (CPA). We consider first the case with diagonal disorder only, by adopting a virtual crystal approximation for the force constants. Then we treat the more complicated case with inclusion of off-diagonal disorder. Numerical examples are also studied in both cases. (author)

  11. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  12. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  13. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  14. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    International Nuclear Information System (INIS)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M S; Guest, James K

    2016-01-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  15. Non-markovian effects in semiconductor cavity QED: Role of phonon-mediated processes

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from the pola......We show theoretically that the non-Markovian nature of the carrier-phonon interaction influences the dynamical properties of a semiconductor cavity QED system considerably, leading to asymmetries with respect to detuning in carrier lifetimes. This pronounced phonon effect originates from...... the polaritonic quasi-particle nature of the carrier-photon system interacting with the phonon reservoir....

  16. Influence of the Pauli principle on the two-phonon states

    International Nuclear Information System (INIS)

    Djolos, R.V.; Molina, J.L.; Soloviev, V.G.

    1979-01-01

    It is shown that the commutation relations between quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The case of the even-even deformed nuclei is studied. Exact and approximate secular equations are obtained. The corrections arising due to the Pauli principle are shown to be large for the two-phonon components of the wave functions, when the phonons are identical. The influence of the Pauli principle on the energies of the two-phonon states and radiative strength functions requires further investigation [ru

  17. Pseudospins and Topological Effects of Phonons in a Kekulé Lattice

    Science.gov (United States)

    Liu, Yizhou; Lian, Chao-Sheng; Li, Yang; Xu, Yong; Duan, Wenhui

    2017-12-01

    The search for exotic topological effects of phonons has attracted enormous interest for both fundamental science and practical applications. By studying phonons in a Kekulé lattice, we find a new type of pseudospin characterized by quantized Berry phases and pseudoangular momenta, which introduces various novel topological effects, including topologically protected pseudospin-polarized interface states and a phonon pseudospin Hall effect. We further demonstrate a pseudospin-contrasting optical selection rule and a pseudospin Zeeman effect, giving a complete generation-manipulation-detection paradigm of the phonon pseudospin. The pseudospin and topology-related physics revealed for phonons is general and applicable for electrons, photons, and other particles.

  18. Basic equations of the quasiparticle-phonon nuclear model with the effects due to the Pauli principle and the phonon ground state correlations

    International Nuclear Information System (INIS)

    Nguyen Dinh Dang; Voronov, V.V.

    1983-01-01

    A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed

  19. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction

    International Nuclear Information System (INIS)

    Hillenbrand, Rainer

    2004-01-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si 3 N 4 . Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics--a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics

  20. Electron-phonon and spin-phonon coupling in NaV2O5 : Charge fluctuations effects

    NARCIS (Netherlands)

    Sherman, E.Ya.; Fischer, M.; Lemmens, P; Loosdrecht, P.H.M. van; Güntherodt, G.

    1999-01-01

    We show that the asymmetric crystal environment of the V site in the ladder compound NaV2O5 leads to a strong coupling of vanadium 3d electrons to phonons. This coupling causes fluctuations of the charge on the V ions, and favors a transition to a charge-ordered state at low temperatures. In the low

  1. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  2. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  3. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  4. Transport through interacting quantum dots with Majorana fermions or phonons

    International Nuclear Information System (INIS)

    Huetzen, Roland

    2013-01-01

    technique and is numerically exact. Within a finite memory time the scheme fully takes into account all time-nonlocal correlations within the self energies of the leads and we extended it to also handle time-nonlocal interactions originating from the electron-phonon coupling. The latter was possible by exactly mapping the Anderson-Holstein model to an effective three-state-system and the introduction of a spin 1 auxiliary field within each short-time propagator of the real-time path-integral. An extrapolation scheme which is based on a least dependence approach then allows to eliminate the errors introduced by the finite memory time and the time discretization in a systematic way. We benchmarked our scheme against three other analytical methods, valid in three different corners of the parameter space where approximative expansions are possible. Finally we could demonstrate with our method the persistence of the Franck-Condon blockade in a deep quantum regime, inaccessible by the other methods.

  5. Transport through interacting quantum dots with Majorana fermions or phonons

    Energy Technology Data Exchange (ETDEWEB)

    Huetzen, Roland

    2013-07-04

    technique and is numerically exact. Within a finite memory time the scheme fully takes into account all time-nonlocal correlations within the self energies of the leads and we extended it to also handle time-nonlocal interactions originating from the electron-phonon coupling. The latter was possible by exactly mapping the Anderson-Holstein model to an effective three-state-system and the introduction of a spin 1 auxiliary field within each short-time propagator of the real-time path-integral. An extrapolation scheme which is based on a least dependence approach then allows to eliminate the errors introduced by the finite memory time and the time discretization in a systematic way. We benchmarked our scheme against three other analytical methods, valid in three different corners of the parameter space where approximative expansions are possible. Finally we could demonstrate with our method the persistence of the Franck-Condon blockade in a deep quantum regime, inaccessible by the other methods.

  6. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    Science.gov (United States)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  7. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    Science.gov (United States)

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  8. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  9. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  10. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  11. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  12. Phonon dispersion relation in zircon, ZrSiO4 using inelastic neutron scattering at a pulsed neutron source

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Parthasarathy, R.; Bull, M.J.; Harris, M.J.

    2000-01-01

    The coherent inelastic neutron scattering technique is used for the measurements of phonon dispersion relation in a geophysically important mineral zircon using PRISMA spectrometer as ISIS, UK. Lattice dynamical calculations of the phonon dispersion relation are carried out using a shell model. The one-phonon structure factors are calculated for selecting the Bragg points for the measurements and assignment of phonons to different branches. The calculations are in good agreement with the measured phonon dispersion relation. (author)

  13. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  14. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  15. Series expansions without diagrams

    International Nuclear Information System (INIS)

    Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.

    1994-01-01

    We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model

  16. Efficient Cryosolid Positron Moderators

    Science.gov (United States)

    2012-08-01

    table layout Figure 21 shows the integration of the IR spectroscopy optics with the positron Moderation and Annihilation vacuum chambers on the...Characterization of Cryogenic Moderators The application of Matrix Isolation Spectroscopy (MIS) to characterizing cryogenic solid positron ...Matrix Isolation Spectroscopy capability into our Positron Moderation apparatus, which enables spectroscopic characterization of the cryogenic

  17. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  18. Gap enhancement in phonon-irradiated superconducting tin films

    International Nuclear Information System (INIS)

    Miller, N.D.; Rutledge, J.E.

    1982-01-01

    We have measured the current-voltage (I-V) characteristics of tin-tin tunnel junctions driven out of equilibrium by a flux of near-thermal phonons from a heater. The reduced ambient temperature was T/T/sub c/ = 0.41. The nonequilibrium I-V curves are compared to equilibrium thermal I-V curves at an elevated temperature chosen to match the total number of quasiparticles. The nonequilibrium curves show a smaller current near zero bias and a larger gap than the thermal curves. This is the first experimental evidence of phonon-induced gap enhancement far below T/sub c/. The results are discussed in terms of the coupled kinetic equations of Chang and Scalapino

  19. Microscopic theory of the phonon frequencies in BCC barium

    International Nuclear Information System (INIS)

    Oli, B.A.

    1988-09-01

    The phonon dispersion frequencies are calculated from first principles for bbc barium using a resonance pseudopotential model which incorporates the effect of s-d hybridization. It was also possible using this scheme to account for the anomalous feature of the Ba dispersion curve observed experimentally in the (ξ,0,0) direction where the frequencies of the transverse branch are higher than the frequencies of the longitudinal branch. The frequencies obtained were also used to calculate the phonon density of states by the linear-analytic tetrahedra method of zone integration. The results of these calculations are qualitatively in good agreement with experimental data, and provide further support to the interpretation of the anomalous behaviour in the (ξ,0,0) direction as arising from s-d hybridization. (author). 27 refs, 4 figs, 3 tabs

  20. Band structures in Sierpinski triangle fractal porous phononic crystals

    International Nuclear Information System (INIS)

    Wang, Kai; Liu, Ying; Liang, Tianshu

    2016-01-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  1. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  2. Collective spin wave and phonon excitations in ferromagnetic organic polymers

    International Nuclear Information System (INIS)

    Leong, Jit-Liang; Sun, Shih-Jye

    2013-01-01

    We proposed a model to investigate the properties of a conductive and ferromagnetic organic-polymer (OCP), which contains two collective excitations—spin wave and phonon—competing with each other; namely, the spin wave excitation accompanies the electron–phonon (e–ph) interactions in the conductive and ferromagnetic OCP. The ferromagnetism of the OCP is induced from the conductive carriers which couple with the phonon to become polarons. Due to the competition between both excitations, the Curie temperature (T C ) is sensitively suppressed by the e–ph interaction. In addition, an optimal T C with a small e–ph interaction exists in a specific density of conduction carrier, yet is contrary to the large e–ph interaction case. Furthermore, the dimerization, i.e. the atomic displacement induced from the e–ph interactions, increases with the strength of the e–ph interaction and decreases upon reaching the maximum dimerization. (paper)

  3. Quantum Kinetic Theory and Applications Electrons, Photons, Phonons

    CERN Document Server

    Vasko, Fedir T

    2006-01-01

    This lecture-style monograph is addressed to several categories of readers. First, it will be useful for graduate students studying theory. Second, the topics covered should be interesting for postgraduate students of various specializations. Third, the researchers who want to understand the background of modern theoretical issues in more detail can find a number of useful results here. The phenomena covered involve kinetics of electron, phonon, and photon systems in solids. The dynamical properties and interactions of electrons, phonons, and photons are briefly described in Chapter 1. Further, in Chapters 2-8, the authors present the main theoretical methods: linear response theory, various kinetic equations for the quasiparticles under consideration, and diagram technique. The presentation of the key approaches is always accompanied by solutions of concrete problems to illustrate ways to apply the theory. The remaining chapters are devoted to various manifestations of quantum transport in solids. The choice...

  4. Thermal Transport and Phonon Hydrodynamics in Strontium Titanate

    Science.gov (United States)

    Martelli, Valentina; Jiménez, Julio Larrea; Continentino, Mucio; Baggio-Saitovitch, Elisa; Behnia, Kamran

    2018-03-01

    We present a study of thermal conductivity, κ , in undoped and doped strontium titanate in a wide temperature range (2-400 K) and detecting different regimes of heat flow. In undoped SrTiO3 , κ evolves faster than cubic with temperature below its peak and in a narrow temperature window. Such behavior, previously observed in a handful of solids, has been attributed to a Poiseuille flow of phonons, expected to arise when momentum-conserving scattering events outweigh momentum-degrading ones. The effect disappears in the presence of dopants. In SrTi1 -xNbx O3 , a significant reduction in lattice thermal conductivity starts below the temperature at which the average inter-dopant distance and the thermal wavelength of acoustic phonons become comparable. In the high-temperature regime, thermal diffusivity becomes proportional to the inverse of temperature, with a prefactor set by sound velocity and Planckian time (τp=(ℏ/kBT ) ).

  5. Band structures in Sierpinski triangle fractal porous phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu

    2016-10-01

    In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.

  6. Inverse Edelstein effect induced by magnon-phonon coupling

    Science.gov (United States)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  7. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  8. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai; Mei, Jun; Wu, Ying

    2012-01-01

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  9. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    Directory of Open Access Journals (Sweden)

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  10. Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shunzu; Shi, Yang [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-26

    Considering the magneto-mechanical coupling of magnetostrictive material, the tunability of in-plane wave propagation in two-dimensional Terfenol-D/epoxy phononic crystal (PC) plate is investigated theoretically by the plane wave expansion method. Two Schemes, i.e. magnetic field is rotated in x–y plane and x–z plane, are studied, respectively. The effects of amplitude and direction of magnetic field, pre-stress and geometric parameters are discussed. For Scheme-I, band gap reaches the maximum at an optimal angle 45° of magnetic field. However, the optimal angle is 0° for Scheme-II, because band gap decreases monotonically until disappears with the increasing angle. For both cases, higher-order band gaps generate and become stronger as magnetic field amplitude increases, while increasing compressive pre-stress has the opposite effect. Meanwhile, filling fraction plays a key role in controlling band gaps. These results provide possibility for intelligent regulation and optimal design of PC plates. - Highlights: • The in-plane wave propagation in phononic crystal thin plate is tuned theoretically. • Magnetostrictive material is introduced in the study. • The effects of magnetic field and pre-stress are considered. • The variations of band gaps with external stimuli are discussed.

  11. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

    International Nuclear Information System (INIS)

    Bezuglyi, A.I.; Shklovskii, V.A.

    1997-01-01

    The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate

  12. Four-phonon processes in the thermal conductivity of GaSb

    International Nuclear Information System (INIS)

    Aliev, M.I.; Arasly, D.G.; Guseinov, R.E.

    1978-01-01

    Phonon thermal conductivity of GaSb in the 300-700 K temperature range is studied by the light pulsed heating which is aimed at estimation of contributions of different polarized branches of acoustic oscillations into lattice thermal conductivity. The role of optico-acoustic interactions and multiphonon processes in phonon-phonon scattering at high temperatures is discussed. It is shown that the X thermal conductivity caused by the current carriers is negligibly small, and the Xsub(ph) phonon conductivity changes depending on temperature according to the Xsub(ph) approximately Tsup(-1.4) law. While calculating Xsub(ph) according to the Holland model taking into account phonon scattering on point defects the phonon thermal conductivity is given as a sum of contributions from longitudinal and transverse low-frequency Xsub(th1) and high-frequency Xsub(th2) acoustic phonons. It is established that at T>500 K Xsub(ph) is caused only by high-frequency transverse phonons and to explain the observed Xsub(ph) dependence on temperature it is necessary to introduce four-phonon process along with the three-phonon processes into intraphonon scattering

  13. Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites

    Science.gov (United States)

    Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard

    Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.

  14. Phonon shake-up satellites in x-ray absorption: an operator approach

    International Nuclear Information System (INIS)

    Bryant, G.W.

    1980-01-01

    The phonon shake-up that occurs when the linear and quadratic phonon potentials both change during x-ray absorption is considered. Full account of all quadratic terms and the competition between linear and quadratic shake-up effects is made. Many previous studies of quadratic phonon shake-up have used a wavefunction approach. The phonon matrix elements have been determined by explicit evaluation of the overlap integrals. However, an equations of motion approach is used to transform the time evolution operator to a form that allows an exact evaluation of the phonon matrix elements needed to describe the spectra. This theory is used to determine the strengths of the phonon shake-up satellites in x-ray absorption spectra at zero temperature. An exact expression is obtained for the strength of each satellite. During quadratic shake-up, two phonon transitions and phonon frequency shifts occur. Both effects significantly change the strength of a a satellite from that predicted for linear shake-up alone. Inclusion of the two phonon transitions enhances the high-energy satellites. Inclusion of the frequency shifts can either broaden the spectra or increase the strength of the zero phonon lines depending on the sign of the frequency shift. (author)

  15. Energy Guiding and Harvesting through Phonon-Engineered Graphene

    Science.gov (United States)

    2016-01-28

    Graphene The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the...ABSTRACT Final Report: Energy Guiding and Harvesting through Phonon-Engineered Graphene Report Title The work performed under this proposal was primarily...Justin Wu, Xinran Wang, Kristof Tahy, Debdeep Jena, Hongjie Dai, Eric Pop. Thermally Limited Current Carrying Ability of Graphene Nanoribbons

  16. The negative phonon confinement effect in nanoscopic sodium nitrite

    Czech Academy of Sciences Publication Activity Database

    Koroleva, E.Yu.; Nuzhnyy, Dmitry; Pokorný, Jan; Kamba, Stanislav; Kumzerov, Y. A.; Vakhrushev, S. B.; Petzelt, Jan

    2009-01-01

    Roč. 20, č. 39 (2009), 395706/1-395706/7 ISSN 0957-4484 R&D Projects: GA AV ČR KJB100100704; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocomposite * sodium nitrite * infrared * THz * Raman * phonon * effective medium approach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.137, year: 2009

  17. Phonon-Mediated Quasiparticle Poisoning of Superconducting Microwave Resonators

    OpenAIRE

    Patel, U.; Pechenezhskiy, Ivan V.; Plourde, B. L. T.; Vavilov, M. G.; McDermott, R.

    2016-01-01

    Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the timescale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasipar...

  18. Density of phonon states on NiO polycrystal

    International Nuclear Information System (INIS)

    Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Semencheva, O.P.; Smolik, Ch.K.

    1984-01-01

    The density of phonon states g(epsilon) of nickel monoxide polycrystal was investigated by the method of inelastic scattering of cold neutrons with E 0 =4.43 MeV initial energy E 0 =4.43 MeV on the time-of-flight spectrometer at T=293 K. The obtained data are compared with existing results of calculations on the base of the simple shell model and the model, taking into account the deformation of bond angles

  19. Phonons, defects and optical damage in crystalline acetanilide

    Science.gov (United States)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  20. Uncertainty in the inelastic resonant scattering assisted by phonons

    International Nuclear Information System (INIS)

    Garcia, N.; Garcia-Sanz, J.; Solana, J.

    1977-01-01

    We have analyzed the inelastic minima observed in new results of He atoms scattered from LiF(001) surfaces. This is done considering bound state resonance processes assisted by phonons. The analysis presents large uncertainties. In the range of uncertainty, we find two ''possible'' bands associated with the vibrations of F - and Li + , respectively. Many more experimental data are necessary to confirm the existence of these processes

  1. Generation and detection of high-energy phonons by superconducting junctions

    International Nuclear Information System (INIS)

    Singer, I.L.

    1976-01-01

    Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium

  2. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Lawrence Berkeley Lab., CA

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 angstrom Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 angstrom, 500 angstrom, and 300 angstrom per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 angstrom/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 angstrom/side appear to correspond with the phonon transmission study

  3. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  4. Controlling competing electronic orders via non-equilibrium acoustic phonons

    Science.gov (United States)

    Schuett, Michael; Orth, Peter; Levchenko, Alex; Fernandes, Rafael

    The interplay between multiple electronic orders is a hallmark of strongly correlated systems displaying unconventional superconductivity. While doping, pressure, and magnetic field are the standard knobs employed to assess these different phases, ultrafast pump-and-probe techniques opened a new window to probe these systems. Recent examples include the ultrafast excitation of coherent optical phonons coupling to electronic states in cuprates and iron pnictides. In this work, we demonstrate theoretically that non-equilibrium acoustic phonons provide a promising framework to manipulate competing electronic phases and favor unconventional superconductivity over other states. In particular, we show that electrons coupled to out-of-equilibrium anisotropic acoustic phonons enter a steady state in which the effective electronic temperature varies around the Fermi surface. Such a momentum-dependent temperature can then be used to selectively heat electronic states that contribute primarily to density-wave instabilities, reducing their competition with superconductivity. We illustrate this phenomenon by computing the microscopic steady-state phase diagram of the iron pnictides, showing that superconductivity is enhanced with respect to the competing antiferromagnetic phase.

  5. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  6. Tunable phonon-induced transparency in bilayer graphene nanoribbons.

    Science.gov (United States)

    Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon

    2014-08-13

    In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.

  7. Light-induced nonthermal population of optical phonons in nanocrystals

    Science.gov (United States)

    Falcão, Bruno P.; Leitão, Joaquim P.; Correia, Maria R.; Soares, Maria R.; Wiggers, Hartmut; Cantarero, Andrés; Pereira, Rui N.

    2017-03-01

    Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity ratio. More significantly, the obtained dependence of the Raman peak position on temperature in optical excitation experiments is markedly different from that observed when the same NCs are excited only thermally (thermal excitation experiments). This difference is not observed for the control bulk material. The inefficient diffusion of photogenerated charges in nanoparticulate systems, due to their inherently low electrical conductivity, results in a higher steady-state density of photoexcited charges and, consequently, also in a stronger excitation of optical phonons that cannot decay quickly enough into acoustic phonons. This results in a nonthermal population of optical phonons and thus the Raman spectrum deviates from that expected for the temperature of the system. Our study has major consequences to the general application of Raman spectroscopy to nanomaterials.

  8. Phonon spectra in SiO2 glasses

    International Nuclear Information System (INIS)

    Perez R, J.F.; Jimenez S, S.; Gonzalez H, J.; Vorobiev, Y.V.; Hernandez L, M.A.; Parga T, J.R.

    1999-01-01

    Phonon spectra in SiO 2 sol-gel made glasses annealed under different conditions are investigated using infrared absorption and Raman scattering. These data are compared with those obtained in commercial optical-quality quartz. All the materials exhibit the same phonon bands, the exact position and the intensity depend on the measuring technique and on the sample preparation method. The phonon spectra in this material are interpreted on the basis of a simple quasi-linear description of elastic waves in an O-Si-O chain. It is shown that the main features observed in the range 400-1400 cm -1 can be predicted using a quasi-linear chain model in which the band at 1070 cm -1 is assigned to the longitudinal optical waves in the O-Si-O chain with the smallest possible wavelength at the Brillouin zone boundary, the band located around 450 cm -1 is assigned to the transversal optical waves and the band at 800 cm -1 to the longitudinal acoustical waves with the same wavelength. The degree of structural disorder can be also deduced within the framework of the proposed model. (Author)

  9. Analysis of Bending Waves in Phononic Crystal Beams with Defects

    Directory of Open Access Journals (Sweden)

    Yongqiang Guo

    2018-01-01

    Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.

  10. Phonon impedance matching: minimizing interfacial thermal resistance of thin films

    Science.gov (United States)

    Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik

    2014-03-01

    The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.

  11. Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing.

    Science.gov (United States)

    Ciampa, Francesco; Mankar, Akash; Marini, Andrea

    2017-11-07

    Second harmonic generation is one of the most sensitive and reliable nonlinear elastic signatures for micro-damage assessment. However, its detection requires powerful amplification systems generating fictitious harmonics that are difficult to discern from pure nonlinear elastic effects. Current state-of-the-art nonlinear ultrasonic methods still involve impractical solutions such as cumbersome signal calibration processes and substantial modifications of the test component in order to create material-based tunable harmonic filters. Here we propose and demonstrate a valid and sensible alternative strategy involving the development of an ultrasonic phononic crystal waveguide transducer that exhibits both single and multiple frequency stop-bands filtering out fictitious second harmonic frequencies. Remarkably, such a sensing device can be easily fabricated and integrated on the surface of the test structure without altering its mechanical and geometrical properties. The design of the phononic crystal structure is supported by a perturbative theoretical model predicting the frequency band-gaps of periodic plates with sinusoidal corrugation. We find our theoretical findings in excellent agreement with experimental testing revealing that the proposed phononic crystal waveguide transducer successfully attenuates second harmonics caused by the ultrasonic equipment, thus demonstrating its wide range of potential applications for acousto/ultrasonic material damage inspection.

  12. Tri-component phononic crystals for underwater anechoic coatings

    International Nuclear Information System (INIS)

    Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2007-01-01

    Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band

  13. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  14. System of equations of the quasiparticle-phonon nuclear model with allowance for phonon scattering at finite temperature

    International Nuclear Information System (INIS)

    Dang, N.D.

    1986-01-01

    The discovery of giant resonances in reactions of nuclei with heavy ions and in deep inelastic processes has stimulated interest in the study of the properties of highly excited nuclei. By taking into account exactly the population numbers of the single-phonon levels, the authors obtain a system of equations describing the interaction with the configurations in even-even spherical nuclei at a finite temperature. The Pauli principle is taken into account for the two-phonon components of the wave function of the excited states in accordance with an approximate procedure. The new diagrams associated with the introduction of the temperature are analyzed, and a comparison is made with the diagrams of nuclear field theory and the results of the theory of finite Fermi systems

  15. Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique

    Directory of Open Access Journals (Sweden)

    Charles M. Reinke

    2011-12-01

    Full Text Available Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.

  16. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K₈Si46 under High Pressure.

    Science.gov (United States)

    Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo

    2016-07-25

    For a further understanding of the phase transitions mechanism in type-I silicon clathrates K₈Si 46 , ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K₈Si 46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K₈Si 46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K₈Si 46 under different temperature and pressure were also predicted.

  17. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K8Si46 under High Pressure

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-07-01

    Full Text Available For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted.

  18. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method.

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-01-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  19. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  20. Thermal expansion and its impacts on thermal transport in the FPU-α-β model

    Directory of Open Access Journals (Sweden)

    Xiaodong Cao

    2015-05-01

    Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.

  1. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  2. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  3. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  4. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...

  5. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  6. Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Jeffrey [Stanford Univ., CA (United States)

    2015-01-01

    Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The

  7. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau

    2016-01-01

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  8. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    International Nuclear Information System (INIS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-01-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons

  9. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  10. Effects of the electron-phonon coupling activation in collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-07-15

    Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.

  11. A study of some temperature effects on the phonons in aluminium by use of cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, K E; Dahlborg, U; Holmryd, S

    1960-04-15

    Using the cold neutron scattering technique about 300 phonons have been determined in a single aluminium crystal at room temperature to define 10 pairs of dispersion curves, Investigations have been made of the variation of frequencies, phonon line widths and multi-phonon spectra in the temperature range 293 < T < 932 K. For a particular direction in the crystal lattice it is shown that the frequencies vary about 15 % over this temperature range The line widths are of such a magnitude that the derived phonon mean free paths vary from about 5 phonon wave lengths at 600 K to about 1.5 phonon wave lengths at 930 K. The observed multiphonon spectra are found to agree with calculated differential cross sections in the incoherent approximation.

  12. Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Zhong Lin

    2015-01-01

    A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...

  13. Non-linear phonon Peltier effect in dissipative quantum dot systems.

    Science.gov (United States)

    De, Bitan; Muralidharan, Bhaskaran

    2018-03-26

    Solid state thermoelectric cooling is based on the electronic Peltier effect, which cools via an electronic heat current in the absence of an applied temperature gradient. In this work, we demonstrate that equivalently, a phonon Peltier effect may arise in the non-linear thermoelectric transport regime of a dissipative quantum dot thermoelectric setup described via Anderson-Holstein model. This effect leads to an electron induced phonon heat current in the absence of a thermal gradient. Utilizing the modification of quasi-equilibrium phonon distribution via charge induced phonon accumulation, we show that in a special case the polarity of the phonon heat current can be reversed so that setup can dump heat into the hotter reservoirs. In further exploring possibilities that can arise from this effect, we propose a novel charge-induced phonon switching mechanism that may be incited via electrostatic gating.

  14. Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green's function method study

    Science.gov (United States)

    Zhang, Zu-Quan; Lü, Jing-Tao

    2017-09-01

    Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

  15. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions

    International Nuclear Information System (INIS)

    Kojima, O.; Mizoguchi, K.; Nakayama, M..

    2005-01-01

    We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI

  16. Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise

    International Nuclear Information System (INIS)

    Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.

    2006-01-01

    The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data

  17. Thermal transport across metal–insulator interface via electron–phonon interaction

    International Nuclear Information System (INIS)

    Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen; Lü, Jing-Tao

    2013-01-01

    The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green’s function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling. (paper)

  18. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  19. Account of the Pauli principle in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Molina, Kh.L.

    1980-01-01

    The correlation effects in the ground states of even-even deformed nuclei on their one- and two-phonon states are studied in terms of the semimicroscopic nuclear theory. A secular equation for one-phonon excitations is derived, which take into account, in average, exact commutation relations between quasiparticle operators. It is demonstrated, that the account of the correlation in the ground state can significantly influence the values of the wave function two-phonon components

  20. Spin relaxation in quantum dots: Role of the phonon modulated spin-orbit interaction

    Science.gov (United States)

    Alcalde, A. M.; Romano, C. L.; Sanz, L.; Marques, G. E.

    2010-01-01

    We calculate the spin relaxation rates in a parabolic InSb quantum dots due to the spin interaction with acoustical phonons. We considered the deformation potential mechanism as the dominant electron-phonon coupling in the Pavlov-Firsov spin-phonon Hamiltonian. We analyze the behavior of the spin relaxation rates as a function of an external magnetic field and mean quantum dot radius. Effects of the spin admixture due to Dresselhaus contribution to spin-orbit interaction are also discussed.

  1. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids

    Science.gov (United States)

    Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin

    2017-10-01

    For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.

  2. Quantum Theory of Conditional Phonon States in a Dual-Pumped Raman Optical Frequency Comb

    Science.gov (United States)

    Mondloch, Erin

    In this work, we theoretically and numerically investigate nonclassical phonon states created in the collective vibration of a Raman medium by the generation of a dual-pumped Raman optical frequency comb in an optical cavity. This frequency comb is generated by cascaded Raman scattering driven by two phase-locked pump lasers that are separated in frequency by three times the Raman phonon frequency. We characterize the variety of conditioned phonon states that are created when the number of photons in all optical frequency modes except the pump modes are measured. Almost all of these conditioned phonon states are extremely well approximated as three-phonon-squeezed states or Schrodinger-cat states, depending on the outcomes of the photon number measurements. We show how the combinations of first-, second-, and third-order Raman scattering that correspond to each set of measured photon numbers determine the fidelity of the conditioned phonon state with model three-phonon-squeezed states and Schrodinger-cat states. All of the conditioned phonon states demonstrate preferential growth of the phonon mode along three directions in phase space. That is, there are three preferred phase values that the phonon state takes on as a result of Raman scattering. We show that the combination of Raman processes that produces a given set of measured photon numbers always produces phonons in multiples of three. In the quantum number-state representation, these multiples of three are responsible for the threefold phase-space symmetry seen in the conditioned phonon states. With a semiclassical model, we show how this three-phase preference can also be understood in light of phase correlations that are known to spontaneously arise in single-pumped Raman frequency combs. Additionally, our semiclassical model predicts that the optical modes also grow preferentially along three phases, suggesting that the dual-pumped Raman optical frequency comb is partially phase-stabilized.

  3. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  4. Provincial hydro expansions

    Energy Technology Data Exchange (ETDEWEB)

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  5. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  6. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  7. Resonant exciton-phonon coupling in ZnO nanorods at room temperature

    Directory of Open Access Journals (Sweden)

    Soumee Chakraborty

    2011-09-01

    Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

  8. Room temperature ferromagnetism and phonon properties of pure and doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy, Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Bahoosh, S.G. [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5, J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2014-03-15

    We have considered the origin of RTFM in TiO{sub 2} nanoparticles (NPs). Further we have studied the properties of the E{sub g1} phonon mode. The phonon frequency of anatase TiO{sub 2} NPs increases whereas in the case of rutile TiO{sub 2} NPs it decreases as the particle size decreases. The phonon damping is always enhanced in the nanosized materials. The hardening of the E{sub g1} mode and the softening of the E{sub g3} mode in anatase TiO{sub 2} NPs could be explained with the different anharmonic spin–phonon interaction constants of these modes. The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed. - Highlights: • The origin of RTFM in TiO{sub 2} nanoparticles is investigated. • With decreasing of particle size the phonon frequency of anatase and rutile TiO{sub 2} NPs increases and decreases, respectively. • This could be explained with the different anharmonic spin–phonon interaction constants of these modes. • The phonon damping is always enhanced in the nanosized materials. • The doping effects with different transition metal ions on the E{sub g1} phonon mode are also discussed.

  9. Theory of phonon properties in doped and undoped CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2012-07-02

    We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.

  10. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  11. Effect of Pauli principle accounting an the two-phonon states of spherical nuclej

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Stoyanov, Ch.; Nikolaeva, R.

    1983-01-01

    The effect of account for the Pauli principle in two-phonon components of the wave functions on low-lying collective states of even-even spherical nuclei is investigated. The calculations are performed for sup(114, 116)Sn and sup(142, 144, 146, 148)Sm. The account of the Pauli principle is shown to exert a weak effect on the states with large one-phonon or two-phonon components. It is concluded that in some spherical nuclei sufficiently pure two-phonon states may exist

  12. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals

    International Nuclear Information System (INIS)

    Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen

    2007-01-01

    The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals

  13. Effect of the Substrate on Phonon Properties of Graphene Estimated by Raman Spectroscopy

    Science.gov (United States)

    Tivanov, M. S.; Kolesov, E. A.; Korolik, O. V.; Saad, A. M.; Komissarov, I. V.

    2018-01-01

    Low-temperature Raman studies of supported graphene are presented. A linear temperature dependence of 2D peak linewidths was observed with the coefficients of 0.036 and 0.033 cm^{-1}/K for graphene on copper and glass substrates, respectively, while G peak linewidths remained unchanged throughout the whole temperature range. The different values observed for graphene on glass and copper substrates were explained in terms of the substrate effect on phonon-phonon and electron-phonon interaction properties of the material. The results of the present study can be used to consider substrate effects on phonon transport in graphene for nanoelectronic device engineering.

  14. Experimental evidence of zone-center optical phonon softening by accumulating holes in thin Ge

    Directory of Open Access Journals (Sweden)

    Shoichi Kabuyanagi

    2016-01-01

    Full Text Available We discuss the impact of free carriers on the zone-center optical phonon frequency in germanium (Ge. By taking advantage of the Ge-on-insulator structure, we measured the Raman spectroscopy by applying back-gate bias. Phonon softening by accumulating holes in Ge film was clearly observed. This fact strongly suggests that the phonon softening in heavily-doped Ge is mainly attributed to the free carrier effect rather than the dopant atom counterpart. Furthermore, we propose that the free carrier effect on phonon softening is simply understandable from the viewpoint of covalent bonding modification by free carriers.

  15. Phonon-induced anomalous Raman spectra in undoped high-Tc cuprates

    International Nuclear Information System (INIS)

    Lee, J.D.; Min, B.I.

    1997-01-01

    In order to describe a shoulder peak structure near 4J in the magnon Raman spectra of undoped high-T c cuprates, we have explored the phonon contribution to the Raman spectra. Incorporating the magnon-phonon Hamiltonian in the spin-wave theory, we have evaluated the two-magnon Raman spectral function originating from the lowest-order magnon-phonon-magnon scattering. It is found that phonons induce a shoulder peak near 4J besides the dominant two-magnon peak near 3J, in agreement with experiments. (orig.)

  16. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  17. Phonon-impurity relaxation and acoustic wave absorption in yttrium-aluminium garnet crystals with impurities

    International Nuclear Information System (INIS)

    Ivanov, S.N.; Kotelyanskij, I.M.; Medved', V.V.

    1983-01-01

    The experimental results of investigations of the influence of substitution impurities in the yttrium-aluminium garnet lattice on absorption of high-frequency acoustic waves are presented. It is shown that the phonon-impurity relaxation processses affect at most the wave absorption and have resonance character when the acoustic wave interacts with the thermal phonon group in the vicinity of the perturbed part of the phonon spectrum caused by the impurity. The differences of time values between inelastic and elastic thermal phonons relaxations determined from the data on longitudinal and shear waves in pure and impurity garnet crystals are discussed

  18. Generation, detection and spectroscopic studies of high-frequency nonequilibrium phonons in crystals

    International Nuclear Information System (INIS)

    Dennis, W.M.; Yen, W.M.

    2007-01-01

    In this article we will review studies conducted in the past two decades on the dynamic properties of high-frequency (THz) phonons generated monochromatically with high power far infrared (FIR) laser pulses using defect-induced phonon absorption and detected using a vibronic sideband spectrometer fashioned after that devised by Kaplyanskii, the honoree of this special issue. The temporal and spectral evolution of the phonon signature provides information on the mechanisms that dominate the relaxation of high-frequency phonons in real crystals

  19. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  20. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  1. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  2. A comprehensive phononics of phonon assisted energy transfer in the Yb3+ aided upconversion luminescence of Tm3+ and Ho3+ in solids

    International Nuclear Information System (INIS)

    Debnath, Radhaballabh; Bose, Saptasree

    2015-01-01

    The theory of phonon assisted energy transfer is being widely used to explain the Yb 3+ ion aided normal and upconversion emission of various rare earth ions in different Yb 3+ co-doped solids. The reported phonon dynamics in many of these studies are either incomplete or erroneous. Here we report Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses and explain their phononics in the light of Dexter's theory by proposing a comprehensive scheme. The approach is valid for other systems of different phonon structures. - Highlights: • Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses, are reported. • Phonon assisted energy transfer in these systems are explained in the light of Dexter's theory by proposing a comprehensive scheme of phononics. • The approach is valid for other systems of different phonon structures

  3. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  4. A meta-analysis of global urban land expansion.

    Science.gov (United States)

    Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.

  5. Identity Expansion and Transcendence

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2014-05-01

    Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups.  Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement.  Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.

  6. Moderation for Professional Learning

    Science.gov (United States)

    Earle, Sarah

    2017-01-01

    Moderation is put forward as they key strategy for improving the reliability of teacher assessment. However, for many teachers the word "moderation" conjures up ideas of uncomfortable situations in which marking is being checked by others and there are prolonged arguments about tiny features of individual work. In this article, the…

  7. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  8. Theoretical Aspects of Phonon Dispersion Curves for Metals

    International Nuclear Information System (INIS)

    Cochran, W.

    1965-01-01

    Reasonably complete knowledge of the phonon dispersion curves for at least a dozen metallic elements and intermetallic compounds has now been obtained from neutron inelastic scattering experiments. The results have one feature in common: when analysed in terms of interatomic force constants they reveal the presence of comparatively long-range forces extending over several atomic spacings. The results for lead are particularly interesting; it did not prove possible to fit them by a force-constant model, but the dispersion curves for wave vectors in symmetry directions when analysed in terms of force constants between planes of atoms showed an oscillatory interatomic potential extending over distances of more than 20Å. This review is concerned with recent theoretical work which has a bearing on the calculation of phonon dispersion curves for metals and the explanation of the long range of the interatomic potential. The best hope at present for a general treatment of atomic interaction in metals appears to lie in the ''method of neutral pseudo-atoms'', (a description recently coined by Ziman). This approximate theory is outlined and its relevance to Kohn anomalies in phonon dispersion curves is discussed. Experimental data for sodium is consistent with the theory, and the interatomic potential in sodium varies periodically in a distance π/k F , where fik F is the Fermi momentum, as has already been demonstrated by Koenig in a different way. More exact calculations have been made for sodium by Toya and by Sham. The relationship between the different methods and other work of a more general character such as that of Harrison are discussed. (author) [fr

  9. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  10. Phonon number measurements using single photon opto-mechanics

    International Nuclear Information System (INIS)

    Basiri-Esfahani, S; Akram, U; Milburn, G J

    2012-01-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes–Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements. (paper)

  11. The phonon-coupling model for Skyrme forces

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [St. Petersburg State University (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de; Krewald, S. [Forschungszentrum Jülich, Institut für Kernphysik (Germany); Reinhard, P.-G. [Universität Erlangen-Nürnberg, Institut für Theoretische Physik II (Germany)

    2016-11-15

    A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.

  12. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  13. Phonon emission from self-heating hotspots into He II

    International Nuclear Information System (INIS)

    Schulze, H.-J.; Keck, K.

    1985-01-01

    Self-heating effects in superconducting films or whiskers can produce several hotspots distributed along the sample in the transition range between its superconducting and completely normal state. To obtain information about the temperature distribution along the film in this transition range and the emission of phonons from hotspots into the helium bath, we moved thin carbon filaments close to the film surfaces. By means of the data and the current-voltage characteristics of the films conclusions can be drawn about the number and the size of the hotspots. (author)

  14. Coalescence towards exceptional contours in synthetic phononic media

    DEFF Research Database (Denmark)

    Christensen, Johan

    2016-01-01

    Parity-time symmetric media, also referred to as synthetic media, have been devised in many optical systems with the ground breaking potential to create non-reciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where gain and loss...... are induced via the acousto-electric effect in electrically biased piezoelectric semiconductors. We study how wave attenuation and amplification can be tuned, and when combined, can give rise to phononic synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar...

  15. Band structures in the nematic elastomers phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuai [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); School of Civil Engineering and Architecture, Anyang Normal University, Anyang 455000 (China); Liu, Ying, E-mail: yliu5@bjtu.edu.cn [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China); Liang, Tianshu [Department of Mechanics, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  16. Band structures in the nematic elastomers phononic crystals

    International Nuclear Information System (INIS)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-01-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  17. Electron-phonon coupling in quasi free-standing graphene

    DEFF Research Database (Denmark)

    Christian Johannsen, Jens; Ulstrup, Søren; Bianchi, Marco

    2013-01-01

    Quasi free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene is indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many......-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. Both...

  18. Coupling between the Magnetic Excitations and the Phonons in Praseodymium

    DEFF Research Database (Denmark)

    Jensen, J.

    1976-01-01

    of an external magnetic field applied along an a and a b direction. The magnetic excitations are approximated by pseudo-boson excitations of the spin sub-space, J=4, MJ=0 and +or-1, and the presence of the ions on the cubic sites is neglected. The selection rules deduced agree with experimental observations....... The experimental result for the strength of the exciton-phonon interaction is used in an estimate of the effects of an applied field on the elastic constants of Pr at zero temperature....

  19. Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems

    Science.gov (United States)

    2015-08-20

    cavity (bottom beam of Fig. 1b), allowing for evanescent cou- pling of laser light into and out of the cavity. A single optical fiber taper is used to...couple light into the on- chip coupling waveguide, and a photonic crystal mirror is etched in to the end of the optical coupling waveguide so that light...coupled into the nanobeam cavity can be recollected by the optical fiber taper as per Ref. [36]. Figure 1c shows the band structure of the phonon

  20. Electron hopping and optic phonons in Eu3S4

    International Nuclear Information System (INIS)

    Guentherodt, G.

    1981-01-01

    Raman scattering on single crystals of Eu 3 S 4 does not show the allowed q=o phonon modes in the cubic phase and exhibits no new modes in the distorted low temperature phase (T 2- ions. This mode does not show any anomaly near the charge order -disorder phase transition Tsub(t)=186 K. Temperature tunable spin fluctuations associated with the temperature activated Eu 2+ → Eu 3+ electron hopping are detected in the scattering intensity, superimposed on the usual thermal spin disorder. (author)

  1. Temperature waves and the Boltzmann kinetic equation for phonons

    International Nuclear Information System (INIS)

    Urushev, D.; Borisov, M.; Vavrek, A.

    1988-01-01

    The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs

  2. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    International Nuclear Information System (INIS)

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  3. Effect of Holstein phonons on the electronic properties of graphene

    OpenAIRE

    Stauber, T.; Peres, N. M. R.

    2007-01-01

    We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons within the first Born approximation. This leads to a renormalization of the Fermi velocity of one percent. We further compute the optical conductivity of the system at the Dirac point and at finite doping within the Kubo-formula. We argue that the effects due to Holstein phonons are negligible and that the Boltzmann approach which does not include inter-band transition and can thus not treat optica...

  4. Formation, structure, and phonon confinement effect of nanocrystalline Si1-xGex in SiO2-Si-Ge cosputtered films

    International Nuclear Information System (INIS)

    Yang, Y.M.; Wu, X.L.; Siu, G.G.; Huang, G.S.; Shen, J.C.; Hu, D.S.

    2004-01-01

    Using magnetron cosputtering of SiO 2 , Ge, and Si targets, Si-based SiO 2 :Ge:Si films were fabricated for exploring the influence of Si target proportion (P Si ) and annealing temperature (Ta) on formation, local structure, and phonon properties of nanocrystalline Si 1-x Ge x (nc-Si 1-x Ge x ). At low P Si and Ta higher than 800 deg. C, no nc-Si 1-x Ge x but a kind of composite nanocrystal consisting of a Ge core, GeSi shell, and amorphous Si outer shell is formed in the SiO 2 matrix. At moderate P Si , nc-Si 1-x Ge x begins to be formed at Ta=800 deg. C and coexists with nc-Ge at Ta=1100 deg. C. At high P Si , it was disclosed that both optical phonon frequency and lattice spacing of nc-Si 1-x Ge x increase with raising Ta. The possible origin of this phenomenon is discussed by considering three factors, the phonon confinement, strain effect, and composition variation of nc-Si 1-x Ge x . This work will be helpful in understanding the growth process of ternary GeSiO films and beneficial to further investigations on optical properties of nc-Ge 1-x Si x in the ternary matrix

  5. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  6. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)2]2.

    Science.gov (United States)

    Wang, Lei; Luo, Hubin; Deng, Shenghua; Sun, Ying; Wang, Cong

    2017-12-18

    The well-known idea of "structure determines properties" can be understood profoundly in the case of hexagonal zinc dicyanometalate. Using density functional theory (DFT) calculations, we show the uniaxial negative thermal expansion (NTE) and negative linear compressibility (NLC) properties of Zn[Au(CN) 2 ] 2 . The temperature dependence of phonon frequencies within the quasi-harmonic approximation (QHA) is investigated. The abnormal phonon hardening (frequency increase on heating) is detected in the ranges of 0-225, 320-345, and 410-430 cm -1 , which can be indicative of the unusual physical properties of Zn[Au(CN) 2 ] 2 . Due to the significance of low-energy phonon frequencies in Zn[Au(CN) 2 ] 2 , in this work, the corresponding vibrational mode of the lowest-frequency optical phonon at the zone center is analyzed. The specific topology of a springlike framework that will produce the effects of a compressed spring on heating and an extended spring under hydrostatic pressure is identified and leads to the coexistence of uniaxial-NTE and NLC behaviors in Zn[Au(CN) 2 ] 2 . The distinguishing phonon group velocity along the a axis and c axis facilitates different responses for both the axes under temperature and hydrostatic pressure field. Through an analysis and visualization of the spatial dependence of elastic tensors, it is found that a negative Poisson's ratio (NPR) is presented in all projection planes due to the specific topology.

  7. A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung-sun; Koh, Young Ha; Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)

    2017-06-15

    The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

  8. High efficiency positron moderation

    International Nuclear Information System (INIS)

    Taqqu, D.

    1990-01-01

    A new positron moderation scheme is proposed. It makes use of electric and magnetic fields to confine the β + emitted by a radioactive source forcing them to slow down within a thin foil. A specific arrangement is described where an intermediary slowed-down beam of energy below 10 keV is produced. By directing it towards a standard moderator optimal conversion into slow positrons is achieved. This scheme is best applied to short lived β + emitters for which a 25% moderation efficiency can be reached. Within the state of the art technology a slow positron source intensity exceeding 2 x 10 10 e + /sec is achievable. (orig.)

  9. Interviewing the moderator

    DEFF Research Database (Denmark)

    Traulsen, Janine Morgall; Almarsdóttir, Anna Birna; Björnsdóttir, Ingunn

    2004-01-01

    There has been an upsurge of academic interest in using focus groups (FGs) as a main or stand-alone qualitative method. In this article, the authors introduce a recently developed ancillary method to FGs called interviewing the moderator. The method is employed immediately after an FG and consists...... of a one-on-one interview with the FG moderator by another member of the research team. The authors argue, with reference to a specific study, that interviewing the moderator adds a new and valuable dimension to group interviews used in research. They describe how this method came about and provide...

  10. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2015-01-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron–phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron–phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron–phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work

  11. Anomalous dispersion of optical phonons in La2-xSrxCuO4 at low temperatures

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2001-01-01

    Inelastic neutron scattering measurements of cuprate system show that a discontinuity in dispersion develops in the middle of the highest energy of optical phonon at low temperatures. We present here a microscopic theory to explain the phonon anomaly in doped cuprate system in normal state. Anti-ferromagnetism due to copper moments is introduced in the electronic Hamiltonian. Phonon coupling to the hybridisation between conduction electrons of the system and the doped f-electrons is incorporated. The phonon self energy due to electron-phonon interaction, which involves the electronic density response function, is evaluated explicitly by Zubarev's Green's function technique in finite temperature and small wave vector limit. The temperature dependence of phonon frequency and the anomalous phonon dispersion are calculated numerically and studied by varying the position of the f-level (ε f ), the effective electron-phonon coupling strength (g), staggered field (h), and the hybridisation parameter (V). (author)

  12. On the Boltzmann Equation of Thermal Transport for Interacting Phonons and Electrons

    Directory of Open Access Journals (Sweden)

    Amelia Carolina Sparavigna

    2016-05-01

    Full Text Available The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for phonons and electrons.

  13. Coupled electron-phonon transport from molecular dynamics with quantum baths

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Wang, J. S.

    2009-01-01

    Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi...

  14. Enhanced phonon-assisted photoluminescence in InAs/GaAs parallelepiped quantum dots

    NARCIS (Netherlands)

    Fomin, V.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Koenraad, P.M.; Wolter, J.H.

    2000-01-01

    We analyze the phonon-assisted photoluminescence due to the intraband transitions of an electron between the size-quantized states in rectangular parallelepiped InAs quantum dots ("quantum bricks") embedded into GaAs. The phonon-assisted photoluminescence is strongly enhanced by two processes.

  15. The manifestation of spin-phonon coupling in CaMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Goian, Veronica; Kamba, Stanislav; Borodavka, Fedir; Nuzhnyy, Dmitry; Savinov, Maxim; Belik, A.A.

    2015-01-01

    Roč. 117, č. 16 (2015), "164103-1"-"164103-6" ISSN 0021-8979 R&D Projects: GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : phonons * multiferroics * spin-phonon coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  16. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    Science.gov (United States)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  17. Rigorous bounds on the free energy of electron-phonon models

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel

    1997-01-01

    We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do

  18. Interaction of non-equilibrium phonons with electron-hole plasmas in germanium

    International Nuclear Information System (INIS)

    Kirch, S.J.

    1985-01-01

    This thesis presents results of experiments on the interaction of phonons and photo-excited electron-hole plasmas in Ge at low temperature. The first two studies involved the low-temperature fluid phase known as the electron-hole liquid (EHL). The third study involved a wider range of temperatures and includes the higher temperature electron-hole plasma (EHP). In the first experiment, superconducting tunnel junctions are used to produce quasi-monochromatic phonons, which propagate through the EHL. The magnitude of the absorption of these non-equilibrium phonons gives a direct measure of the coupling constant, the deformation potential. In the second experiment, the nonequilibrium phonons are generated by laser excitation of a metal film. An unusual sample geometry allows examination of the EHL-phonon interaction near the EHL excitation surface. This coupling is examined for both cw and pulsed EHL excitation. In the third experiment, the phonons are byproducts of the photo-excited carrier thermalization. The spatial, spectral and temporal dependence of the recombination luminescence is examined. A phonon wind force is observed to dominate the transport properties of the EHL and the EHP. These carriers are never observed to move faster than the phonon velocity even during the laser pulse

  19. Electron and phonon drag in thermoelectric transport through coherent molecular conductors

    DEFF Research Database (Denmark)

    Lü, Jing-Tao; Wang, Jian-Sheng; Hedegård, Per

    2016-01-01

    We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Green's function method. We focus on the mutual drag between electron and phonon transport as a result of ‘momentum’ transfer, which happens only when...

  20. Parylene-C microfibrous thin films as phononic crystals

    Science.gov (United States)

    Chindam, Chandraprakash; Lakhtakia, Akhlesh; Awadelkarim, Osama O.

    2017-07-01

    Phononic bandgaps of Parylene-C microfibrous thin films ( μ\\text{FTF} s) were computationally determined by treating them as phononic crystals comprising identical microfibers arranged either on a square or a hexagonal lattice. The microfibers could be columnar, chevronic, or helical in shape, and the host medium could be either water or air. All bandgaps were observed to lie in the 0.01-162.9-MHz regime, for microfibers of realistically chosen dimensions. The upper limit of the frequency of bandgaps was the highest for the columnar μ\\text{FTF} and the lowest for the chiral μ\\text{FTF} . More bandgaps exist when the host medium is water than air. Complete bandgaps were observed for the columnar μ\\text{FTF} with microfibers arranged on a hexagonal lattice in air, the chevronic μ\\text{FTF} with microfibers arranged on a square lattice in water, and the chiral μ\\text{FTF} with microfibers arranged on a hexagonal lattice in either air or water. The softness of the Parylene-C μ\\text{FTF} s makes them mechanically tunable, and their bandgaps can be exploited in multiband ultrasonic filters.