WorldWideScience

Sample records for moderated nuclear research

  1. Moderator for nuclear reactor

    International Nuclear Information System (INIS)

    Milgram, M.S.; Dunn, J.T.; Hart, R.S.

    1995-01-01

    This invention relates to a moderator for a nuclear reactor and more specifically, to a composite moderator. A moderator is designed to slow down, or thermalize, neutrons which are released during nuclear reactions in the reactor fuel. Pure or almost pure materials like light water, heavy water, beryllium or graphite are used singly as moderators at present. All these materials, are used widely. Graphite has a good mechanical strength at high temperatures encountered in the nuclear core and therefore is used as both the moderator and core structural material. It also exhibits a low neutron-capture cross section and high neutron scattering cross section. However, graphite is susceptible to attach by carbon dioxide and/or oxygen where applicable, and releases stress energy under certain circumstances, although under normal operating conditions these reactions can be controlled. (author). 1 tab

  2. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  3. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  4. Nuclear data generation for cryogenic moderators and high temperature moderators

    International Nuclear Information System (INIS)

    Petriw, Sergio

    2007-01-01

    The commonly used processing codes for nuclear data only allow the generation of cross section data for a limited number of materials and physical conditions.At present, one of the most used computer codes for the generation of neutron cross sections is N J O Y, which is based on a phonon expansion of the scattering function starting from the frequency spectrum.Therefore, the information related to the system's density of states is crucial to produce the required data of interest. In this work the formalism of the Synthetic Model for Molecular Solids (S M M S) was implemented, which is in turn based on the Synthetic Frequency Spectrum (S F S) concept.The synthetic spectrum is central in the present work, and it is built from simple, relevant parameters of the moderator, thus conforming an alternative tool when no information on the actual frequency spectrum of the moderator material is available.S F S 's for several material of interest where produced in this work, for both cryogenic and high temperature moderators.We studied some materials of special interest, like solid methane, ice, methyl clathrate and two which are of special interest in the nuclear industry: graphite and beryllium.The libraries generated in the present work for the materials considered, in spite of their synthetic origin, are able to produce results that are even in better agreement with available information [es

  5. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    Energy Technology Data Exchange (ETDEWEB)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M., E-mail: sobolevs@inr.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ilic, R. D. [Vinca Institute of Nuclear Sciences (Serbia)

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  6. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    International Nuclear Information System (INIS)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilić, R. D.

    2013-01-01

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10 3 to 10 4 times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts—in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  7. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  8. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  9. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  12. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  16. Mediators and moderators in early intervention research.

    Science.gov (United States)

    Breitborde, Nicholas J K; Srihari, Vinod H; Pollard, Jessica M; Addington, Donald N; Woods, Scott W

    2010-05-01

    The goal of this paper is to provide clarification with regard to the nature of mediator and moderator variables and the statistical methods used to test for the existence of these variables. Particular attention will be devoted to discussing the ways in which the identification of mediator and moderator variables may help to advance the field of early intervention in psychiatry. We completed a literature review of the methodological strategies used to test for mediator and moderator variables. Although several tests for mediator variables are currently available, recent evaluations suggest that tests which directly evaluate the indirect effect are superior. With regard to moderator variables, two approaches ('pick-a-point' and regions of significance) are available, and we provide guidelines with regard to how researchers can determine which approach may be most appropriate to use for their specific study. Finally, we discuss how to evaluate the clinical importance of mediator and moderator relationships as well as the methodology to calculate statistical power for tests of mediation and moderation. Further exploration of mediator and moderator variables may provide valuable information with regard to interventions provided early in the course of a psychiatric illness.

  17. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  18. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  19. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  20. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  1. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  2. Moderator inlet line hanger replacement for Pickering nuclear power station

    International Nuclear Information System (INIS)

    Kirkpatrick, R.A.; Bowman, J.M.; Symmons, W.R.; El-Nesr, S.

    1988-01-01

    Ontario Hydro's Pickering Nuclear Generating Station (PNGS), Units 1 and 2 were shutdown for large scale fuel channel replacement. Other nonroutine inspection and maintenance activities were performed to determine the overall condition of the units and it was seen that a moderator inlet line hanger (identified as HR-29) had failed in both units. Subsequent inspections during planned maintenance outages of Pickering NGS Units 3 and 4 revealed that hanger HR-29 had failed and required replacement. A research program was conducted to find a suitable technique. These problems included accessing tooling through small inspection ports, manipulating tooling from a significant distance and the high radiation fields within the vault. This paper describes the program undertaken to replace hanger HR-29. (author)

  3. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  4. Physical particularities of nuclear reactors using heavy moderators of neutrons

    International Nuclear Information System (INIS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-01-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using "2"3"3U as a fissile nuclide and "2"3"2Th and "2"3"1Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  5. Physical particularities of nuclear reactors using heavy moderators of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  6. Integrating Mediators and Moderators in Research Design

    Science.gov (United States)

    MacKinnon, David P.

    2011-01-01

    The purpose of this article is to describe mediating variables and moderating variables and provide reasons for integrating them in outcome studies. Separate sections describe examples of moderating and mediating variables and the simplest statistical model for investigating each variable. The strengths and limitations of incorporating mediating…

  7. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  8. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  9. Nuclear calculation methods for light water moderated reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1961-02-01

    This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)

  10. Mediator and moderator effects in developmental and behavioral pediatric research.

    Science.gov (United States)

    Rose, Brigid M; Holmbeck, Grayson N; Coakley, Rachael Millstein; Franks, Elizabeth A

    2004-02-01

    The terms mediation and moderation are defined and clarified with particular emphasis on the role of mediational and moderational analyses in developmental and behavioral pediatric research. The article highlights the applicability of mediational and moderational analyses to longitudinal, intervention, and risk and protective factor research, and it provides basic information about how these analyses might be conducted. Also included is a discussion of various ways that both mediator and moderator variables can be incorporated into a single model. The article concludes with extended examples of both types of analyses using a longitudinal pediatric study for illustration. The article provides recommendations for applying mediational and moderational research in clinical practice.

  11. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  12. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  13. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  14. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 5. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    In recent years, Georgia Institute of Technology (Georgia Tech) has been involved in a number of neutron dosimetry research projects. Several reference neutron fields are now available for such projects. They are all based on the use of a 252 Cf source. The source can be used by itself to create a reference un-moderated 252 Cf neutron field, or it can be placed inside several different moderating assemblies. The spectra created by placing the source inside these assemblies and the un-moderated source are employed to investigate detector and dosimeter responses. Currently, the set of moderators available includes a 30-cm diam cadmium-covered D 2 O spherical shell, a 30-cm-thick iron spherical shell, a 30-cm-diam polyethylene spherical shell, an 18.3-cm-thick tungsten spherical shell, a 16-cm-thick lead spherical shell, and a 9-cm-thick tantalum spherical shell. In addition, the 252 Cf source can be placed inside a neutron howitzer recently constructed at Georgia Tech. The howitzer is a WEP cylinder loaded with boron that has a 10.16-cm-diam cylindrical opening. When the source is placed in the cylindrical penetration of the howitzer, a neutron field ∼30 cm in diameter is created at a distance of 50 cm from the californium source. Over the last few years, Bonner sphere spectrometers using LiI(Eu) scintillators and LiF thermoluminescence dosimeters have been calibrated using this facility at Georgia Tech. Recently, the Neely Nuclear Research Center (NNRC) acquired an LB 6411 neutron probe (product of EG and G Berthold). This probe is designed to measure ambient dose equivalent in accordance with International Commission on Radiological Protection Publication 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diam spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV (Ref. 5). As a test of the instrument's ability to measure ambient

  15. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  16. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  17. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  18. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  19. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  20. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    prior to the beginning of the course was of particular value. Interesting scientific visits and demonstrations at the Isotope Institute and at the Central Research Institute for Physics (IFKI), both of the Hungarian Academy of Sciences, were also arranged. During the Study Tour at the Central Institute for Nuclear Research in Rossendorf near Dresden, German Democratic Republic, the participants had the opportunity to observe the organization of a 10 MW nuclear reactor where radioisotopes and radiopharmaceuticals are produced on a commercial scale. Lectures were delivered by local scientists on some of their programmes in applied research in solid state physics and material sciences. At the Technical University of Dresden, the group visited the homogeneous solid-moderated zero-power training reactor (AKR), primarily dedicated to nuclear education and training. Studies on different theoretical and experimental aspects of radiation protection (solid state nuclear track and thermoluminescent detectors) are also being carried out. The last day of the Study Tour was devoted to a visit to the College for Advanced Technology at Zittau, where a training reactor with a power of a few watts has been recently installed. (author)

  1. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  2. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  3. Calculation of fuel and moderator temperature coefficients in APR1400 nuclear reactor by MVP code

    International Nuclear Information System (INIS)

    Pham Tuan Nam; Le Thi Thu; Nguyen Huu Tiep; Tran Viet Phu

    2014-01-01

    In this project, these fuel and moderator temperature coefficients were calculated in APR1400 nuclear reactor by MVP code. APR1400 is an advanced water pressurized reactor, that was researched and developed by Korea Experts, its electric power is 1400 MW. The neutronics calculations of full core is very important to analysis and assess a reactor. Results of these calculation is input data for thermal-hydraulics calculations, such as fuel and moderator temperature coefficients. These factors describe the self-safety characteristics of nuclear reactor. After obtaining these reactivity parameters, they were used to re-run the thermal hydraulics calculations in LOCA and RIA accidents. These thermal-hydraulics results were used to analysis effects of reactor physics parameters to thermal hydraulics situation in nuclear reactors. (author)

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  5. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  6. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  7. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  8. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  9. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  10. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  11. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  12. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  13. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  14. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  15. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  16. Nuclear Stewardship Research

    International Nuclear Information System (INIS)

    C.W. Beausang

    2006-01-01

    This report covers the period from June 2005 through May 2006. During this, the third year of our program, our research has focused mainly on applying the surrogate reaction technique and our newly developed surrogate ratio method to deduce neutron induced fission cross sections on uranium nuclei. The year has been marked by continued scientific progress, by the arrival of new personnel, by a growth in the numbers of students working in the group and by a continuation of our experimental program and close collaboration with staff and scientists from Lawrence Livermore National Laboratory and from Lawrence Berkeley National Laboratory

  17. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  18. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  19. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  20. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  1. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  2. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  3. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  5. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  6. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  7. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  8. The liquid hydrogen moderator at the NIST research reactor

    International Nuclear Information System (INIS)

    Williams, Robert E.; Rowe, J. Michael; Kopetka, Paul

    1997-09-01

    In 1995, the NIST research reactor was shut down for a number of modifications, including the replacement of the D 2 O cold neutron source with a liquid hydrogen moderator. When the liquid hydrogen source began operating, the flux of cold neutrons increased by a factor of six over the D 2 O source. The design and operation of the hydrogen source are described, and measurements of its performance are compared with the Monte Carlo simulations used in the design. (auth)

  9. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  10. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  11. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  12. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  13. Nuclear Research and Society: Introduction

    International Nuclear Information System (INIS)

    Meskens, G.

    2007-01-01

    Throughout the last decades, the ever growing use of technology in our society has brought along the need to reflect on the related impact on the ecosystem and on society as such. There is growing evidence that the complexity of issues of risk governance and ethics coming with applications of nuclear technology, fossil fuels, human cloning and genetically modified crops cannot be tackled by pure rational technological and economical reasoning alone. In order to provide an answer to the concerns of civil society, this complexity needs a transdisciplinary approach, taking into account social and ethical aspects. Starting from the insight that a full understanding of the benefits and risks of applications of radioactivity and nuclear technology requires also an understanding of the context of application and a sense for the social and ethical aspects of the situation, SCK-CEN started in 1999 with its PISA research programme (Programme of Integration of Social Aspects into nuclear research). The aim of the research was (and still is) to give the nuclear researchers more insight into the complex social and ethical aspects of nuclear applications and to shed at the same time new lights on how to organise in a more effective way the dialogue and interaction with civil society. Originally, the programme was set up along thematic research tracks, involving nuclear scientists, engineers, philosophers and social scientists, and focussing on specific projects carried out by way of PhD- or post-doc research in cooperation with universities. The research tracks focussed on themes such as Sustainability and nuclear development, Transgenerational ethics of radioactive waste management, Legal aspects and liability, Risk governance and Expert culture. In addition to this thematic research, PISA organised reflection groups in interaction with universities, authorities and private actors. These interdisciplinary discussion sessions aimed to exchange knowledge and views on typical

  14. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  15. Fissile fuel assembly for a sub-moderated nuclear reactor

    International Nuclear Information System (INIS)

    Millot, J.P.; Dejeux, Pol.; Alibran, Patrice.

    1983-01-01

    Each of the core assemblies is composed of a prismatic case made of a neutron absorbing material, inside which very long rods containing the fissile material are arranged parallel to the height of the case and according to a regular network in the straight sections of the case. At least one piece in a fertile material exposed to the neutrons emitted by the fissile material of the assembly is arranged on each one of the side faces of the case. The invention applies in particular to sub-moderated reactors, cooled and moderated by pressurized water [fr

  16. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  17. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  18. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  19. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  20. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  1. Research and development on reduced-moderation light water reactor with passive safety features (Contract research)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Akie, Hiroshi; Kugo, Teruhiko; Yonomoto, Taisuke; Kureta, Masatoshi; Ishikawa, Nobuyuki; Nagaya, Yasunobu; Araya, Fumimasa; Okajima, Shigeaki; Okumura, Keisuke; Suzuki, Motoe; Mineo, Hideaki; Nakatsuka, Toru

    2004-06-01

    The present report contains the achievement of 'Research and Development on Reduced-moderation Light Water Reactor with Passive Safety Features', which was performed by Japan Atomic Energy Research Institute (JAERI), Hitachi Ltd., Japan Atomic Power Company and Tokyo Institute of Technology in FY2000-2002 as the innovative and viable nuclear energy technology (IVNET) development project operated by the Institute of Applied Energy (IAE). In the present project, the reduced-moderation water reactor (RMWR) has been developed to ensure sustainable energy supply and to solve the recent problems of nuclear power and nuclear fuel cycle, such as economical competitiveness, effective use of plutonium and reduction of spent fuel storage. The RMWR can attain the favorable characteristics such as high burnup, long operation cycle, multiple recycling of plutonium (Pu) and effective utilization of uranium resources based on accumulated LWR technologies. Our development target is 'Reduced-moderation Light Water Reactor with Passive Safety Features' with innovative technologies to achieve above mentioned requirement. Electric power is selected as 300 MWe considering anticipated size required for future deployment. The reactor core consists of MOX fuel assemblies with tight lattice arrangement to increase the conversion ratio. Design targets of the core specification are conversion ratio more than unity, negative void reactivity feedback coefficient to assure safety, discharged burnup more than 60 GWd/t and operation cycle more than 2 years. As for the reactor system, a small size natural circulation BWR with passive safety systems is adopted to increase safety and reduce construction cost. The results obtained are as follows: As regards core design study, core design was performed to meet the goal. Sequence of startup operation was constructed for the RMWR. As the plant design, plant system was designed to achieve enhanced economy using passive safety system effectively. In

  2. Proposed American National Standard ANS 8.22: Nuclear criticality safety based on limiting and controlling moderators

    International Nuclear Information System (INIS)

    Bullington, J.S.

    1996-01-01

    This proposed standard features guidance for dealing with the combination of fissile material and moderators in moderator control areas. The main points include nuclear criticality safety practices, encompassing administrative practices and process evaluations, and engineering practices, encompassing moderator control area barriers, equipment and containers, penetrations, fire prevention and suppression, and active engineered controls. Four appendixes follow the standard; the subject of these appendixes are typical moderating materials, potential sources of moderators, moderator control measurements, and engineered barriers to control moderators

  3. Gordon Conference on Nuclear Research

    International Nuclear Information System (INIS)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei

  4. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1982-01-01

    Research progress on the following subjects is summarized: (1) first and second order contributions to two-neutron transfer, (2) proximity potential in coupled-channel calculations, (3) spin-dependent interactions in heavy ion reactions, (4) nuclear field theory and standard Goldstone perturbation theory, (5) effective operators with potential from meson theory, (6) microscopic study of the 3 He(α,γ) 7 Be electric-dipole capture reaction, and (7) influence of target clustering on internuclear antisymmetrization. Project proposals are reviewed and publications are listed

  5. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  6. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  7. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  8. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  9. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  10. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  11. Effect of 3-D moderator flow configurations on the reactivity of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Zadeh, Foad Mehdi; Etienne, Stephane; Chambon, Richard; Marleau, Guy; Teyssedou, Alberto

    2017-01-01

    Highlights: • 3-D CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • The interaction between moderator temperatures with reactivity is determined. - Abstract: The reactivity of nuclear reactors can be affected by thermal conditions prevailing within the moderator. In CANDU reactors, the moderator and the coolant are mechanically separated but not necessarily thermally isolated. Hence, any variation of moderator flow properties may change the reactivity. Until now, nuclear reactor calculations have been performed by assuming uniform moderator flow temperature distribution. However, CFD simulations have predicted large time dependent flow fluctuations taking place inside the calandria, which can bring about local temperature variations that can exceed 50 °C. This paper presents robust CANDU 3-D CFD moderator simulations coupled to neutronic calculations. The proposed methodology makes it possible to study not only different moderator flow configurations but also their effects on the reactor reactivity coefficient.

  12. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  13. Fuel enrichment reduction for heavy water moderated research reactors

    International Nuclear Information System (INIS)

    McCulloch, D.B.

    1984-01-01

    Twelve heavy-water-moderated research reactors of significant power level (5 MW to 125 MW) currently operate in a number of countries, and use highly enriched uranium (HEU) fuel. Most of these reactors could in principle be converted to use uranium of lower enrichment, subject in some cases to the successful development and demonstration of new fuel materials and/or fuel element designs. It is, however, generally accepted as desirable that existing fuel element geometry be retained unaltered to minimise the capital costs and licensing difficulties associated with enrichment conversion. The high flux Australian reactor, HIFAR, at Lucas Heights, Sydney is one of 5 Dido-class reactors in the above group. It operates at 10 MW using 80% 235 U HEU fuel. Theoretical studies of neutronic, thermohydraulic and operational aspects of converting HIFAR to use fuels of reduced enrichment have been made over a period. It is concluded that with no change of fuel element geometry and no penalty in the present HEU fuel cycle burn-up performance, conversion to MEU (nominally 45% 235 U) would be feasible within the limits of current fully qualified U-Al fuel materials technology. There would be no significant, adverse effects on safety-related parameters (e.g. reactivity coefficients) and only small penalties in reactor flux. Conversion to LEU (nominally 20% 235 U) a similar basis would require that fuel materials of about 2.3 g U cm -3 be fully qualified, and would depress the in-core thermal neutron flux by about 15 per cent relative to HEU fuelling. In qualitative terms, similar conclusions would be expected to hold for a majority of the above heavy water moderated reactors. (author)

  14. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1991-10-01

    The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas

  16. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  17. Studies on gadolinium precipitation in moderator system of nuclear reactor

    International Nuclear Information System (INIS)

    Joshi, Akhilesh C.; Rajesh, Puspalata; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Gadolinium is used in the moderator system of many Pressurised Heavy Water Reactors (PHWRs) for start-up, shut-down and reactivity control during operation. It is very much essential to maintain gadolinium concentration in the system as desired. It has been reported that gadolinium gets precipitated in as oxalate in carbonated water under the influence of γ-radiation. Hence, studies were carried out to investigate the effect of dose, presence of other metal ions and metal surfaces on the precipitation of gadolinium. The results showed that the amount of carboxylic acids viz., formic acid and oxalic acid, formed due to radiolysis is dependent on the dose and that the curve passes though a maxima. Gadolinium is added in higher concentration in Advanced Heavy Water Reactor. So, experiments with high concentration of gadolinium were also carried out. Ultra pure water saturated with high purity CO 2 containing gadolinium and desired ion/surface was irradiated with γ-radiation from 60 Co source at 25°C to doses ranging from 2.5-16.6 Mrad. At lower doses, formation of carboxylic acids takes place but as the dose increases, decomposition of these acids starts and hence the concentration Vs dose passes through a maximum. It was found that precipitation of gadolinium as oxalate occurred at lower doses. At higher doses, it was seen that pH of the solution decreases and hence solubility of gadolinium oxalate increases. It was also observed that the amount of gadolinium precipitated varied linearly with the initial concentration of gadolinium varying from 2 ppm to 20 ppm. While for gadolinium concentration from 20 ppm to 400 ppm, gadolinium in particulate form was observed. The amount of carboxylic acids formed depends on the nature of cations present in solution. It was found that the amount of oxalic acid formed in the case of gadolinium was more than that formed in the case of sodium. Presence of metal oxides such as ZrO 2 formed over zircoloy surfaces was found to

  18. Research on the Moderate Scale Operation of Food

    Institute of Scientific and Technical Information of China (English)

    Junying; WEI; Qing; YU

    2015-01-01

    Ensuring food security has always been an important and enduring strategic project. However,the contradiction between a large population and little land,the shortcomings of the household contract responsibility system and the current rapid development of industrialization and urbanization,make problems concerning farming increasingly prominent. To build a new agriculture business entity,the development of agricultural moderate scale operation is imperative. Based on this,this paper analyzes the insecure moderate scale of food and the impact of moderate scale operation of food,and puts forth recommendations for promoting moderate scale operation of food.

  19. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  20. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  1. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  2. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  3. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  4. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  5. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  6. Research on Reduced-Moderation Water Reactor (RMWR)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from 238 U to 239 Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  7. Research on Reduced-Moderation Water Reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  8. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  9. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  10. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  11. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  12. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  13. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  14. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi.

    1990-10-01

    The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  16. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  17. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  18. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  19. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  20. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  1. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  2. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  3. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  4. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  5. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  6. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  7. Testing Moderator and Mediator Effects in Counseling Psychology Research

    Science.gov (United States)

    Frazier, Patricia A.; Tix, Andrew P.; Barron, Kenneth E.

    2004-01-01

    The goals of this article are to (a) describe differences between moderator and mediator effects; (b) provide nontechnical descriptions of how to examine each type of effect, including study design, analysis, and interpretation of results; (c) demonstrate how to analyze each type of effect; and (d) provide suggestions for further reading. The…

  8. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  9. Nuclear Research Institute Rez view

    International Nuclear Information System (INIS)

    Biza, K.; Pazdera, F.; Vasa, I.; Zdarek, J.

    2004-01-01

    In this presentation author deals with the present state and perspectives of nuclear energy in the Czech Republic and in the Slovak Republic. It is concluded that lifetime extension and finalization of Mochovce NPP Units 3 and 4 is the cheapest solution for base load production of electricity and is in line with the European union energy challenges: - decrease of carbon dioxide emissions; dependence on energy sources from politically unstable regions; decrease import dependence on energy sources. Nuclear energy is one of important sources for long term sustainability in energy. GEN IV is successful with meet the new requirements after 2025. We should participate on this long term development effort

  10. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  11. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  12. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  13. Research of nuclear fragmentation characteristics

    International Nuclear Information System (INIS)

    Richert, J.

    1989-01-01

    Motivations for the study of nuclear fragmentation are presented. Different models and methods which were developed in the past are reviewed, critically discussed and confronted in connection with the experimental information gathered over the past years. Specific aspects related to the onset of the process, its characteristics and the mechanism which governs it are discussed [fr

  14. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Liu, Keh-Fei.

    1989-01-01

    This paper discusses: the role of nuclear binding in EMC effect; skyrmion quantization and phenomenology; lattice gauge Monte Carlo calculations; identification of tensor glueball; evidence of mesoniums in bar pm annihilation and γγ reactions; Skyrme-Landau parameterization of effective NN interactions; and quark-gluon plamsa

  15. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  16. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  17. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  18. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  19. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  20. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  1. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F.

    2015-01-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW e and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k eff = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  2. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  3. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  4. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  5. Planning and implementation of nuclear research programmes

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1986-01-01

    The planning and implementation of nuclear research programmes in developed and developing countries is discussed. The main aspects of these programmes in USA, France, Japan, India and Brazil are reported. (M.W.O.) [pt

  6. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  7. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  8. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  9. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1993-06-01

    The University of Massachusetts (UMass) Nuclear Physics Program continues to concentrate upon the use of the electromagnetic interaction in a joint experimental and theoretical approach to the study of nucleon and nuclear properties. During the past year the activities of the group involved data analysis, design and construction of equipment, planning for new experiments, completion of papers and review articles for publication, writing of proposals for experiments, but very little actual data acquisition. Section II.A. described experiments at Bates Linear Accelerator Center. They include the following: electrodisintegration of deuteron; measurement of the elastic magnetic form factor of 3 He; coincidence measurement of the D(e,e'p) cross section; transverse form factors of 117 Sn; ground state magnetization density of 89 Y; and measurement of the 5th structure function in deuterium and 12 C. Section II.B. includes the following experiments at Stanford Linear Accelerator Center: deuteron threshold electrodisintegration; separation of charge and magnetic form factors of the neutron and proton; measurement of the X-, Q 2 , and A-dependence of R = σ L /σ T ; and analysis of 14.5 GeV electrons and positions scattered from gases in the PEP Storage Ring. Section III.C. includes the following experiments at NIKHEF and Lund: complementary studies of single-nucleon knockout and single-nucleon wave functions using electromagnetic interactions and single-particle densities of sd-shell nuclei. Section II.D. discusses preparations for future work at CEBAF: electronics for the CLAS region 1 drift chamber Section III. includes theoretical work on parity-violating electron scattering and nuclear structure

  10. Nuclear methods in coal research

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1980-01-01

    Nuclear methods, particularly neutron activation analysis (NAA) provide useful information about elemental constituents in coal and fly ash, but often other techniques are required to supplement NAA data. Spark source mass spectrometry and atomic absorption have been studied as methods for determination of certain elements in coal that are not easily measured by NAA. In work concerned with the chemical speciation of elements in fly ash, a number of analytical techniques have been used; these include NAA, chemical etching and separation, optical and electron microscopy and x-ray diffraction

  11. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  12. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  13. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  14. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1992-08-01

    This report discusses the following topics; studies of light-charged-particle emission from fission and er reactions in the system 344-MeV 28 Si+ 121 Sb → 149 Tb; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; improvements in interactive data analysis and graphical representations; studies of the reaction 856-MeV 98 Mo + 51 V→ 149 Tb(E*=224-MeV): emission of intermediate-mass fragments; particle-particle correlations in compound nucleus reactions: preliminary consideration of lifetime estimates from small angle data; light particle emission studies using a new scintillator array; statistical evaporation calculations: developments with the computer codes LILITA-N90 and CASCADE; star collaboration studies: simulations for the conceptual design of the STAR detector system at RHIC; asymmetric fission of 149Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; and charged-particle evaporation from hot composite nuclei: evidence over a broad z range for distortions from cold nuclear profiles

  15. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  16. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  17. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  18. Research method of nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao An'na; Sun Chenglin; Wang Lei; You Xinfeng

    2010-01-01

    When faced with a huge amount of nuclear patent information, the key to effective research include: (1) Choose convenient way to search, quick access to nuclear technology related patents; (2) To overcome the language barrier, analysis the technical content of patent information; (3) Organize the publication date of retrieved patent documents, analysis the status and trends of nuclear technology development; (4) Research the patented technology of main applicants; (5) Always pay attention to the legal status of patent information, free use the invalid patents, at the same time avoid the patent infringement. Summary, patent information is important to obtain the latest technical information source, and the research work of patent information is a comprehensive understanding and mastery way for advanced nuclear technology. (authors)

  19. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  20. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  1. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  2. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  3. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  4. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  5. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  6. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan

    2011-01-01

    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics http://www.ipp.cas.cz/Tokamak/clanky/energetika_COMPASS.pdf

  7. Nuclear medicine. Medical technology research

    International Nuclear Information System (INIS)

    Lerch, H.; Jigalin, A.

    2005-01-01

    Aim, method: the scientific publications in the 2003 and 2004 issues of the journal Nuklearmedizin were analyzed retrospectively with regard to the proportion of medical technology research. Results: out of a total of 73 articles examined, 9 (12%) were classified as medical technology research, that is, 8/15 of the original papers (16%) and one of the case reports (5%). Of these 9 articles, 44% (4/9) focused on the combination of molecular and morphological imaging with direct technical appliance or information technology solutions. Conclusion: medical technology research is limited in the journal's catchment area. The reason for this is related to the interdependency between divergent development dynamics in the medical technology industry's locations, the many years that the area of scintigraphic technology has been underrepresented, research policy particularly in discrepancies in the promotion of molecular imaging and a policy in which health is not perceived as a predominantly good and positive economic factor, but more as a curb to economic development. (orig.)

  8. The situation of nuclear research in Brazil

    International Nuclear Information System (INIS)

    Alves, R.N.

    1989-04-01

    In order to understand the nuclear research situation in Brazil, one must examine the historical facts and their political, economical and social dimensions. In the first part of this work, the international aspects of the nuclear area and the corresponding measures adopted in Brazil are examined. The reasons that caused the country to adopt the current development model are presented. A proposal that will permit Brazil to develop and use nuclear energy in the way it wants and not as it might be imposed is presented. 4 tabs

  9. Verification of codes used for the nuclear safety assessment of the small space heterogeneous reactors with zirconium hydride moderator

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Gomin, E.A.; Kompaniets, G.V.

    1994-01-01

    Computer codes used for assessment of nuclear safety for space NPP are compared taking as an example small-sized heterogeneous reactor with zirconium hydride moderator of the Topaz-2 facility. The code verifications are made for five different variants

  10. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T 20 experiment, the UMass group was able to complete data acquisition on experiments involving 180 degrees elastic magnetic scattering on 117 Sn and 41 Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e') measurements were made in November of 1987 on 10 B in order to better determine the p 3/2 wave function from the transition from the J pi = 3 + ground state to the O + excited state at 1.74 MeV. In 1988, (e,e'p) coincidence measurements on 10 B were completed. The objective was to obtain information on the p 3/2 wave function by another means

  11. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  12. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  13. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  14. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  15. The NJOY Nuclear Data Processing System: Volume 3, The GROUPR, GAMINR, and MODER modules

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Muir, D.W.

    1987-10-01

    The NJOY Nuclear Data Processing System is a comprehensive computer code package for producing pointwise and multigroup cross sections and related quantities from ENDF/B-IV, V, or VI evaluated nuclear data. A concise description of the code system and references to the ancestors of NJOY are given in Vol. 1 of this report. This volume describes the GROUPR module, which produces multigroup neutron interaction cross sections and group-to-group production cross sections for neutrons and photons; the GAMINR module, which produces multigroup photon-interaction cross sections and group-to-group matrices; and the MODER module, which converts ENDF/B and NJOY interface files back and forth between formatted (i.e., BCD, ASCII) and binary modes and performs several associated editing functions. 34 refs., 13 figs

  16. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  17. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  18. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  19. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  20. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  1. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  2. Assessments of conditioned radioactive waste arisings from existing and committed nuclear installations and assuming a moderate growth in nuclear electricity generation - June 1985

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Goodill, D.R.; Tymons, B.J.

    1985-03-01

    This report describes an assessment of conditioned radioactive waste arisings from existing and committed nuclear installations, DOE Revised Scheme 1, and from an assumed nuclear power generation scenario, DOE Revised Scheme 3, representing a moderate growth in nuclear generation. Radioactive waste arise from 3 main groups of installations and activities: i. existing and committed commercial reactors; ii. fuel reprocessing plants, iii. research, industrial and medical activities. Stage 2 decommissioning wastes are considered together with WAGR decommissioning and the 1983 Sea Dump Consignment. The study uses the SIMULATION 2 code which models waste material flows through a system of waste treatment and packaging to disposal. With a knowledge of the accumulations and average production rates of untreated wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data for the inventory calculations have previously been documented. Some recent revisions and assumptions concerning future operation of nuclear facilities are presented in this report. (author)

  3. Status of research and development on reduced-moderation water reactors

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    2002-01-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  4. Status of research and development on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    To improve uranium utilization, a design study of the Reduced-Moderation Water Reactor (RMWR) has been carried out intensively since 1998 at the Japan Atomic Energy Research Institute (JAERI). In this reactor, the nuclear fission reaction is designed to be realized mainly by high energy neutrons. To achieve this, the volume of water used to cool the fuel rods is decreased by reducing the gap width between the fuel rods. Conversion ratio greater than 1.0 is expected whether the core i-s cooled by boiling water or pressurized water and whether the core size is small or large. Status of the RMWR design is reviewed and planning of R and D for future deployment of this reactor after 20-20 is presented. To improve economics of this reactor, development of fuel cans for high burnup and low-cost reprocessing technology of mixed oxide spect fuels are highly needed. R and D has been conducted under the cooperation with utilities, industry, research organization and academia. (T. Tanaka)

  5. Medium energy nuclear physics research

    International Nuclear Information System (INIS)

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1991-06-01

    This report discusses research conducted on the following topics: transverse from factors of 117 Sn; elastic magnetic electron scattering from 13 C at Q 2 = 1 GeV 2 /c 2 ; a re-analysis of 13 C elastic scattering; deuteron threshold electrodisintegration; measurement of the elastic magnetic form factor of 3 He at high momentum transfer; coincidence measurement of the D(e,e'p) cross-section at low excitation energy and high momentum transfer; measurement of the quadrupole contribution to the N → Δ excitation; measurement of the x-, Q 2 -, and A-dependence of R = σ L /σ T ; the PEGASYS project; PEP beam-gas event analysis; plans for other experiments at SLAC: polarized electron scattering on polarized nuclei; experiment PR-89-015: study of coincidence reactions in the dip and delta-resonance regions; experiment PR-89-031: multi-nulceon knockout using the CLAS detector; drift chamber tests; a memorandum of understanding and test experiments; photoprotons from 10 B; and hadronic electroproduction at LEP

  6. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  7. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  8. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  9. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  10. Parametric studies of target/moderator configurations for the Weapons Neutron Research (WNR) facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Seeger, P.A.; Fluharty, R.G.

    1977-03-01

    Parametric studies, using continuous-energy Monte Carlo codes, were done to optimize the neutronics of the Weapons Neutron Research (WNR) target and three possible target/moderator configurations: slab target/slab moderators, cylindrical target/cylindrical moderator, and cylindrical target/double-wing moderators. The energy range was 0.5 eV to 800 MeV. A general figure-of-merit (FOM) approach was used. The WNR facility performance can be doubled or tripled by optimizing the target and target/moderator configurations; this approach is more efficient than increasing the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator power by an equivalent factor. A bare target should be used for neutron energies above approximately 100 keV. The FOM for the slab target/slab moderator configuration is the best by a factor of at least 2 to 3 below approximately 1 keV. The total neutron leakage from 0.5 eV to 100 keV through a 100- by 100-mm area centered at the peak leakage is largest for the slab moderator, exceeding that of the cylindrical moderator and double-wing moderator by factors of 1.7 and 3.4, respectively. The neutron leakage at 1 eV from one 300- by 150-mm surface of a slab moderator is 1.5 times larger than that from one 155- by 150-mm surface of a cylindrical moderator. When compared with the 1-eV leakage from two 100- by 150-mm surfaces of a double-wing moderator, that from the slab moderator is 3.4 times larger. 107 figures, 13 tables

  11. On Moderator Detection in Anchoring Research: Implications of Ignoring Estimate Direction

    Directory of Open Access Journals (Sweden)

    Nathan N. Cheek

    2018-05-01

    Full Text Available Anchoring, whereby judgments assimilate to previously considered standards, is one of the most reliable effects in psychology. In the last decade, researchers have become increasingly interested in identifying moderators of anchoring effects. We argue that a drawback of traditional moderator analyses in the standard anchoring paradigm is that they ignore estimate direction—whether participants’ estimates are higher or lower than the anchor value. We suggest that failing to consider estimate direction can sometimes obscure moderation in anchoring tasks, and discuss three potential analytic solutions that take estimate direction into account. Understanding moderators of anchoring effects is essential for a basic understanding of anchoring and for applied research on reducing the influence of anchoring in real-world judgments. Considering estimate direction reduces the risk of failing to detect moderation.

  12. Basis for snubber aging research: Nuclear Plant Aging Research Program

    International Nuclear Information System (INIS)

    Brown, D.P.; Palmer, G.R.; Werry, E.V.; Blahnik, D.E.

    1990-01-01

    This report describes a research plan to address the safety concerns of aging in snubbers used on piping and equipment in commercial nuclear power plants. The work is to be performed under Phase 2 of the Snubber Aging Study of the Nuclear Plant Aging Research Program of the US Nuclear Regulatory Commission with the Pacific Northwest Laboratory (PNL) as the prime contractor. Research conducted by PNL under Phase 1 provided an initial assessment of snubber operating experience and was primarily based on a review of licensee event reports. The work proposed is an extension of Phase 1 and includes research at nuclear power plants and in test laboratories. Included is technical background on the design and use of snubbers in commercial nuclear power applications; the primary failure modes of both hydraulic and mechanical snubbers are discussed. The anticipated safety, technical, and regulatory benefits of the work, along with concerns of the NRC and the utilities, are also described. 21 refs., 7 figs., 1 tab

  13. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  14. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  15. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  16. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  17. Contributions to radiochemical and nuclear materials research

    International Nuclear Information System (INIS)

    Matzke, H.

    1982-01-01

    Series of talks given during a seminar of the European Institute for Transuranium Elements in april 1981 in honor of R. LINDNER on the occasion of his 60th birth day. The topics include general aspects of research practice and science prognosis, retrospective essays about the discovery of nuclear fission by O. HAHN as well as surveys of actual research activities concerning a radiochemistry and the use of radioactivity in material science

  18. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  19. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  20. Neutrinos oscillations researches near a nuclear reactor

    International Nuclear Information System (INIS)

    Laiman, M.

    1999-01-01

    This thesis deals with the research of neutrinos oscillations near the Chooz B nuclear power plant in the Ardennes. The first part presents the framework of the researches and the chosen detector. The second part details the antineutrinos flux calculus from the reactors and the calculus of the expected events. The analysis procedure is detailed in the last part from the calibration to the events selection. (A.L.B.)

  1. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  2. Nuclear energy research and development in France

    International Nuclear Information System (INIS)

    Patarin, L.

    1981-02-01

    Having described the general organization and main participants in charge of nuclear energy development in France, headed by the C.E.A. since the start of this activity at the end of World War II, the author gives a glimpse of the programmes shared out between four main headings: fundamental research, reactors, fuel cycle and nuclear safety. Two tables sum up the financial means of the C.E.A. in 1981 on the one hand and the personnel strengths on the other. A graph also shows the operational framework of the C.E.A. and its main subsidiaries and participations [fr

  3. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  4. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  5. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  6. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  7. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon

    2015-01-01

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW th and an electricity generation mode of 100 kW th , equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics

  8. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  9. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  10. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations.

    Science.gov (United States)

    Baron, R M; Kenny, D A

    1986-12-01

    In this article, we attempt to distinguish between the properties of moderator and mediator variables at a number of levels. First, we seek to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating, both conceptually and strategically, the many ways in which moderators and mediators differ. We then go beyond this largely pedagogical function and delineate the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena, including control and stress, attitudes, and personality traits. We also provide a specific compendium of analytic procedures appropriate for making the most effective use of the moderator and mediator distinction, both separately and in terms of a broader causal system that includes both moderators and mediators.

  11. Nuclear Safety Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  12. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  13. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  14. Karlsruhe Nuclear Research Centre. Programme budget 1988

    International Nuclear Information System (INIS)

    1987-01-01

    Following a general survey of tasks, planned activities and developmental trends of the nuclear research centre, the report gives an account of the activities to be performed in the subject fields of main interest, showing the budgeting figures for annual expenditure (for personnel, investments, operating costs) up to the year 1991. Further information explains the infrastructure of the centre and the distribution of overall expenditure as well as the budgetary planning. (UA) [de

  15. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  16. Studies of the CNESTEN's Nuclear Research Centre

    International Nuclear Information System (INIS)

    Alami, R.

    1988-11-01

    The different steps of the methodology applied to the site selection of Maamora's Nuclear Research Centre, within a 20 km wide coastal band preliminarily fixed between Kenitra and Casablanca cities, are outlined: delimitation of potential zones, identification of potential sites, selection of preferred sites. A particular attention is given to the criterium of the methodology applied to the preferred sites classifying. 1 map, 2 tabs, 2 refs. (F.M.)

  17. Translating Genetic Research into Preventive Intervention: The Baseline Target Moderated Mediator Design.

    Science.gov (United States)

    Howe, George W; Beach, Steven R H; Brody, Gene H; Wyman, Peter A

    2015-01-01

    In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM) design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We use simulated data to illustrate a BTMM, and end with a discussion of some of the advantages and limitations of this approach.

  18. Translating genetic research into preventive intervention: The baseline target moderated mediator design

    Directory of Open Access Journals (Sweden)

    George W. Howe

    2016-01-01

    Full Text Available In this paper we present and discuss a novel research approach, the baseline target moderated mediation (BTMM design, that holds substantial promise for advancing our understanding of how genetic research can inform prevention research. We first discuss how genetically informed research on developmental psychopathology can be used to identify potential intervention targets. We then describe the BTMM design, which employs moderated mediation within a longitudinal study to test whether baseline levels of intervention targets moderate the impact of the intervention on change in that target, and whether change in those targets mediates causal impact of preventive or treatment interventions on distal health outcomes. We next discuss how genetically informed BTMM designs can be applied to both microtrials and full-scale prevention trials. We end with a discussion of some of the advantages and limitations of this approach.

  19. Status of the Moderator Circulation Tests at Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoungtae; Rhee, Bowook; Cha, Jaeeun; Choi, Hwalim [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The scaling analysis produced the design parameters of the MCT facility, and the manufacturing process is ongoing. The application of the optical fluid measurements to the MCT was preliminary tested by small scale test models. The various flow patterns arising from a complex interaction between the buoyancy and inertia forces can be simulated in the MCT facility. In addition, the experimental results will be compared with the CFD results. The Korea Atomic Energy Research Institute (KAERI) started experimental research on moderator circulation as one of its national R and D research programs in 2012. In the present paper, we introduce a scaling analysis performed to extend the scaling criteria suitable for reproducing thermal-hydraulic phenomena in a scaled-down CANDU-6 moderator tank, 1/40 and 1/8 small-scale model tests to identify the potential problems of the flow visualization and measurement in the main 1/4 scale MCT (Moderator Circulation Test) facility, a manufacturing status of the 1/4 scale moderator tank, and preliminary CFD analysis results to determine the flow, thermal, and heating boundary conditions with which the various flow patterns expected in the prototype CANDU-6 moderator tank can be reproduced in the experiment. KAERI has launched an experimental program for moderator circulation in a CANDU6 reactor.

  20. Inside CERN European Organization for Nuclear Research

    CERN Document Server

    Pol, Andri; Heuer, Rolf

    2013-01-01

    For most people locations that hold a particular importance for the development of our society and for the advancement of science and technology remain hidden from view. CERN, the European Organization for Nuclear Research, is best known for its giant particle accelerator. Here researchers take part in a diverse array of fundamental physical research, in the pursuit of knowledge that will perhaps one dayrevolutionize our understanding of the universe and life on our planet. The Swiss photographer Andri Pol mixed with this multicultural community of researchers and followed their work over an extended period of time. In doing so he created a unique portrait of this fascinating “underworld.” The cutting-edge research is given a human face and the pictures allow us to perceive how in this world of the tiniest particles the biggest connections are searched for. With an essay by Peter Stamm.

  1. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  2. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  3. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

    Science.gov (United States)

    Hayes, Andrew F; Rockwood, Nicholas J

    2017-11-01

    There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated reactors

    International Nuclear Information System (INIS)

    Babaev, N.S.

    1981-06-01

    The results of work carried out under IAEA Contract No. 2336/RB are described (subject: an automated system of nuclear materials accounting for nuclear power stations with water-cooled, water-moderated (VVER) reactors). The basic principles of an accounting system for this type of nuclear power plant are outlined. The general structure and individual units of the information computer program used to achieve automated accounting are described and instructions are given on the use of the program. A detailed example of its application (on a simulated nuclear power plant) is examined

  5. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  6. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  7. Nuclear and nuclear related analytical methods applied in environmental research

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Gheboianu, Anca; Bancuta, Iulian; Cimpoca, G. V; Stihi, Claudia; Radulescu, Cristiana; Oros Calin; Frontasyeva, Marina; Petre, Marian; Dulama, Ioana; Vlaicu, G.

    2010-01-01

    Nuclear Analytical Methods can be used for research activities on environmental studies like water quality assessment, pesticide residues, global climatic change (transboundary), pollution and remediation. Heavy metal pollution is a problem associated with areas of intensive industrial activity. In this work the moss bio monitoring technique was employed to study the atmospheric deposition in Dambovita County Romania. Also, there were used complementary nuclear and atomic analytical methods: Neutron Activation Analysis (NAA), Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). These high sensitivity analysis methods were used to determine the chemical composition of some samples of mosses placed in different areas with different pollution industrial sources. The concentrations of Cr, Fe, Mn, Ni and Zn were determined. The concentration of Fe from the same samples was determined using all these methods and we obtained a very good agreement, in statistical limits, which demonstrate the capability of these analytical methods to be applied on a large spectrum of environmental samples with the same results. (authors)

  8. Recent nuclear physics research at IMP

    International Nuclear Information System (INIS)

    Jin Genming

    1998-01-01

    The recent progresses in the nuclear physics research in IMP (Institute of Modern Physics) are reviewed including the synthesis and studies of nuclei far from stability and properties of hot nuclei. Heavy Ion Research Facility Lanzhou (HIRFL) is of cyclotron family delivering intermediate energy heavy ions. During the recent years, progresses have been made in the studies of heavy ion physics as well as in the development of the HIRFL. This paper will begin with the recent upgrading of HIRFL with an emphasis on the development of Radioactive Ion Beam Line Lanzhou (RIBLL), and then be focused on the physics research in IMP including intermediate energy heavy ion collisions and hot nuclei, synthesis and studies of nuclei far from stability. (J.P.N)

  9. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  10. Nuclear magnetic resonance imaging in pharmaceutical research

    International Nuclear Information System (INIS)

    Sarkar, S.K.

    1991-01-01

    Nuclear magnetic resonance imaging has important applications in pharmaceutical research since it allows specific tissue and disease characterization in animal models noninvasively with excellent anatomical resolution and therefore provides improved ability to monitor the efficacy of novel drugs. The utility of NMR imaging in renal studies to monitor the mechanism of drug action and renal function in rats is described. The extension of the resolution of an NMR image to microscopic domain at higher magnetic field strengths and the utility of NMR microimaging in cerebrovascular and tumour metastasis studies in mice are discussed. (author). 40 refs., 14 figs

  11. State of controlled nuclear fusion research

    International Nuclear Information System (INIS)

    Rodrigo, A.B.

    1978-04-01

    The development of a commercial fusion reactor requires an adequate solution to the problems of heating and confinement of the nuclear fuel, as well as a considerable effort in materials technology and reactor engineering. A general discussion is presented of the status of the research connected with the most advanced concepts, indicating in each case the present situation and the main problems that must be solved to meet the requeriments estimated for power reactors. In particular, the laser-inertial concept is reviewed in detail. (author) [es

  12. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  13. Information on the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Reuter, H.H.

    1980-01-01

    A short overview is given about the origins of Karlsruhe Nuclear Research Center. The historical development of the different companies operating the Center is shown. Because the original task assigned to the Center was the construction and testing of the first German reactor exclusively built by German companies, a detailed description of this reactor and the changes made afterwards is presented. Next, today's organizational structure of the Center is outlined and the development of the Center's financing since its foundation is shown. A short overview about the structure of employees from the Center's beginning up to now is also included as well as a short description of today's main activities. (orig.)

  14. METHUSELAH II - A Fortran program and nuclear data library for the physics assessment of liquid-moderated reactors

    International Nuclear Information System (INIS)

    Brinkworth, M.J.; Griffiths, J.A.

    1966-03-01

    METHUSELAH II is a Fortran program with a nuclear data library, used to calculate cell reactivity and burn-up in liquid-moderated reactors. It has been developed from METHUSELAH I by revising the nuclear data library, and by introducing into the program improvements relating to nuclear data, improvements in efficiency and accuracy, and additional facilities which include a neutron balance edit, specialised outputs, fuel cycling, and fuel costing. These developments are described and information is given on the coding and usage of versions of METHUSELAH II for the IBM 7030 (STRETCH), IBM 7090, and KDF9 computers. (author)

  15. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  16. Research and Development on nuclear fission

    International Nuclear Information System (INIS)

    2007-01-01

    Research and development activities on advanced and innovative reactors are performed within a domestic programme and international initiatives. The ongoing New Nuclear Fission National Programme is synergic and complementary to the International Nuclear Energy Initiative (INERI) and EURATOM framework programmes and is managed by ENEA through a specific agreement signed in June 2007 by the Italian Ministry for Economic Development (MSE). The activities concern an integral advanced pressurised light-water-cooled reactor (IRIS nuclear power plant [NPP]) and several Generation-4. fast reactors: lead-cooled, very high temperature and sodium-cooled. A summary of the main results achieved in 2007 follows. In the framework of the INERI programme ENEA and other Italian organisations are involved in the design of the International Reactor Innovative and Secure (IRIS NPP), particularly in the design certification. An appropriate integral testing programme will be performed in the SPES-3 facility to be built at the SIET laboratories in Piacenza. The facility will be located inside the building of the decommissioned Emilia oil-fired power plant. Once erected, the facility will simulate IRIS at full height, full pressure and temperature, and with volumes and power scaled by factors of 1:100 and 1:150, respectively. The activity will be carried out in a collaboration with Oak Ridge National Laboratory (ORNL), USA under an international initiative concerning cooperation in the field of nuclear-related technologies of mutual interest. In 2007 activities were mainly devoted to the conceptual design of the SPES-3 facility, the development of SPES-3 nodalization and the seismic isolation analysis of the IRIS auxiliary building

  17. Moderation and Mediation in Structural Equation Modeling: Applications for Early Intervention Research

    Science.gov (United States)

    Hopwood, Christopher J.

    2007-01-01

    Second-generation early intervention research typically involves the specification of multivariate relations between interventions, outcomes, and other variables. Moderation and mediation involve variables or sets of variables that influence relations between interventions and outcomes. Following the framework of Baron and Kenny's (1986) seminal…

  18. The role of two-phase coolant in moderating fretting in nuclear steam generators

    International Nuclear Information System (INIS)

    Dyke, J.M.

    2004-01-01

    This paper expands the principal of coolant-cushioning in Nuclear Steam Generators whereby the two-phase coolant, especially the bubble film on the tube surface, moderates the vibration of coolant tubes against their supports. The current paper addresses tube bundle and anti-vibration bars (AVB) geometry issues; examines the tube bundle-coolant-AVB interfaces and examines implications for recirculation flow, AVB design and boiler size. In a T(sat) fluid, the tube surface is uniformly coating with growing bubbles whose momentum is perpendicular to the surface at first, then they are swept away by the bulk flow. The combination of this momentum, the phase change and the water film remaining on the surface, counteract the vibration energy of the tube-AVB system, reducing the likelihood of metal-to-metal contact and consequent fretting. To maximize the benefit of the cushioning effect, the following design inputs are needed: 1) the AVB-tube interface should have sufficient clearance for the T(sat) solution to operate, 2) The AVB should be wide enough to generate the necessary cushioning force, and 3) the AVB should be thin enough to be flexible and absorb some of the transferred vibration energy. Furthermore, fretting and crude deposition at the AVB-tube interface can be reduced or eliminated by reducing the number of AVBs, increasing clearances and making the AVBs limber

  19. Atucha I nuclear power plant: repair works in QK02W01 moderator system heat exchanger

    International Nuclear Information System (INIS)

    Olivieri, Luis E.; Zanni, Pablo A.

    2000-01-01

    Atucha I nuclear power plant moderator system operates with highly radioactive heavy water, a pressure of 115 Bar and temperatures of about 200 C degrees. In March 2000, an increasing leakage of heavy water to the conventional thermal circuit was detected, conducting the plant to a shut down. The development of a number of actions and measures were taken, in order to plug this leakage. The leakage was found in a heat exchanger, which is located in a place of difficult access, with a high radiological yield and which, according to design, it was not considered to be mechanically repaired. It is a U bend tubes heat exchanger, weighting about 20 tons, and with a heavy water flow of 800 tons/h on the primary circuit, and 950 tons/h of ordinary water on the secondary side. Foreseeing this event, it had been designed and constructed special equipment and procedures, by means of a contract, with the Company INVAP SA. Repair works were carried out within a period of eighty-six (86) days, from which, forty five days were used to repair the component itself. A considerable amount of time was used to prepare simulators and the training of personnel. Due to the high radiological yield and the strict care of radiological standards, it was necessary the participation of 300 persons, integrating a collective dose of 4,86 Sv-m. It was necessary the construction of platforms and auxiliary stairs so as to make the work place accessible, as well as lifting and movement devices for heavy components, since this area does not have such kind of facilities. Welding and cutting machines remote controlled as well as manipulators which operated in front of the exchanger tube sheet were used. The aim was the reduction of dose values as much as possible. Special shielding were developed and in some cases it was necessary the adoption of drastic measures such as the cutting of bolts or pipes. The failure was detected and the tube was plugged. Also were plugged those tubes with wall thickness

  20. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  1. Nuclear I and C research and education under UNENE program

    International Nuclear Information System (INIS)

    Jiang, J.

    2006-01-01

    Univ. Network of Excellence in Nuclear Engineering (UNENE) is a not-for-profit organization. It is a unique industry - Univ. alliance in carrying out research to support Canadian nuclear industries. At this time, there are six major research areas in this network. One of them is Control, Instrumentation, and Electrical Systems for Nuclear Power plants. In this paper, a brief description of the structure and research activities of nuclear I and C at the Univ. of Western Ontario is provided. (authors)

  2. Current status of nuclear physics research

    International Nuclear Information System (INIS)

    Bertulani, Carlos A.; Hussein, Mahir S.

    2015-01-01

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4 He, 7 Li, 9 Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested

  3. Current status of nuclear physics research

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A. [Department of Physics and Astronomy, Texas A and M University-Commerce (United States); Hussein, Mahir S., E-mail: hussein@if.usp.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica

    2015-12-15

    In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as {sup 4}He, {sup 7}Li, {sup 9}Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate

  4. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C.

    2017-01-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO_2 fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D_2O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α"M_T(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  5. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  6. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  7. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  8. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  9. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1994-01-01

    The most significant development this year has been the outcome of a survey of EO transition strength, ρ 2 (EO), in heavy nuclei. The systematics of ρ 2 (EO) reveals that the strongest EO's are between pairs of excited states with the same spin and parity. This is observed in the regions Z,N = 38,60; 48,66; 64,88; and 80,106. Unlike other multipoles it is rare that nuclear ground states are strongly connected to excited states by monopole transitions. Another significant finding is in the results of the experimental study of levels in 187 Au. Two bands of states are observed with identical spin sequences, very similar excitation energies, and EO transitions between the favored band members but not between the unfavored band members. This is interpreted in terms of nearly identical diabatic structures. Experimental data sets for the radioactive decays of 183 Pt and 186 Au to 183 Ir and 186 Pt, respectively, have been under analysis. The studies are aimed at elucidating shape coexistence and triaxiality in the A = 185 region. An extensive program of systematics for nuclei at and near N = Z has been continued in preparation for the planned nuclear structure research program using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A considerable effort has been devoted to HRIBF target development

  10. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  11. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  12. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Sotic, O.

    1989-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  13. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    1987-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  14. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  15. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    Sofo Haro, M.; Cantero, P.

    2009-01-01

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  16. A Study on Research Trend in Nuclear Forensics

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Yim, Hobin; Lee, Seungmin; Hong, Yunjeong; Kim, Jae Kwang

    2014-01-01

    The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the international Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. According to the IAEA Incident and Trafficking Database (ITDB) of the IAEA to record the illegal trade and trafficking incidents of nuclear material or other radioactive material, incidents of 2331 have been reported in 1993 to 2012. These incidents mean that we are not safe for nuclear material. In order to solve the case generated by the illicit trafficking of nuclear material and the efficient management of nuclear material, the study of nuclear forensics is very important. In this study, we investigated the analytical techniques and the current status of nuclear forensics research. In this study, we investigated the current status of research of nuclear forensics, procedures for analysis and nuclear forensics analysis technique. A result of the study, we have been found that the major institutes and laboratory actively research on analysis technique and nuclear forensics. However, research on nuclear forensics is still in early stage, ROK is necessary preliminary survey of analysis technique and foundation of physical, chemical, and morphology characteristics of nuclear materials

  17. Knowledge Management for Nuclear Research and Development Organizations

    International Nuclear Information System (INIS)

    2012-05-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R and D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles and nuclear applications in medicine, industry and agriculture. It highlights aspects including transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management to R and D project managers and other workers from nuclear R and D organizations.

  18. Knowledge Management for Nuclear Research and Development Organizations (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R&D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles, and nuclear applications in medicine, industry and agriculture. It highlights aspects such as transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management for R&D project managers and other workers from nuclear R&D organizations.

  19. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  20. Nuclear power plant Severe Accident Research Plan

    International Nuclear Information System (INIS)

    Larkins, J.T.; Cunningham, M.A.

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986

  1. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  2. Future for nuclear data research. Human resources

    International Nuclear Information System (INIS)

    Baba, Mamoru

    2006-01-01

    A comment is given on the problem of human resources to support the future nuclear data activity which will be indispensable for advanced utilization of nuclear energy and radiations. Emphasis is put in the importance of the functional organization among the nuclear data center (JAEA), industries and universities for provision of human resources. (author)

  3. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  4. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  5. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  6. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  7. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  8. Research reactor status for future nuclear research in Europe

    International Nuclear Information System (INIS)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel

    2010-01-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source Scandinavia). The nuclear

  9. The Karlsruhe Nuclear Research Centre is being re-equipped

    International Nuclear Information System (INIS)

    Boehm, H.; Koerting, K.; Huncke, W.; Knapp, W.

    1986-01-01

    The Nuclear Research Centre in Karlsruhe was established over 25 years ago for the express purpose of studying nuclear engineering and its peaceful use. This goal has been achieved - what now. For some time a change has been taking place at the Research Centre: in the direction of man and environmental engineering. 'Bild der Wwissenschaft' has talked to Professor Horst Boehm, the chairman of the Nuclear Centre, about this change and the new areas of research to be concentrated on. (orig.) [de

  10. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  11. Kinetic characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, Tran Khac; Dien, Nguyen Nhi; Hien, Pham Duy [Nuclear Research Inst., Da Lat (Viet Nam); and others

    1994-10-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be({gamma}, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs.

  12. Kinetic characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tran Khac An; Nguyen Nhi Dien; Pham Duy Hien

    1994-01-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be(γ, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs

  13. NuclearFACTS: public engagement about the impacts of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Dalzell, M.T.J.; Alexander, R.N.; Main, M.G., E-mail: matthew.dalzell@fedorukcentre.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK, (Canada)

    2015-07-01

    The Forum for Accountability and Communities Talking nuclear Science - nuclearFACTS - is a cornerstone of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation's efforts to engage the people of Saskatchewan in evidence-based conversations about the impacts of the nuclear research, development and training activities supported by the Fedoruk Centre. The second annual nuclearFACTS public colloquium was held 20 November 2014, and featured the participation of 16 research projects. This paper discusses the continued development of the nuclearFACTS concept and its role in the Fedoruk Centre's upstream engagement efforts. (author)

  14. Research and development for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Bernard, P.

    2002-01-01

    In the framework of the energy demand increase facing the environment protection, the three main objectives of the research and development for the nuclear energy are developed in this document: to support the today nuclear industry, to answer the public anxiety concerning the sanitary and environmental impact of nuclear activities, to design, evaluate and develop new reactors. (A.L.B.)

  15. Experiences in the emptying of waste silos containing solid nuclear waste from graphite- moderated reactors

    International Nuclear Information System (INIS)

    Wall, S.; Schwarz, T.

    2003-01-01

    Before reactor sites can be handed over for ultimate decommissioning, at some sites silos containing waste from operations need to be emptied. The form and physical condition of the waste demands sophisticated retrieval technologies taking into account the onsite situation in terms of infrastructure and silo geometry. Furthermore, in the case of graphite moderated reactors, this waste usually includes several tonnes of graphite waste requiring special HVAC and dust handling measures. RWE NUKEM Group has already performed several contracts dealing with such emptying tasks. Of particular interest for the upcoming decommissioning projects in France might be the activities at Vandellos, Spain and Trawsfynnyd, UK. Retrieval System for Vandellos NPP is discussed. Following an international competitive tender exercise, RWE NUKEM won the contract to provide a turn-key retrieval system. This involved the design, manufacture and installation of a system built around the modules of a 200 kg capacity version of the ARTISAN manipulator system. The ARTISAN 200 manipulator, with remote slave arm detach facility, was deployed on a telescopic mast inserted into the silos through the roof penetrations. The manipulator deployed a range of tools to gather the waste and load it into a transfer basket, deployed through an adjacent penetration. After commissioning, the system cleared the vaults in less than the scheduled period with no failures. At the Trawsfynnyd Magnox plants two types of intermediate level waste (ILW) accumulated on site; namely Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). MAC is predominantly components that have been activated by the reactor core and then discharged. FED mainly consists of fuel cladding produced when fuel elements were prepared for dispatch to the reprocessing facility. RWE NUKEM Ltd. was awarded a contract to design, supply, commission and operate equipment to retrieve, pack and immobilize the two waste streams. Major

  16. Advisory Relationship as a Moderator between Research Self-Efficacy, Motivation, and Productivity among Counselor Education Doctoral Students

    Science.gov (United States)

    Kuo, Patty Beyrong; Woo, Hongryun; Bang, Na Mi

    2017-01-01

    The authors examined the relationship between research self-efficacy, motivation, and productivity, as well as advisory relationship as a moderator, among 190 counselor education doctoral students. Research self-efficacy and motivation predicted productivity. Advisory relationship moderated the relationship between intrinsic and failure avoidance…

  17. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  18. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  19. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  20. Nuclear research reactor 0.5 to 3 MW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-15

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW{sub TH}, with a minimum thermal neutron flux of approx, 10{sup 13} n/cm{sup 2}{center_dot}sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor

  1. Nuclear research reactor 0.5 to 3 MW

    International Nuclear Information System (INIS)

    1992-05-01

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW TH , with a minimum thermal neutron flux of approx, 10 13 n/cm 2 ·sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor building has a ventilation

  2. Power spectral density measurements with 252Cf for a light water moderated research reactor

    International Nuclear Information System (INIS)

    King, W.T.; Mihalczo, J.T.

    1979-01-01

    A method of determining the reactivity of far subcritical systems from neutron noise power spectral density measurements with 252 Cf has previously been tested in fast reactor critical assemblies: a mockup of the Fast Flux Test Facility reactor and a uranium metal sphere. Calculations indicated that this measurement was feasible for a pressurized water reactor (PWR). In order to evaluate the ability to perform these measurements with moderated reactors which have long prompt neutron lifetimes, measurements were performed with a small plate-type research reactor whose neutron lifetime (57 microseconds) was about a factor of three longer than that of a PWR and approx. 50% longer than that of a boiling water reactor. The results of the first measurements of power spectral densities with 252 Cf for a water moderated reactor are presented

  3. Nuclear safety research - risk and other risks

    International Nuclear Information System (INIS)

    Rossin, A.D.

    1982-01-01

    The nuclear power industry deals in many kinds of risks, complicated by political stress and communication problems. Power plant design must prepare for the unexpected attack, physical as well as psychological, but a zero-defects technology is not possible. The public has not been made sufficiently aware of the risk the US takes if there is not enough energy because nuclear power has been curtailed. Energy shortages could drive industry and jobs abroad, force the public to turn to government for a solution, drive the country to energy allocation, and cause a nuclear war. Policies that prevent closing the nuclear fuel cycle are ineffective in preventing proliferation and counterproductive to national needs

  4. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  5. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  6. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  7. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  8. Past and present situation of nuclear research at Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    2001-01-01

    The case of Forschungszentrum Karlsruhe is presented which had to transform from a centre devoted to nuclear power R and D to one in which this activity is allocated only 20% of the resources. A large number of operating nuclear power reactors coupled with the Government decision to phase out nuclear power is causing serious concerns regarding the availability of human resources for meeting the long term needs of nuclear facilities. The Energy Division of the research centre currently focuses mainly on safety research and on nuclear fusion. Another Division of the centre has nuclear facility decommissioning as one of the programmes. Independent research in areas of essential need for nuclear facilities must be carried out to maintain know how. (author)

  9. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1985-07-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechansims of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring and maintenance as means of mitigating such effects. Specifically the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of structures, components, and systems and thereby impair plant safety; (2) to identify methods of inspection, surveillance and monitoring, or of evaluating residual life of structures, components, and systems, which will assure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  10. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  11. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  12. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  13. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  14. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  15. AIREKMOD-RR, Reactivity Transients in Nuclear Research Reactors

    International Nuclear Information System (INIS)

    Baggoura, B.; Mazrou, H.

    2001-01-01

    1 - Description of program or function: AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant. 2 - Method of solution: For transient reactor kinetic calculations a modified Runge Kutta numerical method is used. The external reactivity insertion, specified as a function of time, is converted in dollar ($) unit. The neutron density, energy release and feedback variables are given at each time step. The two types of reactivity feedback considered are: Doppler effect and moderator effect. A new expression for the reactivity dependence on the feedback variables has been introduced in the present version of the code. The feedback reactivities are fitted in power series expression. 3 - Restrictions on the complexity of the problem: The number of delayed neutron groups and the total number of equations are limited only by computer storage capabilities. - Coolant is always in liquid phase. - Void reactivity feedback is not considered

  16. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  17. Basic tendencies of restructured UO2 nuclear fuels fabrication industry for water-moderated reactors

    International Nuclear Information System (INIS)

    Makhova, V.A.; Bokshitskij, V.I.; Blinova, I.V.

    2002-01-01

    Processes of reformation and consolidation of firms and frontier nuclear fuels fabrication industry associated with processes of globalization and deregulation of electric power market are analyzed. Current state of nuclear fuel market and basic factors influenced on the market are presented. The role of nuclear fuel in increasing competition of NPP and fundamental directions of innovation action on the creation of perspective kinds of fuel were considered [ru

  18. Status of Nuclear-Pumped Laser research

    International Nuclear Information System (INIS)

    Prelas, M.A.

    1984-01-01

    The field of Nuclear-Pumped lasers (NPLs) has progressed in many directions since the discovery of the first NPL in 1974. This paper discusses developments in the area of coupling nuclear energy to a laser media, kinetics, and the integration of nuclear reactors to a laser (or other types of energy conversion medium). Many questions about the process of nuclear-pumping have been examined since the discovery of the first NPL in 1974. During a period of time between 1974 and 1981, several types of lasers have been driven by nuclear reactions (ie rare gas lasers, impurity type lasers, molecular lasers, and an ion laser). Three of the lasers discovered, had demonstrated efficiencies of >1%. In addition, volume scaling of NPLs was demonstrated

  19. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  20. Design, test and start up of a cleaning system for the moderator tank bottom of Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Duca, J.; Gerber, O.; Ibero, M.; Riga, N.

    1989-01-01

    In order to perform the cleaning of the moderator tank bottom, during the repair of the Atucha I nuclear power plant (CNA I) failure, the Empresa Nuclear Argentina de Centrales Electricas (ENACE S.A.) designed a system with the following requirements (asked by CNA I): a) To aspirate and retain free solid particles, uranium dioxide pellets and coolant channels isolations (foils) of minor size settled at the moderator tank bottom, being the reactor at middle loop state. b) To allow a radially cleaning up to 1.4 m from the extracted channel. c) To design a lay-out attaining the ALARA dose exposure. The designed system basically consists in: a) Flexible intake for suction: allows the movement inside the moderator tank and provides the adequate speed to raise the particles. b) Filter: retains the aspirated particles, pellets and foils. Its capacity is 1.8 dm 3 and the minimum size of retained particles is 200 m. The ALARA dose exposure concept is attained due to that the filter is located inside the moderator tank. c) Filtering column: contains the filter and allows the entrance of the extraction and exchange tool (for the flexible intake and filter). d) Suction hose: connects the filtering column with the pump. Its flexibility allows its use in any channel maintaining the same positions of the discharge pump and the return piping. e) Discharge pump: it is a canned centrifugal pump with low-low net positive suction head. f) Return piping: discharges the filtered water into the moderator tank. The system fulfilled satisfactorily all requirements during its operation. (Author)

  1. Research in theoretical nuclear physics, Nuclear Theory Group. Progress report

    International Nuclear Information System (INIS)

    Brown, G.E.; Jackson, A.D.; Kuo, T.T.S.

    1984-01-01

    Primary emphasis is placed on understanding the nature of nucleon-nucleon and meson-nucleon interactions and on determining the consequences of such microscopic interactions in nuclear systems. We have constructed models of baryons which smoothly interpolate between currently popular bag and Skyrme models of hadrons and provide a vehicle for introducing the notions of quantum chromodynamics to low energy nuclear physics without violating the constraints of chiral invariance. Such models have been used to study the nucleon-nucleon interaction, the spectrum of baryons, and the important question of the radius of the quark bag. We have used many-body techniques to consider a variety of problems in finite nuclei and infinite many-body systems. New light has been shed on the nuclear coexistence of spherical and deformed states in the A = 18 region as well as the role of genuine three-body forces in this region. Phenomenological studies of infinite systems have led to a number of predictions particularly regarding the spin-polarized quantum liquids of current experimental interest. Microscopic many-body theories, based on the parquet diagrams, have been improved to a fully quantitative level for the ground state properties of infinite many-body systems. Finite temperature theories of nuclear matter, important in the study of heavy ion reactions, have been constructed. An expanded program in heavy ion theory has led to major advances in the multi-dimensional barrier penetration problem. Activities in nuclear astrophysics have provided a far more reliable description of the role of electron capture processes in stellar collapse. As a consequence, we have been able to perform legitimate calculations of the unshocked mass in Type II supernovae

  2. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  3. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  4. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  5. Neutrons in basic and applied nuclear research - a review

    International Nuclear Information System (INIS)

    Bhattacharya, Sailajananda

    2013-01-01

    Energetic neutron sources, both white and mono-energetic, are widely used In basic nuclear physics as well as various multidisciplinary research. Precise measurement of various neutron induced reaction cross-sections are crucial for the design and development of new generation of reactors, like accelerator driven subcritical systems, nuclear incinerators, etc. A review of some recent trends in neutron induced basic and applied nuclear research will be presented in this talk. (author)

  6. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  7. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  8. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  9. The role of universities in the US nuclear research enterprise

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The vitally important role of the universities in nuclear research is embodied in the three functions of education, research, and policymaking. These three functions are discussed from the perspective of nuclear power's unique demands for quality and its pioneering interface with societal and environmental aspirations

  10. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  11. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  12. Spallation target-moderator-reflector studies at the Weapons Neutron Research facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Prael, S.D.; Robinson, H.; Howe, S.D.

    1980-01-01

    Basic neutronics data, initiated by 800-MeV proton spallation reactions, are important to spallation neutron source development and electronuclear fuel production. Angle-dependent and energy-dependent neutron production cross sections, energy-dependent and total neutron yields, thermal and epithermal neutron surface and beam fluxes, and fertile-to-fissile conversion ratios are being measured. The measurements are being done at the Weapons Neutron Research facility on a variety of targets and target-moderator-reflector configurations. The experiments are relevant to the above applications, and provide data to validate computer codes. Preliminary results are presented and compared to calculated predictions. 13 figures

  13. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    Sotic, O.

    2002-01-01

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001 [sr

  14. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  15. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  16. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    Bethge, K.; Baumann, H.; Jex, H.; Rauch, F.

    1980-01-01

    Proceedings of the seventh divisional conference of the Nuclear Physics Division held at Darmstadt, Germany, from 23rd through 26th of September, 1980. The scope of this conference was defined as follows: i) to inform solid state physicists and materials scientists about the application of nuclear physics methods; ii) to show to nuclear physicists open questions and problems in solid state physics and materials science to which their methods can be applied. According to the intentions of the conference, the various nuclear physics methods utilized in solid state physics and materials science and especially new developments were reviewed by invited speakers. Detailed aspects of the methods and typical examples extending over a wide range of applications were presented as contributions in poster sessions. The Proceedings contain all the invited papers and about 90% of the contributed papers. (orig./RW)

  17. Nuclear theory research. Technical progress report

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is briefly described on the following studies: (1) Dirac phenomenology for deuteron elastic scattering, (2) Dirac wave functions in nuclear distorted wave calculations, (3) impulse approximation for p→p → dπ + reaction above the 3-3 resonance, (4) coherent π production, (5) nuclear potentials from Dirac bound state wavefunctions, (6) nonlocality effects in nuclear reactions, (7) unhappiness factors in DWBA description of (t,p) and (p,t) reactions, (8) absolute normalization of three-nucleon transfer reactions, (9) formulation of a finite-range CCBA computer program, (10) crossing symmetric solutions of the low equations, (11) pion scattering from quark bags, (12) study of the p 11 channel in the delta model, (13) isovector corrections in pion-nucleus scattering, (14) pionic excitation of nuclear giant resonances, and (15) isospin dependence of the second-order pion-nucleus optical potential

  18. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  19. Progress report on research of nuclear data and applied nuclear physics at nuclear research institute Viet Nam. For the period January 1 - December 31 1996

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1997-03-01

    This report contains information on activities of nuclear data and applied physics at the Nuclear Research Institute, Dalat, Vietnam for the period January 1st-December 31st 1996. The specific topics covered are the following: Development of filtered neutron beams. Investigation of average characteristics of nuclei in the unresolved enrgy region, Nuclear structure, Nuclear data for applications, Neutron beam utilization for applications, Nuclear analytical techniques and sedimentology

  20. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  1. Fourth session: perspectives and internationalization of nuclear research

    International Nuclear Information System (INIS)

    Bugat, S.; Girardin, G.; Vitanza, C.

    2005-01-01

    The purpose of the atomic simulation is to deduce the behaviour of irradiated materials from the effects of irradiation at the atomic scale that are well understood. The main difficulties and recent breakthroughs concerning the simulation of the primary damage and the microstructure due to irradiation and of the hardening effect of irradiation are reviewed. It is shown that simulation tools are far to be able to replace real irradiation experiments but their maturity is so high that they will allow us to optimize the design and operations of irradiation experiments in a near future. The second article is dedicated to the Norwegian Halden research reactor that was at the very beginning of its operating life (1958) an irradiation facility broadly open to the international nuclear community. The Halden reactor is a boiling reactor, cooled and moderated with heavy water (14 m 3 ) and whose thermal power output is 20 MW. The steam generated (30 tons/h) is used to operate a paper mill. 12 experimental loops with in-core test rigs are available. In 1999 about 68% of the studies performed at Halden was dedicated to high burnup fuels and 32% to materials. (A.C.)

  2. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  3. Simulation program for the dynamic behaviour of the primary system and moderators's circuit of the Atucha I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Castano, Jorge; Gvirtzman, H.A.

    1981-01-01

    A model of digital computation is presented to simulate the primary system of heat transportation, moderator system and the associated systems for adjustment, regulation and control in the PHWR reactor at the Atucha-1 nuclear power plant. The model discusses in a concentrated way the different components and allows the study of the dynamical behaviour of the power plant facing disturbances with respect to a state of stationary regime. General considerations and description of the model are made. The method is described showing flow sheets, graphs and developing basic formulas, simulating a primary system, moderator and secondary system of the steam generator and the main system of regulation. Also an analysis of the results is made, for the case of disturbances which reduce or increase the power of the reactor by 10%. (V.B.) [es

  4. Moderators and Mediators in Social Work Research: Toward a More Ecologically Valid Evidence Base for Practice

    Science.gov (United States)

    Magill, Molly

    2012-01-01

    Summary Evidence-based practice involves the consistent and critical consumption of the social work research literature. As methodologies advance, primers to guide such efforts are often needed. In the present work, common statistical methods for testing moderation and mediation are identified, summarized, and corresponding examples, drawn from the substance abuse, domestic violence, and mental health literature, are provided. Findings While methodologically complex, analyses of these third variable effects can provide an optimal fit for the complexity involved in the provision of evidence-based social work services. While a moderator may identify the trait or state requirement for a causal relationship to occur, a mediator is concerned with the transmission of that relationship. In social work practice, these are questions of “under what conditions and for whom?” and of the “how?” of behavior change. Implications Implications include a need for greater attention to these methods among practitioners and evaluation researchers. With knowledge gained through the present review, social workers can benefit from a more ecologically valid evidence base for practice. PMID:22833701

  5. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  6. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  7. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  8. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  10. Research and development for Canadian nuclear power

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1976-01-01

    Rapid expansion of the successful CANDU reactor system offers immediate substitution for scarce oil and gas, combined with long-term security of energy supplies. A continuing large and vigorous R and D program on nuclear power is essential to achieve these objectives. The program, described here, consists of tactical R and D in support of the current CANDU reactor system, strategic R and D to develop and demonstrate advanced CANDU systems, and exploratory R and D to put Canada in a position to exploit any fusion opportunities. Two support activities, management of radioactive wastes and techniques to safeguard nuclear materials against diversion, although integral components of the nuclear power programs, are identified separately because they are currently of special public interest. (author)

  11. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Boldyrev, V.M.; Mikhaj, V.I.

    1985-01-01

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  12. Evaluating new methods for direct measurement of the moderator temperature coefficient in nuclear power plants during normal operation

    International Nuclear Information System (INIS)

    Makai, M.; Kalya, Z.; Nemes, I.; Pos, I.; Por, G.

    2007-01-01

    Moderator temperature coefficient of reactivity is not monitored during fuel cycles in WWER reactors, because it is not very easy or impossible to measure it without disturbing the normal operation. Two new methods were tested in our WWER type nuclear power plant to try methodologies, which enable to measure that important to safety parameter during the fuel cycle. One is based on small perturbances, and only small changes are requested in operation, the other is based on noise methods, which means it is without interference with reactor operation. Both method is new that aspects that they uses the plant computer data(VERONA) based signals calculated by C P ORCA diffusion code (Authors)

  13. Feasibility analysis of the utilization of moderator heat for agricultural and aquacultural purposes, Bruce nuclear power development

    International Nuclear Information System (INIS)

    1977-12-01

    A study is presented of the feasibility of using moderator reject heat from the Bruce nuclear power development either to heat greenhouses or to aid in a warm water hatchery or aquaculture operation. The study examines heat extraction and delivery plans, reliability of supply, pricing schedules, the Ontario greenhouse industry, site selection criteria, water transmission and distribution, costs, approvals required, and a construction timetable. Total system analysis shows that a greenhouse facility would be viable but the aquaculture/hatchery scheme is more cost-effective. (E.C.B.)

  14. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    International Nuclear Information System (INIS)

    Eikelmann, I.M.H.

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  15. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    Energy Technology Data Exchange (ETDEWEB)

    Eikelmann, I.M.H. [Norwegian Radiation Protection Authority (Norway)

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  16. Researches on nuclear criticality safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-10-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  17. Researches on nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi

    2003-01-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  18. An example of a United States Nuclear Research Center

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.

    1999-01-01

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century

  19. Nuclear platform research and development - 2008-09 highlights

    International Nuclear Information System (INIS)

    Sadhankar, R.R.

    2009-08-01

    The Nuclear Platform R and D Program has lead responsibility for the maintenance and further development of the CANDU intellectual property covering the safety, licensing and design basis for nuclear facilities. The Nuclear Platform R and D Program is part of the Research and Technology Operation (RTO) unit of AECL and is managed through the Research and Development division, which has responsibility for maintaining and enhancing the knowledge and technology base. The RTO is also responsible for managing AECL's nuclear facilities and infrastructure (including laboratories and R and D facilities), the nuclear waste management program and other legacy liabilities (e.g., decommissioning) to demonstrate and grow shareholder value. The Nuclear Platform also provides the technology base from which new products and services can be developed to meet customer needs (including ACR and commercial products and services). (author)

  20. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  1. The role of nuclear research centers for the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Perovic, B.; Frlec, B.; Kundic, V.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centers. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centers should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centers should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Second, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Third, to follow the development of nuclear energy technology for the fast breeder reactor concepts. This paper describes some experience in introducing a new programme to the national nuclear energy centers in Yugoslavia. Recently, Yugoslavia has started building its first nuclear power station. Further introduction of nuclear power stations in the national electric energy system is also planned. This implies the need to reconsider the current nuclear energy programme in the nuclear energy centers. It has been decided to evaluate past experience and further needs for research activities regarding the nuclear power programme. Yugoslavia has three main nuclear energy centers whose activities are devoted to the development of national manpower in the field of nuclear sciences. Besides these three organizations, there are several others whose activities are concentrated on specific tasks in nuclear technology. In the

  2. Nuclear structure research at the Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1992-01-01

    Studies of fundamental symmetries by the TRIPLE collaboration using the unique capabilities at LAMTF have found unexpected systematics in the parity-violating amplitudes for epithermal-neutron scattering. Tests to lower the present limits on time-reversal-invariance violation in the strong interaction are being made at in experiments on the scattering of polarized fast neutrons from aligned holmium targets. Studies of few-nucleon systems have received increasing emphasis over the past year, involving a broad program for testing the low- to medium-energy internucleon interactions, from the tensor component in n-p scattering and the n-n scattering lengths, through three-nucleon systems and the alpha particle, on up to 8 Be. Of particular interest are three-nucleon systems, both in elastic scattering and in three-body breakup. Beam requirements range from production of intense and highly-polarized neutron beams to tensor-polarized beams for measurements at both very low energies (25--80 keV) and at tandem energies for definitive measurements of D-state components of the triton, 3 He, and 4 He obtained from transfer reactions. The program in nuclear astrophysics expanded during 1991--1992. Several facets of the nuclear many-body problem and of excitation mechanisms of the nucleus are being elucidated, including measurements and analyses to elucidate the neutron--nucleus elastic-scattering interaction over a wide range of nuclei and energies. Several projects involved developments in electronuclear physics, instrumentation, rf-transition units, and low-temperature bolometric particle detectors

  3. Research in heavy-ion nuclear physics

    International Nuclear Information System (INIS)

    Sanders, S.J.; Prosser, F.W.

    1992-01-01

    This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the 24 Mg+ 24 Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development

  4. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  5. Nuclear Research and Development Capabilities Needed to Support Future Growth

    Energy Technology Data Exchange (ETDEWEB)

    Wham, Robert M. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6154 (United States); Kearns, Paul [Battelle Memorial Institute (United States); Marston, Ted [Marston Consulting (United States)

    2009-06-15

    The energy crisis looming before the United States can be resolved only by an approach that integrates a 'portfolio' of options. Nuclear energy, already an important element in the portfolio, should play an even more significant role in the future as the U.S. strives to attain energy independence and reduce carbon emissions. The DOE Office of Nuclear Energy asked Battelle Memorial Institute to obtain input from the commercial power generation industry on industry's vision for nuclear energy over the next 30-50 years. With this input, Battelle was asked to generate a set of research and development capabilities necessary for DOE to support the anticipated growth in nuclear power generation. This presentation, based on the report generated for the Office of Nuclear Energy, identifies the current and future nuclear research and development capabilities required to make this happen. The capabilities support: (1) continued, safe operation of the current fleet of nuclear plants; (2) the availability of a well qualified and trained workforce; (3) demonstration of the next generation nuclear plants; (4) development of a sustainable fuel cycle; (5) advanced technologies for maximizing resource utilization and minimization of waste and (6) advanced modeling and simulation for rapid and reliable development and deployment of new nuclear technologies. In order to assure these capabilities are made available, a Strategic Nuclear Energy Capability Initiative is proposed to provide the required resources during this critical period of time. (authors)

  6. Conceptual Nuclear Design Of Two Models Of Research Reactor Proposed For Vietnam

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Huynh Ton Nghiem; Le Vinh Vinh; Vo Doan Hai Dang

    2007-01-01

    The joint study on the development of a new research reactor model for Vietnam was done. The KAERI (Korea Atomic Energy Research Institute) experts and DNRI (Dalat Nuclear Research Institute) researchers developed an advanced HANARO reactor (AHR), a 20-MW open-tank-in-pool type reactor, upward cooled and moderated by light water, reflected by heavy water and rod type fuel assemblies used. Based on the AHR model, a MTR reactor with plate fuel assemblies was developed. Computer codes named MCNP and MVP/BURN were used. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worth, etc. in both with clean, unperturbed core and equilibrium core condition. In case of AHR model, calculation results using MVP/BURN and MCNP codes were compared with the results using HELIOS and MCNP codes by KAERI experts and they are in a good agreement. (author)

  7. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  8. Twenty-fifth anniversary of the Juelich Nuclear Research Center

    International Nuclear Information System (INIS)

    Haefele, W.

    1982-01-01

    On December 10, 1981, KFA Juelich celebrated its 25th year of existence; on December 11, 1956, the land parliament of North Rhine Westphalia had decided in favour of the erection of a joint nuclear research facility of the land of North Rhine Westphalia. In contrast to other nuclear research centers, the Juelich centre was to develop and operate large-scale research equipment and infrastructure for joint use by the universities of the land. This cooperation has remained an important characteristic in spite of the independent scientific work of KFA institutes, Federal government majorities, and changes in research fields and tasks. KFA does fundamental research in nuclear and plasma physics, solid state research, medicine, life sciences, and environmental research; other activities are R + D tasks for the HTR reactor and its specific applications as well as energy research in general. (orig.) [de

  9. Bolivia. The new nuclear research center in El Alto

    International Nuclear Information System (INIS)

    Nogarin, Mauro

    2016-01-01

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  10. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  11. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  12. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  13. Measuring moderations: a cross cultural and comparative research in services between brazilians and canadians

    Directory of Open Access Journals (Sweden)

    Marcio de Oliveira Mota

    2014-08-01

    Full Text Available This study examines the relationship of relational benefits and their consequent variables by moderating cultural idiosyncrasies. The field research was conducted among 297 Brazilians and 207 Canadians. The collected data were analyzed by statistical tests such as comparing means, MANOVA, canonical correlation and moderation in regressive models in order to test the proposed technique. There were also methodological contributions through the development of computational scripts that identified the power and direction of each construct and path. The comparative analyses confirm that Brazilians are possibly more demanding than Canadians when evaluate services. On the one hand, due to Brazilians are culturally with greater power distance, we may indicate that to give them special treatment is an important factor in increasing satisfaction with employees. On the other hand, due to Canadians belong to a more egalitarian society, there are feelings that these privileges and "jeitinhos" should not be just for a few. The results obtained in this study may also be useful in strengthening business ties between Brazil and Canada in order to raise awareness among both countries.

  14. Neutronic calculations in heavy water moderated multiplying media using GGC-3 library nuclear data

    International Nuclear Information System (INIS)

    Boado, H.J.; Gho, C.J.; Abbate, M.J.

    1981-01-01

    Differences in obtaining transference matrices between GGC-3 code and the system to produce multigroup cross sections using GGC-3 library, recently implemented at the Neutrons and Reactors Division, have been analized. Neutronic calculations in multiplicative systems containing heavy water have been made using both methods. From the obtained results, it is concluded that the new method is more appropriate to deal with systems including moderators other than light water. (author) [es

  15. Segmented fuel and moderator rod

    International Nuclear Information System (INIS)

    Doshi, P.K.

    1987-01-01

    This patent describes a continuous segmented fuel and moderator rod for use with a water cooled and moderated nuclear fuel assembly. The rod comprises: a lower fuel region containing a column of nuclear fuel; a moderator region, disposed axially above the fuel region. The moderator region has means for admitting and passing the water moderator therethrough for moderating an upper portion of the nuclear fuel assembly. The moderator region is separated from the fuel region by a water tight separator

  16. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  17. Animals in nuclear research: where ethics and expediency meet

    International Nuclear Information System (INIS)

    Newton, P.J.F.

    1988-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a direct involvement in nuclear medicine, microbiological and environmental studies which utilise animals in the research work. The opposition to experiments on animals is briefly discussed. The Australia codes of practice for the care and use of animals for experimental purposes are outlined

  18. Specific features of occupational medicine in nuclear research and industry

    International Nuclear Information System (INIS)

    Giraud, J.M.; Quesne, B.

    2003-01-01

    Measures to prevent the exposure of personnel to ionising radiation were taken as soon as the first nuclear laboratories were set up. This branch of occupational preventive medicine has since kept pace with advances in research and in the industrial applications of nuclear energy. (authors)

  19. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  20. A new context for the nuclear research and industry

    International Nuclear Information System (INIS)

    2000-01-01

    Pascal Colombani, general administrator of the CEA, develops in this presentation the situation of the nuclear industry to introduce the new orientations of the CEA group. The energy context, the deregulation impacts, the energy dependence and the greenhouse effect project are discussed before the presentation of the research programs and the necessary reorganizing of the nuclear industry. (A.L.B.)

  1. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  2. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  3. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  4. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  5. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  6. Importance of basic research in nuclear physics

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.

    1976-01-01

    A brief survey is given of the significance of fundamental discoveries in nuclear physics. It is shown how theoretical and experimental discoveries transform our current views of the world around us and how in their practical implementation these discoveries bring revolutionary technical development. The latest progress in the field of elementary particles and their interactions and in the field of the atomic nucleus are briefly discussed. (I.W.)

  7. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  8. The role of nuclear research centres in the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Afgan, N.; Anastasijevic, P.; Kolar, D.; Strohal, P.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centres. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centres should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centres should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Secondly, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Thirdly, to follow the development of nuclear energy technology for fast breeder reactor concepts. (author)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  10. Nuclear research with electromagnetic probe. Progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The electromagnetic probe is used to address some of the forefront questions in nuclear physics. Two questions are of special interest in this project, one is related to the electromagnetic properties of the nucleon in the nuclear medium, the other concerns the transition between nucleons-mesons and quarks-gluons degrees of freedom when describing nuclei at medium energies. The electromagnetic properties of free protons have been extensively studied and are used as basic input to describe any of the electric or magnetic properties of nuclei. However, inclusive and semi-exclusive experiments measurements in the quasielastic and the deep inelastic region seem to indicate that the properties of bound nucleons are modified significantly in the nuclear medium. It is therefore of first importance to understand how the free properties of nucleons are modified in order to have a realistic description of nuclei. It was suggested, for example, that nucleons are swollen in nuclei. The physical consequences of such an idea are of great impact on the description of nuclei

  11. Funding nuclear power research 1956 to 2015. Update

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    In the debates about the use and the benefits of nuclear power plants the allegation is being made that nuclear power to this day had received public subsidies. That was the only reason why electricity from nuclear power plants was economically viable. That statement is wrong. A brief overview is given about the public funds for nuclear energy research and development. In relation to the electricity production less than 0.16 Euro Cents per kilowatt-hour have been spend by public funds for R and D.

  12. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  13. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  14. Nuclear research and development in the European community

    International Nuclear Information System (INIS)

    1979-01-01

    Research programmes undertaken by the European Atomic Energy Community and the European Economic Community are discussed. These programmes are carried out both at the Communities own Joint Research Centres (at Ispra, Karlsruhe, Geel and Petten) and also, although centrally managed by the Commission, at research organizations in the Member States. Such research projects include radioactive waste management and storage, decommissioning of nuclear power stations and nuclear fusion. Culham Laboratory is not only the centre for the UKAEA's research into controlled thermonuclear fusion but is also host to the Joint European Torus Joint Undertaking. (U.K.)

  15. Health and safety at the Whiteshell Nuclear Research Establishment

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1982-04-01

    This report outlines the health and safety program at the Whiteshell Nuclear Research Establishment. It describes the procedures in place to ensure that a high standard of conventional industrial and radiation safety is maintained in the workplace

  16. Tunnel Boring Machine for nuclear waste repository research project

    International Nuclear Information System (INIS)

    Janzon, H.A.

    1994-01-01

    A description is presented of a Tunnel Boring Machine and its intended use on a research project underway in Sweden for demonstrating and testing methods for rock investigation at a suitable depth for a deep repository for nuclear waste

  17. Research on assurance system of nuclear fuel supply (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Naoki; Naoi, Yosuke; Wakabayashi, Shuji; Tazaki, Makiko; Senzaki, Masao

    2010-03-01

    Assurance of supply (AOS) of nuclear fuel is a special arrangement in case of nuclear fuel supply disruption caused by political reasons other than nonproliferation. It aims to support a stable supply of nuclear fuel while avoiding unnecessary spread of sensitive enrichment technology. Current discussions on AOS have been initiated by the IAEA Director-General's article published in The Economist entitled 'Towards a Safer World' Oct. 2003. Since then, various proposals on AOS have been presented. In order to facilitate international discussions on AOS, authors have conducted studies of AOS system based on Japanese Government's proposal 'IAEA Standby Arrangement System (INFCIRC/683)'. In this paper, we gave an overview of discussions on AOS since World War II, and elaborated on some of current proposals. We have been able to discuss feasibility of AOS system more specifically by including additional costs and period required for AOS, and to present a system which could work as a practical system. Issues we have tried to tackle here include definitions of AOS, and roles of consumer states, supplier states, IAEA and nuclear industries. We present some solutions including broadening coverage of AOS, declaration by supplier states on AOS, establishing advisory committee in the IAEA on the actual application of AOS, and setting up an IAEA fund for AOS. (author)

  18. Research on assurance system of nuclear fuel supply (Contract research)

    International Nuclear Information System (INIS)

    Kobayashi, Naoki; Naoi, Yosuke; Wakabayashi, Shuji; Tazaki, Makiko; Senzaki, Masao

    2010-08-01

    Assurance of supply (AOS) of nuclear fuel is a special arrangement in case of nuclear fuel supply disruption caused by political reasons other than nonproliferation. It aims to support a stable supply of nuclear fuel while avoiding spread of sensitive enrichment technology. Current discussions on AOS have been initiated by the IAEA Director-General's article published in The Economist entitled 'Towards a Safer World' Oct. 2003. Since then, various proposals on AOS have been presented. In order to facilitate international discussions on AOS, authors have conducted studies of AOS system based on Japanese Government's proposal 'IAEA Standby Arrangement System (INFCIRC/683)'. In this paper, we have been able to discuss feasibility of AOS system more specifically by including additional costs and period required for AOS, and to present a system which could work as a practical system. Issues we have tried to tackle here include definitions of AOS, and roles of consumer States, supplier States, IAEA and nuclear industries. We present some solutions including broadening coverage of AOS, declaration by supplier States on AOS, establishing advisory committee in the IAEA on the actual application of AOS, and setting up an IAEA fund for AOS. (author)

  19. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  20. The importance of university research in maintaining the nuclear option

    International Nuclear Information System (INIS)

    Bruschi, H.J.; Hochreiter, L.E.

    1991-01-01

    The role of the university in maintaining and revitalizing the nuclear option should have four goals. First, it must attract highly skilled students who have an interest in math and science and help foster their interest in nuclear science and engineering. Next, it must present a state-of-the-art educational program that contains meaningful research to maintain these students. The third goal of nuclear engineering departments is to provide the nontechnical student a fair assessment of benefits and risks associated with commercial nuclear power relative to other sources of electricity. Lastly, it must effectively communicate to all students a compelling vision of nuclear power as a vital energy resource that will grow. The most difficult role for the university is to successfully convey a future for those in the nuclear science and engineering program

  1. Research in theoretical nuclear physics. Annual progress report No. 18

    International Nuclear Information System (INIS)

    1986-01-01

    Research programs in four major areas are described: the structure of the nucleon and the nucleon-nucleon interaction, strangeness, and strange baryons; the equation of state of dense matter with specific concern both for the problems of stellar collapse and supernova explosions and of relativistic heavy-ion collisions, nuclear structure physics; and relativistic effects in nuclear particularly heavy ion reactions and quark matter physics. New research efforts in many-body theory are also described

  2. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    International Nuclear Information System (INIS)

    Klement, A.W. Jr.

    1969-01-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  3. Radiological safety research for nuclear excavation projects - Interoceanic canal studies

    Energy Technology Data Exchange (ETDEWEB)

    Klement, Jr, A W [U.S. Atomic Energy Commission, Las Vegas, NV (United States)

    1969-07-01

    The general radiological problems encountered in nuclear cratering and nuclear excavation projects are discussed. Procedures for assessing radiological problems in such projects are outlined. Included in the discussions are source term, meteorology, fallout prediction and ecological factors. Continuing research requirements as well as pre- and post-excavation studies are important considerations. The procedures followed in the current interoceanic canal feasibility studies provide examples of radiological safety problems, current solutions and needed research. (author)

  4. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  5. Nuclear research centres in Pakistan: Status and prospects

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Khan, H.A.

    2001-01-01

    Nuclear research centres (NRCs) played an important role in the introduction of nuclear techniques in their respective countries. These centres are now faced with changes in public and government attitudes, pressures from anti-nuclear groups, competition from non-nuclear technologies, budget cuts and privatization, etc. These NRCs are still making useful contribution in the field of science and technology but need to change their strategy to operate under these pressures. The Pakistan Institute of Nuclear Science and Technology (PINSTECH) has a record of 34 years of successful operation. Salient features and achievements of this Institute are presented as a model for a research centre in a developing country. The elements that are contributed for the success are described. The IAEA and other cooperative agencies can help to overcome the negative factors posed to these NRCs. (author)

  6. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  7. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  8. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  9. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  10. Cyberattack analysis through Malaysian Nuclear Agency experience as nuclear research center

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Fauzi Haris; Saaidi Ismail; Nurbahyah Hamdan

    2011-01-01

    As a nuclear research center, Nuclear Malaysia is one of the Critical National Information Infrastructure (CNII) in the country. One of the easiest way to launch a malicious attack is through the online system, whether main web site or online services. Recently, we also under port scanning and hack attempts from various sources. This paper will discuss on analysis based on Nuclear Malaysia experience regarding these attempts which keep arising nowadays. (author)

  11. 30 years of Central Institute for Nuclear Research at Rossendorf

    International Nuclear Information System (INIS)

    Scheler, W.; Flach, G.; Hennig, K.; Collatz, S.; Muenze, R.; Baldeweg, F.

    1986-10-01

    A celebration and a scientific colloquium dedicated the 30th anniversary of the foundation of the Central Institute for Nuclear Research (CINR) of the GDR Academy of Sciences were held on January, 23rd and 24th, '86 at Rossendorf. The speaches and lectures given by the president of the GDR Academy of Sciences and by scientists of the CINR dealt with problems of policy of science, history of the CINR, nuclear methods, microelectronics, nuclear energy research, development and production of radioisotopes and scientific instruments. (author)

  12. In-depth research of domestic nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao Anna; Li Dongbin; Lu Yanjia; Ren Chao

    2014-01-01

    Based on the domestic patent information, combined with examples, this article makes an in-depth discussion on the domestic nuclear patent information. The author puts forward for the patent information research, the appropriate retrieval of patent documents is the basis,and the correct quantitative statistical analysis of patent documents is the key, and in-depth qualitative analysis of patent documents is the core. It is expected to provide information support and guarantee for the technical innovation and scientific research personnel in the nuclear field through in-depth study of domestic nuclear information. (authors)

  13. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  14. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1996-01-01

    The most significant development this year has been the realization that EO transition strength is a fundamental manifestation of nuclear mean-square charge radius differences. Thus, EO transitions provide a fundamental signature for shape coexistence in nuclei. In this sense, EO transitions are second only to E2 transitions for signaling (quadrupole) shapes in nuclei and do so when shape differences occur. A major effort has been devoted to the review of EO transitions in nuclei. Experiments have been carried out or are scheduled at: ATLAS/FMA (α decay of very neutron-deficient Bi isotopes); MSU/NSCL (β decay of 56 Cu); and HRIBF/RMS (commissioning of tape collector, internal conversion/internal-pair spectrometer; β decay of 58 Cu). A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using HRIBF. Theoretical investigations have continued in collaboration with Prof. K. Heyde, Prof. D.J. Rowe, Prof. J.O. Rasmussen, and Prof. P.B. Semmes. These studies focus on shape coexistence and particle-core coupling

  15. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  16. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  17. Nuclear research centres - The Egyptian experiment

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2001-01-01

    The Atomic Energy Authority of Egypt has four research centres located at two sites. Its research reactors are devoted to the production of isotopes, neutron beam experiments, activation analysis and materials research. The accelerators are devoted to the production of short lived isotopes for medical applications and materials R and D. Irradiation technology is used for sterilization of medical supplies and food preservation. High level of expertise in those centres is also useful for other developmental activities in Egypt. (author)

  18. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. Quality assurance activities in nuclear research and development

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsutoshi; Ishikawa, Hirohisa [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-03-01

    A case study into the quality management system of the Associated Nuclear Research Association has been performed with reference to the fast breeder reactor (FBR) cycle and high-level waste management (HLWM) research fields. The Japan Nuclear Cycle Development Institute's major research and development projects are in these fields. Progress in the quality management system for research subjects has been compared and analyzed by comparing with both the development level of individual projects and the external environment. Computer-assisted performance assessment systems analysis (CAPASA) in high-level waste management is described as a practical example. (author)

  20. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C; Kanyukt, R; Pongpat, P [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  1. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  2. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  3. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  4. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  5. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  6. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  9. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  10. Significance and impact of nuclear research in developing countries

    International Nuclear Information System (INIS)

    1987-01-01

    The main purpose of this conference was to gather representatives of universities, research institutes, governmental agencies and industry, as well as IAEA staff, to report on and to assess the significance and impact of nuclear science and technology in developing countries. Thirty-four papers from 17 countries were presented, which are included in the proceedings, as well as reports of three workshops on ''Basic and applied research'', on ''The IAEA's involvement in the implementation of national nuclear programmes'', and on ''Policy and management issues''. The presentation of these reports clearly reflects the fact that all the nuclear activities involved in the programmes of industrialized countries are in progress in developing countries, i.e. most of the aspects of applications in the field of nuclear power, research reactors, food and agriculture, industry and earth sciences, and life sciences. A separate abstract was prepared for each of these papers

  11. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 9

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    140 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  12. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 7

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    139 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  13. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 13

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-12-01

    136 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  14. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 14

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-12-01

    136 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  15. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 11

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-07-01

    158 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  16. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 6

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    135 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  17. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 5

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    133 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  18. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 12

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-12-01

    136 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  19. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 8

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    141 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  20. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 4

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-03-01

    135 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  1. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 15

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-12-01

    137 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  2. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 10

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1979-07-01

    142 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are available on a loan basis from ZfK Rossendorf, Information Department, Dresden

  3. Title list of selected Soviet reports in the fields of nuclear research and nuclear engineering. 0

    International Nuclear Information System (INIS)

    Schumann, G.; Sube, R.

    1977-09-01

    161 titles of reports issued by Soviet institutes (KFTI, EFI, IAE, IFVE, ITEF, NIIAR, NIIEFA, FEI, RI, SFTI) in the fields of nuclear research and nuclear engineering have been arranged according to the INIS subject scope. The reports are availabl on a loan basis from ZfK Rossendorf, Information Department, Dresden

  4. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1991-01-01

    This patent describes a nuclear reactor core. It comprises a first group of fuel rods containing fissionable material and being free of burnable absorber material; and a second group of fuel rods containing fissionable material and first and second burnable absorber material; the first burnable absorber material being a boron-bearing material which does not contain erbium and the second burnable absorber material being an erbium material; the first and second burnable absorber materials being in the form of an outer coating on the fissionable material, the outer coating being composed of an inner layer of one of the boron-bearing material which does not contain erbium and the erbium material and an outer layer of the other of the boron-bearing material which does not contain erbium and the erbium material

  5. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  6. Multidimensional space-time kinetics of a heavy water moderated nuclear reactor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.; Jewell, C.E.

    1980-01-01

    Diffusion theory analysis of a series of multidimensional space-time experiments is appraised in terms of the final experiment of the series. In particular, TRIMHX diffusion calculations were examined for an experiment involving free-fall insertion of a 235 U-bearing rod into a heavy water moderated reactor with a large reflector. The experimental transient flux-tilts were accurately reproduced after cross section adjustments forced agreement between static diffusion calculations and static reactor measurements. The time-dependent features were particularly well modeled, and the bulk of the small discrepancies in space-dependent features should be removable by more refined cross-section adjustments. This experiment concludes a series of space-time experiments that span a wide range of delayed neutron holdback effects. TRIMHX calculations of these experiments demonstrate the accuracy of the modeling employed in the code

  7. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  8. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  9. Nuclear and radiochemistry research: from development to deployment

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2015-01-01

    Fundamental research in nuclear and radiochemistry is essential in building the expertise in quality assurance and quality control (QA/QC) of nuclear materials, which in turn is important for harnessing nuclear energy for peaceful purposes. Expansion of nuclear fuel cycle activities throws several new challenges before the nuclear scientists with regard to the chemical quality control, quality assurance, accounting of special nuclear materials, improving the detection limits of the trace elements, etc. Nondestructive assay (NDA) of nuclear materials is important from the point of view of nuclear material accounting and control. The requirement of QA/QC of finished products as well as accounting of special nuclear materials in waste packets can be met through NDA techniques. For this purpose passive gamma and neutron based techniques are employed for Pu based materials. On the other hand, NDA of uranium based fuels need active interrogation methods for quantitative assay in sealed packets, while isotopic composition can be measured using high resolution gamma ray spectrometry in suitable gamma energy region. Some of the other elements, such as, boron in finished products can be assayed using ion beam analysis techniques, such as proton induced gamma emission (PIGE) employing low energy proton beams. In the present talk, a few examples of such challenges and their possible solutions would be discussed. (author)

  10. Research and development for the future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Hideo [Japan International Cooperation Agency, Tokyo (Japan)

    2002-11-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  11. Research and development for the future nuclear power

    International Nuclear Information System (INIS)

    Morimoto, Hideo

    2002-01-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  12. International cooperation for promotion of nuclear science and engineering research

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Sugiyama, Kazusuke; Nakazawa, Masaharu; Katoh, Toshio; Kimura, Itsuro.

    1993-01-01

    For promotion of nuclear science and engineering research, examinations were made on the possibilities and necessary measures to extend joint research at international level. The present article is a summary of the reports of investigations performed during FY 1986 through 1991 by the Special Committee of the AESJ for Feasibility Study on International Cooperation for Promotion of Nuclear Science and Engineering Research, under contract with Science and Technology Agency of Japan. Background information was collected on the present status of scientific research facilities in US, European and Asian countries on one hand, and on the expectations and prospects of Japanese scientists on the other hand. Based on the analysis of these data, some measures necessary to expand the international cooperation were proposed. It was emphasized that international joint research on a reciprocal basis would be effective in order to strengthen the technological basis of peaceful uses of nuclear energy. Problems to be solved for the new development were also discussed. (author)

  13. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  14. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  15. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  16. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  17. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  18. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  19. Nuclear medical approaches to clinical research

    International Nuclear Information System (INIS)

    Otte, Andreas; Nguyen, Tristan

    2009-01-01

    In the frame of the master course Clinical research management at the scientific college Lahr in cooperation with the Albert-Ludwigs-University Freiburg three contributions are presented: Functional imaging - supported clinical studies in the sleep research. A comparison of NMR imaging versus SPECT and PET (advantages and disadvantages). Clinical studies with ionizing radiation and the radiation fear of the public. The new radioimmunotherapeutic agent Zevalin and the challenges at the market.

  20. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  1. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    International Nuclear Information System (INIS)

    O'Brien, Robert C.

    2001-01-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  2. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers). The conference proceedings where divided into two parts. This item refers particularly to the second part

  3. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  4. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  5. Basic research on human reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang

    1996-10-01

    Human reliability in nuclear power plants is one of key factors in nuclear safety and economic operation. According to cognitive science, behaviour theory and ergonomic and on the bases of human cognitive behaviour characteristics, performance shaping factors, human error mechanisms and organization management, the project systematically studied the human reliability in nuclear power plant systems, established the basic theory and methods for analyzing human factor accidents and suggested feasible approaches and countermeasures for precaution against human factor accidents and improving human reliability. The achievement has been applied in operation departments, management departments and scientific research institutions of nuclear power, and has produced guiding significance and practical value to design, operation and management in nuclear power plants. (11 refs.)

  6. Research on export system of marine nuclear power device

    International Nuclear Information System (INIS)

    Fu Mingyu; Bian Xinqian; Shi Ji; Xin Chengdong; Wei Dong

    2002-01-01

    A marine nuclear power plant simulation system is founded, and a management expert system, which can administer and diagnose the typical faults, is constituted by the intelligent expert theory. This real-time expert system can analyze the reason of the typical fault caused by the nuclear power plant practically running and give the best solvent by the expert knowledge reasoning in the repository; a neural network fault inspection and diagnosis expert system which can inspect every equipment continually and give the faults diagnosis result based on the inspective dates is established. Based on the three hierarchical architecture, the operation performance is improved very much by using of the neural network fault inspection and diagnosis expert system to inspect and diagnose the nuclear power plant faults and the management expert system to supervise the nuclear power plant running. The expert system research can give guidance for the marine nuclear power plant safety operation

  7. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  8. Advanced Research Workshop on Preparedness for Nuclear and Radiological Threats

    CERN Document Server

    Diamond, David; Nuclear Threats and Security Challenges

    2015-01-01

    With the dissolution of the Soviet Union the nuclear threats facing the world are constantly evolving and have grown more complex since the end of the Cold War. The diversion of complete weapon systems or nuclear material to rogue nations and terrorist organizations has increased. The events of the past years have proved the necessity to reevaluate these threats on a level never before considered.  In recognition that no single country possesses all of the answers to the critical scientific, institutional and legal questions associated with combating nuclear and radiological terrorism, the NATO Advanced Research Workshop on “Preparedness for Nuclear and Radiological Threats” and this proceeding was structured to promote wide-ranging, multi-national exploration of critical technology needs and underlying scientific challenges to reducing the threat of nuclear/radiological terrorism; to illustrate through country-specific presentations how resulting technologies were used in national programs; and to outli...

  9. Progress of experimental research on nuclear safety in NPIC

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Houjun; Zan, Yuanfeng; Peng, Chuanxin; Xi, Zhao; Zhang, Zhen; Wang, Ying; He, Yanqiu; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China)

    2016-05-15

    Two kinds of Generation III commercial nuclear power plants have been developed in CNNC (China National Nuclear Corporation), one is a small modular reactor ACP100 having an equivalent electric power 100 MW, and the other is HPR1000 (once named ACP1000) having an equivalent electric power 1 000 MW. Both NPPs widely adopted the design philosophy of advanced passive safety systems and considered the lessons from Fukushima Daichi nuclear accident. As the backbone of the R and D of ACP100 and HPR1000, NPIC (Nuclear power Institute of China) has finished the engineering verification test of main safety systems, including passive residual heat removal experiments, reactor cavity injection experiments, hydrogen combustion experiments, and passive autocatalytic recombiner experiments. Above experimental work conducted in NPIC and further research plan of nuclear safety are introduced in this paper.

  10. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  11. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  12. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    Introduction. Nuclear physics research was started in Debrecen by Alexander Szalay (1909-1987) back in the 30's. He had been a postdoc of the Nobel-laureate biologist Albert Szent-Gyorgyi in Szeged and of Lord Rutherford in Cambridge. ATOMKI was founded in Debrecen later, in 1954. The Institute was meant to pursue scientific research in certain areas of experimental nuclear physics and to develop research instruments In the early years the country was pretty isolated, but the institute's state of isolation was gradually easing up from the mid-sixties. During the period 1962-1975 the research work was performed in collaboration with Joint Institute for Nuclear Research (Dubna), where up-to-date high-energy accelerators were available for the production of desired isotopes. After finishing the construction of a home-made 5 MV Van de Graaff accelerator (1972) and later on the installation of a K=20 light ion cyclotron (1985) the Institute has become the main centre of accelerator-based nuclear physics in Hungary. In the period 1975-1995 our group performed extensive nuclear structure studies in Debrecen by using γ and conversion electron spectroscopy. At the same time fruitful collaborations were initiated with Jyvaskyla (Finland), with University of Kentucky and University of Zagreb. In 1993 the former Nuclear Reaction Group (NRG) merged with our group. Parallel with this structural change, the main topics of our γ-spectroscopic work has also changed, which resulted that the location of our experiments were shifted from the home institute to foreign large-scale facilities. New topics were brought partly by the emerging NRG, partly by group members returning from postdoctoral fellowships. They also brought important non γ-spectroscopic topics, which enriched our research palette. These new topics have by now become joint endeavours involving more and more group members. The Nuclear Physics European Coordination Committee (NuPECC) has recently stated that the aim of

  13. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  14. DOE, IAEA collaborate to put decades of nuclear research online

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Decades of nuclear research supported by the United States Department of Energy (DOE) and its predecessor agencies are being made searchable on the World Wide Web, as part of a collaborative effort between the DOE and the International Atomic Energy Agency (IAEA). The project aims to give researchers, academics, and the general public access to vast volumes of valuable nuclear-related research over the internet. As part of its knowledge preservation mandate, the IAEA' s International Nuclear Information System(INIS) works to preserve nuclear knowledge by digitizing historic nuclear energy research documents dating from 1970 through the early 1990s. Collections from over 29 countries are now digitally available and several additional digital preservation projects are ongoing or are being established, particularly in the Latin America and Caribbean regions. ''Thanks to the collaborative work of the IAEA and its Member States, scientists and students in the nuclear field now have instant access to important research and technical information over the internet,'' said IAEA Deputy Director General for Nuclear Energy Yury Sokolov. ''Our INIS programme continues to work to preserve and provide access to publications and documents on the peaceful applications of nuclear technology.'' The DOE project is one of the larger programmes in the INIS project, and includes more than 180,000 documents from the DOE Office of Scientific and Technical Information (OSTI). OSTI is the U.S. representative to INIS and has had its own digitization focus in recent years. The novel partnership highlights the longstanding mutual benefits of DOE participation in INIS. In essence, it opens up previous research on the safe and peaceful uses of nuclear energy by making it freely and quickly available to scientists and engineers. By making scientific data electronically available, the INIS database helps scientists and students to attain volumes of data that are otherwise inaccessible

  15. Hypothetical accidents of light-water moderated nuclear power plants in the framework of emergency planning

    International Nuclear Information System (INIS)

    1979-07-01

    Hypothetical accidents in nuclear power plants are events which by definition can have a devastating impact on the surroundings of the plant. Apart from an adequate plant design, the protection of the population in case of an accident is covered by the emergency planning. Of major importance are the measures for the short-term emergency protection. The decision on whether these measures are applied has to be based on appropriate measurements within the plant. The aim and achieved result of this investigation is to specify accident types. They serve as operational decision making criteria to determine the necessary measurements for analysing the accident in the accident situation, and to provide indications for choosing the suitable strategy for the protection measures. (orig.) [de

  16. Revisiting the nuclear age : state of the art research in nuclear history

    NARCIS (Netherlands)

    Kalmbach, K.

    This article provides an overview of recent research developments in the field of nuclear history, focusing on Western European and Northern American research perspectives and topics. The analysis of these developments reveals under-researched areas which merit more focus from humanities and social

  17. Nuclear Power Plant Fire Protection Research Program

    International Nuclear Information System (INIS)

    Datta, A.

    1985-07-01

    The goal is to develop test data and analytical capabilities to support the evaluation of: (1) the contribution of fires to the risk from nuclear power plants; (2) the effects of fires on control room equipment and operations; and (3) the effects of actuation of fire suppression systems on safety equipment. A range of fire sources will be characterized with respect to their energy and mass evolution, including smoke, corrosion products, and electrically conductive products of combustion. An analytical method for determining the environment resulting from fire will be developed. This method will account for the source characteristics, the suppression action following detection of the fire, and certain parameters specific to the plant enclosure in which the fire originates, such as the geometry of the enclosure and the ventilation rate. The developing local environment in the vicinity of safety-related equipment will be expressed in terms of temperatures, temperature rise rates, heat fluxes, and moisture and certain species content. The response of certain safe shutdown equipment and components to the environmental conditions will be studied. The objective will be to determine the limits of environmental conditions that a component may be exposed to without impairment of its ability to function

  18. Nuclear structure research. Annual progress report

    International Nuclear Information System (INIS)

    Wood, J.L.

    1995-01-01

    The most significant development this year has been the realization of a method for estimating EO transition strength in nuclei and the prediction that the de-excitation (draining) of superdeformed bands must take place, at least in some cases, by strong EO transitions. A considerable effort has been devoted to planning the nuclear structure physics that will be pursued using the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge. A significant effort has been devoted to HRIBF target development. This is a critical component of the HRIBF project. Exhaustive literature searches have been made for a variety of target materials with emphasis on thermodynamic properties. Vapor pressure measurements have been carried out. Experimental data sets for radioactive decays in the very neutron-deficient Pr-Eu and Ir-Tl regions have been under analysis. These decay schemes constitute parts of student Ph.D. theses. These studies are aimed at elucidating the onset of deformation in the Pr-Sm region and the characteristics of shape coexistence in the Ir-Bi region. Further experiments on shape coexistence in the neutron-deficient Ir-Bi region are planned using α decay studies at the FMA at ATLAS. The first experiment is scheduled for later this year

  19. [Research in heavy ion nuclear reactions

    International Nuclear Information System (INIS)

    Howell, E.H.; Liu, X.T.; Petitt, G.A.; Zhang, Z.

    1994-01-01

    The authors have been involved in several projects during the present contract period. These include participation in the RD93 test run performed last summer at the Alternating Gradient Synchrotron (AGS) at Brookhaven, analysis of the data from this run, Monte Carlo simulations using the GEANT code of the performance of the calorimeter/absorber used in RD45, and simulations of the performance of the muon detector system for the PHENIX detector at RHIC using the PISA code. They have been preparing for tests to be performed this summer at the AGS of a prototype muon identifier using limited streamer tube detectors of the type selected for use in the muon arm of the PHENIX detector at RHIC. They have begun work on Monte Carlo simulations of particle detection in the presence of intense background events for the E864 experiment which is approved for running at the AGS. Finally, the authors have completed their work on leakage from the absorber/calorimeter and have submitted a paper to Nuclear Instruments and Methods

  20. Relationships between economic and technical research in nuclear power complex

    International Nuclear Information System (INIS)

    Drahny, M.; Martinek, J.

    1984-01-01

    The period from projecting and construction to operation and decommissioning of a nuclear power plant spans approximately 5a years. During this period it is necessary to resolve a range of technical, economic and social research problems. Even more complicated is the nuclear power complex as a whole. The respective technical and economic aspects are interactive and cannot be solved separately. It is therefore suggested that the respective national research and development program be linked with the national program of economic research, this both at the preparatory stage, in the course of work and during the evaluation of achieved results. (Ha)

  1. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  2. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  3. Feasibility study for the Nuclear Research Centre of the Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1985-01-01

    The feasibility study was carried out in order to evaluate the possibility of building a Nuclear Research Centre in Uruguay, which would support a wide range of nuclear related technological activities. A market research was carried out, of the products to be manufactured at the Nuclear Centre, regarding the size of production. A detailed list of the main products considered is enclosed. The siting study was performed through the analysis of the incidental factors, such as environment, technical scope and socio-ecomonic factors. An engineering study for the main installations was done. The investment and financial sources were also studied

  4. 30th anniversary of Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    One of the main goals in mind in 1956 when the Karlsruhe Nuclear Research Centre was founded, was to promote the peaceful uses of nuclear energy in the Federal Republic of Germany. The work accomplished since then by the various institutes of the Centre was particularly successful in the following: Development and construction of the first research reactor as an entirely national achievement; installation and operation of the MZFR reactor, as well as the compact sodium-cooled KNK reactor; the Nuclear Safety Project; the development of the separation nozzle method for uranium enrichment; and specific methods and equipment developed for safeguards systems to prevent nuclear materials diversion. Looking into the future, the tasks ahead will concentrate on the technology of energy generation by thermonuclear fusion, and on environmental pollution control and related methods, as well as industrial processes such as materials handling and process control by PDV and CAD. (orig./PW) [de

  5. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  6. Nuclear research using the electromagnetic probe

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1990-11-01

    This report discusses research in the following areas: Measurement of the spin dependent structure function; the transverse and longitudinal response functions; measurement of proton polarization in the d(γ,p)n reaction; and the electron beam polarimeter in Hall A

  7. Annual report 1984. Nuclear fuel research department

    International Nuclear Information System (INIS)

    Nebel, D.

    1985-12-01

    Research activities have been reviewed in the field of powder metallurgy and the production of new ceramic materials in particular silicon nitrides. Communications on the chemistry of solutions and the analytical chemistry have been compiled specially under the aspect of technical solutions and the development of new devices, equipments and methods. In a final chapter publications and lectures are assorted

  8. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  9. US nuclear reaction data program in support of basic research

    International Nuclear Information System (INIS)

    Bhat, M.R.; Chadwick, M.B.; Smith, M.S.

    1997-01-01

    Information about the US Nuclear Reaction Data Network (USNRDN) such as its members, work in progress, summaries of meetings, and organizational details may be found in its WWW Homepage. This paper is an overview of the data support provided by the network for basic research in nuclear astrophysics, radioactive ion beams, high energy heavy-ion and electron interactions and related activities involving all aspects of data stewardship

  10. The research progress of nuclear medicine on cardiovascular molecular imaging

    International Nuclear Information System (INIS)

    Yin Xiaohua; Zhang Yongxue

    2007-01-01

    Cardiovascular molecular imaging is a rapidly evolving discipline and its clinical application is promising. Nuclear medicine is playing a leading role in this field with its special superiority of noninvasive, quantifiability, high sensitivity and specificity. It provides broad opportunities for exploring the pathophysiologic process of cardiovascular diseases and monitoring its gene therapy in the molecular level. In this review, we mainly discuss some basic knowledge on cardiovascular molecular imaging, and then focus on the applied research prospect of nuclear medicine radionuclide imaging. (authors)

  11. Karlsruhe Nuclear Research Centre. Report on the results of research and development 1985

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a description of the research projects, a list of the institutes and departments of the scientific-technical range with short articles concerning the results of the institutional work, and a bibliography of all publications of 1985. The main aspects of the projects and research programs are fast breeder, separation nozzle process, nuclear fusion, waste recycling and reprocessing, final storage, nuclear safety, the range of technique-man-environment, solid state and materials research, nuclear and elementary particle physics, and research programs of different institutes. (HK)

  12. A plan for research by the atmospheric research section in support of Ontario Hydro's nuclear activities

    International Nuclear Information System (INIS)

    Ogram, G.L.; Melo, O.T.

    1984-01-01

    A plan for nuclear studies by the Atmospheric Research Section is presented. The need for research is discussed and research objectives are established. Recommended research activities include the study of fundamental processes governing the fate of emissions released to the atmosphere by Hydro's nuclear facilities and the development of improved transport models describing the fate of these emissions. A Sectional goal of providing technical expertise in the atmospheric sciences in support of Ontario Hydro's present and future nuclear activities is proposed. The plan covers a five-year time frame (1984-1988)

  13. Disposition of recommendations of the National Research Council in the report ''Revitalizing Nuclear Safety Research''

    International Nuclear Information System (INIS)

    1988-06-01

    On December 8, 1986, the Committee on Nuclear Safety Research of the National Research Council submitted its report, ''Revitalizing Nuclear Safety Research,'' to the US Nuclear Regulatory Commission (NRC). The Commission and its staff have carefully reviewed the Committee's report and have extensively examined the planning, implementation, and management of NRC research programs in order to respond most effectively to the Committee's recommendations. This report presents the Commission's view of the Committee's report and describes the actions that are under way in response to its recommendations

  14. Radiant research prospects? A review of nuclear waste issues in social science research

    International Nuclear Information System (INIS)

    Bergquist, Ann-Kristin

    2007-05-01

    The present report has been put together on behalf of KASAM and constitutes a review of social science research and literature that been produced on the nuclear waste issue in Sweden, with focus on recent research. The aim with the investigation has been to map the scope of and the direction of the independent research about nuclear waste in Sweden, in relation to the research that has been initiated and financed by the stakeholders that are participating in the decision-making process in the nuclear waste issue. Another aim has been to point out areas that have not been taken into consideration

  15. Availability analysis of the nuclear instrumentation of a research reactor

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2016-01-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  16. Nuclear materials research progress reports for 1977

    International Nuclear Information System (INIS)

    Olander, D.R.

    1977-12-01

    Research is reported concerning radiation enhancement of stress corrosion cracking of Zircaloy, surface chemistry of epitaxial Si deposited by thermal cracking of silane, thermal gradient migration of metallic inclusions in UO 2 , molecular beam studies of atomic H and reduction of oxides, mass transfer and reduction of UO 2 , kinetics of laser pulse vaporization of UO 2 , retention and release of water by UO 2 pellets, and solubility of H in UO 2

  17. Nuclear materials research progress reports for 1979

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-12-01

    Research is presented concerning iodide stress corrosion cracking of zircaloy, self-diffusion of oxygen in hypostoichiometric urania, surface chemistry of epitaxial silicon deposition by thermal cracking of silane, kinetics of laser pulse vaporization of UO 2 , gas laser model for laser induced evaporation, solubility of hydrogen in uranium dioxide, thermal gradient migration of metallic inclusions in UO 2 , molecular beam studies of atomic hydrogen reduction of oxides, and thermal gradient brine-inclusion migration in salt

  18. Nuclear boom - challenge for research and development

    International Nuclear Information System (INIS)

    Korec, M.; Liska, P.

    2009-01-01

    In this lecture authors present research and development in which VUJE, a. s. has participated. Authors concluded that resume as soon as possible the short-term research and development tasks for the existing SE reactors, both, operational reactors of SE and for shut-downed reactors - JAVYS. (Financing with the contribution from the state but major part from the industry). In cooperation with state institutions, regulatory authorities and investor (would-be operator) and supplier (suppliers) define and prepare tasks focused on issues of new-built Generation III reactors (Financing split between the state and industry in accordance with the characteristics of the tasks). Begin preparing tasks for resolving development problems of Generation IV reactors: - Persuade politicians abut the inevitability of state participation in the process, including financing; - Involve in the process institutions that can significantly contribute to the problems resolving (mainly on technical level, but also on organization and potentially financial level); - Prepare international cooperation agreements in this field (based on the existing agreements, preparation of new agreements); - Define technical areas of cooperation (research infrastructure, experimental and development facilities, simulation tools).

  19. A model for nuclear research reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2013-09-15

    Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.

  20. The transition criteria of circulating flow pattern of moderator in the calandria tank of CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Jung, Yun Sik; Lee, Jae Young; Kim, Man Woong

    2004-01-01

    The moderator cooling system to the Calandria tank of CANDU nuclear power plant provides an alternative pass of heat sink during the hypothetical loss of coolant accident. Also, the neutron population in the CANDU plant can be affected by the moderator temperature change which strongly depends on the circulating flow pattern in the Calandria tank. It has been known that there are three distinguished flow patterns: the buoyancy dominated flow, the momentum dominated flow, and the mixed type flow. The Canadian Nuclear Safety Commission (CNSC) recommended that a series of experimental works should be performed to verify the three dimensional codes. Two existing facilities, SPEL (1982) and STERN (1990), have produced experimental data for these purposes. The present work is also motivated to build up a new scaled experimental facility named HGU for the same purposes. CANDU-6 was selected as the target plant to be scaled down. In the design for the scaled facility, the knowledge on the flow regime transitions in the circulating flow was imperative. In the present study, to pave the way for the scaling, the flow pattern maps of circulating flow were constructed based on the Reynolds number and Archimedes number. The CFX code was employed with real meshes to represent all calandria tubes in the tank. The flow pattern maps were constructed for SPEL, STERN, HGU, and CANDU6. As the key transition criterion useful for scaling law, a new Archimedes number considering the jet impingement of the feed water in the Calandria tank was found. The transition of flow patterns was made with the same Archimedes number for CANDU6, STERN and HGU. However, SPEL which has third of the modified Archimedes number showed different maps in the wider region of mixed flow pattern was observed. It was found that the Archimedes number considering the inlet nozzle velocity plays the key role in patterns classification. Also, it can be suggested that the moderator cooling system needs to be designed

  1. Basic research on cermet nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshi; Sto, Seichi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Takano, Masahide; Minato, Kazuo; Fukuda, Kosaku

    1998-01-01

    Production of cermet nuclear fuel having fine uranium dioxide (UO{sub 2}) particles dispersed in matrix metal requires basic property data on the compatibility of matrix metal with fission product compounds. It is thermodynamically suggested that, as burnup increases, cesium in oxide fuel reacts with the fuel, other fission products or cladding pipe and produces cesium uranates, cesium molybdate, or cesium chromate in stainless steel cladding pipe. Attempt was made to measure the thermal expansion coefficient and thermal conductivity of cesium uranates (Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7}), cesium molybdate (Cs{sub 2}MoO{sub 4}) and cesium chromate (Cs{sub 2}CrO{sub 4}). Thermal expansion was measured by X-ray diffraction and determined by Cohen`s method. Thermal conductivity was obtained by measuring thermal diffusion by laser flash method. The thermal expansion of Cs{sub 2}UO{sub 4} and Cs{sub 2}U{sub 2}O{sub 7} is as low as 1.2% for the former and 1.0% for the latter, up to 1000K. The thermal expansion of Cs{sub 2}MoO{sub 4} is as high as that of Cs{sub 2}CrO{sub 4}, 2.1% for the former and 2.5% for the latter at temperatures from room temperature to 873K. Average thermal expansion in this temperature range is 4.4 x 10{sup -5} K{sup -1} for Cs{sub 2}MoO{sub 4} and 4.2 x 10{sup -5} K{sup -1}. The thermal expansion of Cs{sub 2}CrO{sub 4} is four times higher than that of UO{sub 2} and five times higher than that of Cr{sub 2}O{sub 3}. The thermal conductivity of Cs{sub 2}UO{sub 4} is nearly equal to that of Cs{sub 2}U{sub 2}O{sub 7} in absolute value and temperature dependency. Cs{sub 2}U{sub 2}O{sub 7}, having different thermal conductivity between {alpha} and {beta} phases, shows higher conductivity with {beta} than with {alpha}, about 1/4 of that of UO{sub 2} at 1000K. The thermal conductivity of Cs{sub 2}CrO{sub 4} is nearly equal to that of Cs{sub 2}MoO{sub 4} in absolute value and temperature dependency. (N.H.)

  2. Research activities of the nuclear graphite research group at the University of Manchester, UK

    International Nuclear Information System (INIS)

    Marsden, B.J.; Fok, A.S.L.; Marrow, J.; Mummery, P.

    2004-01-01

    In 2001 the Nuclear Safety Division (NSD) of the UK Health and Safety Executive (HSE) decided to underwrite the Nuclear Graphite Research Group (NGRG) at the University of Manchester, UK with the aim of providing a source of independent research and advice to the HSE (NSD). Since then the group has rapidly expanded to 16 members and attracted considerable funding from the nuclear power industry and the regulator for a wide range of research and consultancy work. It is now also part of the Material Performance Centre within the BNFL Universities Research Alliance. Extensive collaboration exists between the group and other nuclear research institutes, both in the UK and overseas. This paper briefly describes some of the research programmes being carried out by the NGRG at Manchester. (author)

  3. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  4. Atomic, Nuclear and Molecular Research Center CICANUM

    International Nuclear Information System (INIS)

    Loria Meneses, Luis Guillermo

    2011-01-01

    CICANUM has a Gamma Spectroscopy Laboratory, has been the laboratory official, appointed by the Ministerio de Agricultura in Costa Rica to analyze export products (for human consumption and animal), also, to determine radioactive contamination. The Laboratory has four systems using germanium detectors and canberra technology, including software Genie 2000 to establish the activity of cesium, iodine and natural gamma emitters in solid or liquid samples for food products, sediments and rocks. This Laboratory belongs to the Universidad de Costa Rica which has different institutes and research centers

  5. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  6. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  7. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  8. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  9. Research on improvement of marine nuclear reactors and future perspective

    International Nuclear Information System (INIS)

    Yokomura, Takeyoshi

    1988-01-01

    The features when atomic energy is utilized on the sea are that the fuel cost is low, accordingly it is suitable to the power sources of large output, that the volume and weight of fuel are small, accordingly it is suitable to the continuous operation for a long period without refueling, and that oxygen is not required for the burning, accordingly it is suitable to undersea power sources. In USSR, four nuclear icebreakers have been in use, and four more are under construction. A nuclear LASH ship has been operated, and one more is under construction. As the other fields than sea transportation, an electricity generation barge MH-1A of USA used as the auxiliary power source for the Panama Canal and a research submarine NR-1 of USA have been in practical use. With the advance of ocean development in future, the creation of needs such as deep sea power stations, deep sea research ships and deep sea work ships is expected. Marine nuclear reactor technology was begun in the form of the nuclearization of merchant ships, and Savannah of USA, Otto Hahn of West Germany and Mutsu of Japan were built. The marine nuclear reactors built so far and of which the conceptual design was carried out are shown. The improvement of marine reactors is the reduction of size and weight, the simplification of the system, the adoption of self pressurization and self compensation and so on. The research on the improvement in Japan Atomic Energy Research Institute is reported. (Kako, I.)

  10. Research achievements in Bangladesh agriculture using nuclear techniques

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1997-01-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN 3 ). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using 51 Cr-EDTA and 125 I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come

  11. Research achievements in Bangladesh agriculture using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, M.A. [Bangladesh Institute of Nuclear Agriculture, Mymensingh, (Bangladesh)

    1997-10-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN{sub 3}). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using {sup 51}Cr-EDTA and {sup 125}I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come 32 refs., 1 tab.

  12. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  13. Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis

    NARCIS (Netherlands)

    Hartmann, Frank G.H.; Moers, Frank

    1999-01-01

    In the contingency literature on the behavioral and organizational effects of budgeting, use of the Moderated Regression Analysis (MRA) technique is prevalent. This technique is used to test contingency hypotheses that predict interaction effects between budgetary and contextual variables. This

  14. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-12-01

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data [sr

  15. Research progress of donepezil for treating mild to moderate Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Xin-xin LI

    2017-02-01

    Full Text Available Donepezil is the second generation of cholinesterase inhibitors (ChEIs, which has a good effect on mild to moderate Alzheimer's disease (AD. In recent years, there were a lot of studies on the mechanism of donepezil. This paper mainly introduces the diagnosis and treatment situation of AD in China, and the action mechanism of donepezil in the treatment of mild to moderate AD. DOI: 10.3969/j.issn.1672-6731.2017.02.012

  16. Nuclear Research and Development in the AEC Era

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    2014-01-01

    In 2015, South East Asian Countris are entering into the social, economic and security partnership. Nuclear Research and Development undoubtedly has important roles in all three pillars. Nuclear applications that are being realised in the region ranges from energy, mrdical to agricultural application.In this new era of cooperation, we are seeking for technologies that lead to solution to improve our ways of living. As all other research and development nuclear research has been carried out in all countries in the region. However, it does have its critiques on safety issues based on people capability in the region. In order to make progress in research and development, human resource development is the key fundamental to its sucess. An experience of regional collaboration in developing pulsed neutron souurce is presented as an example. The research had been revived though collaoration of different research laboratories within ASEAN countries with support of Asian African Assosiation for Plasma Training (AAAPT). The 'low cost research theme' has fundamentally set up a platform for more future advanced research for fusion and for local industrial applications. It also increases experimental and theoretical research awareness among new generations that could be carried out in local laboratories. A device such as UNU-ICPT Plasma Focus has been explored, and it has been built, studied; both theoretical and experimental; and used for many different kind of applications.

  17. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    International Nuclear Information System (INIS)

    Barariu, G.; Giumanca, R.

    2006-01-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. In accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the

  18. Nuclear research with the electromagnetic probe. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD.

  19. Nuclear research with the electromagnetic probe. Final progress report

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD

  20. The Preliminary Decommissioning Plan of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van; Vien, Luong Ba; Vinh, Le Vinh; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Phuong, Pham Hoai [Nuclear Research Institute, Da Lat (Viet Nam)

    2013-08-15

    Recently, after 25 years of operation, a preliminary decommissioning plan for the Dalat Nuclear Research Reactor (DNRR) has been produced but as yet it has not been implemented due to the continued operations of the reactor. However, from the early phases of facility design and construction and during operation, the aspects that facilitate decommissioning process have been considered. This paper outlines the DNRR general description, the organization that manages the facility, the decommissioning strategy and associated project management, and the expected decommissioning activities. The paper also considers associated cost and funding, safety and environmental issues and waste management aspects amongst other considerations associated with decommissioning a nuclear research reactor. (author)