WorldWideScience

Sample records for moderate cubital tunnel

  1. Pain and Function Following Revision Cubital Tunnel Surgery.

    Science.gov (United States)

    Davidge, Kristen M; Ebersole, Gregory C; Mackinnon, Susan E

    2017-11-01

    The purpose of this study was to determine pain and functional outcomes following revision cubital tunnel surgery and to identify predictors of poor postoperative outcome. A retrospective cohort study was conducted of all patients undergoing revision cubital tunnel surgery over a 5-year period at a high-volume peripheral nerve center. Intraoperative findings, demographic and injury factors, and outcomes were reviewed. Average pain, worst pain, and impact of pain on self-perceived quality of life were each measured using a 10-cm visual analog scale (VAS). Function was evaluated using pinch and grip strength, as well as the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Differences in preoperative and postoperative pain, strength, and DASH were analyzed using nonparametric tests. Predictors of postoperative average pain were evaluated using odds ratios and linear regression analyses. The final cohort consisted of 50 patients (mean age: 46.3 ± 12.5 years; 29 [68%] male) undergoing 52 revision ulnar nerve transpositions (UNTs). Pain VAS scores decreased significantly following revision UNT. Strength and DASH scores demonstrated nonsignificant improvements postoperatively. Worse preoperative pain and greater than 1 prior cubital tunnel procedure were significant predictors of worse postoperative average pain VAS scores. Patients can and do improve following revision cubital tunnel surgery, particularly as it relates to pain. Intraoperative findings during the revision procedure suggest that adherence to specific principles in the primary operation is key to prevention of secondary cubital tunnel syndrome.

  2. CASE SERIES Cubital tunnel syndrome: A report of two cases

    African Journals Online (AJOL)

    Cubital tunnel syndrome occurs as a result of compression of the ulnar nerve between the medial ... A 40-year-old man revealed high signal on T2W (T2 weighted). MRI in a thickened ... Pathological compression gives rise to cubital tunnel ...

  3. Anterior subcutaneous transposition of the ulnar nerve improves neurological function in patients with cubital tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2015-01-01

    Full Text Available Although several surgical procedures exist for treating cubital tunnel syndrome, the best surgical option remains controversial. To evaluate the efficacy of anterior subcutaneous transposition of the ulnar nerve in patients with moderate to severe cubital tunnel syndrome and to analyze prognostic factors, we retrospectively reviewed 62 patients (65 elbows diagnosed with cubital tunnel syndrome who underwent anterior subcutaneous transposition. Preoperatively, the initial severity of the disease was evaluated using the McGowan scale as modified by Goldberg: 18 patients (28% had grade IIA neuropathy, 20 (31% had grade IIB, and 27 (42% had grade III. Postoperatively, according to the Wilson & Krout criteria, treatment outcomes were excellent in 38 patients (58%, good in 16 (25%, fair in 7 (11%, and poor in 4 (6%, with an excellent and good rate of 83%. A negative correlation was found between the preoperative McGowan grade and the postoperative Wilson & Krout score. The patients having fair and poor treatment outcomes had more advanced age, lower nerve conduction velocity, and lower action potential amplitude compared with those having excellent and good treatment outcomes. These results suggest that anterior subcutaneous transposition of the ulnar nerve is effective and safe for the treatment of moderate to severe cubital tunnel syndrome, and initial severity, advancing age, and electrophysiological parameters can affect treatment outcome.

  4. Endoscopic cubital tunnel release using the Hoffmann technique.

    Science.gov (United States)

    Hoffmann, Reimer; Lubahn, John

    2013-06-01

    Endoscopic cubital tunnel release was originally described in 1989 by Tsai, and his technique has been modified by other surgeons including Mirza and Cobb. In 2006, Hoffmann and Siemionow described an endoscopic technique quite different from Tsai's original description. Instead of working from the "inside out," Hoffmann's technique is performed through an incision similar to that which would be used for an in situ release of the ulnar nerve. The main difference being that the nerve can be explored and decompressed 10 cm proximal and distal to the arcuate ligament as the surgeon looks down on the nerve and the surrounding tissues while viewing the anatomy through a camera attached to a soft tissue endoscope that is inserted in the wound. The arcuate (Osborne's) ligament is released under direct vision much like a standard in situ decompression. Using a blunt dissection instrument, a workspace is created proximally and distally to the cubital tunnel. Next an illuminated speculum is introduced, the nerve is directly visualized between 4 and 5 cm proximal and distal to the cubital tunnel, and potential compressive forearm fasciae or fibrous bands are released. Finally, a 15-cm, 30° soft tissue endoscope is introduced into the incision, and viewing the internal anatomy on a video monitor, the decompression continues using longer scissors. Any potential bleeding is controlled with a long bayonet bipolar cautery. The authors discuss indications, contraindications, and the surgical technique. Postoperative management and associated complications are also discussed. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Current diagnostics and treatment of the cubital tunnel syndrome in Austria

    Directory of Open Access Journals (Sweden)

    Harder, Kristina

    2016-01-01

    Full Text Available According to the vote of the Austrian Society for Surgery of the Hand (ÖGH an investigation to collect data on the current state of the treatment of cubital tunnel syndrome was initiated. Over one year a total of 875 patients with cubital tunnel syndrome were operated in Austria, this means an incidence of this nerve entrapment of 0.011%. Most of the operations were done by trauma surgeons (287; 33%. For diagnosis most of the centers rely on clinical symptoms, electroneurophysiology, and elbow X-ray. 40% of the institutions regard conservative therapy as useless and not indicated. If conservative treatment modalities are applied, physiotherapy (97%, non-steroidal anti-inflammatory medication (77%, and glucocorticoid injections (30% are primarily used. In case of simple nerve entrapment most of the surgeons (72% prefer simple nerve decompression. If there is additional pathology subcutaneous cubital nerve transposition is recommended (62%. Endoscopic techniques are only use by 3% of the surgeons. In the postoperative care, physiotherapy is favored in 51%, whereas 24% do not judge any postoperative care as beneficial.The three most often encountered complications were incomplete remission, scar contracture and hypertrophy, and postoperative bleeding.

  6. Current evidence for effectiveness of interventions for cubital tunnel syndrome, radial tunnel syndrome, instability, or bursitis of the elbow: a systematic review.

    Science.gov (United States)

    Rinkel, Willem D; Schreuders, Ton A R; Koes, Bart W; Huisstede, Bionka M A

    2013-12-01

    To provide an evidence-based overview of the effectiveness of interventions for 4 nontraumatic painful disorders sharing the anatomic region of the elbow: cubital tunnel syndrome, radial tunnel syndrome, elbow instability, and olecranon bursitis. The Cochrane Library, PubMed, Embase, PEDro, and CINAHL were searched to identify relevant reviews and randomized clinical trials (RCTs). Two reviewers independently extracted data and assessed the quality of the methodology. A best-evidence synthesis was used to summarize the results. One systematic review and 6 RCTs were included. For the surgical treatment of cubital tunnel syndrome (1 review, 3 RCTs), comparing simple decompression with anterior ulnar nerve transposition, no evidence was found in favor of either one of these. Limited evidence was found in favor of medial epicondylectomy versus anterior transposition and for early postoperative therapy versus immobilization. No evidence was found for the effect of local steroid injection in addition to splinting. No RCTs were found for radial tunnel syndrome. For olecranon bursitis (1 RCT), limited evidence for effectiveness was found for methylprednisolone acetate injection plus naproxen. Concerning elbow instability, including 2 RCTs, one showed that nonsurgical treatment resulted in similar results compared with surgery, whereas the other found limited evidence for the effectiveness in favor of early mobilization versus 3 weeks of immobilization after surgery. In this review no, or at best, limited evidence was found for the effectiveness of nonsurgical and surgical interventions to treat painful cubital tunnel syndrome, radial tunnel syndrome, elbow instability, or olecranon bursitis. Well-designed and well-conducted RCTs are clearly needed in this field.

  7. Cubital tunnel syndrome: comparative results of a multicenter study of 4 surgical techniques with a mean follow-up of 92 months.

    Science.gov (United States)

    Bacle, G; Marteau, E; Freslon, M; Desmoineaux, P; Saint-Cast, Y; Lancigu, R; Kerjean, Y; Vernet, E; Fournier, J; Corcia, P; Le Nen, D; Rabarin, F; Laulan, J

    2014-06-01

    Cubital tunnel syndrome is the second most frequent entrapment syndrome. Physiopathology is mixed, and treatment options are multiple, none having yet proved superior efficacy. The present retrospective multicenter study compared results and rates of complications and recurrence between the 4 main cubital tunnel syndrome treatments, to identify trends and optimize outcome. Patients presenting with primary clinical cubital tunnel syndrome diagnosed on electroneuromyography were included and operated on using 1 of the following 4 techniques: open or endoscopic in situ decompression, or subcutaneous or submuscular anterior transposition. Four specialized upper-limb surgery centers participated, each systematically performing 1 of the above procedures. Subjective and objective results and rates of complications and recurrence were compared at end of follow-up. Five hundred and two patients were included and 375 followed up for a mean 92 months (range, 9-144 months); 103 were lost to follow-up and 24 died. Whichever the procedure, more than 90% of patients were cured or showed improvement. There was a single case of scar pain at end of follow-up, managed by endoscopic decompression; there were no other long-term complications. None of the 4 techniques aggravated symptoms. There were 6 recurrences by end of follow-up: 1 associated with open in situ decompression and 5 with submuscular transposition. Surgery was effective in treating cubital tunnel syndrome. Submuscular anterior transposition was associated with recurrence. In contrast to literature reports, subcutaneous anterior transposition, which is a reliable and valid technique, was not associated with a higher complication rate than in situ decompression. Level IV. Multicenter retrospective. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Relationship between Smoking and Outcomes after Cubital Tunnel Release.

    Science.gov (United States)

    Crosby, Nicholas E; Nosrati, Naveed N; Merrell, Greg; Hasting, Hill

    2018-04-01

    Several studies have drawn a connection between cigarette smoking and cubital tunnel syndrome. One comparison article demonstrated worse outcomes in smokers treated with transmuscular transposition of the ulnar nerve. However, very little is known about the effect that smoking might have on patients who undergo ulnar nerve decompression at the elbow. The purpose of this study is to evaluate the effect of smoking preoperatively on outcomes in patients treated with ulnar nerve decompression. This study used a survey developed from the comparison article with additional questions based on outcome measures from supportive literature. Postoperative improvement was probed, including sensation, strength, and pain scores. A thorough smoking history was obtained. The study spanned a 10-year period. A total of 1,366 surveys were mailed to former patients, and 247 surveys with adequate information were returned. No significant difference was seen in demographics or comorbidities. Patients who smoked preoperatively were found to more likely relate symptoms of pain. Postoperatively, nonsmoking patients generally reported more favorable improvement, though these findings were not statistically significant. This study finds no statistically significant effect of smoking on outcomes after ulnar nerve decompression. Finally, among smokers, there were no differences in outcomes between simple decompression and transposition.

  9. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    Science.gov (United States)

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  10. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    International Nuclear Information System (INIS)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor; Kranz, Gottfried; Sycha, Thomas; Hold, Alina

    2015-01-01

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  11. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Breitenseher, Julia B.; Berzaczy, Dominik; Nemec, Stefan F.; Weber, Michael; Prayer, Daniela; Kasprian, Gregor [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Kranz, Gottfried; Sycha, Thomas [Medical University of Vienna, Department of Neurology, Vienna (Austria); Hold, Alina [Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Vienna (Austria)

    2015-07-15

    MR neurography, diffusion tensor imaging (DTI) and tractography at 3 Tesla were evaluated for the assessment of patients with ulnar neuropathy at the elbow (UNE). Axial T2-weighted and single-shot DTI sequences (16 gradient encoding directions) were acquired, covering the cubital tunnel of 46 patients with clinically and electrodiagnostically confirmed UNE and 20 healthy controls. Cross-sectional area (CSA) was measured at the retrocondylar sulcus and FA and ADC values on each section along the ulnar nerve. Three-dimensional nerve tractography and T2-weighted neurography results were independently assessed by two raters. Patients showed a significant reduction of ulnar nerve FA values at the retrocondylar sulcus (p = 0.002) and the deep flexor fascia (p = 0.005). At tractography, a complete or partial discontinuity of the ulnar nerve was found in 26/40 (65 %) of patients. Assessment of T2 neurography was most sensitive in detecting UNE (sensitivity, 91 %; specificity, 79 %), followed by tractography (88 %/69 %). CSA and FA measurements were less effective in detecting UNE. T2-weighted neurography remains the most sensitive MR technique in the imaging evaluation of clinically manifest UNE. DTI-based neurography at 3 Tesla supports the MR imaging assessment of UNE patients by adding quantitative and 3D imaging data. (orig.)

  12. Zespół rowka nerwu łokciowego – ocena efektów leczenia operacyjnego = Cubital tunnel syndrome - evaluation of the effects of surgical treatment

    Directory of Open Access Journals (Sweden)

    Kamila Woźniak

    2016-09-01

    Abstract   Introduction Cubital tunnel syndrome is a syndrome caused by compression of the ulnar nerve. The disease is most often the consequence of stenosis of the elbow (anatomic structure created by the medial epicondyle of the humerus, elbow-ligament brachiocephalic and aponeurosis situated between the heads of the flexor carpi ulnaris. The causes of stenosis are injuries, inflammation or degenerative arthritis. Aim of study The aim of this study was to evaluate the effects of surgical treatment of patients with cubital tunnel syndrome directly after surgery and during the 14 days after surgery. Materials and methods From January 2012 to June 2016 in the Department of Neurosurgery, Neurotraumatology and Pediatric Neurosurgery, Dr Antoni Jurasz University Hospital No.1 in Bydgoszcz 20 patients diagnosed with unilateral cubital tunel syndrome with varying degrees of severity were qualified to the surgery. Study the effectiveness of surgical method included an evaluation of objective and subjective clinical symptoms in the period after surgery – on 1 and 14 day. Results The analysis of the treatment results showed that the method used the majority of patients following a decrease or disappearance of pain and disorders vegetative in the area supplied by the ulnar nerve and improve the function of diseased hand. Conclusions The applied surgical treatment is an effective procedure for patients who have exhausted the possibility of pharmacological treatment and physiotherapy. The rating is based on the effects of the therapy needs further study on a larger number of patients.   Key words: cubital tunnel syndrome, ulnar nerve, surgical treatment

  13. Tratamento da síndrome do túnel ulnar pela técnica da epicondilectomia parcial medial do cotovelo Treatment of cubital tunnel syndrome using the technique of medial partial epicondylectomy of the elbow

    Directory of Open Access Journals (Sweden)

    Marcio Eduardo de Melo Viveiros

    2008-12-01

    Full Text Available OBJETIVO: Analisamos retrospectivamente os resultados de 21 casos de síndrome cubital tratados cirurgicamente com a técnica da epicondilectomia parcial medial. MÉTODOS: No período de fevereiro de 2001 a outubro de 2006, 21 pacientes com síndrome do canal cubital foram tratados pela técnica da epicondilectomia parcial medial do cotovelo associada à neurólise do nervo ulnar. Destes, 12 (57,1% eram do sexo masculino. O lado direito foi o acometido em 15 (71,4% pacientes. A média da idade dos pacientes foi de 51,6 anos. Pela graduação de McGowan, seis (28,6% pacientes encontravam-se no grau I, 11 (52,3%, no grau II e quatro (19,1%, no grau III do período pré-operatório. RESULTADOS: O tempo médio de acompanhamento pós-operatório foi de 25,7 meses. No pós-operatório, os pacientes foram avaliados conforme a escala de pontos de Bishop, sendo que nove (42,8% apresentavam resultados excelentes, sete (33,3%, bons, três (14,2%, regulares e dois (9,5%, ruins. Nesta série, não se encontraram como complicações a instabilidade em valgo residual, a lesão permanente do nervo ulnar, a recidiva da compressão ou a subluxação do nervo ulnar. As complicações encontradas foram perda do arco de movimento em um (4,7% caso, infecção superficial em um (4,7% e um (4,7% com dor residual. CONCLUSÃO: Os resultados apresentados permitem concluir que a epicondilectomia parcial medial do cotovelo associada à neurólise do nervo ulnar é eficiente e segura para o tratamento da síndrome do canal cubital.OBJECTIVE: The authors made a retrospective analysis of the results of 21 cases of cubital syndrome that were surgically treated with the partial medial epicondylectomy. METHODS: From February 2001 to October 2006, 21 patients with cubital tunnel syndrome were treated with the technique of elbow partial medial epicondylectomy associated to neurolysis of the ulnar nerve. Of these patients, 12 (57.1% were male. The right side was involved in 15 (71

  14. Radiographic anatomy and technique for arthrography of the cubital joint in clinically normal dogs

    International Nuclear Information System (INIS)

    Lowry, J.E.; Carpenter, L.G.; Park, R.D.; Steyn, P.F.; Schwarz, P.D.

    1993-01-01

    A technique for arthrography of the cubital joint in clinically normal large-breed dogs was developed with the objective of improving visualization of the articular margin of the medial coronoid process. A lateral approach to the cubital joint for injection of contrast medium was selected. Arthrography of 24 cubital joints was performed by using 14 dogs. Twelve combinations of iodinated contrast medium, consisting of various concentrations (3) and volumes (4), were used. Two sets of arthrograms for each of the 12 combinations of contrast medium were obtained. Five radiographic views were used for each set. All arthrograms were examined by 3 evaluators, and each articular surface received a numerical rating for how well it could be seen in each view. Results of the evaluation indicated that low volumes of contrast medium were preferable to high volumes, with 2 ml providing the best visualization. Concentration of iodine seemed less important than did volume. The numerical ratings also indicated that the articular margin of the coronoid process was clearly observed a maximum of only 24% of the time on a slightly supinated mediolateral projection. The articular margins of the head of the radius, trochlea humeri, and trochlear notch were well visualized > 90% of the time. Arthrography of the cubital joint was technically easy to perform, and complications were not encountered, but arthrographic anatomy of the cubital joint is complex. Potential uses for arthrography of the cubital joint include diagnosis of osteochondrosis, intraarticular fragments, and joint capsule ruptures

  15. The US, CT and MR findings of cubital bursitis: a report of five cases

    International Nuclear Information System (INIS)

    Liessi, G.; Cesari, S.; Spaliviero, B.; Dell'Antonio, C.; Avventi, P.

    1996-01-01

    Objective. The purpose of the study was to evaluate the appearance of ''cubital bursitis'' on ultrasonography and CT and MR imaging. ''Cubital bursitis'' is a rare pathological condition involving a large swelling of the bicipito-radial or interosseous bursae located at the insertion of the distal biceps tendon on the radial tuberosity. Design and patients. We report on five patients with ''cubital bursitis'' resulting from their work or sporting activities. All patients underwent an ultrasound and MR examination. CT scans were performed on two patients before and after contrast enhancement. Results. Ultrasound studies showed a fusiform anechoic or hypoechoic lesion. CT images showed the lesions but there were some difficulties in determining the exact extent of the bursae. MR imaging showed the enlarged bursae and their fluid content. Four patients each underwent a surgical procedure. Conclusion. Ultrasound and CT were effective in the evaluation of ''cubital bursitis'', but with some diagnostic difficulties. MR imaging is probably the method of choice for determining both the development of the bursae and their fluid content. (orig.)

  16. The US, CT and MR findings of cubital bursitis: a report of five cases

    Energy Technology Data Exchange (ETDEWEB)

    Liessi, G. [Servizio di Radiologia, Ospedale, I-31033 Castelfranco V.to, Ulss 8 (Tuvalu) (Italy); Cesari, S. [Servizio di Radiologia, Ospedale, I-31033 Castelfranco V.to, Ulss 8 (Tuvalu) (Italy); Spaliviero, B. [Servizio di Radiologia, Ospedale, I-31033 Castelfranco V.to, Ulss 8 (Tuvalu) (Italy); Dell`Antonio, C. [Servizio di Radiologia, Ospedale, I-31033 Castelfranco V.to, Ulss 8 (Tuvalu) (Italy); Avventi, P. [Servizio di Radiologia, Ospedale, I-31033 Castelfranco V.to, Ulss 8 (Tuvalu) (Italy)

    1996-07-01

    Objective. The purpose of the study was to evaluate the appearance of ``cubital bursitis`` on ultrasonography and CT and MR imaging. ``Cubital bursitis`` is a rare pathological condition involving a large swelling of the bicipito-radial or interosseous bursae located at the insertion of the distal biceps tendon on the radial tuberosity. Design and patients. We report on five patients with ``cubital bursitis`` resulting from their work or sporting activities. All patients underwent an ultrasound and MR examination. CT scans were performed on two patients before and after contrast enhancement. Results. Ultrasound studies showed a fusiform anechoic or hypoechoic lesion. CT images showed the lesions but there were some difficulties in determining the exact extent of the bursae. MR imaging showed the enlarged bursae and their fluid content. Four patients each underwent a surgical procedure. Conclusion. Ultrasound and CT were effective in the evaluation of ``cubital bursitis``, but with some diagnostic difficulties. MR imaging is probably the method of choice for determining both the development of the bursae and their fluid content. (orig.)

  17. Additional Muscle Slip of Bicipital Aponeurosis and its Anomalous Relationship with the Median Cubital Vein

    Directory of Open Access Journals (Sweden)

    Nandini Bhat

    2017-03-01

    Full Text Available The cubital region of the arm is a common site for recording blood pressure, taking blood for analysis and administering intravenous therapy and blood transfusions. During the routine dissection of a 70-year-old male cadaver at the Kasturba Medical College, Manipal, Karnataka, India, in 2015, it was observed that the aponeurotic insertion of the biceps brachii muscle divided into two slips. The medial slip fused normally with the deep fascia of the forearm, while flexor carpi radialis muscle fibres originated from the lateral slip. There was also a single vein in the forearm, the cephalic vein, which bifurcated to form the median cubital vein and the cephalic vein proper. The median cubital vein, further reinforced by the radial vein, passed deep to the two slips of the bicipital aponeurosis and then continued as the basilic vein. During venepuncture, medical practitioners should be aware of potential cubital fossa variations which could lead to nerve entrapment syndromes.

  18. A new technique of single portal endoscopic carpal tunnel release.

    Science.gov (United States)

    Ip, Wing-Yuk Josephine; Sweed, Tamer Ahmed; Fung, Kwok Keung Boris; Tipoe, George L; Pun, Tze Shing

    2012-03-01

    Since the first description of endoscopic carpal tunnel release (ECTR) in 1987 by Okutsu many endoscopic techniques have been developed, but the majority of the literature on ECTR has dealt with the Chow and Agee techniques. ECTR is indicated for carpal tunnel syndrome that is not responding to conservative treatment for 6 months. This new technique of ECTR is a single-portal technique using instruments originally designed for endoscopic cubital tunnel release, with no disposable instruments used. It also has the advantage of performing the release with the median nerve protected under direct vision. Ten cases were operated with this technique after performing the procedure on 8 hands of 4 fresh frozen cadavers. There were no neurovascular or tendon injuries with this technique and patients were satisfied with the results.

  19. Formações venosas superficiais da fossa cubital: aspectos de interesse para a prática da Enfermagem Formaciones venosas superficiales de la fosa cubital: aspectos de interés para la práctica de Enfermería Superficial venous formation of the cubital fossa: aspects of interest for nursing practice

    Directory of Open Access Journals (Sweden)

    Nilton Alves

    2012-12-01

    Full Text Available O objetivo deste estudo é contribuir para o conhecimento que auxilie o profissional de enfermagem na identificação dos tipos mais comuns de formações venosas da região da fossa cubital e, ainda, enfocar a importância de estar sempre atento aos casos pouco comuns como o aqui relatado. Através de uma revisão bibliográfica, constatamos que as formações venosas dessa região podem ser classificadas em 5 tipos mais comuns, sendo o tipo II o mais frequente. Constatamos ainda, que a VICo é o local de punção mais indicado, seguido pela VIB. Descrevemos também uma variação anatômica, onde observamos ausência de comunicação entre VC e VB no nível da fossa cubital e VIA drenando na VB, estando presente a VCA.El objetivo de esta investigación es contribuir al conocimiento que auxilie al profesional de enfermería en la identificación de los tipos más comunes de formaciones venosas de la fosa cubital, además de advertir sobre la importancia de fijar la atención a los casos poco comunes, como lo aquí reportado. A través de la revisión bibliográfica, clasificamos las formaciones venosas de esta región en cinco tipos más comunes, siendo lo más frecuente el Tipo II. La utilización de la VICo se recomienda como el mejor sitio de punción, seguido por la VIB. Además, describimos una variación anatómica, donde se observó la ausencia de comunicación entre VC y VB a nivel de fosa cubital y VIA drenando en VB, con presencia de la VCA.The aim of this study is to contribute to the knowledge to assists the nursing staff to identify the most common types of venous formations of the cubital fossa region, and also focus on the importance of always being alert to unusual cases as that reported here. Through a literature review, we found that the venous formations of this region can be classified into five common types, bring the Type II the was most frequent. We also found that MCV is considered the best puncture site, followed by MBV

  20. Ultrasound Evaluation of Patients with Moderate and Severe Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Ali Moghtaderi

    2012-01-01

    Full Text Available The objective of this study is to determine cut-off points for the crosssectional areas of the median nerve proximal and distal to carpal tunnel in moderate and severe Carpal Tunnel Syndrome (CTS and compare the results of our study with those available in the literature. Forty-three patients with upper limb pain other than CTS and 36 patients with idiopathic CTS enrolled into the study. The diagnosis and categorization of CTS were based on electrophysiologic criteria of the American Academy of Neurology. Median nerve cross-sectional areas were measured. Arithmetic mean values and standard deviation of each variable were measured. Student t-test and chi-squared test were applied to compare continuous and dichotomous variables between CTS and non-CTS control groups. Ultimately the diagnostic performances of the test characteristics including sensitivity, specificity, positive and negative predictive values were measured. Mean cross-sectional area of the nerve is higher in moderate than severe CTS proximal and distal to carpal tunnel. We accepted cut-off points of 11.5 mm2 and 13.5 mm2 for cross-sectional areas of the proximal and distal portions of carpal canal respectively. The sensitivity, specificity, positive and negative predictive values for the proximal inlet are 83%, 90.7%, 65.5% and 55.7%; and for the distal outlet are 36.1%, 93%, 81.2% and 63.4% respectively. We suggest that ultrasound is a good diagnostic modality for patients referred to tertiary care centers which categorized as moderate CTS.

  1. Cubital Tunnel Syndrome

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is ... behind the elbow. This can happen during sleep. Anatomy : ... thicker or there is an “extra” muscle over the nerve that can keep it from ...

  2. Caso clínico: tratamiento quirúrgico de la neuropatía cubital por pseudoartrosis del gancho del hueso ganchoso

    Directory of Open Access Journals (Sweden)

    A. León Garrigosa

    2017-03-01

    Conclusiones: El dolor en el margen cubital de la mano, con tenosinovitis flexora de los tendones del cuarto y quinto dedos y/o manifestaciones de neuropatía cubital distal, cuando se produce en pacientes que practican deporte de empuñadura, obliga a realizar tomografía axial computerizada, y, si hay pseudoartrosis del gancho del hueso ganchoso, intentar su osteosíntesis.

  3. Decreased Sudomotor Function is Involved in the Formation of Atopic Eczema in the Cubital Fossa

    Directory of Open Access Journals (Sweden)

    Aya Takahashi

    2013-01-01

    Conclusions: These results suggest that decreased sweating is a major source of water in the stratum corneum, and decreased sudomotor function may be involved in both the cause and aggravation of representative atopic eczema in the cubital fossa.

  4. Topographical anatomy of superficial veins, cutaneous nerves, and arteries at venipuncture sites in the cubital fossa.

    Science.gov (United States)

    Mikuni, Yuko; Chiba, Shoji; Tonosaki, Yoshikazu

    2013-01-01

    We investigated correlations among the superficial veins, cutaneous nerves, arteries, and venous valves in 128 cadaveric arms in order to choose safe venipuncture sites in the cubital fossa. The running patterns of the superficial veins were classified into four types (I-IV) and two subtypes (a and b). In types I and II, the median cubital vein (MCV) was connected obliquely between the cephalic and basilic veins in an N-shape, while the median antebrachial vein (MAV) opened into the MCV in type I and into the basilic vein in type II. In type III, the MCV did not exist. In type IV, additional superficial veins above the cephalic and basilic veins were developed around the cubital fossa. In types Ib-IVb, the accessory cephalic vein was developed under the same conditions as seen in types Ia-IVa, respectively. The lateral cutaneous nerve of the forearm descended deeply along the cephalic vein in 124 cases (97 %), while the medial cutaneous nerve of the forearm descended superficially along the basilic vein in 94 (73 %). A superficial brachial artery was found in 27 cases (21 %) and passed deeply under the ulnar side of the MCV. A median superficial antebrachial artery was found in 1 case (1 %), which passed deeply under the ulnar side of the MCV and ran along the MAV. Venous valves were found at 239 points in 28 cases with superficial veins, with a single valve seen at 79 points (33 %) and double valves at 160 points (67 %). At the time of intravenous injection, caution is needed regarding the locations of cutaneous nerves, brachial and superficial brachial arteries, and venous valves. The area ranging from the middle segment of the MCV to the confluence between the MCV and cephalic vein appears to be a relatively safe venipuncture site.

  5. Formações venosas superficiais da fossa cubital: aspectos de interesse para a prática da Enfermagem

    Directory of Open Access Journals (Sweden)

    Nilton Alves

    Full Text Available O objetivo deste estudo é contribuir para o conhecimento que auxilie o profissional de enfermagem na identificação dos tipos mais comuns de formações venosas da região da fossa cubital e, ainda, enfocar a importância de estar sempre atento aos casos pouco comuns como o aqui relatado. Através de uma revisão bibliográfica, constatamos que as formações venosas dessa região podem ser classificadas em 5 tipos mais comuns, sendo o tipo II o mais frequente. Constatamos ainda, que a VICo é o local de punção mais indicado, seguido pela VIB. Descrevemos também uma variação anatômica, onde observamos ausência de comunicação entre VC e VB no nível da fossa cubital e VIA drenando na VB, estando presente a VCA.

  6. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  7. Colgajo de perforantes de la arteria colateral cubital inferior para defectos por quemadura eléctrica en fosa cubital

    Directory of Open Access Journals (Sweden)

    I. González-Alaña

    2014-09-01

    Full Text Available Las quemaduras eléctricas producen lesiones profundas, especialmente las debidas a la entrada y salida de la corriente y al arco voltaico, que pueden dejar expuestas estructuras nobles y afectar áreas de flexo-extensión, como la fosa antecubital. Los defectos resultantes pueden cubrirse mediante colgajos libres o pediculados de brazo y antebrazo. Entre las distintas opciones quirúrgicas, el colgajo medial del brazo evita la interrupción de los ejes vasculares mayores y la secuela en la zona donante es discreta. Sin embargo, su uso está poco extendido por considerarse un colgajo de difícil disección debido a la variabilidad anatómica de las arterias colaterales cubitales superior e inferior que lo irrigan. Presentamos la cobertura para un defecto secundario a quemadura eléctrica en la fosa antecubital mediante un colgajo medial del brazo basado en las ramas perforantes de la arteria colateral cubital inferior. Aunque confirmamos en este caso la variabilidad vascular, la disección resultó sencilla y el resultado estético y funcional fue excelente.

  8. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro.

    1995-01-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author)

  9. Gadolinium-enhanced MRI for evaluation of peripheral nerve neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Katsuhiko [Aikoh Orthopaedic Hospital, Nagoya (Japan); Kobayashi, Shigeru; Suzuki, Katsuji; Yamada, Mitsuko; Kojima, Motohiro

    1995-11-01

    We carried out enhanced MRI for the carpal tunnel syndrome, cubital tunnel syndrome, tarsal tunnel syndrome and anterior interosseous nerve palsy that is entrapment neuropathy. The affected nerve was enhanced in entrapment point. Carpal tunnel syndrome: The enhancement of affected nerve was apparent in 41 of 52 cases (79%). Cubital tunnel syndrome: The enhancement of affected nerve was apparent in 4 of 5 cases (80%). Tarsal tunnel syndrome: The enhancement of affected nerve was apparent in 1 of 1 case. Anterior interosseous nerve palsy: The enhancement of affected nerve was apparent in 3 of 4 cases (75%). The affected nerve was strongly enhanced by Gd-DTPA, indicating the blood-nerve barrier in the affected nerve to be broken and intraneural edema to be produced, e.i., the ability of Gd-DTPA to selectively contrast-enhance a pathologic focus within the peripheral nerve is perhaps its most important clinical applications. (author).

  10. The "hierarchical" Scratch Collapse Test for identifying multilevel ulnar nerve compression.

    Science.gov (United States)

    Davidge, Kristen M; Gontre, Gil; Tang, David; Boyd, Kirsty U; Yee, Andrew; Damiano, Marci S; Mackinnon, Susan E

    2015-09-01

    The Scratch Collapse Test (SCT) is used to assist in the clinical evaluation of patients with ulnar nerve compression. The purpose of this study is to introduce the hierarchical SCT as a physical examination tool for identifying multilevel nerve compression in patients with cubital tunnel syndrome. A prospective cohort study (2010-2011) was conducted of patients referred with primary cubital tunnel syndrome. Five ulnar nerve compression sites were evaluated with the SCT. Each site generating a positive SCT was sequentially "frozen out" with a topical anesthetic to allow determination of both primary and secondary ulnar nerve entrapment points. The order or "hierarchy" of compression sites was recorded. Twenty-five patients (mean age 49.6 ± 12.3 years; 64 % female) were eligible for inclusion. The primary entrapment point was identified as Osborne's band in 80 % and the cubital tunnel retinaculum in 20 % of patients. Secondary entrapment points were also identified in the following order in all patients: (1) volar antebrachial fascia, (2) Guyon's canal, and (3) arcade of Struthers. The SCT is useful in localizing the site of primary compression of the ulnar nerve in patients with cubital tunnel syndrome. It is also sensitive enough to detect secondary compression points when primary sites are sequentially frozen out with a topical anesthetic, termed the hierarchical SCT. The findings of the hierarchical SCT are in keeping with the double crush hypothesis described by Upton and McComas in 1973 and the hypothesis of multilevel nerve compression proposed by Mackinnon and Novak in 1994.

  11. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  12. Methane pellet moderator development

    International Nuclear Information System (INIS)

    Foster, C.A.; Schechter, D.E.; Carpenter, J.M.

    2004-01-01

    A methane pellet moderator assembly consisting of a pelletizer, a helium cooled sub-cooling tunnel, a liquid helium cooled cryogenic pellet storage hopper and a 1.5L moderator cell has been constructed for the purpose demonstrating a system for use in high-power spallation sources. (orig.)

  13. Ulnar nerve dysfunction

    Science.gov (United States)

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... Damage to one nerve group, such as the ulnar nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  14. DISPLASIA CUBITAL, PRESENTACIÓN CLÍNICA Y RESULTADOS EN UNA SERIE RETROSPECTIVA DE DIEZ AÑOS

    Directory of Open Access Journals (Sweden)

    Enrique Vergara Amador

    2010-04-01

    Full Text Available Antecedentes. La displasia cubital es una alteración en el desarrollo embriológico del lado cubital del antebrazo y la mano. Las deformidades comprometen manos, muñecas y codos; sólo el 11% de los pacientes tienen dedos completos y hasta el 38% de los casos cursan con sindactilias. Objetivo. Describir el perfil epidemiológico y las características clínicas, radiológicas y el tratamiento y los resultados en 14 niños. Material y métodos. Es un estudio descriptivo tipo serie de casos, retrospectivo 14 niños (18 miembros superiores, se evaluaron las características clínicas y radiológicas. Resultados. El compromiso bilateral fue del 28.5 %. Los tipos II y IV de Bayne fueron los predominantes con un 66.5%. Las cirugías múltiples fueron el 41%. Funcionalmente no fue posible homogeneizar un instrumento pre y posoperatorio. El tipo de pinza mejoró de lateral a bidigital o tridigital en el 72.2% de los pacientes, indicador de un progreso funcional significativo. El 84% presentó prensión buena y mejoría en las actividades básicas cotidianas. Conclusión. No existe una clasificación que pueda integrar la diversidad de anomalías. A pesar que la clasificación de Bayne engloba a una gran cantidad de ellos, hay unas difíciles de encasillar como algunos casos con similitud a focomelias y deficiencias transversas del antebrazo. El manejo es específico para cada caso en particular. Sabemos que el compromiso del codo y del primer metacarpiano, son determinantes en el pronóstico funcional. La mejoría de la pinza fue lograda en el 72.2% de los casos llevados a cirugía.

  15. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  16. Evaluation of the Influence Caused by Tunnel Construction on Groundwater Environment: A Case Study of Tongluoshan Tunnel, China

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-01-01

    Full Text Available Problems related to water inflow during tunnel construction are challenging to designers, workers, and management departments, as they can threaten tunneling project from safety, time, and economic aspects. Identifying the impacts on groundwater environment resulting from tunnel drainage and making a correct assessment before tunnel construction is essential to better understand troubles that would be encountered during tunnel excavation and helpful to adopt appropriate countermeasures to minimize the influences. This study presents an indicator system and quantifies each indicator of Tongluoshan tunnel, which is located in southwest China with a length of 5.2 km and mainly passes through carbonate rocks and sandstones, based on field investigation and related technological reports. Then, an evaluation is made using fuzzy comprehensive assessment method, with a result showing that it had influenced the local groundwater environment at a moderate degree. Information fed back from environmental investigation and hydrologic monitoring carried out during the main construction period proves the evaluation, as the flow of some springs and streams located beside the tunnel route was found experiencing an apparent decline.

  17. Quantum Electron Tunneling in Respiratory Complex I1

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  18. Increased pain sensitivity is not associated with electrodiagnostic findings in women with carpal tunnel syndrome.

    Science.gov (United States)

    de la Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César; Laguarta-Val, Sofia; Alonso-Blanco, Cristina; Martínez-Perez, Almudena; Arendt-Nielsen, Lars; Pareja, Juan A

    2011-01-01

    To determine the differences in widespread pressure pain and thermal hypersensitivity in women with minimal, moderate, and severe carpal tunnel syndrome (CTS) and healthy controls. A total of 72 women with CTS (19 with minimal, 18 with moderate, and 35 with severe) and 19 healthy age-matched women participated. Pressure pain thresholds were bilaterally assessed over the median, ulnar, and radial nerves, the C5 to C6 zygapophyseal joint, the carpal tunnel, and the tibialis anterior muscle. In addition, warm and cold detection thresholds and heat and cold pain thresholds were bilaterally assessed over the carpal tunnel and the thenar eminence. All outcome parameters were assessed by an assessor blinded to the participant's condition. No significant differences in pain parameters among patients with minimal, moderate, and severe CTS were found. The results showed that PPT were significantly decreased bilaterally over the median, ulnar, and radial nerve trunks, the carpal tunnel, C5 to C6 zygapophyseal joint, and the tibialis anterior muscle in patients with minimal, moderate, or severe CTS as compared with healthy controls (all, P<0.001). In addition, patients with CTS also showed lower heat pain threshold and reduced cold pain threshold compared with controls (P<0.001). No significant sensory differences between minimal, moderate, or severe CTS were found. The similar widespread pressure and thermal hypersensitivity in patients with minimal, moderate, or severe CTS and pain intensity suggests that increased pain sensitivity is not related to electrodiagnostic findings.

  19. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  20. First principles studies of electron tunneling in proteins

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  1. Kinesio taping in conservative treatment of mild-to-moderate cases of carpal tunnel syndrome = Kinesio taping w leczeniu zachowawczym łagodnego i umiarkowanego przebiegu zespołu cieśni nadgarstka

    Directory of Open Access Journals (Sweden)

    Janusz Kocjan

    2016-09-01

    SUMMARY             Carpal tunnel syndrome (CTS is the most common peripheral neuropathy. Severe cases are usually treated surgically, while conservative treatment is recommended in mild to moderate cases. The aim of the study was to investigate the effect of kinesiotaping (KT on pain level, hand functional status, and carpal joint range of movement compared with that of „wait and see” group in mild-to-moderate cases of CTS. In this randomized study, 32 participants (38 hands of ages between 35-50 years with clinical and electrodiagnostic evidence of carpal tunnel syndrome were allocated into one of two groups: (1 experimental Kinesiotaping group (KG, tape applied with 40% tension from hand to medial epicondyle, and (2 Control Group („wait and see” - without tape applied. Following measures were used in the present study: BCTQ, DASH and VAS scale. In any of the groups reported no statistically significant improvement in the analyzed variables. In conclusion, there is no evidence on the efficacy of KT application for the treatment of CTS.

  2. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  3. Investigation of air flow in open-throat wind tunnels

    Science.gov (United States)

    Jacobs, Eastman N

    1930-01-01

    Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.

  4. Outcome of open carpal tunnel release surgery

    International Nuclear Information System (INIS)

    Khan, A.A.; Ali, H.; Muhammad, G.; Gul, N.; Zardan, K.K.; Mushtaq, M.; Ali, S.; Bhatti, S.N.; Ali, K.; Rashid, B.; Saboor, A.

    2015-01-01

    Background: Carpel tunnel syndrome is a common compression neuropathy of the median nerve causing pain, numbness and functional dysfunction of the hand. Among the available treatments, surgical release of the nerve is the most effective and acceptable treatment option. The aim of this study was to see the outcomes of surgical release of carpel tunnel using open technique. Method: This descriptive case series was conducted at the Department of neurosurgery, Ayub Teaching Hospital Abbottabad from April 2013 to March 2014. One hundred consecutive patients with carpel tunnel syndrome were included who underwent open carpel tunnel release surgery. They were followed up at 1, 3 and 6 months. Residual pain, numbness and functional improvement of the hand were the main outcome measures. Results: Out of 100 patients, 19 were males. The age ranged from 32 to 50 years with a mean of 39.29±3.99 years. The duration of symptoms was from 5 to 24 months. In the entire series patient functional outcome and satisfaction was 82 percentage at 1 month, 94 percentage at 3 months and 97 percentage at 6 months. 18 percentage patient had residual pain at 1 month post-operative follow-up, 6percentage at 3 months and 3 percentage at 6 month follow-up. Conclusion: Open carpel tunnel release surgery is an effective procedure for compression neuropathy of the median nerve. It should be offered to all patients with moderate to severe pain and functional disability related to carpel tunnel syndrome. (author)

  5. Surgical Procedures of the Elbow: A Nationwide Cross-Sectional Observational Study in the United States

    Directory of Open Access Journals (Sweden)

    Ahmet Kinaci

    2015-01-01

    Full Text Available Background:  Elbow surgery is shared by several subspecialties. We were curious about the most common elbow surgeries and their corresponding diagnoses in the United States.   Methods:  We used the National Hospital Discharge Survey (NHDS and the National Survey of Ambulatory Surgery (NSAS data gathered in 2006-databases that together provide an estimate of all inpatient and ambulatory surgical care in the US.  Results:  An estimated 150,000 elbow surgeries were performed in the US in 2006, 75% in an outpatient setting. The most frequent diagnosis treated operative was enthesopathy (e.g. lateral epicondylitis and it was treated with several different procedures. More than three quarters of all elbow surgeries treated enthesopathy, cubital tunnel syndrome, or fracture (radial head in particular. Arthroscopy and arthroplasty accounted for less than 10% of all elbow surgeries.  Conclusions:  Elbow surgery in the United States primarily addresses enthesopathies such as tennis elbow, cubital tunnel syndrome, and trauma. It is notable that some of the most common elbow surgeries (those that address enthesopathy and radial head fracture are some of the most variably utilized and debated.

  6. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  7. Fire analyses in central and disposal tunnels by APROS

    International Nuclear Information System (INIS)

    Peltokorpi, L.; Kukkola, T.; Nieminen, J.

    2012-12-01

    The central tunnels and the disposal tunnels on the north-east disposal area are the target areas of the fire studies. Target is to maintain under pressure in the fire zone in case of a fire. In the central tunnels a fire of a drilling jumbo with moderate fire propagation is used as heat release rate. In the disposal tunnel the heat release rate of a canister transfer and installation vehicle fire received as a result of the pyrolysis analyze as well as an average heat release rate of a van fire are used. Inlet air is to be conducted to the back end of the fire zone and the exhaust is to be lead out from the beginning of the fire zone. The worst location of the fire is in the beginning of the fire zone just below of the exhaust air clap valve. The size of the fire zone does not have big impact on pressure. In all analyzed cases the fire zone remains too long time over pressurized. Inlet air flow of a 30 m 3 /s is too much. The rotation controlled booster blowers will solve the pressure problems of the fire zone in fire cases. The rotation is controlled by the fire zone pressure. The fire of the canister transfer and installation vehicle in the central tunnel will not cause problems. The disposal tunnel fire door should be kept open, if the canister transfer and installation vehicle or the bentonite blocks transfer and installation vehicle is driven into the disposal tunnel. If a fire is caught in the disposal tunnel then the fire zone in the central tunnel is to be closed and the pressure is controlled by the rotation controlled booster blowers. If a personnel car or a van is driven into the disposal tunnel, then fire door of the disposal is to be kept closed against fires in the central tunnel. (orig.)

  8. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  9. Visual field tunneling in aviators induced by memory demands.

    Science.gov (United States)

    Williams, L J

    1995-04-01

    Aviators are required rapidly and accurately to process enormous amounts of visual information located foveally and peripherally. The present study, expanding upon an earlier study (Williams, 1988), required young aviators to process within the framework of a single eye fixation a briefly displayed foveally presented memory load while simultaneously trying to identify common peripheral targets presented on the same display at locations up to 4.5 degrees of visual angle from the fixation point. This task, as well as a character classification task (Williams, 1985, 1988), has been shown to be very difficult for nonaviators: It results in a tendency toward tunnel vision. Limited preliminary measurements of peripheral accuracy suggested that aviators might be less susceptible than nonaviators to this visual tunneling. The present study demonstrated moderate susceptibility to cognitively induced tunneling in aviators when the foveal task was sufficiently difficult and reaction time was the principal dependent measure.

  10. Numerical simulations of earthquake effects on tunnels for generic nuclear waste repositories

    International Nuclear Information System (INIS)

    Wahi, K.K.; Trent, B.C.; Maxwell, D.E.; Pyke, R.M.; Young, C.; Ross-Brown, D.M.

    1980-12-01

    The objectives of this generic study were to use numerical modeling techniques to determine under what conditions seismic waves generated by an earthquake might cause instability to an underground opening, or cause fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 meters. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, pore pressures, and the presence or absence of a fault. Three different sets of earthquake motions were used to excite the rock mass. The calculations were performed using the STEALTH codes in a three-stage process. It was concluded that the methodology is suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass. A rock-burst tremor with accelerations up to 0.95 g, however, was found to be amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In shale, even moderate seismic loading resulted in tunnel collapse. Other questions appraised in the study include the stability of granite tunnels under various combinations of joint geometry and in situ stress states, and the overall stability of tunnels in shale subject to the thermomechanical loading conditions anticipated in an underground waste repository

  11. Kinesio taping in conservative treatment of mild-to-moderate cases of carpal tunnel syndrome = Kinesio taping w leczeniu zachowawczym łagodnego i umiarkowanego przebiegu zespołu cieśni nadgarstka

    OpenAIRE

    Kocjan, Janusz

    2016-01-01

    Kocjan Janusz. Kinesio taping in conservative treatment of mild-to-moderate cases of carpal tunnel syndrome = Kinesio taping w leczeniu zachowawczym łagodnego i umiarkowanego przebiegu zespołu cieśni nadgarstka. Journal of Education, Health and Sport. 2016;6(9):604-609. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.155060 http://ojs.ukw.edu.pl/index.php/johs/article/view/3886 The journal has had 7 points in Ministry of Science and Higher Education param...

  12. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  13. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  14. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  15. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  16. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  17. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  18. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    ;increased fracturing' and 'deformation zones proper'). The orientation of the structures is measured with a compass, and magnetic north is used for reference purposes. Two main fracture sets appear in the TASS-tunnel. 1. East-west striking and steeply dipping. This fracture set dominates with a mean orientation of 097/86. 2. Sub-horizontal to gently dipping with a more varying strike. This set may be divided into two subsets with the mean orientations 037/03 and 280/18 respectively. The observed categories of deformation zones appear to fall within two major groups of orientation. 1. Increased fracturing is oriented approximately ENE-WSW with a moderate dip to the north. 2. Deformation zones proper (brittle/ductile) have a general orientation of approximately ESE-WNW strike with steep dip mostly to the south. These zones generally cross-cut the tunnel and their widths vary from 0.1 - 0.3 m. The fractures and deformation zones normally contain secondary minerals. The most common fracture-filling mineral in the tunnel is chlorite, followed by calcite, epidote and prehnite. Quartz, pyrite and red feldspar are also quite common, while biotite, iron oxide and unconsolidated filling materials (grout and clay) have only been observed a few times. Occurrences of water are of great interest since one of the major tasks of the project was to prove that the grouting compounds used could seal tunnels at the tentative final repository depth. The orientations of water-bearing fractures for the tunnel are dominated by sub-horizontal to gently dipping fractures, with mean orientations of 000/00 and 297/28. Two less prominent water-bearing fracture sets of 287/70 and 099/89 also occur

  19. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    'deformation zones proper'). The orientation of the structures is measured with a compass, and magnetic north is used for reference purposes. Two main fracture sets appear in the TASS-tunnel. 1. East-west striking and steeply dipping. This fracture set dominates with a mean orientation of 097/86. 2. Sub-horizontal to gently dipping with a more varying strike. This set may be divided into two subsets with the mean orientations 037/03 and 280/18 respectively. The observed categories of deformation zones appear to fall within two major groups of orientation. 1. Increased fracturing is oriented approximately ENE-WSW with a moderate dip to the north. 2. Deformation zones proper (brittle/ductile) have a general orientation of approximately ESE-WNW strike with steep dip mostly to the south. These zones generally cross-cut the tunnel and their widths vary from 0.1 - 0.3 m. The fractures and deformation zones normally contain secondary minerals. The most common fracture-filling mineral in the tunnel is chlorite, followed by calcite, epidote and prehnite. Quartz, pyrite and red feldspar are also quite common, while biotite, iron oxide and unconsolidated filling materials (grout and clay) have only been observed a few times. Occurrences of water are of great interest since one of the major tasks of the project was to prove that the grouting compounds used could seal tunnels at the tentative final repository depth. The orientations of water-bearing fractures for the tunnel are dominated by sub-horizontal to gently dipping fractures, with mean orientations of 000/00 and 297/28. Two less prominent water-bearing fracture sets of 287/70 and 099/89 also occur

  20. A systems change: leading the way to meeting health needs.

    Science.gov (United States)

    Deisher, Mirella

    2013-01-01

    Demonstrating the efficacy of our practice requires a paradigm shift. Becoming an effective leader and clinician can facilitate opportunities for program development and clinical research. The use of strategic planning strategies, such as needs assessment and SWOT analysis, can help lead the way to such change. The following illustrates the use of strategic planning to develop The Carpal and Cubital Tunnel Syndrome Program (CCTSP) within a growing orthopedic practice. Copyright © 2013 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  1. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  2. Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.

    Science.gov (United States)

    Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato

    2013-06-01

    Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth

  3. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  4. Ultrasonographic diagnostics of pain in the lateral cubital compartment and proximal forearm

    Directory of Open Access Journals (Sweden)

    Anna Dębek

    2012-06-01

    Full Text Available Pain in the lateral compartment of the elbow joint and decreased strength of the extensor muscle constitute a fairly common clinical problem. These symptoms, occurring in such movements as inverting and converting the forearm, pushing, lifting and pulling, mostly affect people who carry out daily activities with an intense use of wrist, e.g. work on computer. Strains in this area often result from persistent overload and degeneration processes of the common extensor tendon and the radial collateral ligament. Similar symptoms resulting from the compression of deep branch of the radial nerve in radial nerve tunnel should be remembered as well. It happens that both conditions occur simultaneously. A proper diagnosis is essential in undertaking an effective treatment. Ultrasonography is a non-invasive method and the application of high-end apparatus with heads of frequencies exceeding 12 MHz allows for a precise evaluation of joint structures, tendons and nerves. In case of the so-called tennis elbow, the examination allows for evaluation of the degree and extent of injury to the radial collateral ligament and common extensor tendon, in addition to the presence of blood vessels in inflicted area. Administration of autologous blood platelets concentrate containing growth factors, used in treatment of tennis elbow, is performed under ultrasound image control conditions. This allows for a precise incision of scar whilst keeping a healthy (unaffected tissue margin to form fine channels enabling the penetration of growth factors. Post-surgery medical check-up allows for the evaluation of treatment effectiveness. In radial nerve tunnel syndrome, the ultrasound examination can reveal abnormalities in the deep branch of the radial nerve and within the anatomical structures adjacent to the nerve in the radial nerve tunnel. Furthermore, the ultrasound examination allows for detection of other articular and extraarticular pathologies, which affect the

  5. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  6. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  7. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  8. Theory of superconducting tunneling without the tunneling Hamiltonian

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling

  9. Wing configuration on Wind Tunnel Testing of an Unmanned Aircraft Vehicle

    Science.gov (United States)

    Daryanto, Yanto; Purwono, Joko; Subagyo

    2018-04-01

    Control surface of an Unmanned Aircraft Vehicle (UAV) consists of flap, aileron, spoiler, rudder, and elevator. Every control surface has its own special functionality. Some particular configurations in the flight mission often depend on the wing configuration. Configuration wing within flap deflection for takeoff setting deflection of flap 20° but during landing deflection of flap set on the value 40°. The aim of this research is to get the ultimate CLmax for take-off flap deflection setting. It is shown from Wind Tunnel Testing result that the 20° flap deflection gives optimum CLmax with moderate drag coefficient. The results of Wind Tunnel Testing representing by graphic plots show good performance as well as the stability of UAV.

  10. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  11. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  12. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  13. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  14. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  15. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  16. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  17. Fire analyses in central and disposal tunnels by APROS; Keskus- ja loppusijoitustunneleiden palotarkasteluja APROSilla

    Energy Technology Data Exchange (ETDEWEB)

    Peltokorpi, L.; Kukkola, T.; Nieminen, J. [Fortum Power and Heat Oy, Espoo (Finland)

    2012-12-15

    The central tunnels and the disposal tunnels on the north-east disposal area are the target areas of the fire studies. Target is to maintain under pressure in the fire zone in case of a fire. In the central tunnels a fire of a drilling jumbo with moderate fire propagation is used as heat release rate. In the disposal tunnel the heat release rate of a canister transfer and installation vehicle fire received as a result of the pyrolysis analyze as well as an average heat release rate of a van fire are used. Inlet air is to be conducted to the back end of the fire zone and the exhaust is to be lead out from the beginning of the fire zone. The worst location of the fire is in the beginning of the fire zone just below of the exhaust air clap valve. The size of the fire zone does not have big impact on pressure. In all analyzed cases the fire zone remains too long time over pressurized. Inlet air flow of a 30 m{sup 3}/s is too much. The rotation controlled booster blowers will solve the pressure problems of the fire zone in fire cases. The rotation is controlled by the fire zone pressure. The fire of the canister transfer and installation vehicle in the central tunnel will not cause problems. The disposal tunnel fire door should be kept open, if the canister transfer and installation vehicle or the bentonite blocks transfer and installation vehicle is driven into the disposal tunnel. If a fire is caught in the disposal tunnel then the fire zone in the central tunnel is to be closed and the pressure is controlled by the rotation controlled booster blowers. If a personnel car or a van is driven into the disposal tunnel, then fire door of the disposal is to be kept closed against fires in the central tunnel. (orig.)

  18. Estudio anatómico de la transferencia de los nervios accesorio y toracodorsal al nervio cubital en el gato Anatomic study of spinal accesory and thoracodorsal nerves transfer to ulnar nerve in cats

    Directory of Open Access Journals (Sweden)

    J.R. Martínez-Méndez

    2008-09-01

    Full Text Available Las lesiones del plexo braquial son una de las patologías más graves y con mayor número de secuelas del miembro superior. En el momento actual las transferencias nerviosas se encuentran en primera línea del armamento terapéutico para reconstruir funciones proximales del miembro superior. En el estudio que presentamos se realizaron 20 transferencias nerviosas al nervio cubital del gato común, tomando bien el nervio accesorio del espinal (10 casos o bien el nervio toracodorsal (10 casos. Como grupo control se utilizó el lado contralateral al intervenido. Durante el año siguiente, se evaluó la reinervación mediante estudios electromiográficos, histológicos de nervio y músculo, así como histoquímicos de médula espinal. Tras el análisis de los resultados encontramos que las motoneuronas de ambos nervios donantes son capaces de conseguir reinervaciones parciales del territorio cubital.A brachial plexus injury is one of the most severe pathologies of the upper limb, and also has severe sequels. In the actual state of the art, nerve transfers are being used as first line of therapeutic approach in the reconstruction of proximal functions of the upper limb. In this study 20 nerve transfers were made to the ulnar nerve of the cat, using the spinal accessory nerve (10 cases or the thoracodorsal nerve (10 cases. The opposite side was used as control. During next year, reinnervation was assessed by electromyography, nerve and muscle histology and histochemical evaluation of the spinal cord. We found that motoneurons of both donor nerves are able to make partial reinervation of the ulnar nerve territory.

  19. A randomized, controlled trial of magnetic therapy for carpal tunnel syndrome.

    Science.gov (United States)

    Baute, Vanessa; Keskinyan, Vahakn S; Sweeney, Erica R; Bowden, Kayla D; Gordon, Allison; Hutchens, Janet; Cartwright, Michael S

    2018-03-07

    Magnet therapy has been proposed as a treatment for neurologic conditions. In this this trial we assessed the feasibility and efficacy of a magnet inserted into a wristband for carpal tunnel syndrome (CTS). Twenty-two patients with mild to moderate CTS were randomized to wear a high-dose or low-dose "sham" magnetic wristband for 6 weeks. The primary outcome was the Symptom Severity Scale (SSS) of the Boston Carpal Tunnel Questionnaire. Secondary measures were nerve conduction studies (NCS), median nerve ultrasound, and compliance. Compliance for both groups was >90%. Improvements in the mean SSS, NCS, and median nerve ultrasound did not reach statistical significance. Magnet therapy via wristband is well-tolerated. Further investigations in larger populations are needed to determine efficacy. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  20. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  1. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  2. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  3. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  4. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  5. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  6. Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko

    Energy Technology Data Exchange (ETDEWEB)

    Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)

    1994-08-01

    At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.

  7. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  8. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  9. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  10. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  11. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  12. Low-power laser therapy for carpal tunnel syndrome: effective optical power

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10–20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  13. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  14. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  15. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  16. Correlating nerve conduction studies and clinical outcome measures on carpal tunnel syndrome: lessons from a randomized controlled trial

    NARCIS (Netherlands)

    Schrijver, H.M.; Gerritsen, A.A.M.; Strijers, R.L.; Uitdehaag, B.M.J.; Scholten, R.J.P.M.; de Vet, H.C.W.; Bouter, L.M.

    2005-01-01

    The reported relationships between nerve conduction studies (NCS) and outcome measures in carpal tunnel syndrome (CTS) are weak to moderate. However, selection of patients may have confounded nonrandomized studies. NCS have potentially great value in selecting patients for a specific treatment and

  17. Outcome of the geological mapping of the ONKALO underground research facility access tunnel, chainage 1980-3116

    International Nuclear Information System (INIS)

    Nordbaeck, N.

    2010-06-01

    This report describes the lithology and geological structures of the ONKALO underground rock characterization facility access tunnel in chainage 1980-3116. This part of the tunnel was excavated and mapped from spring 2007 to autumn 2008. The bedrock is very heterogeneous and mainly composed of veined gneiss and diatexitic gneiss, but many felsic dykes and sections of pegmatitic granite also occur. In addition, small sections of mica gneiss and K-feldspar porphyry are present. There are also numerous inclusions of mica gneiss, quartz gneiss and skarn. The foliation dips moderately towards SE. 14 fold axes and axial planes were measured from the ONKALO tunnel in chainage 1980-3116 and all have been interpreted to belong to deformation phase D 3 . The measured fold axes have various orientations, but most have moderate plunges and ENE- or WSW-trending ones dominate. The axial planes typically dip moderately towards SE. An almost vertical lineation was also measured from mica gneiss on two locations. A total of 7668 fractures were measured. Three main fracture sets were distinguished from the measured orientations: set 1 fractures are vertical and strike approximately NS, set 2 fractures are more or less horizontal and set 3 fractures are vertical and ENEWSW- striking. The most common filling minerals are calcite, pyrite, chlorite, kaolinite, epidote, muscovite, quartz, biotite, and illite. Of the measured fractures, 579 were slickensided. The slickensided fractures are mainly either sub-vertical N-S-trending (set 1) or sub-vertical NE-SW-trending, with dip to SE. Slickenside surfaces show N-S- and NE-SW-trending lineations, with shallow dip. The slickensided fractures are mostly strike-slip faults with both sinistral and dextral sense of movement. The chainage 1980- 3116 contains 170 tunnel-crosscutting fractures. The orientation is mostly vertical N-Sstriking, sub-horizontal or vertical E-W- trending. 27 deformation zone intersections were also observed, 23 brittle

  18. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  19. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  20. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  1. Magnetoresistance in Co/AlO sub x /Co tunnel junction arrays

    CERN Document Server

    Urech, M; Haviland, D B

    2002-01-01

    Lateral arrays of Co/AlO sub x /Co junctions with dimensions down to 60 nm and inter-junction separations approx 60-100 nm have been fabricated and analyzed for possible coherent tunneling effects. Extra attention is paid to avoid uncertainties due to inconsistencies in switching and/or resistance of successive barriers. We observe approx 10% magnetoresistance enhancement at moderate bias in double junctions that cannot be accounted for by a simple model of two resistsors in series.

  2. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  3. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  4. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  5. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.

    2011-01-01

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  6. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  7. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  8. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  9. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  10. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  12. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  13. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  14. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  15. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  16. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  17. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  18. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  19. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  20. Tunneling into quantum wires: regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    OpenAIRE

    Filippone, Michele; Brouwer, Piet

    2016-01-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...

  1. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  2. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  3. Enhanced MRI in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Nakane, Takashi; Kobayashi, Shigeru; Asai, Takahiro; Wada, Kunio; Yoshizawa, Hidezo

    1998-01-01

    In this study, we performed contrast-enhanced MRI in patients with idiopathic carpal tunnel syndrome and examined the morphologic change in the carpal tunnel. In the transverse section of the opening of carpal tunnel where scaphoid and pisiform bones are figured out, we measured and examined 4 items, viz. the soft carpal tunnel volume, flat rate of median nerve, position of median nerve and thickness of palmer ligaments composing the base of carpal tunnel, with an image analyzer attached to the MRI apparatus. Whereas the average carpal tunnel volume in 12 hands of normal controls was 166.8 mm 2 , that in 74 hands of carpal tunnel syndrome was 207.2 mm 2 , a significant increase compared with the normal controls. The flat rate of median nerve was 46% in the controls, but that was 37.5% in the carpal tunnel syndrome, a significant flattening was noted. We connected the peaks of the scaphoid node and pisiform bone with a line and named it standard line. When we observed the position of median nerve in the carpal tunnel, the nerve in 9 of 12 hands, 75%, lay below the standard line in the controls, but the nerve in 65 of 74 hands, 87.8%, lay above the standard line in the carpal tunnel syndrome, clearly showing that the median nerve had shifted to the palmar side. Regarding these morphologic changes of the carpal tunnel, the internal pressure of the carpal tunnel is considered to be raised with swelling of the soft tissues mainly composing the inside of carpal tunnel, thus the area of cross section of carpal tunnel to be increased, the median nerve to be shifted to the palmar side and the median nerve to be compressed by the transverse carpal ligament at that time. Although we can observe these morphological changes readily in MRI images, these images show only the results of carpal tunnel syndrome after all, and do not specify the direct causes. However, we believe that these facts are important factors in the manifestation of idiopathic carpal tunnel syndrome. (author)

  4. Josephson tunneling and nanosystems

    OpenAIRE

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  5. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  6. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  7. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  8. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  9. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...

  10. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  11. POSSIBLE ENTRAPMENT OF THE ULNAR ARTERY BY THE THIRD HEAD OF PRONATOR TERES MUSCLE. El posible atrapamiento de la arteria ulnar por el tercer fascículo del músculo pronador teres

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2016-03-01

    Full Text Available El conocimiento de las variaciones en los alrededores de la fosa cubital es útil para cirujanos ortopédicos, cirujanos plásticos y médicos en general. Observamos las variaciones arteriales y musculares en y alrededor de la fosa cubital. La arteria braquial terminó 2 pulgadas por encima de la base de la fosa cubital. Las arterias radiales y cubitales entraron en la fosa cubital  pasando delante de los tendones de los músculos braquial y bíceps braquial respectivamente. La arteria cubital estaba rodeada por el tercer fascículo del pronador teres, que tuvo su origen en la fascia cubriendo la parte distal del músculo braquial. Este músculo se unió a tendón de pronador teres distalmente y fue suministrado por una rama del nervio mediano. Este músculo podría alterar el flujo sanguíneo en la arteria cubital y puede causar dificultades para el registro de la presión sanguínea. Knowledge of variations at and in the surroundings of cubital fossa is useful for the orthopedic surgeons, plastic surgeons and medical practitioners in general. During routine dissection, we observed arterial and muscular variations in and around the cubital fossa. The brachial artery terminated 2 inches above the base of the cubital fossa. The radial and ulnar arteries entered the cubital fossa by passing in front of the tendons of brachialis and biceps brachii respectively. The ulnar artery was surrounded by the third head of pronator teres which took its origin from the fascia covering the distal part of the brachialis muscle. This muscle joined pronator teres tendon distally and was supplied by a branch of median nerve. This muscle could alter the blood flow in the ulnar artery and may cause difficulties in recording the blood pressure.

  12. POSSIBLE ENTRAPMENT OF THE ULNAR ARTERY BY THE THIRD HEAD OF PRONATOR TERES MUSCLE. EL POSIBLE ATRAPAMIENTO DE LA ARTERIA ULNAR POR EL TERCER FASCÍCULO DEL MÚSCULO PRONADOR TERES

    Directory of Open Access Journals (Sweden)

    Satheesha Nayak B

    2012-11-01

    Full Text Available Knowledge of variations at and in the surroundings of cubital fossa is useful for the orthopedic surgeons, plastic surgeons and medical practitioners in general. During routine dissection, we observed arterial and muscular variations in and around the cubital fossa. The brachial artery terminated 2 inches above the base of the cubital fossa. The radial and ulnar arteries entered the cubital fossa by passing in front of the tendons of brachialis and biceps brachii respectively. The ulnar artery was surrounded by the third head of pronator teres which took its origin from the fascia covering the distal part of the brachialis muscle. This muscle joined pronator teres tendon distally and was supplied by a branch of median nerve. This muscle could alter the blood flow in the ulnar artery and may cause difficulties in recording the blood pressure.El conocimiento de las variaciones en los alrededores de la fosa cubital es útil para cirujanos ortopédicos, cirujanos plásticos y médicos en general. Observamos las variaciones arteriales y musculares en y alrededor de la fosa cubital. La arteria braquial terminó 2 pulgadas por encima de la base de la fosa cubital. Las arterias radiales y cubitales entraron en la fosa cubital pasando delante de los tendones de los músculos braquial y bíceps braquial respectivamente. La arteria cubital estaba rodeada por el tercer fascículo del pronador teres, que tuvo su origen en la fascia cubriendo la parte distal del músculo braquial. Este músculo se unió a tendón de pronador teres distalmente y fue suministrado por una rama del nervio mediano. Este músculo podría alterar el flujo sanguíneo en la arteria cubital y puede causar dificultades para el registro de la presión sanguínea.

  13. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    Science.gov (United States)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  14. Lowest order in inelastic tunneling approximation : efficient scheme for simulation of inelastic electron tunneling data

    NARCIS (Netherlands)

    Rossen, E.T.R.; Flipse, C.F.J.; Cerda, J.I.

    2013-01-01

    We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the tunneling regime by carrying out the structural optimization and vibrational

  15. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  16. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  17. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  18. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  19. Submucosal tunneling techniques: current perspectives.

    Science.gov (United States)

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  20. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  1. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  2. 13th Australian tunnelling conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The theme of the conference was 'Engineering in a changing environment'. Topics covered include Australian tunnelling projects, design and development of ground support, tunnelling, international projects, fire and life safety, mining projects, risk management in tunnelling, and tunnel boring machine tunnelling. Papers of particular interest to the coal industry are: improving roadway development in underground coal mine (G. Lewis and G. Gibson), and polymer-based alternative to steel mesh for coal mine strata reinforcement (C. Lukey and others).

  3. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    Science.gov (United States)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C Niek; Fu, Freddie H

    2015-12-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a flexible reamer were included in this study. The control group was comprised of 50 patients all of who underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a rigid reamer. All femoral tunnels were drilled through a medial portal to ensure anatomic tunnel placement. The FTA was determined from post-operative anterior-to-posterior (AP) radiographs by two independent observers. A 5° difference between the two mean FTA was considered clinically significant. The average FTA, when drilled with a rigid reamer, was 42.0° ± 7.2°. Drilling with a flexible reamer resulted in a mean FTA of 44.7° ± 7.0°. The mean difference of 2.7° was not statistically significant. The intraclass correlation coefficient for inter-tester reliability was 0.895. The FTA can be reliably determined from post-operative AP radiographs and provides a useful and reproducible metric for characterizing femoral tunnel position after both rigid and flexible femoral tunnel drilling. This has implications for post-operative evaluation and preoperative treatment planning for ACL revision surgery. IV.

  4. Derivation of the tunnelling exchange time for the model of trap-assisted tunnelling

    International Nuclear Information System (INIS)

    Racko, J.; Ballo, P.; Benko, P.; Harmatha, L.; Grmanova, A.; Breza, J.

    2014-01-01

    We present derivation of the tunnelling exchange times that play the key role in the model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes between the trapping centre lying in the forbidden band of the semiconductor and the conduction band, valence band or a metal. All exchange processes are quantitatively described by respective exchange times. The reciprocal values of these exchange times represent the frequency with which the exchange processes contribute to the probability of occupation of the trap by free charge carriers. The crucial problem in any model of TAT is the calculation of the occupation probability. In our approach this probability is expressed in terms of only thermal and tunnelling exchange times. The concept of tunnelling exchange times presents a dominant contribution to our model of TAT. The new approach allows to simply calculate the probability of occupation of the trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling generation-recombination rates occurring in the continuity equations. This is why the TAT model based on thermal and tunnelling exchange times is suitable for simulating the electrical properties of semiconductor nanostructures in which quantum mechanical phenomena play a key role. (authors)

  5. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  6. Tunneling of Atoms, Nuclei and Molecules

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2015-01-01

    This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation. (author)

  7. Chaos regularization of quantum tunneling rates

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward

    2011-01-01

    Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

  8. Excavation of the Surikamigawa dam diversion tunnel. Surikamigawa dam karihaisui tunnel kantsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T.; Konno, T. (Ministry of Construction, Tokyo (Japan))

    1994-04-01

    A bypass tunnel construction has been completed at the Surikamigawa dam (Japan). This paper describes the summary of the construction. The full-swing dam construction work is scheduled to begin in 1995. The soils distributed near the dam site consist of lapillus tuff containing andesite-based light stones and tuff-based conglomerates containing large gravels. Excavation of the dam diversion tunnel has used a blasting method, and the tunnel construction has adopted an automatic tunnel cross section marking system and a non-electric explosion method. This marking system is a system to irradiate a laser beam onto the facing to depict excavation lines that realizes labor saving and high-accuracy excavation. The error at the tunnel completion was found 20 mm. The non-electric explosion method ignites a coated explosive layer with an impact wave, which is electrostatically safe, and reduces blasting vibration. Electric detonators have also been used because of using ANFO explosives. The result obtained from measurements of inner space displacement necessary for the blasting process has indicated that the area near the dam site consists of stable mountains. 6 figs., 4 tabs.

  9. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  10. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  11. Peak stresses shift from femoral tunnel aperture to tibial tunnel aperture in lateral tibial tunnel ACL reconstructions: a 3D graft-bending angle measurement and finite-element analysis.

    Science.gov (United States)

    Van Der Bracht, Hans; Tampere, Thomas; Beekman, Pieter; Schepens, Alexander; Devriendt, Wouter; Verdonk, Peter; Victor, Jan

    2018-02-01

    To investigate the effect of tibial tunnel orientation on graft-bending angle and stress distribution in the ACL graft. Eight cadaveric knees were scanned in extension, 45°, 90°, and full flexion. 3D reconstructions with anatomically placed anterior cruciate ligament (ACL) grafts were constructed with Mimics 14.12 ® . 3D graft-bending angles were measured for classic medial tibial tunnels (MTT) and lateral tibial tunnels (LTT) with different drill-guide angles (DGA) (45°, 55°, 65°, and 75°). A pivot shift was performed on 1 knee in a finite-element analysis. The peak stresses in the graft were calculated for eight different tibial tunnel orientations. In a classic anatomical ACL repair, the largest graft-bending angle and peak stresses are seen at the femoral tunnel aperture. The use of a different DGA at the tibial side does not change the graft-bending angle at the femoral side or magnitude of peak stresses significantly. When using LTT, the largest graft-bending angles and peak stresses are seen at the tibial tunnel aperture. In a classic anatomical ACL repair, peak stresses in the ACL graft are found at the femoral tunnel aperture. When an LTT is used, peak stresses are similar compared to classic ACL repairs, but the location of the peak stress will shift from the femoral tunnel aperture towards the tibial tunnel aperture. the risk of graft rupture is similar for both MTTs and LTTs, but the location of graft rupture changes from the femoral tunnel aperture towards the tibial tunnel aperture, respectively. I.

  12. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  13. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  14. Tunneling time, what is its meaning?

    International Nuclear Information System (INIS)

    McDonald, C R; Orlando, G; Vampa, G; Brabec, T

    2015-01-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed

  15. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  16. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  17. Road and Railroad Tunnels

    Data.gov (United States)

    Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...

  18. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  19. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  20. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  1. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  2. Superconducting tunneling with the tunneling Hamiltonian. II. Subgap harmonic structure

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    The theory of superconducting tunneling without the tunneling Hamiltonian is extended to treat superconductor/insulator/superconductor junctions in which the transmission coefficient of the insulating barrier approaches unity. The solution for the current in such junctions is obtained by solving the problem of a particle hopping in a one-dimensional lattice of sites, with forward and reverse transfer integrals that depend on the site. The results are applied to the problem of subgap harmonic structure in superconducting tunneling. The time-dependent current at finite voltage through a junction exhibiting subgap structure is found to have terms that oscillate at all integer multiples of the Josephson frequency, n(2eV/h). The amplitudes of these new, and as yet unmeasured, ac current contributions as a function of voltage are predicted

  3. Dirac particle tunneling from black rings

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2008-01-01

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  4. Engineers win award for Swiss tunnel

    CERN Multimedia

    2003-01-01

    A Derby engineering consultancy has won the Tunnelling Industry Award 2003 for Excellence in Tunnel Design, offered by the British Tunnelling Society, for its work on the LHC in Geneva, Switzerland (1/2 page).

  5. Semiclassical description of resonant tunneling

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Rouben, D.C.

    1996-01-01

    A semiclassical formula is calculated for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The tunneling current is measured at the second interface of this well and the calculations idealized an experimental situation where a strong magnetic field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling current, due to trajectories which begin at the first interface and end on the second, is dominant for periodic orbits which hit both walls of the quantum well. (author)

  6. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    Science.gov (United States)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  7. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  8. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  9. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  10. Tunneling magnetoresistance and electroresistance in Fe/PbTiO3/Fe multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Dai, Jian-Qing

    2016-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO 3 /Fe multiferroic tunnel junction with asymmetric TiO 2 - and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p z orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  11. Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes

    International Nuclear Information System (INIS)

    Tabe, Michiharu; Tan, Hoang Nhat; Mizuno, Takeshi; Muruganathan, Manoharan; Anh, Le The; Mizuta, Hiroshi; Nuryadi, Ratno; Moraru, Daniel

    2016-01-01

    We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of a donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.

  12. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  13. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  14. In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-12-01

    Full Text Available The applicability of tunnel-to-tunnel electrical resistance tomography (ERT) for imaging disruptive geological structures ahead of mining, in an igneous platinum mining environment is assessed. The geophysical targets of interest are slump...

  15. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  16. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  17. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    Science.gov (United States)

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  18. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  19. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  20. Experimental Evidence for Quantum Tunneling Time

    Science.gov (United States)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  1. Tunneling from the past horizon

    Science.gov (United States)

    Kang, Subeom; Yeom, Dong-han

    2018-04-01

    We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.

  2. Effectiveness of Surgical and Postsurgical Interventions for Carpal Tunnel Syndrome-A Systematic Review.

    Science.gov (United States)

    Huisstede, Bionka M; van den Brink, Janneke; Randsdorp, Manon S; Geelen, Sven J; Koes, Bart W

    2017-05-31

    To present an evidence-based overview of the effectiveness of surgical and postsurgical interventions for carpal tunnel syndrome (CTS). The Cochrane Library, PubMed, EMBASE, CINAHL, and PEDro were searched for relevant systematic reviews and randomized controlled trials (RCTs) up to April 8, 2016. Two reviewers independently applied the inclusion criteria to select potential studies. Two reviewers independently extracted the data and assessed the methodologic quality. A best-evidence synthesis was performed to summarize the results. Four systematic reviews and 33 RCTs were included. Surgery versus nonsurgical interventions, timing of surgery, and various surgical techniques and postoperative interventions were studied. Corticosteroid injection was more effective than surgery (strong evidence, short-term). Surgery was more effective than splinting or anti-inflammatory drugs plus hand therapy (moderate evidence, midterm and long-term). Manual therapy was more effective than surgical treatment (moderate evidence, short-term and midterm). Within surgery, corticosteroid irrigation of the median nerve before skin closure as additive to CTS release or the direct vision plus tunneling technique was more effective than standard open CTS release (moderate evidence, short-term). Furthermore, short was more effective than long bulky dressings, and a sensory retraining program was more effective than no program after surgery (moderate evidence, short-term). For all other interventions only conflicting, limited, or no evidence was found. Surgical treatment seems to be more effective than splinting or anti-inflammatory drugs plus hand therapy in the short-term, midterm, and/or long-term to treat CTS. However there is strong evidence that a local corticosteroid injection is more effective than surgery in the short-term, and moderate evidence that manual therapy is more effective than surgery in the short-term and midterm. There is no unequivocal evidence that suggests one

  3. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  4. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  5. FUNDAMENTAL TUNNELING PROCESSES IN MOSa SOLAR CELLS

    OpenAIRE

    Balberg , I.; Hanak , J.; Weakliem , H.; Gal , E.

    1981-01-01

    In previous studies of tunneling through a MOSa tunnel junction, where Sa was a-Si : H, it was shown that their characteristics resemble those of MOSc devices where Sc was crystalline silicon. In the present work we would like to report a demonstration of fundamental tunneling processes in such tunnel junctions. In particular, the transition from semiconductor controlled regime to tunneling controlled regime can be clearly distinguished. The present results represent one of the rare cases whe...

  6. Distribution of tunnelling times for quantum electron transport

    International Nuclear Information System (INIS)

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-01-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  7. Een systeem voor classificatie van korte tunnels.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1985-01-01

    The most difficult problems in the lighting of tunnels occur in daylight and in particular in the entrance of the tunnel, while drivers approaching the tunnel must be able to look into the tunnel from the outside to detect the road course and eventual obstacles. A classification should The made on

  8. Effects of the finite duration of quantum tunneling in laser-assisted scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hagmann, M.J.

    1994-01-01

    Previous measurements of tunnel conductance in heterostructures and experiments with Josephson junctions suggest quantum tunneling has a definite duration. The authors use semiclassical methods to determine the effects of this delay on the tunneling current in a laser-assisted STM. A planar-planar STM model is used with the exact multiple image potential, and the energy distribution for a free-electron metal. It is necessary to average over the phase at barrier entry, and iteration with back propagated solutions is required to obtain the transmission coefficients for evenly spaced phases and specified energies at barrier entry. The simulations suggest that the dependence of the tunneling current on the wavelength of illumination can serve as a basis for determining the duration of barrier traversal. A power flux density of 10 11 W/m 2 would be required at several wavelengths from 1 to 10 μm. It is possible that thermal effects could be separated from the modeled phenomena by determining the time dependence of the tunneling current with a pulsed laser

  9. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  10. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 98 August. Tunneling reaction and its theory

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-10-01

    Present report is the proceedings of the 4th Meeting on Tunneling Reaction and Low Temperature Chemistry held in August 3 and 4, 1998. The main subject of the meeting is `Tunneling Reaction and Its Theory`. In the present meeting the theoretical aspects of tunneling phenomena in the chemical reaction were discussed intensively as the main topics. Ten reports were presented on the quantum diffusion of muon and proton in the metal and H{sub 2}{sup -} anion in the solid para-hydrogen, the theory of tunnel effect in the nuclear reaction and the tunneling reaction in the organic compounds. One special lecture was presented by Prof. J. Kondo on `Proton Tunneling in Solids`. The 11 of the presented papers are indexed individually. (J.P.N.)

  11. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions.

    Science.gov (United States)

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S; Saeys, Mark; Yang, Hyunsoo

    2014-09-30

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

  12. Trap assisted tunneling and its effect on subthreshold swing of tunnel field effect transistors

    OpenAIRE

    Sajjad, Redwan N.; Chern, Winston; Hoyt, Judy L.; Antoniadis, Dimitri A.

    2016-01-01

    We provide a detailed study of the interface Trap Assisted Tunneling (TAT) mechanism in tunnel field effect transistors to show how it contributes a major leakage current path before the Band To Band Tunneling (BTBT) is initiated. With a modified Shockley-Read-Hall formalism, we show that at room temperature, the phonon assisted TAT current always dominates and obscures the steep turn ON of the BTBT current for common densities of traps. Our results are applicable to top gate, double gate and...

  13. 78 FR 46117 - National Tunnel Inspection Standards

    Science.gov (United States)

    2013-07-30

    ... busiest vehicular tunnel in the world. The Fort McHenry Tunnel handles a daily traffic volume of more than... vehicular, transit, and rail tunnels in the New York City metropolitan area. Although it is still too early... congestion along alternative routes, and save users both dollars and fuel. If these tunnels were closed due...

  14. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-21

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  15. Tunnel nitrogen spill experiment

    International Nuclear Information System (INIS)

    Ageyev, A.I.; Alferov, V.N.; Mulholland, G.T.

    1983-01-01

    The Energy Saver Safety Analysis Report (SAR) found the tunnel oxygen deficiency considerations emphasized helium spills. These reports concluded the helium quickly warms and because of its low denisty, rises to the apex of the tunnel. The oxygen content below the apex and in all but the immediate vicinity of the helium spill is essentially unchanged and guarantees an undisturbed source of oxygen especially important to fallen personnel. In contrast nitrogen spills warm slower than helium due to the ratio of the enthalpy changes per unit volume spilled spread more uniformly across the tunnel cross-section when warmed because of the much smaller density difference with air, and generally provides a greater hazard than helium spills as a result. In particular there was concern that personnel that might fall to the floor for oxygen deficiency or other reasons might find less, and not more, oxygen with dire consequences. The SAR concluded tunnel nitrogen spills were under-investigated and led to this work

  16. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  17. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  18. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    Science.gov (United States)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  19. Prediction of tunnel boring machine performance using machine and rock mass data

    International Nuclear Information System (INIS)

    Dastgir, G.

    2012-01-01

    Performance of the tunnel boring machine and its prediction by different methods has been a hot issue since the first TBM came into being. For the sake of safe and sound transport, improvement of hydro-power, mining, civil and many other tunneling projects that cannot be driven efficiently and economically by conventional drill and blast, TBMs are quite frequently used. TBM parameters and rock mass properties, which heavily influence machine performance, should be estimated or known before choice of TBM-type and start of excavation. By applying linear regression analysis (SPSS19), fuzzy logic tools and a special Math-Lab code on actual field data collected from seven TBM driven tunnels (Hieflau expansion, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve and Varzo tunnel), an attempt was made to provide prediction of rock mass class (RMC), rock fracture class (RFC), penetration rate (PR) and advance rate (AR). For detailed analysis of TBM performance, machine parameters (thrust, machine rpm, torque, power etc.), machine types and specification and rock mass properties (UCS, discontinuity in rock mass, RMC, RFC, RMR, etc.) were analyzed by 3-D surface plotting using statistical software R. Correlations between machine parameters and rock mass properties which effectively influence prediction models, are presented as well. In Hieflau expansion tunnel AR linearly decreases with increase of thrust due to high dependence of machine advance rate upon rock strength. For Hieflau expansion tunnel three types of data (TBM, rock mass and seismic data e.g. amplitude, pseudo velocity etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces. No appreciable correlation between seismic data (Amplitude and Pseudo velocity) and rock mass properties and machine parameters could be found. Tool wear as a function of TBM operational parameters was analyzed which revealed that tool wear is minimum if applied thrust is moderate and that tool wear is high when thrust is

  20. Tunneling Flight Time, Chemistry, and Special Relativity.

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2017-09-07

    Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.

  1. Tunnel Face Stability & New CPT Applications

    NARCIS (Netherlands)

    Broere, W.

    2001-01-01

    Nearly all tunnels bored in soft soils have encountered problems with the stability of the tunnel face. In several cases these problems led to an extended stand-still of the boring process. A better understanding of the face stability, and of the soil conditions around the tunnel boring machine, can

  2. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  3. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    Science.gov (United States)

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  4. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  5. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  6. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is 'Tunneling Reaction and Quantum Medium'. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  7. Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes

    NARCIS (Netherlands)

    Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2013-01-01

    Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been

  8. Mechanical stability of repository tunnels and factors to be considered for determining tunnel spacing

    International Nuclear Information System (INIS)

    Takeuchi, Kunifumi

    1994-01-01

    Kristallin-1 organized by Nagra is currently advanced as a synthetic project regarding a high level radioactive waste (HLW) repository in Switzerland. Its host rock is granitic rocks, and the potential siting area is located in northern Switzerland. The objective of this project is to demonstrate the long term safety of a HLW repository under more site-specific conditions than before. As the detailed geological data were investigated, the average size of undisturbed crystalline rock blocks is limited horizontally to about several hundred meter, therefore, the HLW repository area must be divided into several panels to avoid fracture zones. It is necessary to make tunnel spacing as small as possible for the purpose of reasonably designing the entire layout of repository tunnels. The main factors to be considered for determining repository tunnel spacing are listed. Rock mass modeling, rock mass material properties, the analysis model and parameters, the numerical analysis of repository tunnel stability and its main conclusion are reported. The numerical analysis of the temperature distribution in near field was carried out. Tunnel spacing should be set more than 20 m in view of the maximum temperature. (K.I.)

  9. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    Science.gov (United States)

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  10. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  12. Electrophysiologic Findings and Pain in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Hava Dönmez Keklikoğlu

    2009-12-01

    Full Text Available OBJECTIVE: Carpal tunnel syndrome (CTS is defined as median nerve entrapment within the carpal tunnel at the wrist. Pain and paresthesia are the most common presenting symptoms of the patients. In this study, our aim was to identify the association between intensity of presenting symptoms and electrophysiologic findings in patients referred to the electrophysiology laboratory with prediagnosis of CTS. METHODS: Sixty-two consecutive patients who were referred to the electrophysiology laboratory with the diagnosis of CTS were enrolled in the study. The intensity of pain was determined by visual analog scale, the findings of Tinel-Phalen tests were assessed, and clinico-demographic findings were recorded. Nerve conduction studies were performed bilaterally in median and ulnar nerves. The severity of CTS was determined with electrophysiologic evaluation, and the association between electrophysiologic findings and symptoms were analyzed statistically. RESULTS: Sixty-two (57 female, 5 male patients were examined in the study. CTS was bilateral in 53 patients and unilateral in 9 patients (total 115 hands. Mean pain score was 5.78 ± 3.50. In 28 hands with a clinical diagnosis of CTS, no electrophysiologic CTS findings were found, whereas in 32 hands mild, in 41 hands moderate and in 14 hands severe findings were obtained. CONCLUSION: According to our study, there was no statistically significant association between severity of symptoms and severity of electrophysiologic findings in CTS

  13. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    Science.gov (United States)

    Dash, S.; Mishra, G. P.

    2015-09-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.

  14. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    International Nuclear Information System (INIS)

    Dash, S; Mishra, G P

    2015-01-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed. (paper)

  15. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  16. The responsiveness of sensibility and strength tests in patients undergoing carpal tunnel decompression

    Directory of Open Access Journals (Sweden)

    Miller Leanne

    2011-10-01

    Full Text Available Abstract Background Several clinical measures of sensory and motor function are used alongside patient-rated questionnaires to assess outcomes of carpal tunnel decompression. However there is a lack of evidence regarding which clinical tests are most responsive to clinically important change over time. Methods In a prospective cohort study 63 patients undergoing carpal tunnel decompression were assessed using standardised clinician-derived and patient reported outcomes before surgery, at 4 and 8 months follow up. Clinical sensory assessments included: touch threshold with monofilaments (WEST, shape-texture identification (STI™ test, static two-point discrimination (Mackinnon-Dellon Disk-Criminator and the locognosia test. Motor assessments included: grip and tripod pinch strength using a digital grip analyser (MIE, manual muscle testing of abductor pollicis brevis and opponens pollicis using the Rotterdam Intrinsic Handheld Myometer (RIHM. The Boston Carpal Tunnel Questionnaire (BCTQ was used as a patient rated outcome measure. Results Relative responsiveness at 4 months was highest for the BCTQ symptom severity scale with moderate to large effects sizes (ES = -1.43 followed by the BCTQ function scale (ES = -0.71. The WEST and STI™ were the most responsive sensory tests at 4 months showing moderate effect sizes (WEST ES = 0.55, STI ES = 0.52. Grip and pinch strength had a relatively higher responsiveness compared to thenar muscle strength but effect sizes for all motor tests were very small (ES ≤0.10 or negative indicating a decline compared to baseline in some patients. Conclusions For clinical assessment of sensibility touch threshold assessed by monofilaments (WEST and tactile gnosis measured with the STI™ test are the most responsive tests and are recommended for future studies. The use of handheld myometry (RIHM for manual muscle testing, despite more specifically targeting thenar muscles, was less responsive than grip or tripod

  17. Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations

    International Nuclear Information System (INIS)

    Kar, Susmita; Bhattacharyya, S.P.

    2011-01-01

    Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.

  18. Tunnelling in Dante's Inferno

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University, Dr.T.M.A. Pai Planetarium Building, Madhav Nagar, Manipal, Karnataka 576104 (India); Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at [Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien (Austria)

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  19. Fire safety assessment of tunnel structures

    DEFF Research Database (Denmark)

    Gkoumas, Konstantinos; Giuliani, Luisa; Petrini, Francesco

    2011-01-01

    .g. structural and non structural, organizational, human behavior). This is even more truth for the fire safety design of such structures. Fire safety in tunnels is challenging because of the particular environment, bearing in mind also that a fire can occur in different phases of the tunnel’s lifecycle. Plans...... for upgrading fire safety provisions and tunnel management are also important for existing tunnels. In this study, following a brief introduction of issues regarding the above mentioned aspects, the structural performance of a steel rib for a tunnel infrastructure subject to fire is assessed by means...

  20. Tunnelling in Dante's Inferno

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki; Sperling, Marcus

    2017-01-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  1. Tunneling path toward spintronics

    International Nuclear Information System (INIS)

    Miao Guoxing; Moodera, Jagadeesh S; Muenzenberg, Markus

    2011-01-01

    The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.

  2. Utilization of geothermal energy in tunnels driven by tunnel drilling machines; Nutzung von Geothermie in TBM vorgetriebenen Tunneln

    Energy Technology Data Exchange (ETDEWEB)

    Pralle, Norbert; Franzius, Jan-Niklas [Ed. Zueblin AG, Stuttgart (Germany). Zentrale Technik; Liebel, Volker [Rehau AG und Co, Erlangen (Germany)

    2009-07-01

    Tunnels are nowadays more and more often constructed by means of tunnel boring machines rather than by conventional tunnel excavation. This is because tunnel boring provides a greater degree of safety for neighbouring structures, especially when it takes place in near-surface unconsolidated rock. However, bored tunnels offer less favourable framework conditions for the exploitation of geothermal energy because they are usually lined with concrete tubbings. Depending on the tunnel's diameter this normally involves rings of 1 to 2 metres width made up of several concrete elements. Adapting this type of design for geothermal energy production requires the use of an absorber piping system which permits coupling between the individual concrete elements while at the same time meeting the strict geometric tolerances required for its installation. A system of this type has been developed in a cooperation between the Rehau AG +Co. and Ed. Zueblin AG (Central Technology Services). These energy tubbings have already been installed in two tunnel structures and have also been examined in laboratory tests. An extensive measurement programme is under preparation which is aimed at gaining insights for the further optimisation of energy tubbings.

  3. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  4. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  5. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  6. Disc Bit Abrasion Parameters in TBM Tunnelling regarded exemplarily for the Gotthard Base Tunnel

    Directory of Open Access Journals (Sweden)

    Edmund a Wax

    2005-11-01

    Full Text Available In this article the author presents Amund Bruland’s empirical approach to determine the disc bit abrasion of TBMs (Tunnel Boring Machines, transforms the respective empirical dependencies into approximated mathematical relations and verifies them exemplarily for the currently constructed Gotthard Base Tunnel.

  7. Magnetic reconstruction induced magnetoelectric coupling and spin-dependent tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min

    2016-01-01

    We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO_3. Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO_3/Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.

  8. Unified time analysis of photon and particle tunnelling

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, Erasmo; Jakiel, Jacek

    2004-01-01

    A unified time analysis of photon and nonrelativistic particle tunnellings is presented, in which time is regarded as a quantum observable, canonically conjugated to energy. Within this approach, one can introduce self-consistent definitions of the tunnelling times, on the basis of conventional quantum mechanics (or one-dimensional quantum electrodynamics) only. The validity of the Hartman effect [which states the tunnelling duration to be independent of the (opaque) barrier width, with superluminal group velocities of the tunnelling packet as a consequence] is verified for all the known expressions of the mean tunnelling time. However, some noticeable generalizations of (and deviations from) the Hartman effect are, as well, briefly investigated. Moreover, the analogy between particle and photon tunnelling is suitably exploited; on the basis of such an analogy, an explanation of some recent interesting microwave and optical experimental results on tunnelling times is proposed. Attention is devoted, at last, to some aspects of the causality problem for particle and photon tunnelling

  9. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    Science.gov (United States)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  10. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  11. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  12. TunnelVision: LHC Tunnel Photogrammetry System for Structural Monitoring

    CERN Document Server

    Fallas, William

    2014-01-01

    In this document an algorithm to detect deformations in the LHC Tunnel of CERN is presented. It is based on two images, one represents the ideal state of the tunnel and the other one the actual state. To find the differences between both, the algorithm is divided in three steps. First, an image enhancement is applied to make easier the detection. Second, two different approaches to reduce noise are applied to one or both images. And third, it is defined a group of characteristics about the type of deformation desired to detect. Finally, the conclusions show the effectiveness of the algorithm in the experimental results.

  13. Electric and VLF-MT survey of Tegatayama tunnel; Tegatayama tunnel no denki tansa oyobi VLF tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T [Akita University, Akita (Japan). Mining College

    1997-05-27

    To survey the structure at the depth between 20 and 30 m, field tests were conducted by means of vertical electric and VFL-MT (magnetotelluric) survey. Tegatayama tunnel has a total length of 276 m, width of 7.5 m, and height of 4.7 m, and the depth from the surface is about 28 m near the top of mountain. Near the tunnel, the thickness of surface soil is about 60 cm, which consists of clay soil including soft mudstone gravel. It was found that terrace deposit is distributed up to the depth of 8 m, and that mudstone is distributed below the depth of 8 m. Weighted four-electrode method was adopted for the vertical electrical survey. Measurements were conducted at the immediately above the tunnel, 10 m apart from the center of tunnel in the right and left, and 20 m apart from the center in the east. For the VLF-MT method, component of frequency 22.2 kHz was used. As a result of the tests, it was difficult to illustrate the existence of tunnel from the vertical electrical survey only at one point. Feature of the tunnel could be well illustrated by means of the VLF-MT method. 3 refs., 9 figs.

  14. Characterization of the influence of building a road on the stability of the tunnel lining in a Banska Bystrica railway tunnel

    Directory of Open Access Journals (Sweden)

    Vavrek Pavol

    2001-06-01

    Full Text Available This paper deals with solving the problem of tunnel lining stability in a railway tunnel. The road cut was made into the overburden of the tunnel. I investigated the effect of the road cut on the stability of tunnel lining. The FLAC3D mathematical modelling technique was used for this purpose. The solution consist of: - - - - - - - - - - - -modelling the initial situation before building the intervention,Determing the internal characteristics of the tunnel lining in its original state,modelling the situation after making the road cut,Determing the internal characteristics of the tunnel lining after the building intervention,Comparison of the internal characteristics of the tunnel lining before and after the building intervention.In the model, I used these general geotechnical properties of the rock environment and the tunnel lining:Material Youngus modulus [MPa] Poissons RatioClay 8 0,42Weakly wheathered calcite 3 000 0,25Hard wheathered calcite 600 0,30Fill 300 0,25Lining 20 000 0,20The arbitration of the tunnel lining stability was executed on the basis of the Mohr – Coulomb limit of the state. Building the road cut does not lead to loss of stability in the tunnel a at Station 1.225 00 or at Station 1.300 00.

  15. Electron tunneling in proteins program.

    Science.gov (United States)

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  17. Relativistic tunneling through two successive barriers

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.

    2007-01-01

    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation

  18. Thermodynamics of phonon-modulated tunneling centers

    International Nuclear Information System (INIS)

    Junker, W.; Wagner, M.

    1989-01-01

    In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups

  19. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  20. Differentiating C8–T1 Radiculopathy from Ulnar Neuropathy: A Survey of 24 Spine Surgeons

    Science.gov (United States)

    Stoker, Geoffrey E.; Kim, Han Jo; Riew, K. Daniel

    2013-01-01

    Study Design Questionnaire. Objective To evaluate the ability of spine surgeons to distinguish C8–T1 radiculopathies from ulnar neuropathy. Methods Twenty-four self-rated “experienced” cervical spine surgeons completed a questionnaire with the following items. (1) If the ulnar nerve is cut at the elbow, which of the following would be numb: ulnar forearm, small and ring fingers; only the ulnar forearm; only the small and ring fingers; or none of the above? (2) Which of the following muscles are weak with C8–T1 radiculopathies but intact with ulnar neuropathy at the elbow: flexor digiti minimi brevis, flexor pollicis brevis, abductor digiti minimi, abductor pollicis brevis, adductor pollicis, opponens digiti minimi, opponens pollicis, medial lumbricals, lateral lumbricals, dorsal interossei, palmar interossei? Results Fifteen of 24 surgeons (63%) correctly answered the first question—that severing the ulnar nerve results in numbness of the fifth and fourth fingers. None correctly identified all four nonulnar, C8–T1-innervated options in the second question without naming additional muscles. Conclusion The ulnar nerve provides sensation to the fourth and fifth fingers and medial border of the hand. The medial antebrachial cutaneous nerve provides sensation to the medial forearm. The ulnar nerve innervates all intrinsic hand muscles, except the abductor and flexor pollicis brevis, opponens pollicis, and lateral two lumbricals, which are innervated by C8 and T1 via the median nerve. By examining these five muscles, one can clinically differentiate cubital tunnel syndrome from C8–T1 radiculopathies. Although all participants considered themselves to be experienced cervical spine surgeons, this study reveals inadequate knowledge regarding the clinical manifestations of C8–T1 radiculopathies and cubital tunnel syndrome. PMID:24494175

  1. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  2. Hawking temperature from tunnelling formalism

    OpenAIRE

    Mitra, P.

    2007-01-01

    It has recently been suggested that the attempt to understand Hawking radiation as tunnelling across black hole horizons produces a Hawking temperature double the standard value. It is explained here how one can obtain the standard value in the same tunnelling approach.

  3. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  4. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  5. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    NARCIS (Netherlands)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C. Niek; Fu, Freddie H.

    2015-01-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral

  6. A review on all-perovskite multiferroic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Yuewei Yin

    2017-12-01

    Full Text Available Although the basic concept was proposed only about 10 years ago, multiferroic tunnel junctions (MFTJs with a ferroelectric barrier sandwiched between two ferromagnetic electrodes have already drawn considerable interests, driven mainly by its potential applications in multi-level memories and electric field controlled spintronics. The purpose of this article is to review the recent progress of all-perovskite MFTJs. Starting from the key functional properties of the tunneling magnetoresistance, tunneling electroresistance, and tunneling electromagnetoresistance effects, we discuss the main origins of the tunneling electroresistance effect, recent progress in achieving multilevel resistance states in a single device, and the electrical control of spin polarization and transport through the ferroelectric polarization reversal of the tunneling barrier.

  7. Unified time analysis of photon and particle tunnelling

    International Nuclear Information System (INIS)

    Olkhovsky, Vladislav S.; Recami, Erasmo; Jakiel, Jacek

    2001-07-01

    A unified approach to the time analysis of tunnelling of nonrelativistic particles is presented, in which Time is regarded as a quantum-mechanical observable, canonically conjugated to Energy. The validity of the Hartman effect (independence of the Tunnelling Time of the opaque barrier width, with superluminal group velocities as a consequence) is verified for all the known expressions of the mean tunnelling time. Moreover, the analogy between particle and photon tunnelling is suitably exploited. On the basic of such an analogy, an explanation of some recent microwave and optics experimental results on tunnelling time is proposed. Attention is devoted to some aspects of the causality problem for particle and photon tunnelling. (author)

  8. Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling

    International Nuclear Information System (INIS)

    Matsumoto, Sh.; Yoshimura, M.

    2004-01-01

    Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect is shown to enhance the tunneling rate at finite times of order 2/η, with η the friction coefficient unless η is too small. In the linear approximation this effect has relevance to the parametric resonance. This effect enhances the possibility of early termination of the cosmological phase transition much prior to the typical Hubble time

  9. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.

    Science.gov (United States)

    Li, Xinggao; Yuan, Dajun

    2016-01-01

    China's largest cities like Beijing and Shanghai have seen a sharp increase in subway network development as a result of the rapid urbanization in the last decade. The cities are still expanding their subway networks now, and many shield tunnels are being or will be constructed in close proximity to the existing operational subway tunnels. The execution plans for the new nearby shield tunnel construction calls for the development of a safety control framework-a set of control standards and best practices to help organizations manage the risks involved. Typical case studies and relevant key technical parameters are presented with a view to presenting the resulting safety control framework. The framework, created through collaboration among the relevant parties, addresses and manages the risks in a systematic way based on actual conditions of each tunnel crossing construction. The framework consists of six parts: (1) inspecting the operational subway tunnels; (2) deciding allowed movements of the existing tunnels and tracks; (3) simulating effects of the shield tunneling on the existing tunnels; (4) doing preparation work; (5) monitoring design and information management; and (6) measures and activation mechanism of the countermeasures. The six components are explained and demonstrated in detail. In the end, discussions made involve construction and post-construction settlement of the operational tunnel, application of the remedial grouting to rectify excessive settlements of the operational tunnel, and use of the innovative tool of the optical fiber measurement for tunnel movement monitoring. It is concluded that the construction movement of the tunnel can be controlled within 15 mm when the shield machine is <7 m in excavation diameter. The post-construction settlement of the tunnel buried in the very soft ground is much greater than its construction settlement, and last several years until reaching a final stable state. Two cases are outlined to demonstrate the

  10. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  11. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    2000-01-01

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however......, not a sufficient condition in order to establish genuine tunneling as a result of quantum dynamics. This proposition is illustrated for a two-dimensional model potential describing dissociative sticking of N-2 on Ru(s). It is suggested that the remarkable heavy atom tunneling, found in this system, is related...

  12. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  13. Unidirectional magnetoelectric-field multiresonant tunneling

    International Nuclear Information System (INIS)

    Kamenetskii, E O; Hollander, E; Joffe, R; Shavit, R

    2015-01-01

    Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM spectrum. The ME near-field excitations are quasimagnetostatic fields ∇-vector × H-vector =0 with non-zero helicity parameter: F=(1/(16π))Im{ E-vector ⋅( ∇-vector × E-vector ) ∗ }. Topological phase properties of ME fields are determined by edge chiral currents of MDM oscillations. We show that while for a given direction of a bias magnetic field (in other words, for a given direction of time), the ME field excitations are considered as ‘forward’ tunneling processes, in the opposite direction of a bias magnetic field (the opposite direction of time), there are ‘backward’ tunneling processes. Unidirectional ME field resonant tunneling is observed due to the distinguishable topology of the ‘forward’ and ‘backward’ ME field excitations. We establish a close connection between the Fano-resonance unidirectional tunneling and the topology of the ME fields in different microwave structures. (paper)

  14. MR imaging of the carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Elias, D.; Lind, J.; Blair, S.; Light, T.; Wisniewski, R.; Moncado, R.

    1987-01-01

    MR is an ideal noninvasive means to image the structures forming the carpal tunnel in both normal and pathologic conditions. The carpal tunnel syndrome is a frequently encountered entity caused by compression of the median nerve as it passes through the carpal tunnel. This may result from a variety of conditions including edema from acute chronic trauma, rheumatoid tenosynovitis, degenerative joint disease or soft-tissue masses. This exhibit demonstrates the optimal MR imaging techniques to display the structures of the carpal tunnel. The normal anatomy is reviewed and variations in normal anatomy that may predispose to disease are included. Examples of the morphologic changes demonstrated in 20 patients diagnosed with carpal tunnel syndrome are displayed. The exhibit also reviews the findings in 20 postoperative cases

  15. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  16. Efficacy of paraffin wax bath for carpal tunnel syndrome: a randomized comparative study

    Science.gov (United States)

    Ordahan, Banu; Karahan, Ali Yavuz

    2017-12-01

    Carpal tunnel syndrome (CTS) is the most frequently diagnosed neuropathy of upper extremity entrapment neuropathies. We aimed to investigate the effectiveness of paraffin therapy in patients with CTS. Seventy patients diagnosed with mild or moderate CTS were randomly divided into two groups as splint treatment (during the night and day time as much as possible for 3 weeks) alone and splint (during the night and day time as much as possible for 3 weeks) + paraffin treatment (five consecutive days a week for 3 weeks). Clinical and electrophysiological assessments were performed before and 3 weeks after treatment. The patients were assessed by using visual analog scale (VAS) for pain, electroneuromyography (ENMG), and Boston Carpal Tunnel Syndrome Questionnaire (BCTSQ). The significant improvement was found in VAS scores in both groups when compared with pretreatment values ( p 0.05), whereas a significant improvement was noted in the BCTQ symptom severity scale score in the splint group ( p 0.05), and the difference in these parameters between the groups was statistically significant ( p Paraffin treatment with splint increases the recovery in functional and electrophysiological parameters.

  17. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  18. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  19. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  20. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  1. Tunneling with dissipation in open quantum systems

    International Nuclear Information System (INIS)

    Adamyan, G.G.; Antonenko, N.V.; Scheid, W.

    1997-01-01

    Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered

  2. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  3. Analysis of different tunneling mechanisms of InxGa1−xAs/AlGaAs tunnel junction light-emitting transistors

    International Nuclear Information System (INIS)

    Wu, Cheng-Han; Wu, Chao-Hsin

    2014-01-01

    The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x = 5% and 2.5%) of the In x Ga 1−x As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

  4. Experimental Evidence for Wigner’s Tunneling Time

    Science.gov (United States)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  5. Quantum tunneling in the adiabatic Dicke model

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Liang Jiuqing

    2007-01-01

    The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed

  6. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  7. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  8. Apparatus and method for large tunnel excavation in hard rock

    International Nuclear Information System (INIS)

    Altseimer, J.H.; Hanold, R.J.

    1975-01-01

    A tunneling machine is described for producing large tunnels in rock by progressive detachment of the tunnel core by thermal melting a boundary kerf into the tunnel face and simultaneously forming an initial tunnel wall support by deflecting the molten materials against the tunnel walls to provide, when solidified, a continuous liner; and fragmenting the tunnel core circumscribed by the kerf by thermal stress fracturing and in which the heat required for such operations is supplied by a compact nuclear reactor. (U.S.)

  9. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  10. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  11. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    Science.gov (United States)

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931

  12. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Hyunku Park

    2018-01-01

    Full Text Available A case study of monitoring and analysis of ground settlement caused by tunnelling of stacked twin tunnels for underground metro line construction through the densely populated area using the slurry pressure-balanced TBM is presented. Detailed ground settlement monitoring was carried out for the initial stage of down-track tunnelling in order to estimate trough width factor and volume losses including face, shield, and tail losses. In addition, using the gap model, prediction of volume loss and ground settlement was carried out with consideration of the ground condition, TBM configurations, and actual operation data. The predictions of the gap model were compared with the observed results, and adjustment factors were determined for volume loss estimation. The adjusted factors were applied to predict ground settlement of the up-track tunnel, and its results were compared with the field measurements.

  13. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Palomares, A. [Departamento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2016-01-28

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  14. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature

    International Nuclear Information System (INIS)

    Ohmori, Hideto; Hatori, Tomoya; Nakagawa, Shigeki

    2008-01-01

    MgO (100) textured films can be prepared by reactive facing targets sputtering at room temperature without postdeposition annealing process when they were deposited on (100) oriented Fe buffer layers. This method allows fabrication of perpendicular magnetic tunnel junction (p-MTJ) with MgO (100) tunneling barrier layer and rare-earth transition metal (RE-TM) alloy thin films as perpendicularly magnetized free and pinned layers. The 3-nm-thick MgO tunneling barrier layer in p-MTJ multilayer prepared on glass substrate revealed (100) crystalline orientation. Extraordinary Hall effect measurement clarified that the perpendicular magnetic components of 3-nm-thick Fe buffer layers on the two ends of MgO tunneling barrier layer were increased by exchange coupling with RE-TM alloy layers. The RA of 35 kΩ μm 2 and tunneling magnetoresistance ratio of 64% was observed in the multilayered p-MTJ element by current-in-plane-tunneling

  15. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  16. Modeling of inter-ribbon tunneling in graphene

    OpenAIRE

    Van de Put, Maarten L.; Vandenberghe, William G.; Sorée, Bart; Magnus, Wim; Fischetti, Massimo

    2015-01-01

    The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.

  17. Design of Intelligent Power Supply System for Expressway Tunnel

    Science.gov (United States)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  18. LEP tunnel monorail

    CERN Multimedia

    1985-01-01

    A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  19. Energy Efficiency of Tunnel Boring Machines.

    OpenAIRE

    Grishenko, Vitaly

    2014-01-01

    Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...

  20. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  1. Large magnetocurrents in double-barrier tunneling transistors

    International Nuclear Information System (INIS)

    Lee, J.H.; Jun, K.-I.; Shin, K.-H.; Park, S.Y.; Hong, J.K.; Rhie, K.; Lee, B.C.

    2005-01-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10 3 times larger than that of conventional MTT, since tunneling through AlO x barrier provides much larger current density than that through Schottky barrier

  2. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  3. Quantum tunneling of Bose-Einstein condensates in optical lattices

    CERN Document Server

    Fan Wen Bin

    2003-01-01

    In quantum tunneling a particle with energy E can pass through a high potential barrier V(>E) due to the wave character of the particle. Bose-Einstein condensates can display very strong tunneling depending on the structure of the trap, which may be a double-well or optical lattices. The employed for the first time to our knowledge the periodic instanton method to investigate tunneling of Bose-Einstein condensates in optical lattices. The results show that there are two kinds of tunneling in this system, Landau-Zener tunneling between extended states of the system and Wannier-Stark tunneling between localized states of the system, and that the latter is 1000 times faster than the former. The also obtain the total decay rate for a wide range of temperature, including classical thermal activation, thermally assisted tunneling and quantum tunneling. The results agree with experimental data in references. Finally, the propose an experimental protocol to observe this new phenomenon in future experiments

  4. Resonant tunneling through double-barrier structures on graphene

    International Nuclear Information System (INIS)

    Deng Wei-Yin; Zhu Rui; Deng Wen-Ji; Xiao Yun-Chang

    2014-01-01

    Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight-binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schrödinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Concurrent myotomy and tunneling after establishment of a half tunnel instead of myotomy after establishment of a full tunnel: a more efficient method of peroral endoscopic myotomy.

    Science.gov (United States)

    Philips, George M; Dacha, Sunil; Keilin, Steve A; Willingham, Field F; Cai, Qiang

    2016-04-01

    Peroral endoscopic myotomy (POEM) is a time-consuming and challenging procedure. Traditionally, the myotomy is done after the submucosal tunnel has been completed. Starting the myotomy earlier, after submucosal tunneling is half completed (concurrent myotomy and tunneling), may be more efficient. This study aims to assess if the method of concurrent myotomy and tunneling may decrease the procedural time and be efficacious. This is a retrospective case series of patients who underwent modified POEM (concurrent myotomy and tunneling) or traditional POEM at a tertiary care medical center. Modified POEM or traditional POEM was performed at the discretion of the endoscopist in patients presenting with achalasia. The total procedural duration, myotomy duration, myotomy length, and time per unit length of myotomy were recorded for both modified and traditional POEM. Modified POEM was performed in 6 patients whose mean age (± standard deviation [SD]) was 58 ± 13.3 years. Of these, 5 patients had type II achalasia and 1 patient had esophageal dysmotility. The mean Eckardt score (± SD) before the procedure was 8.8 ± 1.3. The modified technique was performed in 47 ± 8 minutes, with 6 ± 1 minutes required per centimeter of myotomy and 3 ± 1 minutes required per centimeter of submucosal space. The Eckardt score was 3 ± 1.1 at 1 month and 3 ± 2.5 at 3 months. The procedure time for modified POEM was significantly shorter than that for traditional POEM. Modified POEM with short submucosal tunneling may be more efficient than traditional POEM with long submucosal tunneling, and outcomes may be equivalent over short-term follow-up. Long-term data and randomized controlled studies are needed to compare the clinical efficacy of modified POEM with that of the traditional method.

  6. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  7. Insertion of a straight peritoneal catheter in an arcuate subcutaneous tunnel by a tunneler: long-term experience.

    Science.gov (United States)

    Favazza, A; Petri, R; Montanaro, D; Boscutti, G; Bresadola, F; Mioni, G

    1995-01-01

    This study describes the results of the insertion of a straight Tenckhoff peritoneal catheter (PC) in an arcuate, caudally concave tunnel using a tunneler designed by the authors. It has a semicircular shape and a bending radius of 4.5 cm. A hospital renal unit. From June 1988 to February 1994, 112 straight Tenckhoff PCs, 62 with one deep cuff (single-cuff PC) and 50 with two cuffs (double-cuff PC), were inserted as first catheters in 112 patients (mean age 62 +/- 13 years), who underwent continuous ambulatory peritoneal dialysis (CAPD). The follow-up was 1099 months (mean 18 +/- 13 months) for single-cuff PCs and 1264 months (mean 25 +/- 15 months) for double-cuff PCs, respectively. After intraperitoneal placement of the PCs by median laparotomy, a 180 degrees arc bend tunnel, with both external and peritoneal exits directed downwards, was created by means of the tunneler. The rate of exit-site infection (ESI) was 0.27 episodes/year (epis/year). The probability of remaining ESI-free was 76%, 60%, and 55% at 1, 2, and 3 years. The rate of tunnel infection (TI) was 0.046 epis/year. The incidence of the double-cuff PC-related ESI and TI tended to be lower than the incidence observed with the single-cuff PC. Episodes of peritonitis were 60 (0.30 epis/year), where 6 were subsequent to ESI and/or TI. Two PCs were lost due to ESI, 3 due to TI, and 11 due to peritonitis. Drainage failure, due to displacement of the PC caused by straightening, involved 3 PCs; 2 were lost. PC survival was 92%, 82%, and 74% at 1, 2 and 3 years, respectively. By an easily used semicircular tunneler, the standard straight Tenckhoff PC can be stably positioned in an arcuate tunnel with both inner and outer exits directed downwards. This tunnel shape, as already suggested by some authors, appears to be an effective technical solution to reducing the PC-related complication rates.

  8. Theory of tunneling and photoemission spectroscopy for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kouznetsov, K.; Coffey, L.

    1996-01-01

    A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society

  9. CURRENT ASSET TUNNELING AND FIRM PERFORMANCE IN AN EMERGING MARKET

    OpenAIRE

    Ratna Candra Sari; Zaki Baridwan

    2014-01-01

    This study examines the effect of current asset tunneling on firm performance from the emerging market perspective. Although tunneling activities is a common practices by businesses especially in Indonesia, there exist obstacles in the measurement of tunneling activity because it is difficult to proof the existence of such practices. In this study, we measure tunneling by using accounts receivables and develop tunneling detection criteria. In addition, this study examines the effect of tunnel...

  10. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the ...

  11. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    Science.gov (United States)

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  12. Hybrid inflation exit through tunneling

    International Nuclear Information System (INIS)

    Garbrecht, Bjoern; Konstandin, Thomas

    2007-01-01

    For hybrid inflationary potentials, we derive the tunneling rate from field configurations along the flat direction towards the waterfall regime. This process competes with the classically rolling evolution of the scalar fields and needs to be strongly subdominant for phenomenologically viable models. Tunneling may exclude models with a mass scale below 10 12 GeV, but can be suppressed by small values of the coupling constants. We find that tunneling is negligible for those models, which do not require fine tuning in order to cancel radiative corrections, in particular for GUT-scale SUSY inflation. In contrast, electroweak scale hybrid inflation is not viable, unless the inflaton-waterfall field coupling is smaller than approximately 10 -11

  13. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  14. Seismic prediction ahead of tunnel construction using Rayleigh-waves

    OpenAIRE

    Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas

    2008-01-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...

  15. Interaction Driven Interband Tunneling of Bosons in the Triple Well

    OpenAIRE

    Cao, Lushuai; Brouzos, Ioannis; Zöllner, Sascha; Schmelcher, Peter

    2010-01-01

    We study the tunneling of a small ensemble of strongly repulsive bosons in a one-dimensional triple-well potential. The usual treatment within the single-band approximation suggests suppression of tunneling in the strong interaction regime. However, we show that several windows of enhanced tunneling are opened in this regime. This enhanced tunneling results from higher band contributions, and has the character of interband tunneling. It can give rise to various tunneling processes, such as si...

  16. Quantum tunneling of magnetization in solids

    International Nuclear Information System (INIS)

    Stamp, P.C.E.; Barbara, B.

    1992-01-01

    Magnetic solids should, under certain circumstances, show macroscopic quantum behavior, in which coherence exists between completely distinct magnetization states, each involving a very large number of spins (∼10 12 spins). This article reviews the recent work in this field, concentrating particularly on macroscopic quantum tunneling (MQT) of magnetization. The two main phenomena discussed are the tunneling of magnetization in single-domain particles or grains (in which some 10 3 - 10 4 spins rotate together through an energy barrier), and the tunneling of domain walls in films or in bulk magnets; where walls containing ∼10 10 spins may tunnel off a pinning potential, or from one pinning center to another. Some attention is also given to the quantum nucleation of magnetization reversal in a bulk magnet, and to the quantum motion of other magnetic solitons (such as vortices). After a thorough analysis of the basic grain and wall tunneling phenomena, the authors continue on to a discussion of the various dissipative or decoherence mechanisms, which destroy the phase correlations involved in tunneling. The coupling of grain magnetization to phonons, photons, and electrons is shown to have little consequence for weakly-conducting or insulating grains. Domain walls couple to these and also to magnons and impurities or defects; the 3rd order coupling to magnons can have serious effects, but if one uses pure insulators at low temperatures, these can also be ignored

  17. Proton tunnelling in intermolecular hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Horsewill, A J [Nottingham Univ. (United Kingdom); Johnson, M R [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Trommsdorff, H P [Grenoble-1 Univ., 38 (France)

    1997-04-01

    The wavefunctions of particles extend beyond the classically accessible regions of potential energy-surfaces (PES). A manifestation of this partial delocalization is the quantum-mechanical tunneling effect which enables a particle to escape from a metastable potential-well. Tunnelling is most important for the lightest atoms, so that the determination of its contribution to proton transfer, one of the most fundamental chemical reactions, is an important issue. QENS and NMR techniques have been employed to study the motion of protons in the hydrogen bond of benzoic-acid crystals, a system which has emerged as a particularly suitable model since proton transfer occurs in a near symmetric double-well potential. The influence of quantum tunnelling was revealed and investigated in these experiments. This work provides an experimental benchmark for theoretical descriptions of translational proton-tunnelling. (author). 7 refs.

  18. Climatic wind tunnel for wind engineering tasks

    Czech Academy of Sciences Publication Activity Database

    Kuznetsov, Sergeii; Pospíšil, Stanislav; Král, Radomil

    2015-01-01

    Roč. 112, 2-B (2015), s. 303-316 ISSN 1897-628X R&D Projects: GA ČR(CZ) GA14-12892S Keywords : climatic tunnel * wind tunnel * atmospheric boundary layer * flow resistance * wind tunnel contraction Subject RIV: JM - Building Engineering https://suw.biblos.pk.edu.pl/resources/i5/i6/i6/i7/i6/r56676/KuznetsovS_ClimaticWind.pdf

  19. Experience in design and construction of the Log tunnel

    Directory of Open Access Journals (Sweden)

    Jovičić Vojkan

    2017-09-01

    Full Text Available A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gruškovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM, in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  20. Experience in design and construction of the Log tunnel

    Science.gov (United States)

    Jovičić, Vojkan; Goleš, Niko; Tori, Matija; Peternel, Miha; Vajović, Stanojle; Muhić, Elvir

    2017-09-01

    A twin highway Log tunnel is a part of a new motorway connection between Maribor and Zagreb, section Draženci-Gru\\vskovje, which is located towards the border crossing between Slovenia and Croatia. The tunnel is currently under construction, and only the excavation works have been completed during the writing of this paper. The terrain in the area of the Log tunnel is diverse, and the route of the highway in its vicinity is characterised by deep excavations, bridges or viaducts. The Log tunnel is approximately 250 m long, partly constructed as a gallery. The geological conditions are dominated by Miocene base rock, featuring layers of well-connected clastic rocks, which are covered by diluvium clays, silts, sands and gravels of different thicknesses. Due to the short length of the tunnel, the usual separation of the motorway route to the left and the right tunnel axes was not carried out. Thus, the tunnel was constructed with an intermediate pillar and was designed as a three-lane tunnel, including the stopping lane. The construction of the tunnel was carried out using the New Austrian tunnelling method (NATM), in which the central adit was excavated first and the intermediate pillar was constructed within it. The excavation of the main tubes followed and was divided into the top heading, bench and the invert, enabling the intermediate pillar to take the load off the top heading of both tubes. The secondary lining of the tunnel is currently under construction. The experience of the tunnel construction gathered so far is presented in the paper. The main emphasis is on the construction of the intermediate pillar, which had to take the significant and asymmetrical ground load.

  1. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  2. New Method of Sinking Caisson Tunnel in Soft Soil

    OpenAIRE

    Bame, Abda Berisso

    2013-01-01

    Sinking a caisson tunnel in soft soil is new idea and this new concept could be an alternative method of tunneling in soft soil. The aim of this study is to evaluate geotechnical feasibility of sinking the caisson tunnel to the desired depth at the selected soil profile along tunnel alignment. This caisson tunneling method is proposed to reduce the use of temporary works such as propping of sheet pile walls and increase the ease and speed of construction. Besides, it reduces the disturbance o...

  3. Energy Tunneling Behavior in Geometrically Separated Wave Guides

    Directory of Open Access Journals (Sweden)

    M. Omar

    2017-10-01

    Full Text Available In this paper, characteristics of energy tunneling channel between the waveguides geometrically separated by a coaxial cable are studied.  The novel aspect of design is use of coaxial channel to connect the waveguides while maintaining the energy tunneling phenomena. As anticipated the tunneling frequency depends upon the length of wire inside the waveguide and the length of the coaxial cable. The tunneling frequency also depends upon the dielectric constant of the material inside the waveguide and coaxial cable.  At tunneling frequency the field strength (E and H in the channel is extremely high, making the channel extremely sensitive to small change in permittivity of dielectric occupying the channel.  The advantage of the proposed design is, its ability to tune to desired tunneling frequency just by changing the length of the coaxial cable without the need to redesign the waveguide height to accommodate the long tunneling wires. This structure can be used as dielectric sensor both for solid or liquid dielectrics just by placing the sample in coaxial cable cavity, contrary to previously report work where the sample has to be placed inside the waveguide.

  4. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  5. CURRENT ASSET TUNNELING AND FIRM PERFORMANCE IN AN EMERGING MARKET

    Directory of Open Access Journals (Sweden)

    Ratna Candra Sari

    2014-12-01

    Full Text Available This study examines the effect of current asset tunneling on firm performance from the emerging market perspective. Although tunneling activities is a common practices by businesses especially in Indonesia, there exist obstacles in the measurement of tunneling activity because it is difficult to proof the existence of such practices. In this study, we measure tunneling by using accounts receivables and develop tunneling detection criteria. In addition, this study examines the effect of tunneling on firm performance and market reaction during the announcement of the related party transaction. The study finds that from the perspective of the being-tunneled companies, receivables to related parties negatively affect the company’s profit margin. Companies which announce related party transaction indicating tunneling obtain negative abnormal return during the announcement of the related party transaction.

  6. High tunnels: protection for rather than from insect pests?

    Science.gov (United States)

    Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E

    2017-12-01

    High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.

    Science.gov (United States)

    Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-25

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  8. Universal tunneling behavior in technologically relevant P/N junction diodes

    International Nuclear Information System (INIS)

    Solomon, Paul M.; Jopling, Jason; Frank, David J.; D'Emic, Chris; Dokumaci, O.; Ronsheim, P.; Haensch, W.E.

    2004-01-01

    Band-to-band tunneling was studied in ion-implanted P/N junction diodes with profiles representative of present and future silicon complementary metal-oxide-silicon (CMOS) field effect transistors. Measurements were done over a wide range of temperatures and implant parameters. Profile parameters were derived from analysis of capacitance versus voltage characteristics, and compared to secondary-ion mass spectroscopy analysis. When the tunneling current was plotted against the effective tunneling distance (tunneling distance corrected for band curvature) a quasi-universal exponential reduction of tunneling current versus, tunneling distance was found with an attenuation length of 0.38 nm, corresponding to a tunneling effective mass of 0.29 times the free electron mass (m 0 ), and an extrapolated tunneling current at zero tunnel distance of 5.3x10 7 A/cm 2 at 300 K. These results are directly applicable for predicting drain to substrate currents in CMOS transistors on bulk silicon, and body currents in CMOS transistors in silicon-on-insulator

  9. Electrochemistry at a Metal Nanoparticle on a Tunneling Film: A Steady-State Model of Current Densities at a Tunneling Ultramicroelectrode.

    Science.gov (United States)

    Hill, Caleb M; Kim, Jiyeon; Bard, Allen J

    2015-09-09

    Here, a new methodology is proposed for treating electrochemical current densities in metal-insulator-metal nanoparticle (M-I-MNP) systems. The described model provides broad, practical insights about MNP-mediated electron transfer to redox species in solution, where electron transfer from the underlying electrode to a MNP via tunneling and heterogeneous electron transfer from the MNP to redox species in solution are treated as sequential steps. Tunneling is treated through an adaptation of the Simmons model of tunneling in metal-insulator-metal structures, and explicit equations are provided for tunneling currents, which demonstrate the effect of various experimental parameters, such as insulator thickness and MNP size. Overall, a general approach is demonstrated for determining experimental conditions where tunneling will have a measurable impact on the electrochemistry of M-I-MNP systems.

  10. Tunneling and propping : a justification for pyramidal ownership

    NARCIS (Netherlands)

    Riyanto, Y.E.; Toolsema-Veldman, Linda

    2004-01-01

    This paper presents a formal model of tunneling and propping in a pyramidal ownership structure. Tunneling refers to controlling shareholders shifting resources from one firm to another in the same pyramid. Propping is tunneling that is done to save the receiving firm from bankruptcy. We compare the

  11. General risks for tunnelling projects: An overview

    Science.gov (United States)

    Siang, Lee Yong; Ghazali, Farid E. Mohamed; Zainun, Noor Yasmin; Ali, Roslinda

    2017-10-01

    Tunnels are indispensable when installing new infrastructure as well as when enhancing the quality of existing urban living due to their unique characteristics and potential applications. Over the past few decades, there has been a significant increase in the building of tunnels, world-wide. Tunnelling projects are complex endeavors, and risk assessment for tunnelling projects is likewise a complex process. Risk events are often interrelated. Occurrence of a technical risk usually carries cost and schedule consequences. Schedule risks typically impact cost escalation and project overhead. One must carefully consider the likelihood of a risk's occurrence and its impact in the context of a specific set of project conditions and circumstances. A project's goals, organization, and environment impacts in the context of a specific set of project conditions and circumstances. Some projects are primarily schedule driven; other projects are primarily cost or quality driven. Whether a specific risk event is perceived fundamentally as a cost risk or a schedule risk is governed by the project-specific context. Many researchers have pointed out the significance of recognition and control of the complexity, and risks of tunnelling projects. Although all general information on a project such as estimated duration, estimated cost, and stakeholders can be obtained, it is still quite difficult to accurately understand, predict and control the overall situation and development trends of the project, leading to the risks of tunnelling projects. This paper reviews all the key risks for tunnelling projects from several case studies that have been carried out by other researchers. These risks have been identified and reviewed in this paper. As a result, the current risk management plan in tunnelling projects can be enhanced by including all these reviewed risks as key information.

  12. Large positive spin polarization and giant inverse tunneling magnetoresistance in Fe/PbTiO3/Fe multiferroic tunnel junction

    International Nuclear Information System (INIS)

    Dai, Jian-Qing; Zhang, Hu; Song, Yu-Min

    2014-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations of a multiferroic tunnel junction (MFTJ) with an epitaxial Fe/PbTiO 3 /Fe heterostructure. We predict a large positive spin-polarization (SP) and an intriguing giant inverse tunneling magnetoresistance (TMR) ratio in this tunnel junction. We demonstrate that the tunneling properties are determined by ferroelectric (FE) polarization screening and electronic reconstruction at the interface with lower electrostatic potential. The intricate complex band structure of PbTiO 3 , in particular the lowest decay rates concerning Pb 6p z and Ti 3d z2 states near the Γ ¯ point, gives rise to the large positive SP of the tunneling current in the parallel magnetic configuration. However, the giant inverse TMR ratio is attributed to the minority-spin electrons of the interfacial Ti 3d xz +3d yz orbitals which have considerably weight in the extended area around the Γ ¯ point at the Fermi energy and causes remarkable contributions to the conductance in the antiparallel magnetic configuration. - Highlights: • We study spin-dependent tunneling in Fe/PbTiO 3 /Fe multiferroic tunnel junction. • We find a large positive spin polarization in the parallel magnetic configuration. • An intriguing giant inverse TMR ratio (about −2000%) is predicted. • Complex band structure of PbTiO 3 causes the large positive spin polarization. • Negative TMR is due to minority-spin electrons of interfacial Ti d xz +d yz orbitals

  13. Tunnel operator training with a conversational agent-assistant

    NARCIS (Netherlands)

    Buiel, E.; Lubbers, J.; Doesburg, W. van; Muller, T.

    2009-01-01

    A tunnel operator monitors and regulates the flow of traffic inside a tunnel. Tunnel operators need to train in a simulator regularly in order to maintain proficiency in handling incident situations. During quiet working hours, the operator has enough time for training. But generally at that time no

  14. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  15. Flow-Based Detection of DNS Tunnels

    NARCIS (Netherlands)

    Ellens, W.; Żuraniewski, P.; Sperotto, A.; Schotanus, H.; Mandjes, M.; Meeuwissen, E.

    2013-01-01

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  16. Flow-based detection of DNS tunnels

    NARCIS (Netherlands)

    Ellens, W.; Zuraniewski, P.; Schotanus, H.; Mandjes, M.R.H.; Meeuwissen, E.; Doyen, Guillaume; Waldburger, Martin; Celeda, Pavel; Sperotto, Anna; Stiller, Burkhard

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  17. Flow-based detection of DNS tunnels

    NARCIS (Netherlands)

    Ellens, W.; Zuraniewski, P.W.; Sperotto, A.; Schotanus, H.A.; Mandjes, M.; Meeuwissen, H.B.

    2013-01-01

    DNS tunnels allow circumventing access and security policies in firewalled networks. Such a security breach can be misused for activities like free web browsing, but also for command & control traffic or cyber espionage, thus motivating the search for effective automated DNS tunnel detection

  18. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  19. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  20. Tunneling time in space fractional quantum mechanics

    Science.gov (United States)

    Hasan, Mohammad; Mandal, Bhabani Prasad

    2018-02-01

    We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.

  1. High-resolution sonography in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Solbiati, L.; De Pra, L.; Rizzatto, G.; Derchi, L.E.

    1986-01-01

    Carpal tunnel syndrome, caused by the compression on the median nerve under the transverse carpal ligament, has multiple causes and clinical presentations. One hundred eighteen patients with carpal tunnel sydrome underwent high-resolution US which demonstrated unpalpable cystic masses in 25 patients (lobulated stalked synovial cysts in 19 and retrotendinous cysts in six, all confirmed at surgery), and diffuse thickening and decreased echogenicity of the tendon sheaths in 87 patients, suggesting tenosynovitis (confirmed at surgery in 64). In six patients simple encasement of muscle bellies in the carpal tunnel was shown. US can delineate the cause of carpal tunnel syndrome, suggest the need for surgery, and aid the surgeon in locating the lesion to be removed

  2. Electron tunneling across a tunable potential barrier

    International Nuclear Information System (INIS)

    Mangin, A; Anthore, A; Rocca, M L Della; Boulat, E; Lafarge, P

    2009-01-01

    We present an experiment where the elementary quantum electron tunneling process should be affected by an independent gate voltage parameter. We have realized nanotransistors where the source and drain electrodes are created by electromigration inducing a nanometer sized gap acting as a tunnel barrier. The barrier potential shape is in first approximation considered trapezoidal. The application of a voltage to the gate electrode close to the barrier region can in principle affect the barrier shape. Simulations of the source drain tunnel current as a function of the gate voltage predict modulations as large as one hundred percent. The difficulty of observing the predicted behaviour in our samples might be due to the peculiar geometry of the realized tunnel junction.

  3. Projection operator method for collective tunneling transitions

    International Nuclear Information System (INIS)

    Kohmura, Toshitake; Ohta, Hirofumi; Hashimoto, Yukio; Maruyama, Masahiro

    2002-01-01

    Collective tunneling transitions take place in the case that a system has two nearly degenerate ground states with a slight energy splitting, which provides the time scale of the tunneling. The Liouville equation determines the evolution of the density matrix, while the Schroedinger equation determines that of a state. The Liouville equation seems to be more powerful for calculating accurately the energy splitting of two nearly degenerate eigenstates. However, no method to exactly solve the Liouville eigenvalue equation has been established. The usual projection operator method for the Liouville equation is not feasible. We analytically solve the Liouville evolution equation for nuclear collective tunneling from one Hartree minimum to another, proposing a simple and solvable model Hamiltonian for the transition. We derive an analytical expression for the splitting of energy eigenvalues from a spectral function of the Liouville evolution using a half-projected operator method. A full-order analytical expression for the energy splitting is obtained. We define the collective tunneling path of a microscopic Hamiltonian for collective tunneling, projecting the nuclear ground states onto n-particle n-hole state spaces. It is argued that the collective tunneling path sector of a microscopic Hamiltonian can be transformed into the present solvable model Hamiltonian. (author)

  4. Evaluation of tunnel seismic prediction (TSP) result using the Japanese highway rock mass classification system for Pahang-Selangor Raw Water Transfer Tunnel

    Science.gov (United States)

    Von, W. C.; Ismail, M. A. M.

    2017-10-01

    The knowing of geological profile ahead of tunnel face is significant to minimize the risk in tunnel excavation work and cost control in preventative measure. Due to mountainous area, site investigation with vertical boring is not recommended to obtain the geological profile for Pahang-Selangor Raw Water Transfer project. Hence, tunnel seismic prediction (TSP) method is adopted to predict the geological profile ahead of tunnel face. In order to evaluate the TSP results, IBM SPSS Statistic 22 is used to run artificial neural network (ANN) analysis to back calculate the predicted Rock Grade Points (JH) from actual Rock Grade Points (JH) using Vp, Vs and Vp/Vs from TSP. The results show good correlation between predicted Rock Grade points and actual Rock Grade Points (JH). In other words, TSP can provide geological profile prediction ahead of tunnel face significantly while allowing continuously TBM excavation works. Identifying weak zones or faults ahead of tunnel face is crucial for preventative measures to be carried out in advance for a safer tunnel excavation works.

  5. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    Science.gov (United States)

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  6. Aeronautical Wind Tunnels, Europe and Asia

    Science.gov (United States)

    2006-02-01

    User Fees Contact Information Dr. Surjatin Wiriadidjaja, UPT-LAGG, BPP Teknologi, Puspiptek, Serpong, Tangerang 15310, Indonesia. Tel: (62) 21 756...of the tunnel, FFA T1500 Transonic Wind Tunnel Circuit (Sweden) manufactured by The Swedish Defense Research Agency (FOI). 2.4 m Transonic Wind

  7. A Seamless Ubiquitous Telehealthcare Tunnel

    Directory of Open Access Journals (Sweden)

    Sao-Jie Chen

    2013-08-01

    Full Text Available Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields.

  8. Excavating a transfer tunnel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The transfer tunnel being dug here will take the 450 GeV beam from the SPS and inject it into the LHC where the beam energies will be increased to 7 TeV. In order to transfer this beam from the SPS to the LHC, two transfer tunnels are used to circulate the beams in opposite directions. When excavated, the accelerator components, including magnets, beam pipes and cryogenics will be installed and connected to both the SPS and LHC ready for operation to begin in 2008.

  9. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  10. The Thames Tideway Tunnel (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Lecture 3: Insight into a pioneering project at the cutting edge of engineering: the upgrade to London’s failing sewerage system. With a growing population and heavier rainfall, the River Thames is regularly polluted in breach of European Directive requirements. Two new storage and transfer tunnels will run up to 85m deep under the river and will intercept and divert sewer overflows to a treatment facility in east London. The challenges faced by constructing a tunnel project of this size under the river and through London’s historic urban environment will set a new UK record for this type of tunnelling.

  11. Thermal stability of tunneling spin polarization

    International Nuclear Information System (INIS)

    Kant, C.H.; Kohlhepp, J.T.; Paluskar, P.V.; Swagten, H.J.M.; Jonge, W.J.M. de

    2005-01-01

    We present a study of the thermal stability of tunneling spin polarization in Al/AlOx/ferromagnet junctions based on the spin-polarized tunneling technique, in which the Zeeman-split superconducting density of states in the Al electrode is used as a detector for the spin polarization. Thermal robustness of the polarization, which is of key importance for the performance of magnetic tunnel junction devices, is demonstrated for post-deposition anneal temperatures up to 500 o C with Co and Co 90 Fe 10 top electrodes, independent of the presence of an FeMn layer on top of the ferromagnet

  12. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  13. Particle detection with superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Jany, P.

    1990-08-01

    At the Institute of Experimental Nuclear Physics of the University of Karlsruhe (TH) and at the Institute for Nuclear Physics of the Kernforschungszentrum Karlsruhe we started to produce superconducting tunnel junctions and to investigate them for their suitability as particle detectors. The required facilities for the production of tunnel junctions and the experimental equipments to carry out experiments with them were erected. Experiments are presented in which radiations of different kinds of particles could successfully be measured with the tunnel junctions produced. At first we succeeded in detectioning light pulses of a laser. In experiments with alpha-particles of an energy of 4,6 MeV the alpha-particles were detected with an energy resolution of 1,1%, and it was shown in specific experiments that the phonons originating from the deposition of energy by an alpha-particle in the substrate can be detected with superconducting tunnel junctions at the surface. On that occasion it turned out that the signals could be separated with respect to their point of origin (tunnel junction, contact leads, substrate). Finally X-rays with an energy of 6 keV were detected with an energy resolution of 8% in a test arrangement that makes use of the so-called trapping effect to read out a larger absorber volume. (orig.) [de

  14. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  15. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    Science.gov (United States)

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  16. Quantum tunneling in the periodically driven SU(2) model

    International Nuclear Information System (INIS)

    Arvieu, R.

    1991-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble, periodically driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The oscillatory, coherent tunneling of the wave-function between two Hartree-Fock minima is observed. The driving plays an important role increasing the tunneling rate by orders of magnitude as compared to the semiclassical results. This is due to the dominant role of excited states in the driven quantum tunneling. (author) 15 refs., 4 figs

  17. Cost comparison between Subterrene and current tunneling methods. Final report

    International Nuclear Information System (INIS)

    Bledsoe, J.D.; Hill, J.E.; Coon, R.F.

    1975-05-01

    A study was made to compare tunnel construction costs between the Subterrene tunneling system and methods currently in use. Three completed tunnels were selected for study cases to represent finished diameters ranging from 3.05 meters (10 feet) to 6.25 meters (20.5 feet). The study cases were normalized by deleting extraneous work and assigning labor, equipment, and materials costs for the Southern California area in 1974. Detailed cost estimates (shown in Appendix A) were then made for the three tunnels for baseline. A conceptual nuclear powered Subterrene tunneling machine (NSTM) was designed. It was assumed that NSTM's were available for each of the three baseline tunnels. Costs were estimated (shown in Appendix B) for the baseline tunnels driven by NSTM

  18. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter

    2003-01-01

    a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...

  19. ORGANISATIONAL-TECHNOLOGICAL CHARACTERISTICS OF BLASTING WORKS ON THE GRIČ TUNNEL

    Directory of Open Access Journals (Sweden)

    Zvonimir Deković

    2005-12-01

    Full Text Available The paper describes organisational-technological characteristics of blasting works during the excavation of the Grič Tunnel. The significance of blasting works during the excavation of the tunnel is shown through adjustment of blasting parameters taking into consideration the dynamics of the works, cost-effectiveness and influence of geological circumstances. Successfulness of blasting directly influences the subsequent tunnel excavation cycle both in terms of duration as well as eventually in terms of influence on the entire tunnel investment. Comparison of changes of basic blasting parameters during tunnel excavation ensured optimal excavation progress with minimal price per meter of tunnel progress.

  20. Tunneling of electrons through semiconductor superlattices

    Indian Academy of Sciences (India)

    Unknown

    Tunneling of electrons through semiconductor superlattices. C L ROY. Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. The purpose of the present paper is to report a study of tunneling of electrons through semicon- ductor superlattices (SSL); specially, we have ...

  1. 49 CFR 177.810 - Vehicular tunnels.

    Science.gov (United States)

    2010-10-01

    ... through any urban vehicular tunnel used for mass transportation. [Amdt. 177-52, 46 FR 5316, Jan. 19, 1981... 49 Transportation 2 2010-10-01 2010-10-01 false Vehicular tunnels. 177.810 Section 177.810 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  2. Fire safety case study of a railway tunnel: Smoke evacuation

    Directory of Open Access Journals (Sweden)

    van Maele Karim

    2007-01-01

    Full Text Available When a fire occurs in a tunnel, it is of great importance to assure the safety of the occupants of the tunnel. This is achieved by creating smoke-free spaces in the tunnel through control of the smoke gases. In this paper, results are presented of a study concerning the fire safety in a real scale railway tunnel test case. Numerical simulations are performed in order to examine the possibility of natural ventilation of smoke in inclined tunnels. Several aspects are taken into account: the length of the simulated tunnel section, the slope of the tunnel and the possible effects of external wind at one portal of the tunnel. The Fire Dynamics Simulator of the National Institute of Standards and Technology, USA, is applied to perform the simulations. The simulations show that for the local behavior of the smoke during the early stages of the fire, the slope of the tunnel is of little importance. Secondly, the results show that external wind and/or pressure conditions have a large effect on the smoke gases inside the tunnel. Finally, some idea for the value of the critical ventilation velocity is given. The study also shows that computational fluid dynamics calculations are a valuable tool for large scale, real life complex fire cases. .

  3. Local tunneling spectroscopy of a Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Inoue, K.; Takayanagi, H.

    1991-01-01

    Local tunneling spectroscopy for a Nb/In/As/Nb superconducting proximity system was demonstrated with a low-temperature scanning tunneling microscope. It is found that the local electron density of states in the InAs region is spatially modulated by the neighboring superconductor Nb

  4. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  5. A century of wind tunnels since Eiffel

    Science.gov (United States)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  6. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  7. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  8. Numerical Evaluation on Dynamic Response of Existing Underlying Tunnel Induced by Blasting Excavation of a Subway Tunnel

    Directory of Open Access Journals (Sweden)

    Jixue Zhou

    2017-01-01

    Full Text Available In Southwest China, most regions are mountainous, where traditional drill-and-blast method is adopted to excavate relatively harder rocks. However, blasting would cause vibration to adjacent structures and might result in damage or even failure. This paper considers a case where subway tunnel is overlying an existing railway tunnel, while the excavation requires blasting method. Vibration and stress distribution are calculated via Dynamic Finite Element Method (DFEM for both full-face excavation and CD method. Result shows that vibration induced by CD method is only 28% of that caused by full-face blasting with same distance. Peak vibration is located on the lining facing the blasting source, while peak tensile stress is on the other side of the contour due to the reflection of stress wave on strata boundary. And peak value of tensile stress induced by full-face blasting is capable of causing lining failure; thus full-face blasting is not suggested within 40 m beyond the underlying tunnel axis. However, CD method has shown much advantage, since blasting within 25 m is also considered safe to the underlying tunnel. But when the blasting source is as near as 12 m within the underlying tunnel, the CD method is no longer safe.

  9. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    Science.gov (United States)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  10. Restoring proximal caries lesions conservatively with tunnel restorations.

    Science.gov (United States)

    Chu, Chun-Hung; Mei, May L; Cheung, Chloe; Nalliah, Romesh P

    2013-07-30

    The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED) and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations.

  11. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  12. MISTY ECHO tunnel dynamics experiment data report

    International Nuclear Information System (INIS)

    Phillips, J.S.; Luke, B.A.; Long, J.W.; Lee, J.G.

    1992-04-01

    Tunnel damage resulting from seismic loading is an important issue for the Yucca Mountain nuclear waste repository. The tunnel dynamics experiment was designed to obtain and document ground motions, permanent displacements, observable changes in fracture patterns, and visible damage at ground motion levels of interest to the Yucca Mountain Project. Even though the maximum free-field loading on this tunnel was 28 g, the damage observed was minor. Fielding details, data obtained, and supporting documentation are reported

  13. Treatment of carpal tunnel syndrome with polarized polychromatic noncoherent light (Bioptron light): a preliminary, prospective, open clinical trial.

    Science.gov (United States)

    Stasinopoulos, D; Stasinopoulos, I; Johnson, M I

    2005-04-01

    Our aim was to assess the efficacy of polarized polychromatic noncoherent light (Bioptron light) in the treatment of idiopathic carpal tunnel syndrome. Carpal tunnel syndrome is the most common compression neuropathy, but no satisfactory conservative treatment is available at present. An uncontrolled experimental study was conducted in patients who visited our clinic from mid-2001 to mid-2002. A total of 25 patients (22 women and three men) with unilateral idiopathic carpal tunnel syndrome, mild to moderate nocturnal pain, and paraesthesia lasting >3 months participated in the study. The average age of the patients was 47.4 years and the average duration of patients' symptoms was 5.2 months. Polarized polychromatic noncoherent light (Bioptron light) was administered perpendicular to the carpal tunnel area. The irradiation time for each session was 6 min at an operating distance of 5-10 cm from the carpal tunnel area, three times weekly for 4 weeks. Outcome measures used were the participants' global assessments of nocturnal pain and paraesthesia, respectively, at 4 weeks and 6 months. At 4 weeks, two patients (8%) had no change in nocturnal pain, six (24%) were in slightly less nocturnal pain, 12 (48%) were much better in regard to nocturnal pain and five (20%) were pain-free. At 6 months, three patients (12%) were slightly better in regard to nocturnal pain, 13 (52%) were much better regarding nocturnal pain, and nine patients (36%) were pain-free. At 4 weeks, four patients (16%) had no change in paraesthesia, five (20%) were slightly better, 13 patients (52%) were much better, and three patients (12%) were without paraesthesia. At 6 months, two patients (8%) had no change in paraesthesia, two (8%) were slightly better, 14 (56%) were much better, and seven (28%) were without paraesthesia. Nocturnal pain and paraesthesia associated with idiopathic carpal tunnel syndrome improved during polarized polychromatic noncoherent light (Bioptron light) treatment. Controlled

  14. Small-scale tunnel test for blast performance

    International Nuclear Information System (INIS)

    Felts, J E; Lee, R J

    2014-01-01

    The data reported here provide a validation of a small-scale tunnel test as a tool to guide the optimization of new explosives for blast performance in tunnels. The small-scale arrangement consisted of a 2-g booster and 10-g sample mounted at the closed end of a 127 mm diameter by 4.6-m long steel tube with pressure transducers along its length. The three performance characteristics considered were peak pressure, initial energy release, and impulse. The relative performance from five explosives was compared to that from a 1.16-m diameter by 30-m long tunnel that used 2.27-kg samples. The peak pressure values didn't correlate between the tunnels. Partial impulse for the explosives did rank similarly. The initial energy release was determined from a one-dimensional point-source analysis, which nearly tracked with impulse suggesting additional energy released further down the tunnel for some explosives. This test is a viable tool for optimizing compositional variations for blast performance in target scenarios of similar geometry.

  15. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  16. [Occupational carpal tunnel syndrome: 27 cases].

    Science.gov (United States)

    Slimane, Neila Ben; Elleuch, Mohamed; Gharbi, Ezzedine; Babay, Habib; Hamdoun, Moncef

    2010-09-01

    Carpal tunnel syndrome is the most frequent of tunnel syndromes in the field of the professional sphere. It is related to repetitive movements of flexion-extension of the wrist and fingers or to a support on the heel of the hands. To determine the posts in a risk and to specify the modalities of guaranteed reimbursement of professional carpal tunnel syndrome. A retrospective and descriptive study of 27 medical files of employees indemnified for professional carpal tunnel syndrome registered in the medical control services of the social security office in charge of medical insurance of Tunis and Sousse during a period of 10 years (1995-2004). There were 24 women and 3 men with the average age of 40 years all occupying posts in a risk. Their average time of service is 15 years. Tow-thirds of them work in the clothing and textile industry. The attack is bilateral in 13 cases. Nightly acroparaesthesia rules the clinical rate (44.44% of cases). Motor disorders are noted in the quarter of cases. The electromyogram had confirmed diagnosis in all of cases. The previous state study put in evidence the antecedent of carpal tunnel syndrome in 5 cases and diabetes in one case. Twenty-one patients had profit of permanent partial incapacity with a rate varying from 3 to 25%. Five had got a transfer of working place and one stayed in the same post with a half-time work. The professional origin of carpal tunnel syndrome must be called up in front of an activity in a risk. The reparation is done according to picture 82 of occupational diseases.

  17. Use of tunnel diode for nanosecond pulse amplification; Utilisation de la diode tunnel pour l'amplification d'impulsions nanosecondes

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    In a first part, after a brief review of tunnel diode properties, the paper presents graphic and analytic investigations of series, shunt and compound connected tunnel diode amplifiers. A study of the noise problem is given. In a second part, practical realizations are described and results of measurements of their gain and noise characteristics are presented. (author) [French] Une premiere partie presente, apres une breve revue des proprietes de la diode tunnel, une etude graphique et analytique des amplificateurs a diode tunnel, pour les configurations serie, parallele et serie-parallele. Le bruit de fond y est egalement etudie. La seconde partie decrit quelques realisations pratiques et indique les resultats des mesures effectuees sur le gain et le bruit de fond. (auteur)

  18. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: Part 2. Upper extremity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungjun [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Hanyang University, Kuri Hospital, Department of Diagnostic Radiology, College of Medicine, Kuri City, Kyunggi-do (Korea); Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Kim, Seung Min [Yonsei University, Department of Neurology, College of Medicine, Seoul (Korea); Suh, Jin-Suck [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Yonsei University, Research Institute of Radiological Science, College of Medicine, Seoul (Korea)

    2007-02-15

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions, but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the upper extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the upper extremity are as follows: the brachial plexus of the thoracic outlet; axillary nerve of the quadrilateral space; radial nerve of the radial tunnel; ulnar nerve of the cubital tunnel and Guyon's canal; median nerve of the pronator syndrome, anterior interosseous nerve syndrome, and carpal tunnel syndrome. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  19. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: Part 2. Upper extremity

    International Nuclear Information System (INIS)

    Kim, Sungjun; Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah; Kim, Seung Min; Suh, Jin-Suck

    2007-01-01

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions, but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the upper extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the upper extremity are as follows: the brachial plexus of the thoracic outlet; axillary nerve of the quadrilateral space; radial nerve of the radial tunnel; ulnar nerve of the cubital tunnel and Guyon's canal; median nerve of the pronator syndrome, anterior interosseous nerve syndrome, and carpal tunnel syndrome. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  20. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  1. Quantum tunneling in the driven SU(2) model

    International Nuclear Information System (INIS)

    Kaminski, P.; Ploszajczak, M.; Arvieu, R.

    1992-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The presence of the classical chaotic structures leads to the enormous growth in the tunneling rate. The results suggest the existence of a new mechanism of quantum tunneling, involving transport of the wave-function between stable regions of the classical phase-space due to a coupling with 'chaotic' levels. (author) 17 refs., 13 figs

  2. Structural Safety Assessment of Existing Multiarch Tunnel: A Case Study

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2017-01-01

    Full Text Available Structural health assessment is one of the key activities in maintaining the performance of a tunnel during its service life. Due to the development of modern detection technology, comprehensive structural health assessment system is being established for operating tunnels. To evaluate the actual operational state of Shitigou tunnel, overall detection of the liner crack, tunnel seepage, and liner void was conducted by employing the modern detection technology, such as crack width monitoring technology, concrete strength monitoring technology, and electromagnetic wave nondestructive monitoring technology. Through the statistical analysis of the detection results, the distribution characteristic, development law, and damage grade of structural defects were obtained. Tunnel liner cracks are mainly located on the middle wall; serious water leakage is encountered on the side wall, middle wall, and vault; the strength of foundation and liner structure of left tunnel does not meet the design requirement; the liner voids are mostly located at the tunnel entrance section, especially, on the tunnel vault; and the proportion of influence factors of structural defects should be considered. The research results presented for this study can serve as references for effective design and health assessment of existing multiarch tunnel projects.

  3. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  4. Quantum resonances in physical tunneling

    International Nuclear Information System (INIS)

    Nieto, M.M.; Truax, D.R.

    1985-01-01

    It has recently been emphasized that the probability of quantum tunneling is a critical function of the shape of the potential. Applying this observation to physical systems, we point out that in principal information on potential surfaces can be obtained by studying tunneling rates. This is especially true in cases where only spectral data is known, since many potentials yield the same spectrum. 13 refs., 10 figs., 1 tab

  5. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  6. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  7. Integrated tunneling sensor for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Sadewasser, S.; Abadal, G.; Barniol, N.

    2006-01-01

    Transducers based on quantum mechanical tunneling provide an extremely sensitive sensor principle, especially for nanoelectromechanical systems. For proper operation a gap between the electrodes of below 1 nm is essential, requiring the use of structures with a mobile electrode. At such small...... distances, attractive van der Waals and capillary forces become sizable, possibly resulting in snap-in of the electrodes. The authors present a comprehensive analysis and evaluation of the interplay between the involved forces and identify requirements for the design of tunneling sensors. Based...... on this analysis, a tunneling sensor is fabricated by Si micromachining technology and its proper operation is demonstrated. (c) 2006 American Institute of Physics....

  8. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  9. Application of fuzzy methods in tunnelling

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2011-12-01

    Full Text Available Full-face tunnelling machines were used for the tunnel construction in Slovakia for boring of the exploratory galleries of highwaytunnels Branisko and Višňové-Dubná skala. A monitoring system of boring process parameters was installed on the tunnelling machinesand the acquired outcomes were processed by several theoretical approaches. Method IKONA was developed for the determination ofchanges in the rock mass strength characteristics in the line of exploratory gallery. Individual geological sections were evaluated bythe descriptive statistics and the TBM performance was evaluated by the fuzzy method. The paper informs on the procedure of the designof fuzzy models and their verification.

  10. Tunneling decay of self-gravitating vortices

    Directory of Open Access Journals (Sweden)

    Dupuis Éric

    2018-01-01

    Full Text Available We investigate tunneling decay of false vortices in the presence of gravity, in which vortices are trapped in the false vacuum of a theory of scalar electrodynamics in three dimensions. The core of the vortex contains magnetic flux in the true vacuum, while outside the vortex is the appropriate topologically nontrivial false vacuum. We numerically obtain vortex solutions which are classically stable; however, they could decay via tunneling. To show this phenomenon, we construct the proper junction conditions in curved spacetime. We find that the tunneling exponent for the vortices is half that for Coleman-de Luccia bubbles and discuss possible future applications.

  11. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  12. Rock mechanical conditions at the Aespoe HRL. A study of the correlation between geology, tunnel maintenance and tunnel shape

    International Nuclear Information System (INIS)

    Andersson, Christer; Soederhaell, Joergen

    2001-12-01

    Maintenance records including scaling, shotcreting and bolting have been kept since the excavation start of Aespoe HRL 1990 together with records of groundwater flow and all other activities taking place in the tunnels. When the facility was constructed one objective was to limit the rock support as much as possible. The reason for this was that it should be possible to go back and easily study the exposed rock surface. Support during the operational phase has only been carried out where and when necessary. This type of maintenance and its location is documented in the digital database each time. The maintenance records have been compiled and areas requiring more maintenance than average noted. An interview has also been held with one of the miners conducting scaling and bolting in the tunnel. His experiences together with the study of the database maintenance records led to the selection of certain areas in the tunnel to be studied by numerical modelling. The probable reason for the need of additional maintenance in all areas, not only these numerically modelled, has been investigated. Almost all maintenance in the main tunnel both during construction and the operational phase has been located in the widened curves of the access tunnel. The maintenance is also located in areas containing veins or intrusions of Smaaland granite or fine-grained granite. These areas are often located in fracture zones of different sizes or show an increasing fracture frequency. The areas numerically modelled indicate stress concentrations or unloaded stress conditions. The stress concentrations are created by the geometry of the niches and side-tunnels in relation to the in situ stress field. The angle between the tunnel and the major principal stress has an impact on the need for maintenance. The areas with the largest angles towards the principal stress direction need more maintenance than the areas almost parallel to the major principal stress direction. The maintenance work in

  13. Quantum tunneling and field electron emission theories

    CERN Document Server

    Liang, Shi-Dong

    2013-01-01

    Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f

  14. Hard-rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.; Brekke, T.L.; Finnie, I.

    1975-01-01

    Intense sub-microsecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this technique appears promising for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a pulsed electron tunnel excavator, capable of tunneling approximately ten times faster than conventional drill/blast methods, is presented. (auth)

  15. Nuclear fission as a macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Takigawa, N.

    1995-01-01

    We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)

  16. Restoring proximal caries lesions conservatively with tunnel restorations

    Directory of Open Access Journals (Sweden)

    Chu CH

    2013-07-01

    Full Text Available Chun-Hung Chu1, May L Mei,1 Chloe Cheung,1 Romesh P Nalliah2 1Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China; 2Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA Abstract: The tunnel restoration has been suggested as a conservative alternative to the conventional box preparation for treating proximal caries. The main advantage of tunnel restoration over the conventional box or slot preparation includes being more conservative and increasing tooth integrity and strength by preserving the marginal ridge. However, tunnel restoration is technique-sensitive and can be particularly challenging for inexperienced restorative dentists. Recent advances in technology, such as the contemporary design of dental handpieces with advanced light-emitting diode (LED and handheld comfort, offer operative dentists better vision, illumination, and maneuverability. The use of magnifying loupes also enhances the visibility of the preparation. The advent of digital radiographic imaging has improved dental imaging and reduced radiation. The new generation of restorative materials has improved mechanical properties. Tunnel restoration can be an option to restore proximal caries if the dentist performs proper case selection and pays attention to the details of the restorative procedures. This paper describes the clinical technique of tunnel restoration and reviews the studies of tunnel restorations. Keywords: operative, practice, tunnel preparation, composite, amalgam, glass ionomer

  17. Energy saving in tunnel entrance lighting.

    NARCIS (Netherlands)

    Schreuder, D.A. & Swart, L.

    1993-01-01

    Tunnel entrances may present themselves during the day as a "black hole" in which no details can be perceived. In order to ensure safe and comfortable driving at high speeds, the entrance zone must be lit to a high luminance level. Modern tunnel lighting technology is focused on two aspects:

  18. Object-Based Attention and Cognitive Tunneling

    Science.gov (United States)

    Jarmasz, Jerzy; Herdman, Chris M.; Johannsdottir, Kamilla Run

    2005-01-01

    Simulator-based research has shown that pilots cognitively tunnel their attention on head-up displays (HUDs). Cognitive tunneling has been linked to object-based visual attention on the assumption that HUD symbology is perceptually grouped into an object that is perceived and attended separately from the external scene. The present research…

  19. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  20. 47 CFR 15.211 - Tunnel radio systems.

    Science.gov (United States)

    2010-10-01

    ... regulations contained within this part. (c) The total electromagnetic field from a tunnel radio system on any... surrounding earth and/or water. (b) Any intentional or unintentional radiator external to the tunnel, mine or...

  1. Air quality assessment in Salim Slam Tunnel

    International Nuclear Information System (INIS)

    El-Fadel, M.; Hashisho, Z.; Saikaly, P.

    1999-01-01

    Full text.Vehicle emissions constitute a serious occupational environmental hazard particularly in confined spaces such as tunnels and underground parking garages. these emissions at elevated concentrations, can cause adverse health effects, which range from nausea and eye irritation to mutagenicity, carcinogenicity and even death. This paper presents an environmental air quality assessment in a tunnel located in a highly congested urban area. For this purpose, air samples were collected and analyzed for the presence of primary air pollutants, priority metals, and volatile organic carbons. Air quality modeling was conducted to simulate variations of pollutant concentrations in the tunnel under worst case scenarios including traffic congestion and no air ventilation. Field measurements and mathematical simulation results were used to develop a strategy for proper air quality management in tunnels

  2. Instanton and noninstanton tunneling in periodically perturbed barriers: semiclassical and quantum interpretations.

    Science.gov (United States)

    Takahashi, Kin'ya; Ikeda, Kensuke S

    2012-11-01

    In multidimensional barrier tunneling, there exist two different types of tunneling mechanisms, instanton-type tunneling and noninstanton tunneling. In this paper we investigate transitions between the two tunneling mechanisms from the semiclassical and quantum viewpoints taking two simple models: a periodically perturbed Eckart barrier for the semiclassical analysis and a periodically perturbed rectangular barrier for the quantum analysis. As a result, similar transitions are observed with change of the perturbation frequency ω for both systems, and we obtain a comprehensive scenario from both semiclassical and quantum viewpoints for them. In the middle range of ω, in which the plateau spectrum is observed, noninstanton tunneling dominates the tunneling process, and the tunneling amplitude takes the maximum value. Noninstanton tunneling explained by stable-unstable manifold guided tunneling (SUMGT) from the semiclassical viewpoint is interpreted as multiphoton-assisted tunneling from the quantum viewpoint. However, in the limit ω→0, instanton-type tunneling takes the place of noninstanton tunneling, and the tunneling amplitude converges on a constant value depending on the perturbation strength. The spectrum localized around the input energy is observed, and there is a scaling law with respect to the width of the spectrum envelope, i.e., the width ∝ℏω. In the limit ω→∞, the tunneling amplitude converges on that of the unperturbed system, i.e., the instanton of the unperturbed system.

  3. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  4. Studying the Effect of Tunnel Depth Variation on the Specific Energy of TBM, Case Study: Karaj–Tehran (Iran Water Conveyance Tunnel

    Directory of Open Access Journals (Sweden)

    Majid Mirahmadi

    2016-09-01

    Full Text Available The tunnel-boring machine (TBM is a common piece of equipment used in tunneling projects. For planning a mechanical excavation project, prediction of TBM performance and the specification of design elements such as required forces are critical. The specific energy of excavation (SE, i.e. drilling energy consumption per unit volume of rock mass, is a crucial parameter for performance prediction of a TBM. In this study, the effect of variation of tunnel depth on SE by considering the post-failure behavior of rock mass was investigated. Several new relations between SE and tunnel depth are proposed according to the statistical analysis obtained from Karaj – Tehran Water Conveyance Tunnel real data. The results showed that there is a direct relation between both parameters and. Polynomial equations are proposed as the best expression of the correlation between these parameters.

  5. ANASTOMOSIS ENTRE LA RAMA PROFUNDA DEL NERVIO CUBITAL Y EL NERVIO MEDIANO EN LA MANO. Anastomosis between the deep branch of the ulnar nerve and the median nerve in the hand

    Directory of Open Access Journals (Sweden)

    Luis E Criado del Río

    2016-03-01

    Full Text Available Introducción: La anastomosis de Riche-Cannieu (ARC es una variación anatómica formada entre la rama tenar del nervio mediano (NM y la rama profunda del nervio cubital (NC. Debido a la importancia clínica y electromiográfica su descripción anatómica es de gran interés, ya que debido a esta variación anatómica existen distintas formas de inervación motora a nivel de la mano. Materiales y Métodos: Se realizaron disecciones cadavéricas en 38 manos (19 cadáveres de ambos sexos formolizados en solución al 5 %, de entre 50 y 70 años de edad. Se utilizó instrumental y técnicas convencionales de disección. Resultados: En la rama profunda del NC no se evidenciaron variaciones y finalizaba su recorrido en el músculo aductor del pulgar. En el 86,84%  de los casos emerge una rama que se anastomosa con el NM de diferentes formas. Esta rama anastomótica, en el 50% de las manos, era una arcada nerviosa de considerable calibre entre el NC y NM, que daba ramas motoras a los músculos de la eminencia tenar. Discusión: El conocimiento de esta anastomosis es muy importante ya que, en casos de lesión del nervio mediano o cubital, puede causar confusión clínica, quirúrgica y en los hallazgos electromiográficos. Debido a su alta frecuencia fue considerada un rasgo anatómico normal. Introduction: The Riche-Cannieu anastomosis (RCA is an anatomic variation formed between the thenar branch of the median nerve and the deep branch of the ulnar nerve. Its anatomical description is of great interest because of its clinical and electromyographic relevance. Due to the RCA, there are various types of hand motor innervation. Materials and Methods: Thirty eight hands from 19 corpses (formolized in a 5% solution whose ages ranged from 50 to 70 years old were dissected. Conventional instruments and techn-iques were used. Results: The pathway of the deep branch of the ulnar nerve did not show variations and ended at the adductor pollicis muscle. In 86

  6. Management of Carpal Tunnel Syndrome.

    Science.gov (United States)

    Mooar, Pekka A; Doherty, William J; Murray, Jayson N; Pezold, Ryan; Sevarino, Kaitlyn S

    2018-03-15

    The American Academy of Orthopaedic Surgeons (AAOS) has developed Appropriate Use Criteria (AUC) for Management of Carpal Tunnel Syndrome. Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. To provide the evidence foundation for this AUC, the AAOS Evidence-Based Medicine Unit provided the writing panel and voting panel with the 2016 AAOS Clinical Practice Guideline titled Management of Carpal Tunnel Syndrome Evidence-Based Clinical Practice Guideline. The Management of Carpal Tunnel Syndrome AUC clinical patient scenarios were derived from indications typical of patients with suspected carpal tunnel syndrome in clinical practice, as well as from current evidence-based clinical practice guidelines and supporting literature to identify the appropriateness of treatments. The 135 patient scenarios and 6 treatments were developed by the writing panel, a group of clinicians who are specialists in this AUC topic. Next, a separate, multidisciplinary, voting panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3).

  7. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope

    OpenAIRE

    Nazin, G. V.; Wu, S. W.; Ho, W.

    2005-01-01

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks correspondi...

  8. Understanding Quantum Tunneling through Quantum Monte Carlo Simulations.

    Science.gov (United States)

    Isakov, Sergei V; Mazzola, Guglielmo; Smelyanskiy, Vadim N; Jiang, Zhang; Boixo, Sergio; Neven, Hartmut; Troyer, Matthias

    2016-10-28

    The tunneling between the two ground states of an Ising ferromagnet is a typical example of many-body tunneling processes between two local minima, as they occur during quantum annealing. Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is O(Δ^{2}), where Δ is the tunneling splitting (or equivalently the minimum spectral gap). An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, we obtain a quadratic speedup for QMC simulations, and achieve linear scaling in Δ. We provide a physical understanding of these results and their range of applicability based on an instanton picture.

  9. Addressing student models of energy loss in quantum tunnelling

    International Nuclear Information System (INIS)

    Wittmann, Michael C; Morgan, Jeffrey T; Bao Lei

    2005-01-01

    We report on a multi-year, multi-institution study to investigate students' reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wavefunctions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials designed to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so

  10. Hard rock tunneling using pulsed electron beams

    International Nuclear Information System (INIS)

    Avery, R.T.; Brekke, T.L.; Finnie, I.

    1974-01-01

    Intense submicrosecond bursts of energetic electrons cause significant pulverization and surface spalling of a variety of rock types, the spall debris generally consisting of sand, dust, and small flakes. If carried out at rapid repetition rate this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods were studied. (auth)

  11. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  12. Scanning Tunneling Microscope For Use In Vacuum

    Science.gov (United States)

    Abel, Phillip B.

    1993-01-01

    Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.

  13. An exact solution for quantum tunneling in a dissipative system

    International Nuclear Information System (INIS)

    Yu, L.H.

    1996-01-01

    Applying a technique developed recently for a harmonic oscillator coupled to a bath of harmonic oscillators, we present an exact solution for the tunneling problem in an Ohmic dissipative system with inverted harmonic potential. The result shows that while the dissipation tends to suppress the tunneling, the Brownian motion tends to enhance the tunneling. Whether the tunneling rate increases or not would then depend on the initial conditions. We give a specific formula to calculate the tunneling probability determined by various parameters and the initial conditions

  14. Robust spin transfer torque in antiferromagnetic tunnel junctions

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2017-04-18

    We theoretically study the current-induced spin torque in antiferromagnetic tunnel junctions, composed of two semi-infinite antiferromagnetic layers separated by a tunnel barrier, in both clean and disordered regimes. We find that the torque enabling electrical manipulation of the Néel antiferromagnetic order parameter is out of plane, ∼n×p, while the torque competing with the antiferromagnetic exchange is in plane, ∼n×(p×n). Here, p and n are the Néel order parameter direction of the reference and free layers, respectively. Their bias dependence shows behavior similar to that in ferromagnetic tunnel junctions, the in-plane torque being mostly linear in bias, while the out-of-plane torque is quadratic. Most importantly, we find that the spin transfer torque in antiferromagnetic tunnel junctions is much more robust against disorder than that in antiferromagnetic metallic spin valves due to the tunneling nature of spin transport.

  15. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  16. Tunnel injection and tunnel stimulation of superconductivity: the role of branch imbalance

    International Nuclear Information System (INIS)

    Gal'perin, Y.M.; Kozub, V.I.; Spivak, B.A.

    1983-01-01

    The tunnel injection and the tunnel extraction of quasiparticles in a superconductor are considered, taking into account the branch population imbalance. The stability of nonequilibrium states with branch imbalance is discussed. It is shown that if this imbalance is large enough, the nonequilibrim state becomes unstable with respect to spatially homogeneous fluctuations of the order parameter, the characteristic increment being of the order of that for the Cooper instability of the normal state at T>T/sub c/. As a result, states with oscillating order parameter can exist in a superconductor under injection or extraction. The relation of the results obtained to experimental results is discussed

  17. Efficient logistics enabled by smart solutions in tunneling

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2017-12-01

    Full Text Available While logistics comprises an important part of tunneling costs, it is generally not considered a lever of performance but rather a constraint to a project's progress. This study presents some insights on how smart technology can impact the tunneling industry. The impact is even greater because of the complexity of the tunneling supply chain, and smart technology could help support this process. Finally, we discuss how the nature of the tunneling industry invites stakeholders to develop a common understanding of the project prior to construction to successfully deploy smart technology during the use or maintenance phase. Keywords: Smart technology, Logistics, Underground space, Supply chain, Construction, Lean construction

  18. Sediment and Cavitation Erosion Studies through Dam Tunnels

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-01-01

    Full Text Available This paper presents results of sediment and cavitation erosion through Tunnel 2 and Tunnel 3 of Tarbela Dam in Pakistan. Main bend and main branch of Tunnel 2 and outlet 1 and outlet 3 of Tunnel 3 are concluded to be critical for cavitation and sediment erosion. Studies are also performed for increased sediments flow rate, concluding 5 kg/sec as the critical value for sudden increase in erosion rate density. Erosion rate is concluded to be the function of sediment flow rate and head condition. Particulate mass presently observed is reasonably low, hence presently not affecting the velocity and the flow field.

  19. Generality of the Hartman and Fletcher effect for the mean tunneling time in nonrelativistic particle and photon tunnelling without absorption and dissipation

    International Nuclear Information System (INIS)

    Jakiel, J.; Olkhovsky, V.S.

    1998-01-01

    It is known that, under certain conditions, the tunnelling time becomes independent of barrier width (the Hartman and Fletcher effect). Here, the generality of this effect is shown for mean tunnelling times in all known nonrelativistic approaches, in the cases of rectangular potential barriers without absorption and dissipation. On the base of this effect and the reshaping phenomenon, taking the analogy between nonrelativistic-particle and photon tunnelling into, account, one can self-consistently explain the observed superluminal effective (group) velocities in various photon tunnelling experiments without violation of the Einstein causality

  20. Research of Tunnel Construction Monitoring System Base on Senor Information Fusion

    Directory of Open Access Journals (Sweden)

    Kaisheng Zhang

    2014-05-01

    Full Text Available With the complex of the tunnel construction, tunnel construction become more and more difficult, in order to ensure the safety of tunnel construction, the paper introduced a kind of tunnel construction monitoring system based on sensor. The system achieves the real- time monitoring of tunnel construction environment including temperature and humidity, gas concentration, dust concentration, location tracking for construction workers through the wireless communication technology, to control of the real-time status of the tunnel, and ensure timely rescue when the accident occurred.

  1. Giant tunnel-electron injection in nitrogen-doped graphene

    DEFF Research Database (Denmark)

    Lagoute, Jerome; Joucken, Frederic; Repain, Vincent

    2015-01-01

    Scanning tunneling microscopy experiments have been performed to measure the local electron injection in nitrogen-doped graphene on SiC(000) and were successfully compared to ab initio calculations. In graphene, a gaplike feature is measured around the Fermi level due to a phonon-mediated tunneling...... and at carbon sites. Nitrogen doping can therefore be proposed as a way to improve tunnel-electron injection in graphene....

  2. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  3. Tunneling in cuprate and bismuthate superconductors

    International Nuclear Information System (INIS)

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba 1-x K x BiO 3 (BKBO), Nd 2-x Ce x CuO 4 (NCCO), Bi 2 Sr 2 CaCu 2 O 7 (BSCCO) and Tl 2 Ba 2 CaCu 2 O x (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, α 2 F(ω), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 Angstrom thick

  4. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  5. New Knowledge of tunneling from photonic experiments

    International Nuclear Information System (INIS)

    Nimtz, G.

    1997-01-01

    Photonic experiments have shown, that the propagation of evanescent (tunneling) modes can proceed at speeds faster than the velocity of light in vacuum (superluminal). The superluminal velocities include signal and energy propagation. The analogy between the classical Helmholtz equation and the quantum mechanical Schroedinger equation was quantitatively proved in classical photonic experiments. The Hartman effect, i.e. the prediction that the tunneling time is independent of the barrier length was for the first time evidenced in a photonic analogous tunneling experiment by Enders and Nimtz. It is also shown, that the resonant state life time is not determined by the barrier traversal time. For electronic tunneling devices it follows, that the quantum mechanical phase time calculations indeed deliver the relevant intrinsic tunneling time and consequently allow to predict the dynamical specification of a device. The present theoretical descriptions of the propagation of evanescent modes is not fully compatible with the experimental situation. Superluminal signal and energy transport has been measured, and this has to be properly analyzed. May the advanced field solutions help to obtain a satisfactory theoretical description of the recent experimental results of the propagation of evanescent modes? (author)

  6. Fast Heavy-Atom Tunneling in Trifluoroacetyl Nitrene.

    Science.gov (United States)

    Wu, Zhuang; Feng, Ruijuan; Li, Hongmin; Xu, Jian; Deng, Guohai; Abe, Manabu; Bégué, Didier; Liu, Kun; Zeng, Xiaoqing

    2017-12-04

    Chemical reactions involving quantum mechanical tunneling (QMT) increasingly attract the attention of scientists. In contrast to the hydrogen-tunneling as frequently observed in chemistry and biology, tunneling solely by heavy atoms is rare. Herein, we report heavy-atom tunneling in trifluoroacetyl nitrene, CF 3 C(O)N. The carbonyl nitrene CF 3 C(O)N in the triplet ground state was generated in cryogenic matrices by laser (193 or 266 nm) photolysis of CF 3 C(O)N 3 and characterized by IR and EPR spectroscopy. In contrast to the theoretically predicted activation barriers (>10 kcal mol -1 ), CF 3 C(O)N undergoes rapid rearrangement into CF 3 NCO with half-life times of less than 10 min and unprecedentedly large 14 N/ 15 N kinetic isotope effects (1.18-1.33) in solid Ar, Ne, and N 2 matrices even at 2.8 K. The tunneling disappearance of CF 3 C(O)N becomes much slower in the chemically active toluene and in 2-methyltetrahydrofuran at 5 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tunnelling through a Gaussian random barrier

    International Nuclear Information System (INIS)

    Bezak, Viktor

    2008-01-01

    A thorough analysis of the tunnelling of electrons through a laterally inhomogeneous rectangular barrier is presented. The barrier height is defined as a statistically homogeneous Gaussian random function. In order to simplify calculations, we assume that the electron energy is low enough in comparison with the mean value of the barrier height. The randomness of the barrier height is defined vertically by a constant variance and horizontally by a finite correlation length. We present detailed calculations of the angular probability density for the tunnelled electrons (i.e. for the scattering forwards). The tunnelling manifests a remarkably diffusive character if the wavelength of the electrons is comparable with the correlation length of the barrier

  8. Mutual seismic interaction between tunnels and the surrounding granular soil

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-12-01

    Study results show that the maximum exerted straining actions in tunnel lining are directly proportional to the relative stiffness between tunnel and surrounding soil (lining thickness and soil shear modulus. Moreover, it is highly affected by the peak ground acceleration and the tunnel location (embedment depth. A comprehensive study is performed to show the effect of tunnel thickness and tunnel diameter on both the induced bending moment and lining deformation. In general, it is concluded that seismic analysis should be considered in regions subjected to peak ground acceleration greater than 0.15g.

  9. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  10. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    Science.gov (United States)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  11. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  12. Tunneling spectroscopy study of YBa2Cu3O7 thin films using a cryogenic scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wilkins, R.; Amman, M.; Soltis, R.E.; Ben-Jacob, E.; Jaklevic, R.C.

    1990-01-01

    We have measured reproducible tunneling spectra on YBa 2 Cu 3 O 7 (T c ∼85 K) thin films (thickness ∼2 μm) with a cryogenic scanning tunneling microscope. We find that the I-V curves are generally of three types. The most common type, featured in a large majority of the data, shows a region of high conductance at zero bias. The amplitude of this region is inversely proportional to the tunneling resistance between the tip and sample. It is possible that this can be explained in terms of Josephson effects within the films, although an alternative is given based on electronic self-energy corrections. Data showing capacitive charging steps are analyzed in terms of two ultrasmall tunnel junctions in series.. Theoretical fits to the data give specific values of the junction parameters that are consistent with the assumed geometry of the tip probing an individual grain of the film. The third type of I-V curves exhibits negative differential resistance. We conclude that this phenomenon is probably due to tunneling to localized states in the surface oxide. We also present and discuss data with energy-gap-like behavior; the best example gives Δ to be about 27 mV

  13. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  14. Tunneling-assisted transport of carriers through heterojunctions.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myers, Samuel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The formulation of carrier transport through heterojunctions by tunneling and thermionic emission is derived from first principles. The treatment of tunneling is discussed at three levels of approximation: numerical solution of the one-band envelope equation for an arbitrarily specified potential profile; the WKB approximation for an arbitrary potential; and, an analytic formulation assuming constant internal field. The effects of spatially varying carrier chemical potentials over tunneling distances are included. Illustrative computational results are presented. The described approach is used in exploratory physics models of irradiated heterojunction bipolar transistors within Sandia's QASPR program.

  15. More about tunnelling times and superluminal tunnelling (Hartmann effect)

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.; Raciti, F.; Zaichenko, A.

    1995-05-01

    Aims of the present paper are: i) presenting and analysing the results of various numerical calculations on the penetration and return times Pen >, Ret >, during tunnelling inside a rectangular potential barrier, for various penetration depths x f ; ii) putting forth and discussing suitable definitions, besides of the mean values, also of the variances (or dispersions) D τT and D τR for the time durations of transmission and reflection processes; iii)mentioning, moreover, that our definition T > for the average transmission time results to constitute an improvement of the ordinary dwell- time formula; iv) commenting, at last, on the basis of the new numerical results, upon some recent criticism by C.R. Leavens. The paper stresses that numerical evaluations confirm that the approach implied, and implies, the existence of the Hartmann effect: an effect that in these days (due to the theoretical connections between tunnelling and evanescent-wave propagation) is receiving - at Cologne, Berkeley, Florence and Vienna - indirect, but quite interesting, experimental verification

  16. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  17. Spin tunneling and manipulation in nanostructures.

    Science.gov (United States)

    Sherman, E Ya; Ban, Yue; Gulyaev, L V; Khomitsky, D V

    2012-09-01

    The results for joint effects of tunneling and spin-orbit coupling on spin dynamics in nanostructures are presented for systems with discrete and continuous spectra. We demonstrate that tunneling plays the crucial role in the spin dynamics and the abilities of spin manipulation by external electric field. This result can be important for design of nanostructures-based spintronics devices.

  18. Extruded Tunnel Lining System : Phase 1. Conceptual Design and Feasibility Testing.

    Science.gov (United States)

    1979-09-01

    The Extruded Tunnel Lining System (ETLS) has been conceived as a means of continuously placing the final concrete tunnel lining directly behind a tunnel boring machine. The system will shorten the time required to excavate and line a tunnel section, ...

  19. Measuring voltage transients with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    circuit, where the tunneling tip is directly connected to the current amplifier of the scanning tunneling microscope, this dependence is eliminated. Ail results can be explained with coupling through the geometrical capacitance of the tip-electrode junction. By illuminating the current......We use an ultrafast scanning tunneling microscope to resolve propagating voltage transients in space and time. We demonstrate that the previously observed dependence of the transient signal amplitude on the tunneling resistance was only caused by the electrical sampling circuit. With a modified...

  20. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    Science.gov (United States)

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  1. Tunneling processes into localized subgap states in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2016-07-01

    The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.

  2. Chaos-assisted tunneling in the presence of Anderson localization.

    Science.gov (United States)

    Doggen, Elmer V H; Georgeot, Bertrand; Lemarié, Gabriel

    2017-10-01

    Tunneling between two classically disconnected regular regions can be strongly affected by the presence of a chaotic sea in between. This phenomenon, known as chaos-assisted tunneling, gives rise to large fluctuations of the tunneling rate. Here we study chaos-assisted tunneling in the presence of Anderson localization effects in the chaotic sea. Our results show that the standard tunneling rate distribution is strongly modified by localization, going from the Cauchy distribution in the ergodic regime to a log-normal distribution in the strongly localized case, for both a deterministic and a disordered model. We develop a single-parameter scaling description which accurately describes the numerical data. Several possible experimental implementations using cold atoms, photonic lattices, or microwave billiards are discussed.

  3. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  4. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  5. Coherent Cooper pair tunneling in systems of Josephson junctions: effects of quasiparticle tunneling and of the electromagnetic environment

    NARCIS (Netherlands)

    Maassen van den Brink, A.; Odintsov, A.A.; Bobbert, P.A.; Schön, G.

    1991-01-01

    Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI–V

  6. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  7. Phonon-assisted tunneling and its dependence on pressure

    International Nuclear Information System (INIS)

    Roy, P.N.; Singh, A.P.; Thakur, B.N.

    1999-01-01

    First the mechanism of phonon-assisted tunneling has been investigated. The indirect tunnel current density has been computed after taking the amplitude of the time dependent perturbation as the energy of the lattice vibration. Later the pressure dependence of the phonon-assisted tunnel current has been computed using Payne's expression for the dependence of phonon frequency on pressure. Very good qualitative agreements are obtained between predicted and observed characteristics. (author)

  8. Tunnel support design by comparison of empirical and finite element analysis of the Nahakki tunnel in mohmand agency, pakistan

    Directory of Open Access Journals (Sweden)

    Riaz Asif

    2016-03-01

    Full Text Available The paper analyses the geological conditions of study area, rock mass strength parameters with suitable support structure propositions for the under construction Nahakki tunnel in Mohmand Agency. Geology of study area varies from mica schist to graphitic marble/phyllite to schist. The tunnel ground is classified and divided by the empisical classification systems like Rock mass rating (RMR, Q system (Q, and Geological strength index (GSI. Tunnel support measures are selected based on RMR and Q classification systems. Computer based finite element analysis (FEM has given yet another dimension to design approach. FEM software Phase2 version 7.017 is used to calculate and compare deformations and stress concentrations around the tunnel, analyze interaction of support systems with excavated rock masses and verify and check the validity of empirically determined excavation and support systems.

  9. The two Josephson junction flux qubit with large tunneling amplitude

    International Nuclear Information System (INIS)

    Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.

    2008-01-01

    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution

  10. Scattering theory of superconductive tunneling in quantum junctions

    International Nuclear Information System (INIS)

    Shumeiko, V.S.; Bratus', E.N.

    1997-01-01

    A consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc Josephson effect and dc quasiparticle transport in the voltage-biased junctions are considered. Elastic quasiparticle scattering by the junction determines the equilibrium Josephson current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is determined by inelastic scattering. A general expression for inelastic scattering amplitudes is derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of the properties of sub gap tunnel current and the nature of subharmonic gap structure

  11. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the

  12. Drying hot red pepper using solar tunnel drier

    International Nuclear Information System (INIS)

    Hossain, M.A; Bala, B.K.

    2006-01-01

    A solar tunnel drier was used to dry red hot pepper under the tropical weather conditions of Bangladesh in order to investigate its performance and the quality of the drier product. The drier comprises a plastic sheet-covered flat plate collector and a drying tunnel. The drier is arranged to supply hot air to the drying tunnel using two small fans powered by a 40 watt PV module. Fresh red pepper was water blanched before drying. In each drying batch in the solar tunnel drier, 20 kg of dried red pepper with 4 to 6% moisture content (wb) was obtained from 80 kg of fresh red pepper with initial moisture content of 73 to 75% (wb) in 20 to 22 hours of drying while it took 32 to 34 hours to bring down the moisture content of similar sample to 8 to 10% (wb) in sun drying methods. The pepper dried in the solar tunnel drier was completely protected from dust, dirt, rain, insects, birds, rodents and microorganisms and it was a quality-dried product in term of colour and pungency. The solar tunnel drier is recommended for drying of pepper as well as vegetables and fruits in developing countries especially in Bangladesh

  13. A Supermagnetic Tunnel Full of Subatomic Action

    CERN Document Server

    2008-01-01

    Last year, before the gigantic hadron supercollider at CERN research facility was installed underground, a photographer captured this picture of a 1,950 metric ton tunnel containing giant magnets that will be placed in a tunnel and kept at near-zero temperatures.

  14. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  15. Improved Design of Beam Tunnel for 42 GHz Gyrotron

    Science.gov (United States)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.

  16. Spin-dependent quasiparticle tunneling in junction superconductor-isolator-ferromagnetic

    International Nuclear Information System (INIS)

    Shlapak, Yu.V.; Shaternik, V.E.; Rudenko, E.M.

    2001-01-01

    The influence of Andreev reflection of quasiparticles in transparent tunnel junctions of superconductor-isolator-ferromagnetic on electric-current transport is studied within the framework of the Blonder-Tinkham-Klapwijk (BTK) model. It's obtained that current and signal-to-noise ratio can be increased for the memory cell by using in it the double-barrier tunnel junction ferromagnetic-isolator-superconductor-isolator-ferromagnetic instead off the usual tunnel junction ferromagnetic-isolator-ferromagnetic. The evolution of non-linear (tunnel-type) current-voltage characteristics with increasing of the junction transparency is described. (orig.)

  17. Hybrid High-Temperature-Superconductor–Semiconductor Tunnel Diode

    Directory of Open Access Journals (Sweden)

    Alex Hayat

    2012-12-01

    Full Text Available We report the demonstration of hybrid high-T_{c}-superconductor–semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices are fabricated by our newly developed mechanical-bonding technique, resulting in high-T_{c}-superconductor–semiconductor tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity, similarly to spectra obtained in scanning-tunneling microscopy, and is in good agreement with theoretical predictions for a d-wave-superconductor–normal-material junction. Additional junctions are demonstrated using Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with graphite or Bi_{2}Te_{3}. Our results pave the way for new methods in unconventional superconductivity studies, novel materials, and quantum technology applications.

  18. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  19. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  20. An update of conditions in the Donkin-Morien tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Seedsman, R.W. [Seedsman Geotechnics Pty Ltd., Mt. Kembla (Australia)

    2009-07-01

    Two 7.6 diameter tunnels were constructed in the Donkin-Morien peninsula in Nova Scotia in 1984 and 1985. Ground support designs of the tunnel were based on the identification of rock failure zones using finite element analyses and the Hoek Brown failure criterion. The tunnels were flooded in 1992 when the mining project was abandoned. However, subsequent monitoring data from the tunnels were used to analyze brittle rock behaviour before and after its subsequent dewatering. This paper discussed the results of a feasibility study conducted to compare collapse zones in the roof and sides of the tunnel with results obtained from a simple elastic analysis technique that used brittle parameters, a spalling limit of 5, and a low-dependent shear modulus. Analyses were conducted to examine the potential maximum height of failure as a function of the coal seams. The study showed that coal measure rocks can be analyzed using the brittle failure criterion when both transverse anisotropy and low spalling limits were included. However, it is not possible to determine the contribution of corrosion to the deterioration of the tunnels. The analysis will be used to form a design for re-supporting the tunnels. 7 refs., 2 tabs., 7 figs.

  1. Strong quasi-particle tunneling study in the paired quantum Hall states

    OpenAIRE

    Nomura, Kentaro; Yoshioka, Daijiro

    2001-01-01

    The quasi-particle tunneling phenomena in the paired fractional quantum Hall states are studied. A single point-contact system is first considered. Because of relevancy of the quasi-particle tunneling term, the strong tunneling regime should be investigated. Using the instanton method it is shown that the strong quasi-particle tunneling regime is described as the weak electron tunneling regime effectively. Expanding to the network model the paired quantum Hall liquid to insulator transition i...

  2. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  3. Recognition tunneling

    Czech Academy of Sciences Publication Activity Database

    Lindsay, S.; He, J.; Sankey, O.; Hapala, Prokop; Jelínek, Pavel; Zhang, P.; Chang, S.; Huang, S.

    2010-01-01

    Roč. 21, č. 26 (2010), 262001/1-262001/12 ISSN 0957-4484 R&D Projects: GA ČR GA202/09/0545 Institutional research plan: CEZ:AV0Z10100521 Keywords : STM * tunneling current * molecular electronics * DFT calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  4. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  5. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

    Science.gov (United States)

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  6. Watertightness of concrete tunnel structures

    OpenAIRE

    Glerum, A.

    1982-01-01

    The Netherlands are situated in the delta. of the rivers Rhine, Meuse and Scheldt. Therefore the ground mainly consists.of sediments, such as sand, clay and silt. In certain regions peat layers of varying thickness are found. The high permeability of some of these materials and the fact that the groundwater table is generally only 1 m below ground level, make an adequate watertightness one of the main features of tunnel engineering in the Netherlands. Tunnels in Holland are both of the immers...

  7. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho

    2017-11-06

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  8. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    Science.gov (United States)

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  9. Technology and application of 3D tunnel information monitoring

    Science.gov (United States)

    Li, Changqing; Deng, Hongliang; Chen, Ge; Wang, Simiao; Guo, Yang; Wu, Shenglin

    2015-12-01

    It is very necessary that Implement information monitoring and dynamic construction because of Complex geological environment and lack of basic information in the process of tunnel construction. The monitoring results show that 3 d laser scanning technology and information management system has important theoretical significance and application value to ensure the safety of tunnel construction, rich construction theory and technology. It can be known in real time the deformation information and the construction information in near tunnel workplace and the whole tunnel section in real time. In the meantime, it can be known the deformation regularity in the tunnel excavation process and the early warning and forecasting in the form of graphic and data. In order to determine the reasonable time and provide basis for supporting parameters and lining.

  10. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho; Min, Sung-Wook; Dugasani, Sreekantha Reddy; Lee, Yong Uk; Oh, Min Suk; Anthopoulos, Thomas D.; Park, Sung Ha; Im, Seongil

    2017-01-01

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  11. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current.

    Science.gov (United States)

    He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua

    2013-10-07

    The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.

  12. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    Science.gov (United States)

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  13. Tunneling in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin,Madison, WI 53706 (United States)

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  14. Programmable ferroelectric tunnel memristor

    Directory of Open Access Journals (Sweden)

    Andy eQuindeau

    2014-02-01

    Full Text Available We report an analogously programmable memristor based on genuine electronic resistive switching combining ferroelectric switching and electron tunneling. The tunnel current through an 8 unit cell thick epitaxial Pb(Zr[0.2]Ti[0.8]O[3] film sandwiched between La[0.7]Sr[0.3]MnO[3] and cobalt electrodes obeys the Kolmogorov-Avrami-Ishibashi model for bidimensional growth with a characteristic switching time in the order of 10^-7 seconds. The analytical description of switching kinetics allows us to develop a characteristic transfer function that has only one parameter viz. the characteristic switching time and fully predicts the resistive states of this type of memristor.

  15. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  16. Single-magnon tunneling through a ferromagnetic nanochain

    International Nuclear Information System (INIS)

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  17. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  18. Safe design of protective structures of tunnels

    International Nuclear Information System (INIS)

    Farahat, M.A.Z.

    2011-01-01

    This research aims to explain how to use a tunnel, constructed from reinforced concrete, passes under a river to protect some people. The computer code is used (MCNP) (the transfer photon and neutron) at this model for such tunnel which passes under a river to account attenuation of both neutrons and gamma rays passing through the river water, clay, soil and reinforced concrete wall layers ,the last one (thickness 40 cm)constructed the tunnel construction. And to account the dose inside the tunnel, and to account neutron dose, gamma dose, prompt gamma dose, total gamma dose and total (neutron + gamma) dose estimated by μSv/h. At different depths from the earth surface layer depths 100 cm, 250 cm, 500 cm, 750 cm , 1000 cm, 1300 cm, 1700 cm, 1900 cm, 2020 cm, 2500 cm). And then account these doses for three cases which are a nuclear bomb its intensity 20 kt, another bomb its intensity 100 kt, and the last one its intensity is 1000 kt. This research aims to account the required safe depth to protect some people in this tunnel, passing under a river from the dangerous effects of neutron and gamma rays, emitted from the nuclear bomb.

  19. Channel selective tunnelling through a nanographene assembly

    International Nuclear Information System (INIS)

    Wong, H S; Durkan, C; Feng, X; Müllen, K; Chandrasekhar, N

    2012-01-01

    We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces. (paper)

  20. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  1. Design and Development of Low-Cost Water Tunnel for Educational Purpose

    Science.gov (United States)

    Zahari, M.; Dol, S. S.

    2015-04-01

    The hydrodynamic behaviour of immersed body is essential in fluid dynamics study. Water tunnel is an example of facility required to provide a controlled condition for fluid flow research. The operational principle of water tunnel is quite similar to the wind tunnel but with different working fluid and higher flow-pumping capacity. Flow visualization in wind tunnel is more difficult to conduct as turbulent flows in wind dissipate quickly whilst water tunnel is more suitable for such purpose due to higher fluid viscosity and wide variety of visualization techniques can be employed. The present work focusses on the design and development of open flow water tunnel for the purpose of studying vortex-induced vibration from turbulent vortex shedding phenomenon. The water tunnel is designed to provide a steady and uniform flow speed within the test section area. Construction details are discussed for development of low-cost water tunnel for quantitative and qualitative fluid flow measurements. The water tunnel can also be used for educational purpose such as fluid dynamics class activity to provide quick access to visualization medium for better understanding of various turbulence motion learnt in class.

  2. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    Science.gov (United States)

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.

  3. A cable-tunnel inspecting robot for dangerous environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-09-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO, CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure, small size, little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  4. A Cable-tunnel Inspecting Robot for Dangerous Environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-11-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO,CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure,small size,little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  5. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  6. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  7. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    Science.gov (United States)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  8. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, H., E-mail: hawal@chalmers.se; Desmaris, V.; Pavolotsky, A.; Belitsky, V. [Group for Advanced Receiver Development, Earth and Space Sciences Department, Chalmers University of Technology, Gothenburg, 412 96 (Sweden)

    2016-04-15

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  9. Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions

    International Nuclear Information System (INIS)

    Rashid, H.; Desmaris, V.; Pavolotsky, A.; Belitsky, V.

    2016-01-01

    In this paper, we show theoretically and experimentally that the reactive quasiparticle tunnel current of the superconductor tunnel junction could be directly measured at specific bias voltages for the higher harmonics of the quasiparticle tunnel current. We used the theory of quasiparticle tunneling to study the higher harmonics of the quasiparticle tunnel current in superconducting tunnel junction in the presence of rf irradiation. The impact of the reactive current on the harmonic behavior of the quasiparticle tunnel current was carefully studied by implementing a practical model with four parameters to model the dc I-V characteristics of the superconducting tunnel junction. The measured reactive current at the specific bias voltage is in good agreement with our theoretically calculated reactive current through the Kramers-Kronig transform. This study also shows that there is an excellent correspondence between the behavior of the predicted higher harmonics using the previously established theory of quasiparticle tunnel current in superconducting tunnel junctions by J.R. Tucker and M.J. Feldman and the measurements presented in this paper.

  10. Tunnel widening in anterior cruciate ligament reconstruction

    DEFF Research Database (Denmark)

    Clatworthy, M G; Annear, P; Bulow, J U

    1999-01-01

    We report a prospective series evaluating the incidence and degree of tunnel widening in a well-matched series of patients receiving a hamstring or patella tendon graft for anterior cruciate ligament (ACL) deficiency. We correlated tunnel widening with clinical factors, knee scores, KT-1000 and i...

  11. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  12. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-10-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented, with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  13. Electron accelerator for tunneling through hard rock

    International Nuclear Information System (INIS)

    Avery, R.T.; Keefe, D.

    1975-01-01

    Earlier work demonstrated that intense sub-microsecond bursts of energetic electrons cause significant pulverization and spalling of a variety of rock types. The spall debris generally consists of sand, dust, and small flakes. If carried out at rapid repetition rate, this can lead to a promising technique for increasing the speed and reducing the cost of underground excavation of tunnels, mines, and storage spaces. The conceptual design features of a Pulsed Electron Tunnel Excavator capable of tunneling approximately ten times faster than conventional drill/blast methods are presented with primary emphasis on the electron accelerator and only a brief description of the tunneling aspects. Of several candidate types of accelerators, a linear induction accelerator producing electron pulses (5 MV, 5 kA, 1.0 μs = 25 kJ) at a 360 Hz rate was selected for the conceptual example. This provides the required average electron beam power output of 9 MW. The feasibility of such an accelerator is discussed

  14. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  15. The overshoot problem in inflation after tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Koushik; Vaudrevange, Pascal M.; Westphal, Alexander

    2011-09-15

    We show the absence of the usual parametrically large overshoot problem of small-field inflation if initiated by a Coleman-De Luccia (CDL) tunneling transition from an earlier vacuum in the limit of small inflationary scale compared to the tunneling scale. For low-power monomial exit potentials V({phi}){proportional_to} {phi}{sup n}; n<4, we derive an expression for the amount of overshoot. This is bounded from above by the width of the steep barrier traversed after emerging from tunneling and before reaching a slow-roll region of the potential. For n{>=}4 we show that overshooting is entirely absent. We extend this result through binomials to a general potential written as a series expansion, and to the case of arbitrary finite initial speed of the inflaton. This places the phase space of initial conditions for small-field and large-field inflation on the same footing in a landscape of string theory vacua populated via CDL tunneling. (orig.)

  16. Single-electron tunneling in double-barrier nanostructures

    International Nuclear Information System (INIS)

    Goldman, V.J.; Su, B.; Cunningham, J.E.

    1992-01-01

    In this paper, the authors review experimental study of charge transport in nanometer double-barrier resonant tunneling devices. Heterostructure material is asymmetric: one barrier is substantially less transparent than the other. Resonant tunneling through size-quantized well states and single-electron charging of the well are thus largely separated in the two bias polarities. When the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade leading to sharp steps of the tunneling current. When the emitter barrier is less transparent, the current reflects resonant tunneling of just one electron at a time through size-quantized well states; the current peaks and/or steps (depending on experimental parameters) appear in current-voltage characteristics. Magnetic field and temperature effects are also reviewed. Good agreement is achieved in comparison of many features of experimental data with simple theoretical models

  17. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    International Nuclear Information System (INIS)

    Radosavljević, Sanja; Radovanović, Jelena; Milanović, Vitomir

    2016-01-01

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  18. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljević, Sanja [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Photonics Research Group, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Radovanović, Jelena, E-mail: radovanovic@etf.bg.ac.rs [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia)

    2016-12-09

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  19. Spin Tunneling in a Rotating Nanomagnet

    Science.gov (United States)

    O'Keeffe, Michael; Chudnovsky, Eugene; Lehman College Theoretical Condensed Matter Physics Team

    2011-03-01

    We study spin tunneling in a magnetic nanoparticle with biaxial anisotropy that is free to rotate about its anisotropy axis. Exact instanton of the coupled equations of motion is found that connects degenerate classical energy minima. We show that mechanical freedom of the particle renormalizes magnetic anisotropy and increases the tunnel splitting. M. F. O'Keeffe and E. M. Chudnovsky, cond-mat, arXiv:1011.3134.

  20. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  1. Inelastic scattering in resonant tunneling

    DEFF Research Database (Denmark)

    Wingreen, Ned S.; Jacobsen, Karsten Wedel; Wilkins, John W.

    1989-01-01

    The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability or the esc......The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability...

  2. New approach towards imaging -DNA using scanning tunneling

    Indian Academy of Sciences (India)

    DNA; scanning tunneling microscopy; Langmuir Blodget technique; silanization. ... Scanning tunneling spectroscopy (STS) at different stages depict a broad distribution of defect states in the bandgap region of -Si(111) which ... Current Issue

  3. Contact area between femoral tunnel and interference screw in anatomic rectangular tunnel ACL reconstruction: a comparison of outside-in and trans-portal inside-out techniques.

    Science.gov (United States)

    Hiramatsu, Kunihiko; Mae, Tatsuo; Tachibana, Yuta; Nakagawa, Shigeto; Shino, Konsei

    2018-02-01

    The purpose of this study was to compare the femoral tunnel length, the femoral graft bending angle at the femoral tunnel aperture, and the contact area between the femoral tunnel wall and an interference screw used for fixation in anatomic rectangular tunnel anterior cruciate ligament (ACL) reconstruction (ART ACLR). The study included 149 patients with primary ACL injury who underwent ART ACLR. Preoperatively, flexion angle of the index knee was checked under general anaesthesia. Those of less than 130° of passive flexion were assigned to the outside-in (OI) technique (78 patients), while the others to the trans-portal inside-out (TP) technique (71 patients). The patients underwent computed tomography with multiplanar reconstruction at 3-5 weeks post-operatively. Femoral tunnel length, graft bending angle, and contact ratio between the IFS and femoral tunnel were assessed. P contact ratio in the OI technique was significantly larger than that in the TP technique at every point in the femoral tunnel (P contact ratio than the TP technique after ART ACLR. Retrospective comparative study, Level III.

  4. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  5. Report Tunneling Cost Reduction Study prepared for Fermilab

    International Nuclear Information System (INIS)

    Not Available

    1999-01-01

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations

  6. Spin interference of neutrons tunneling through magnetic thin films

    International Nuclear Information System (INIS)

    Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.

    1996-01-01

    Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)

  7. Transport of dangerous goods through road tunnels

    DEFF Research Database (Denmark)

    Jørgensen, N O; Lacroix, Didier; Amundsen, F.H.

    1999-01-01

    A paper which describes the work of an OECD research group. The group has suggested a grouping of dangerous materials, a quantitative risk assessment model and a decision support model which should allow tunnel operators to determine if a given material should be allowed throug a given tunnel...

  8. On the directional selectivity of tunneling experiments

    International Nuclear Information System (INIS)

    Beuermann, G.; Goettingen Univ.

    1981-01-01

    Using realistic parameters in a simplified model the directional selectivity of tunneling experiments is discussed. Although perfect surfaces and barriers are assumed, quasiparticles coming from a wide solid angle may contribute essentially to the tunnel current. This must be taken into consideration in the case of gap anisotropy. (orig.)

  9. Effectiveness of PELOID therapy in carpal tunnel syndrome: A randomized controlled single blind study

    Science.gov (United States)

    Metin Ökmen, Burcu; Kasapoğlu Aksoy, Meliha; Güneş, Aygül; Eröksüz, Riza; Altan, Lale

    2017-08-01

    Carpal tunnel syndrome(CTS) is the most common neuromuscular cause of upper extremity disability. We aimed to investigate the effectiveness of peloid therapy in patients with CTS. This randomized, controlled, single-blind study enrolled 70 patients between the ages of 30 to 65 who had a diagnosis of either mild, mild-to-moderate, or moderate CTS. The patients were randomized into two groups using random number table. In the first group, (Group 1)( n = 35), patients were given splint (every night for 6 weeks) + peloid treatment(five consecutive days a week for 2 weeks) and in the second group, (Group 2)( n = 28), patients received splint treatment(every night for 6 weeks) alone. The patients were assessed by using visual analog scale(VAS) for pain, electroneuromyography(ENMG), the Boston Carpal Tunnel Syndrome Questionnaire(BCTSQ), hand grip strength(HGS), finger grip strength(FGS), and Short Form-12(SF-12). The data were obtained before treatment(W0), immediately after treatment(W2), and one month after treatment(W6). Both in Group 1 and 2, there was a statistically significant improvement in all the evaluation parameters at W2 and W6 when compared to W0( p < 0.05). Comparison of the groups with each other revealed significantly better results for VAS, BCTSQ, mSNCV, SF-12 in Group 1 than in Group 2 at W2( p < 0.05). There was also a statistically significant difference in favor of Group 1 for VAS, BCTSQ, FGS and MCS at W6 when compared to W0 ( p < 0.05). The results of our study demonstrated that in patients with CTS; peloid + splint treatment was more effective than splint treatment alone in pain, functionality and life quality both at after treatment(W2) and one month after treatment (W6). We may suggest peloid as a supplementary therapeutic agent in CTS.

  10. An analytical gate tunneling current model for MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Kazerouni, Iman Abaspur, E-mail: imanabaspur@gmail.com; Hosseini, Seyed Ebrahim [Sabzevar Tarbiat Moallem University, Electrical and Computer Department (Iran, Islamic Republic of)

    2012-03-15

    Gate tunneling current of MOSFETs is an important factor in modeling ultra small devices. In this paper, gate tunneling in present-generation MOSFETs is studied. In the proposed model, we calculate the electron wave function at the semiconductor-oxide interface and inversion charge by treating the inversion layer as a potential well, including some simplifying assumptions. Then we compute the gate tunneling current using the calculated wave function. The proposed model results have an excellent agreement with experimental results in the literature.

  11. Rock mass evaluation for predicting tunnel constructability in the preliminary investigation stage. Phenomena causing difficult tunneling and rockburst prediction

    International Nuclear Information System (INIS)

    Shin, Koichi; Sawada, Masataka; Inohara, Yoshiki; Shidahara, Takumi; Hatano, Teruyoshi

    2011-01-01

    For the selection of the Detailed Investigation Areas for HLW disposal, predicting the tunnel constructability is one of the requirements together with assessing long-term safety. This report is the 1st of the three papers dealing with the evaluation of tunnel constructability. This paper deals with the geological factors relating to difficult tunneling such as squeezing, rockburst, and others. Also it deals with the prediction of rockburst. The 2nd paper will deal with the prediction of squeezing. The 3rd paper deals with the engineering characteristics of rock mass through rock mass classification. This paper about difficult tunneling has been based upon analysis of more than 500 tunneling reports about 280 tunnel constructions. The causes of difficult tunneling are related to (1) underground water, (2) mechanical properties of the rock, or (3) others such as gas. The geological factors for excessive water inflow are porous volcanic product of Quarternary, fault crush zone and hydrothermally altered zone of Green Tuff area, and degenerated mixed rock in accretionary complex. The geological factors for squeezing are solfataric clay at Quarternary volcanic zone, fault crush zone and hydrothermally altered zone of Green Tuff area, mudstone and fault crush zone of sedimentary rock of Neogene and later. Information useful for predicting rockburst has been gathered from previous reports. In the preliminary investigation stage, geological survey, geophysical survey and borehole survey from the surface are the source of information. Therefore rock type, P-wave velocity from seismic exploration and in-situ rock stress from hydrofracturing have been considered. Majority of rockburst events occurred at granitic rock, excluding coal mine where different kind of rockburst occurred at pillars. And P-wave velocity was around 5 km/s at the rock of rockburst events. Horizontal maximum and minimum stresses SH and Sh have been tested as a criterion for rockburst. It has been

  12. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir; Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2015-01-01

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  13. InAs/Si Hetero-Junction Nanotube Tunnel Transistors

    KAUST Repository

    Hanna, Amir

    2015-04-29

    Hetero-structure tunnel junctions in non-planar gate-all-around nanowire (GAA NW) tunnel FETs (TFETs) have shown significant enhancement in ‘ON’ state tunnel current over their all-silicon counterpart. Here we show the unique concept of nanotube TFET in a hetero-structure configuration that is capable of much higher drive current as opposed to that of GAA NW TFETs.Through the use of inner/outer core-shell gates, a single III-V hetero-structured nanotube TFET leverages physically larger tunneling area while achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. Numerical simulations has shown that a 10 nm thin nanotube TFET with a 100 nm core gate has a 5×normalized output current compared to a 10 nm diameter GAA NW TFET.

  14. Macroscopic quantum tunneling in a dc SQUID

    International Nuclear Information System (INIS)

    Chen, Y.C.

    1986-01-01

    The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current

  15. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  16. A draining concept for tunnels with the aim of optimizing their geothermal utilization; Concept de drainage des tunnels en vue d'une optimisation de l'utilisation geothermique (valorisation du potentiel geothermique des tunnels - Recherche d'optimisation)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, J.

    2006-07-01

    Since almost 30 years, the geothermal potential of mountain water has been exploited in Swiss tunnels. The first known application was at the southern mouth of the St. Gotthard road tunnel, where the draining water was collected for heating a waiting-room in Airolo. The present report prepared for the Swiss Federal Office of Energy (SFOE) examines the possibilities for enhancing the efficiency and thus the potential of this geothermal application. They include: a) Reducing thermal losses by thermally insulating the water pipes along the tunnel. b) Increasing the usable quantity of water by providing additional drillings along the tunnel. c) Providing more than one water pipe, thus allowing to collect water of different temperatures in separate pipes. d) New technologies: add heat exchangers to tunnel construction elements in direct contact with the rocks, e.g. rock anchors, liners, concrete elements in the floor. The last chapter examines possible improvements for two large tunnels currently in project.

  17. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    International Nuclear Information System (INIS)

    Krishnamoorthy, Sriram; Nath, Digbijoy N.; Akyol, Fatih; Park, Pil Sung; Esposto, Michele; Rajan, Siddharth

    2010-01-01

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin calculations were used to model and design tunnel junctions with narrow band gap InGaN-based barrier layers. N-polar p-GaN/In 0.33 Ga 0.67 N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient interband tunneling was achieved close to zero bias with a high current density of 118 A/cm 2 at a reverse bias of 1 V, reaching a maximum current density up to 9.2 kA/cm 2 . These results represent the highest current density reported in III-nitride tunnel junctions and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  18. The value of MRI iniIdiopathic tarsal tunnel syndrome by measuring the cross-sectional area of tarsal tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Jeong, Yu Mi; Lee, Sheen Woo; Choi Seung; Kim, Jeong Ho; Park, Hong Gi [Gachon University, Gil Hospital, Incheon (Korea, Republic of)

    2015-03-15

    The purpose of this study was to evaluate the use of MRI as a diagnostic test in tarsal tunnel syndrome. There are no published reports with this aim and no diagnostic standard for idiopathic tarsal tunnel syndrome (TTS) using imaging modalities. We retrospectively searched our Picture Archiving and Communication System data and medical records to identify patients who were clinically and electomyographically diagnosed with idiopathic TTS without space-occupying lesion on MRI. Twenty five patients were included in the patient group. Another twenty-five patients who underwent ankle MRI for Achilles tendon disease were selected and included in the control group. Cross-sectional areas (CSA) of tarsal tunnel were manually measured independently by two radiologists who were blinded to clinical and surgical results, using three-dimensional reconstruction software in our hospital. Measurements were done on axial images at three levels (level 1, tibiotalar joint level; level 2, medial malleolar tip level; level 3, sustentaculum tali level). Patient and control group data were statistically analyzed by the Mann-Whitney test. The mean values of CSA at levels 1, 2, and 3 of the tarsal tunnel were 87.8 mm2, 98.2 mm2, and 105.2 mm2, respectively in the patient group; and 100.0 mm2, 113.8 mm2, and 127.9 mm2 in the control group, respectively, in reader 1; and 86.2 mm2, 97.6 mm2, 105.2 mm2, respectively in the patient group; and 99.7 mm2, 112.3 mm2, 124.4 mm2, respectively, in the control group, in reader 2. The mean CSA in the patient group was significantly less than that of the control group at all three levels (p < 0.05). Intra-class correlation coefficient value between reader 1 and reader 2 were 0.98 in group 1, and 0.97 in group 2, respectively. MRI can be helpful in the assessment of idiopathic tarsal tunnel syndrome. CSA measurements of tarsal tunnel at each level may predict TTS even though there are no space occupying lesions in the tarsal tunnel on MRI.

  19. Road tunnels safety according to European legislation

    Directory of Open Access Journals (Sweden)

    Fedor KÁLLAY

    2008-01-01

    Full Text Available The article deals with safety of European road tunnels in accordance with actual European legislation. Standards and recommendations of European Commission, PIARC and other professional bodies of the European Union define minimal technological requirements for equipment and operation of the tunnels in scope of Trans-European Road Network.

  20. Natural ventilation without air breathing in the top openings of highway tunnels

    Science.gov (United States)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.