WorldWideScience

Sample records for moderate brain injury

  1. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  2. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  3. Cognitive correlates of narrative impairment in moderate traumatic brain injury.

    Science.gov (United States)

    Marini, Andrea; Zettin, Marina; Galetto, Valentina

    2014-11-01

    Traumatic brain injuries (TBIs) are often associated with communicative deficits. The incoherent and impoverished language observed in non-aphasic individuals with severe TBI has been linked to a problem in the global organization of information at the text level. The present study aimed to analyze the features of narrative discourse impairment in a group of adults with moderate TBI (modTBI). 10 non-aphasic speakers with modTBI and 20 neurologically intact participants were recruited for the experiment. Their cognitive, linguistic and narrative skills were thoroughly assessed. The persons with modTBI exhibited normal phonological, lexical and grammatical skills. However, their narratives were characterized by lower levels of Lexical Informativeness and more errors of both Local and Global Coherence that, at times, made their narratives vague and ambiguous. Significant correlations were found between these narrative difficulties and the production of both perseverative and non-perseverative errors on the WCST. These disturbances confirm previous findings which suggest a deficit at the interface between cognitive and linguistic processing rather than a specific linguistic disturbance in these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  5. Outcome Prediction in Moderate and Severe Traumatic Brain Injury: A Focus on Computed Tomography Variables

    NARCIS (Netherlands)

    Jacobs, Bram; Beems, Tjemme; van der Vliet, Ton M.; van Vugt, Arie B.; Hoedemaekers, Cornelia; Horn, Janneke; Franschman, Gaby; Haitsma, Ian; van der Naalt, Joukje; Andriessen, Teuntje M. J. C.; Borm, George F.; Vos, Pieter E.

    2013-01-01

    With this study we aimed to design validated outcome prediction models in moderate and severe traumatic brain injury (TBI) using demographic, clinical, and radiological parameters. Seven hundred consecutive moderate or severe TBI patients were included in this observational prospective cohort study.

  6. Gender differences in self reported long term outcomes following moderate to severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ratcliff Graham

    2010-10-01

    Full Text Available Abstract Background The majority of research on health outcomes after a traumatic brain injury is focused on male participants. Information examining gender differences in health outcomes post traumatic brain injury is limited. The purpose of this study was to investigate gender differences in symptoms reported after a traumatic brain injury and to examine the degree to which these symptoms are problematic in daily functioning. Methods This is a secondary data analysis of a retrospective cohort study of 306 individuals who sustained a moderate to severe traumatic brain injury 8 to 24 years ago. Data were collected using the Problem Checklist (PCL from the Head Injury Family Interview (HIFI. Using Bonferroni correction, group differences between women and men were explored using Chi-square and Wilcoxon analysis. Results Chi-square analysis by gender revealed that significantly more men reported difficulty setting realistic goals and restlessness whereas significantly more women reported headaches, dizziness and loss of confidence. Wilcoxon analysis by gender revealed that men reported sensitivity to noise and sleep disturbances as significantly more problematic than women, whereas for women, lack of initiative and needing supervision were significantly more problematic in daily functioning. Conclusion This study provides insight into gender differences on outcomes after traumatic brain injury. There are significant differences between problems reported by men compared to women. This insight may facilitate health service planners and clinicians when developing programs for individuals with brain injury.

  7. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  8. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  9. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    Science.gov (United States)

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  10. The Family Environment as a Moderator of Psychosocial Outcomes Following Traumatic Brain Injury in Young Children

    Science.gov (United States)

    Yeates, Keith Owen; Taylor, H. Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L.

    2010-01-01

    Objective This study sought to determine whether the family environment moderates psychosocial outcomes after traumatic brain injury (TBI) in young children. Method Participants were recruited prospectively from consecutive hospital admissions of 3-6 year old children, and included 19 with severe TBI, 56 with complicated mild/moderate TBI, and 99 with orthopedic injuries (OI). They completed four assessments across the first 18 months post-injury. The initial assessment included measures of parenting style, family functioning, and the quality of the home. Children’s behavioral adjustment, adaptive functioning, and social competence were assessed at each occasion. Mixed model analyses examined the relationship of the family environment to psychosocial outcomes across time. Results The OI and TBI groups differed significantly in social competence, but the family environment did not moderate the group difference, which was of medium magnitude. In contrast, group differences in behavioral adjustment became more pronounced across time at high levels of authoritarian and permissive parenting; among children with severe TBI, however, even those with low levels of permissive parenting showed increases in behavioral problems. For adaptive functioning, better home environments provided some protection following TBI, but not over time for the severe TBI group. These three-way interactions of group, family environment, and time post injury were all of medium magnitude. Conclusions The findings indicate that the family environment moderates the psychosocial outcomes of TBI in young children, but the moderating influence may wane with time among children with severe TBI. PMID:20438212

  11. DIAGNOSTICS AND TREATMENT OF MILD AND MODERATE BRAIN INJURY IN CHILDREN WITH ACUTE CRANIOCEREBRAL TRAUMA

    Directory of Open Access Journals (Sweden)

    V.N. Shadrin

    2010-01-01

    Full Text Available Authors present modern approach to the diagnostics and treatment of children with acute period of mild and moderate brain injury. It is necessary to provide timely diagnostics in children with craniocerebral trauma via neurovisualization: ultrasonic scan and computer tomography of brain (for a diagnostics of ischemic and hemorrhagic strokes, duplex ultrasonic scan and magnetic resonance imaging (for a detection of traumatic dissections of main arteries of head. The article considers main aspects of treatment of children with craniocerebral injury, describes indications to pathogenetical therapy aimed to compensation of disorders in dynamics of cerebrospinal liquor, microcirculation and antioxidant status.Key words: children, cerebrospinal injury, diagnostics, treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:90-93

  12. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  13. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  14. Predictors of quality of life after moderate to severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Karina Tavares Weber

    2016-05-01

    Full Text Available ABSTRACT Objective To verify correlations between age, injury severity, length of stay (LOS, cognition, functional capacity and quality of life (QOL six months after hospital discharge (HD of victims of traumatic brain injury (TBI. Method 50 patients consecutively treated in a Brazilian emergency hospital were assessed at admission, HD and six months after HD. The assessment protocol consisted in Abbreviated Injury Scale, Injury Severity Score, Glasgow Coma Scale (GCS, Revised Trauma Score (RTS, Mini Mental Test, Barthel Index and World Health Organization QOL - Brief. Results Strong negative correlation was observed between LOS and GCS and LOS and RTS. An almost maximal correlation was found between RTS and GCS and functional capacity and GCS at HD. Age and LOS were considered independent predictors of QOL. Conclusion Age and LOS are independent predictors of QOL after moderate to severe TBI.

  15. Functional Status Examination in Patients with Moderate to Severe Traumatic Brain Injuries.

    Science.gov (United States)

    Machamer, Joan; Temkin, Nancy; Manley, Geoffrey; Dikmen, Sureyya

    2018-02-07

    The assessment of functional status after traumatic brain injury (TBI) is important. The Glasgow Outcome Scale (GOS) and its revised version Glasgow Outcome Scale Extended (GOSE) have been used most frequently in TBI research but there are concerns about the sensitivity of these measures. The current study evaluated the psychometric properties of the Functional Status Examination (FSE) using a sample of 448 moderately to severely injured subjects with traumatic brain injury (TBI). The FSE is significantly related to other measures of functional status including the GOSE, Short Form Health Survey and EuroQol Checklist(p < .001), is sensitive to TBI severity (p < .001), and is responsive to recovery from 3 to 6 months post-injury (p < .001). In addition, there was a significant agreement (r = .817, p < .001) between the patient and significant other's assessment of functional status on the FSE at 6-months post-injury. The FSE may be a valuable measure of functional status after TBI given its strong psychometric properties including validity, sensitivity to brain injury severity, and recovery over time.

  16. Feasibility of online self-administered cognitive training in moderate-severe brain injury.

    Science.gov (United States)

    Sharma, Bhanu; Tomaszczyk, Jennifer C; Dawson, Deirdre; Turner, Gary R; Colella, Brenda; Green, Robin E A

    2017-07-01

    Cognitive environmental enrichment (C-EE) offers promise for offsetting neural decline that is observed in chronic moderate-severe traumatic brain injury (TBI). Brain games are a delivery modality for C-EE that can be self-administered over the Internet without therapist oversight. To date, only one study has examined the feasibility of self-administered brain games in TBI, and the study focused predominantly on mild TBI. Therefore, the primary purpose of the current study was to examine the feasibility of self-administered brain games in moderate-severe TBI. A secondary and related purpose was to examine the feasibility of remote monitoring of any C-EE-induced adverse symptoms with a self-administered evaluation tool. Ten patients with moderate-severe TBI were asked to complete 12 weeks (60 min/day, five days/week) of online brain games with bi-weekly self-evaluation, intended to measure any adverse consequences of cognitive training (e.g., fatigue, eye strain). There was modest weekly adherence (42.6% ± 4.4%, averaged across patients and weeks) and 70% patient retention; of the seven retained patients, six completed the self-evaluation questionnaire at least once/week for each week of the study. Even patients with moderate-severe TBI can complete a demanding, online C-EE intervention and a self-administered symptom evaluation tool with limited therapist oversight, though at daily rate closer to 30 than 60 min per day. Further self-administered C-EE research is underway in our lab, with more extensive environmental support. Implications for Rehabilitation Online brain games (which may serve as a rehabilitation paradigm that can help offset the neurodegeneration observed in chronic TBI) can be feasibly self-administered by moderate-to-severe TBI patients. Brain games are a promising therapy modality, as they can be accessed by all moderate-to-severe TBI patients irrespective of geographic location, clinic and/or therapist availability, or impairments that

  17. Assessing the relationship between neurocognitive performance and brain volume in chronic moderate-severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikos eKonstantinou

    2016-03-01

    Full Text Available Objectives. Characterize the scale and pattern of long-term atrophy in grey matter (GM, white matter (WM and cerebrospinal (CSF in chronic moderate-severe traumatic brain injury (TBI and its relationship to neurocognitive outcomes.Participants. The TBI group consisted of 17 males with primary diagnosis of moderate-severe closed head injury. Participants had not received any systematic, post-acute rehabilitation and were recruited on average 8.36 years post-injury. The control group consisted of 15 males matched on age and education.Main measures. Neurocognitive battery included widely used tests of verbal memory, visual memory, executive functioning, and attention/organization. GM,WM, and CSF volumes were calculated from segmented T1-weighted anatomical MR images. Voxel-based morphometry was employed to identify brain regions with differences in GM and WM between TBI and control groups.Results. Chronic TBI results in significant neurocognitive impairments, and significant loss of GM and WM volume, and significant increase in CSF volume. Brain atrophy is not widespread, but it is rather distributed in a fronto-thalamic network. The extent of volume loss is predictive of performance on the neurocognitive tests.Conclusion. Significant brain atrophy and associated neurocognitive impairments during the chronic stages of TBI support the notion that TBI results in a chronic condition with lifelong implications.

  18. The big sell: Managing stigma and workplace discrimination following moderate to severe brain injury.

    Science.gov (United States)

    Stergiou-Kita, Mary; Grigorovich, Alisa; Damianakis, Thecla; Le Dorze, Guylaine; David, Christine; Lemsky, Carolyn; Hebert, Debbie

    2017-01-01

    Misperceptions regarding persons with brain injuries (PWBI) can lead to stigmatization, workplace discrimination and, in turn, influence PWBIs full vocational integration. In this study we explored how stigma may influence return-to-work processes, experiences of stigma and discrimination at the workplace for persons with (moderate to severe) brain injuries, and strategies that can be employed to manage disclosure. Exploratory qualitative study; used in-depth interviews and an inductive thematic analytical approach in data analysis. Ten PWBI and five employment service providers participated. PWBI discussed their work experiences, relationships with supervisors and co-workers and experiences of stigma and/or discrimination at work. Employment service providers discussed their perceptions regarding PWBI's rights and abilities to work, reported incidents of workplace discrimination, and how issues related to stigma, discrimination and disclosure are managed. Three themes were identified: i) public, employer and provider knowledge about brain injury and beliefs about PWBI; ii) incidents of workplace discrimination; iii) disclosure. Misperceptions regarding PWBI persist amongst the public and employers. Incidents of workplace discrimination included social exclusion at the workplace, hiring discrimination, denial of promotion/demotion, harassment, and failure to provide reasonable accommodations. Disclosure decisions required careful consideration of PWBI needs, the type of information that should be shared, and the context in which that information is shared. Public understanding about PWBI remains limited. PWBI require further assistance to manage disclosure and incidents of workplace discrimination.

  19. Trauma center designation correlates with functional independence after severe but not moderate traumatic brain injury.

    Science.gov (United States)

    Brown, Joshua B; Stassen, Nicole A; Cheng, Julius D; Sangosanya, Ayodele T; Bankey, Paul E; Gestring, Mark L

    2010-08-01

    The mortality of traumatic brain injury (TBI) continues to decline, emphasizing functional outcomes. Trauma center designation has been linked to survival after TBI, but the impact on functional outcomes is unclear. The objective was to determine whether trauma center designation influenced functional outcomes after moderate and severe TBI. Trauma subjects presenting to an American College of Surgeons (ACS) Level I or II trauma center with a Glasgow Coma Score (GCS) independence (FI) defined as a modified functional independence measure (FIM) of 12, and independent expression (IE) defined as a FIM component of 4. These were compared between Level I and Level II centers in subjects with both moderate (GCS 9-12) and severe (GCS injuries, and comorbidities. Analysis identified 25,170 subjects (72% severe TBI). After adjusting for covariates, ACS Level I designation was associated with FI (odds ratio: 1.16; confidence interval: 1.07-1.24, p < 0.01) and IE (1.10; 1.03-1.17, p < 0.01) after severe TBI. Trauma center designation was not associated with FI or IE after moderate TBI. ACS trauma center designation is significantly associated with FI and IE after severe, but not moderate TBI. Prospective study is warranted to verify and explore factors contributing to this discrepancy.

  20. Parents' experiences following children's moderate to severe traumatic brain injury: a clash of cultures.

    Science.gov (United States)

    Roscigno, Cecelia I; Swanson, Kristen M

    2011-10-01

    Little is understood about parents' experiences following children's moderate to severe traumatic brain injury (TBI). Using descriptive phenomenology, we explored common experiences of parents whose children were diagnosed with moderate to severe TBI. Parents from across the United States (N = 42, from 37 families) participated in two semistructured interviews (~ 90 minutes in length and 12 to 15 months apart) in the first 5 years following children's TBI. First interviews were in person. Second interviews, done in person or by phone, facilitated updating parents' experiences and garnering their critique of the descriptive model. Parent themes were (a) grateful to still have my child, (b) grieving for the child I knew, (c) running on nerves, and (d) grappling to get what my child and family need. Parents reported cultural barriers because of others' misunderstandings. More qualitative inquiry is needed to understand how the knowledge, attitudes, beliefs, and culture-based expectations of others influence parents' interactions and the family's adjustment and well-being.

  1. Rejection Sensitivity as a Moderator of Psychosocial Outcomes Following Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Meadows, Emily A; Owen Yeates, Keith; Rubin, Kenneth H; Taylor, H Gerry; Bigler, Erin D; Dennis, Maureen; Gerhardt, Cynthia A; Vannatta, Kathryn; Stancin, Terry; Hoskinson, Kristen R

    2017-07-01

    The current study examines whether psychosocial outcomes following pediatric traumatic brain injury (TBI) vary as a function of children's rejection sensitivity (RS), defined as their disposition to be hypersensitive to cues of rejection from peers. Children ages 8-13 with a history of severe TBI (STBI, n=16), complicated mild/moderate TBI (n=35), or orthopedic injury (OI, n=49) completed measures assessing self-esteem and RS on average 3.28 years post-injury (SD=1.33, range=1.25-6.34). Parents reported on their child's emotional and behavioral functioning and social participation. Regression analyses found moderation of group differences by RS for three outcomes: social participation, self-perceptions of social acceptance, and externalizing behavior problems. Conditional effects at varying levels of RS indicated that externalizing problems and social participation were significantly worse for children with STBI at high levels of RS, compared to children with OI. Social participation for the STBI group remained significantly lower than the OI group at mean levels of RS, but not at low levels of RS. At high levels of RS, self-perceptions of social acceptance were lower for children with moderate TBI compared to OI, but group differences were not significant at mean or low levels of RS. No evidence of moderation was found for global self-worth, self-perceptions of physical appearance or athletic ability, or internalizing problems. The findings highlight the salient nature of social outcomes in the context of varying levels of RS. These findings may have implications for the design of interventions to improve social outcomes following TBI. (JINS, 2017, 23, 451-459).

  2. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  3. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Science.gov (United States)

    Lin, Chien-Min; Lin, Ming-Chin; Huang, Sheng-Jean; Lui, Tai-Ngar; Ma, Hsin-I; Liu, Ming-Ying; Chung, Wen-Yuh; Shih, Yang-Hsin; Tsai, Shin-Han; Chiou, Hung-Yi; Lin, Mau-Roung; Wei, Li; Wu, Chung-Che; Lin, En-Yuan; Liao, Kuo-Hsing; Chiu, Wen-Ta

    2015-01-01

    The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP-) guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI) patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg), and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg) in the neurosurgical intensive care unit (NICU); demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma. PMID:26413530

  4. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury.

    Science.gov (United States)

    Wade, Shari L; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry

    2016-04-01

    Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. A prospective, longitudinal, observational cohort study conducted at each child's home, school, and hospital, including 3 children's hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67% of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P parenting or with fewer home resources (mean CAFAS of 69.57, 47.45, 49.00, and 23.81 for severe TBI, moderate TBI, complicated mild TBI, and OI

  5. Tracheostomy is associated with decreased hospital mortality after moderate or severe isolated traumatic brain injury.

    Science.gov (United States)

    Baron, David Marek; Hochrieser, Helene; Metnitz, Philipp G H; Mauritz, Walter

    2016-06-01

    Data regarding the impact and timing of tracheostomy in patients with isolated traumatic brain injury (TBI) are ambiguous. Our goal was to evaluate the impact of tracheostomy on hospital mortality in patients with moderate or severe isolated TBI. We performed a retrospective cohort analysis of data prospectively collected at 87 Austrian intensive care units (ICUs). All patients continuously admitted between 1998 and 2010 were evaluated for the study. In total, 4,735 patients were admitted to ICUs with isolated TBI. Of these patients, 2,156 had a moderate or severe TBI (1,603 patients were endotracheally intubated only, 553 patients underwent tracheostomy). Epidemiological data (trauma severity, treatment, and outcome) of the two groups were compared. Patients with moderate or severe isolated TBI undergoing tracheostomy had a similar Glasgow Coma Scale score, median (interquartile range): 6 (3-8) vs 6 (3-8); p = 0.90, and Simplified Acute Physiology Score II, 45 (37-54) vs 45 (35-56); p = 0.86, compared with intubated patients not undergoing tracheostomy. Furthermore, patients undergoing tracheostomy exhibited higher Abbreviated Injury Scale Head scores and had a longer ICU stay for survivors, 30 (22-42) vs 9 (3-17) days; p tracheostomy compared with patients who remained intubated, observed-to-expected mortality ratio (95 % confidence interval): 0.62 (0.53-0.72) vs 1.00 (0.95-1.05) respectively. Despite the greater severity of head injury, patients with isolated TBI who underwent tracheostomy had a lower risk-adjusted mortality than patients who remained intubated. Reasons for this difference in outcome may be multifactorial and require further investigation.

  6. FACTORS ASSOCIATED WITH POSTTRAUMATIC STRESS DISORDER FOLLOWING MODERATE TO SEVERE TRAUMATIC BRAIN INJURY: A PROSPECTIVE STUDY.

    Science.gov (United States)

    Alway, Yvette; McKay, Adam; Gould, Kate Rachel; Johnston, Lisa; Ponsford, Jennie

    2016-01-01

    This study prospectively examined the relationship between preinjury, injury-related, and postinjury factors and posttraumatic stress disorder (PTSD) following moderate to severe traumatic brain injury (TBI). Two hundred and three participants were recruited during inpatient admission following moderate to severe TBI. Participants completed an initial assessment soon after injury and were reassessed at 3, 6, and 12 months, 2, 3, 4, and 5 years postinjury. The Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders-fourth edition was used to diagnose pre- and postinjury PTSD and other psychiatric disorders. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Inventory (QOLI) were used to evaluate functional and psychosocial outcome from 6 months postinjury. The frequency of PTSD ranged between 0.5 and 9.4% during the 5-year period, increasing throughout the first 12 months and declining thereafter. After controlling for other predictors, shorter posttraumatic amnesia duration (odds ratio = 0.96, 95% CI = 0.92-1.00), other concurrent psychiatric disorder (odds ratio = 14.22, 95% CI = 2.68-75.38), and lower GOSE (odds ratio = 0.38, 95% CI = 0.20-0.72) and QOLI scores (odds ratio = 0.97, 95% CI = 0.95-0.97) were associated with greater odds of having injury-related PTSD. The results of this study indicate that while shorter posttraumatic amnesia duration is associated with PTSD, greater TBI severity does not prevent PTSD from evolving. Patients with PTSD experienced high rates of psychiatric comorbidity and poorer functional and quality of life outcomes after TBI. There is a need to direct clinical attention to early identification and treatment of PTSD following TBI to improve outcomes. © 2015 Wiley Periodicals, Inc.

  7. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  8. Traumatic axonal injury and persistent emotional lability in an adolescent following moderate traumatic brain injury: A case study.

    Science.gov (United States)

    Henry, Luke C; Burkhart, Scott O; Elbin, R J; Agarwal, Vikus; Kontos, Anthony P

    2015-01-01

    A 15-year-old male was treated secondary to sustaining a moderate traumatic brain injury (moderate TBI). Symptom self-report, and computerized and paper-and-pencil-based neurocognitive, vestibular/ocular motor, and imaging data were used throughout to document impairment and recovery. The patient demonstrated persistent emotional lability concurrent with vestibular impairment. In addition to clinical evaluation and management, the patient also underwent susceptibility-weighted imaging, which revealed axonal shearing across the corpus callosum and areas innervating the prefrontal cortex. Paper-and-pencil neurocognitive measures revealed persisting deficits, despite normal-appearing computerized test results. Implications of this case underline the importance of an integrative evaluation process including clinical interview, neurocognitive and vestibular/ocular physical therapy, and advanced neuroimaging, especially in cases with atypical presentation.

  9. Executive functioning in relation to coping in mild versus moderate-severe traumatic brain injury.

    Science.gov (United States)

    Rakers, Sandra E; Scheenen, Myrthe E; Westerhof-Evers, Herma J; de Koning, Myrthe E; van der Horn, Harm J; van der Naalt, Joukje; Spikman, Jacoba M

    2018-02-01

    To examine associations between executive functioning (EF) and coping styles, separately for mild and moderate-severe traumatic brain injury (TBI) in the chronic phase postinjury. Patients with mild (n = 47) and moderate-severe TBI (n = 59) were included, in addition to healthy controls (HCs; n = 51). Assessment consisted of EF tests (Trail Making Test, Zoo Map Test, Controlled Oral Word Association Test) and questionnaires examining EF (Dysexecutive Questionnaire) and coping styles (Utrecht Coping List). Moderate-severe TBI patients showed significant more EF deficits, lower active coping and higher passive coping than mild TBI patients and HCs, whereas mild TBI patients did not differ from HCs. In the moderate-severe TBI group, a higher number of self-reported EF problems was related to lower levels of active coping, r = -.43, p < .01 and higher levels of passive coping, r = .58, p < .001, with proxy-reports relating to lower levels of active coping, r = -.33, p < .05. For mild TBI, a higher amount of self-reported EF problems was related to lower levels of active coping, r = -.38, p < .05 and higher levels of passive coping, r = .55, p < .001, with proxy-reports relating to higher levels of passive coping, r = .39, p < .05. Except for mental flexibility, EF performances were not associated with coping. This study shows strong associations between reported EF problems in daily life and coping styles. For moderate-severe TBI, proxy-reports may reflect EF impairments that complicate active problem-solving. However, reported EF problems by mild and moderate-severe TBI patients are also likely to reflect a psychological distress related to the way patients are inclined to deal with stressing situations that put a demand on their executive abilities. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  11. Job stability in skilled work and communication ability after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Meulenbroek, Peter; Turkstra, Lyn S

    2016-01-01

    Communication deficits may play a critical role in maintaining employment after traumatic brain injury (TBI), but links between specific communication deficits and employment outcomes have not been determined. This study identified communication measures that distinguished stably employed versus unstably employed adults with TBI. Participants were 31 adults with moderate-severe TBI who were employed full-time for at least 12 consecutive months before injury in skilled jobs and had attempted return to skilled jobs after injury. Sixteen had achieved stable employment (SE) post-injury, defined as full-time employment for ≥12 consecutive months; and 15 had unstable employment (UE). Participants completed a battery of communication tests identified in a prior qualitative study of communication skills required for skilled work. Measures of spoken language comprehension, verbal reasoning, social inference, reading and politeness in spoken discourse significantly discriminated between SE and UE groups. Two nested models were completed and compared. The first model excluded discourse data because of missing data for two UE and one SE participant. This model revealed that measures of verbal reasoning speed (β = -0.18, p = 0.05) and social inference (β = 0.19, p = 0.05) were predictive independent of the overall model. The second model included discourse politeness data and was a better overall predictor of group membership (Likelihood ratio test, Model 1: 3.824, Model 2: 2.865). Communication measures were positively associated with SE in skilled jobs after TBI. Clinicians should include assessment of communication for adults attempting return to work after TBI, paying specific attention to social inference and speed of verbal reasoning skills. Traumatic brain injury (TBI) often results in communication impairments associated with the cognitive skills underlying interpersonal skills. Communication impairment after TBI has been anecdotally associated with

  12. Cannabis Use in Individuals with Spinal Cord Injury or Moderate to Severe Traumatic Brain Injury in Colorado.

    Science.gov (United States)

    Hawley, Lenore; Ketchum, Jessica M; Morey, Clare; Pharm D, Kathleen Collins; Charlifue, Susan

    2018-03-07

    To describe the prevalence of cannabis use in an adult sample with spinal cord injury (SCI) or traumatic brain injury (TBI) in Colorado, and to describe the self-reported reasons and side effects of cannabis use in this sample. Mixed methods observational study, using focus group data and telephone survey SETTING: Community PARTICIPANTS: Colorado adults who have sustained SCI or moderate to severe TBI and have received services through the rehabilitation hospital conducting the study. None; Measures: Survey RESULTS: Focus group participants identified issues that were then included in the survey development. Seventy percent of the 116 surveyed reported cannabis use pre-injury (67% SCI, 74% TBI) with 48% reporting use after injury (53% SCI, 45% TBI). Overall, the most common reason for use was recreational (67%), followed by reducing stress/anxiety (62.5%), and improving sleep (59%). Among the respondents with SCI, the most common reasons for use were to reduce spasticity (70%), recreation (63%), and to improve sleep (63%). Among those with TBI, reasons endorsed were recreational (72%), reducing stress/anxiety (62%), and improving sleep (55%). Smoking was the most common method of use. A majority of this sample report using cannabis prior to injury, and approximately half report using cannabis post-injury. Both groups report recreational use, while the group with SCI also highly endorses using cannabis to address chronic medical conditions. Clinicians should be aware of the high prevalence of cannabis use in these populations and the impact such use may have on the individual's medical management. Further research in this area is needed. Copyright © 2018. Published by Elsevier Inc.

  13. Job stability in skilled work and communication ability after moderate-severe traumatic brain injury

    Science.gov (United States)

    Meulenbroek, Peter; Turkstra, Lyn S.

    2016-01-01

    Purpose Communication deficits may play a critical role in maintaining employment after traumatic brain injury (TBI), but links between specific communication deficits and employment outcomes have not been determined. This study identified communication measures that distinguished stably employed versus unstably employed adults with TBI. Methods Participants were 31 adults with moderate-severe TBI who were employed full-time for at least 12 consecutive months before injury in skilled jobs and had attempted return to skilled jobs after injury. Sixteen had achieved stable employment (SE) post-injury, defined as full-time employment for ≥12 consecutive months; and 15 had unstable (UE) employment. Participants completed a battery of communication tests identified in a prior qualitative study of communication skills required for skilled work. Results Measures of spoken language comprehension, verbal reasoning, social inference, reading, and politeness in spoken discourse significantly discriminated between SE and UE groups. Two nested models were completed and compared. The first model excluded discourse data because of missing data for two UE and one SE participant. This model revealed that measures of verbal reasoning speed (β = −0.18, p = 0.05) and social inference (β = 0.19, p = 0.05) were predictive independent of the overall model. The second model included discourse data and was a better overall predictor of group membership (Likelihood ratio test, Model 1: 3.824, Model 2: 2.865). Conclusion Communication measures were positively associated with stable employment in skilled jobs after TBI. Clinicians should include assessment of communication for adults attempting return to work after TBI, paying specific attention to social inference and speed of verbal reasoning skills. PMID:25958999

  14. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury

    Science.gov (United States)

    Wade, Shari L.; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H. Gerry

    2017-01-01

    IMPORTANCE Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. OBJECTIVE To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. DESIGN, SETTING, AND PARTICIPANTS A prospective, longitudinal, observational cohort study conducted at each child’s home, school, and hospital, including 3 children’s hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67%of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. MAIN OUTCOMES AND MEASURES Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). RESULTS Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P < .001], moderate TBI and OI [difference = 24

  15. Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited

    NARCIS (Netherlands)

    Jacobs, B.; Beems, T.; Vliet, T.M. van der; Diaz-Arrastia, R.R.; Borm, G.F.; Vos, P.E.

    2011-01-01

    Intracranial lesion volume and midline shift are powerful outcome predictors in moderate and severe traumatic brain injury (TBI), and therefore they are used in TBI and computed tomography (CT) classification schemes, like the Traumatic Coma Data Bank (TCDB) classification. In this study we aimed to

  16. Prevalence, Risk Factors, and Correlates of Anxiety at 1 Year After Moderate to Severe Traumatic Brain Injury.

    Science.gov (United States)

    Hart, Tessa; Fann, Jesse R; Chervoneva, Inna; Juengst, Shannon B; Rosenthal, Joseph A; Krellman, Jason W; Dreer, Laura E; Kroenke, Kurt

    2016-05-01

    To determine at 1 year after moderate to severe traumatic brain injury the (1) rate of clinically significant anxiety; (2) rates of specific symptoms of anxiety; (3) risk factors for anxiety; and (4) associations of anxiety with other 1-year outcomes, including participation and quality of life. Prospective longitudinal observational study. Inpatient rehabilitation centers, with data capture at injury and 1-year follow-up. Persons with moderate to severe traumatic brain injury who were enrolled in the Traumatic Brain Injury Model Systems database (N=1838). Not applicable. The 7-item Generalized Anxiety Disorder Scale, Patient Health Questionnaire (9-item screen for depression), FIM, Participation Assessment with Recombined Tools-Objective, and Satisfaction with Life Scale. Clinically significant anxiety was reported by 21% of the participants. Of these, >80% reported interference with daily activities, with the most common symptoms being excessive worry and irritability. A common pattern was comorbid anxiety and depression, with smaller proportions reporting either disorder alone. Anxiety had large effect sizes with respect to life satisfaction and cognitive disability and medium to small effect sizes relative to societal participation and self-care. Middle age, black race, lower socioeconomic status, preinjury mental health treatment, and at least 1 traumatic brain injury prior to the index injury were all risk factors for later anxiety. Anxiety should be screened, fully evaluated, and treated after moderate to severe traumatic brain injury. Worry and irritability might be treated with pharmacologic agents or relatively simple behavioral interventions, which should be further researched in this population. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A comparison of IQ and memory cluster solutions in moderate and severe pediatric traumatic brain injury.

    Science.gov (United States)

    Thaler, Nicholas S; Terranova, Jennifer; Turner, Alisa; Mayfield, Joan; Allen, Daniel N

    2015-01-01

    Recent studies have examined heterogeneous neuropsychological outcomes in childhood traumatic brain injury (TBI) using cluster analysis. These studies have identified homogeneous subgroups based on tests of IQ, memory, and other cognitive abilities that show some degree of association with specific cognitive, emotional, and behavioral outcomes, and have demonstrated that the clusters derived for children with TBI are different from those observed in normal populations. However, the extent to which these subgroups are stable across abilities has not been examined, and this has significant implications for the generalizability and clinical utility of TBI clusters. The current study addressed this by comparing IQ and memory profiles of 137 children who sustained moderate-to-severe TBI. Cluster analysis of IQ and memory scores indicated that a four-cluster solution was optimal for the IQ scores and a five-cluster solution was optimal for the memory scores. Three clusters on each battery differed primarily by level of performance, while the others had pattern variations. Cross-plotting the clusters across respective IQ and memory test scores indicated that clusters defined by level were generally stable, while clusters defined by pattern differed. Notably, children with slower processing speed exhibited low-average to below-average performance on memory indexes. These results provide some support for the stability of previously identified memory and IQ clusters and provide information about the relationship between IQ and memory in children with TBI.

  18. Ecological validity of executive function tests in moderate traumatic brain injury in Ghana.

    Science.gov (United States)

    Adjorlolo, Samuel

    2016-01-01

    While executive functioning (EF) tests are frequently administered in several Sub-Saharan African countries, studies examining their predictive relationships with real-world behaviors (i.e. ecological validity) are nonexistent. The present study investigated the predictive relationship between the Stroop Test, Controlled Oral Word Association Test, and Trail Making Test (TMT), a general cognitive screening test, Revised Quick Cognitive Screening Test (RQCST), and measures of activities of daily living, quality of life, and cognitive failures in Ghana. A total of 50 literate urban dwellers who were diagnosed with moderate traumatic brain injury (TBI) were administered the neuropsychological tests and the self-report measures stated above. The informant version of the Cognitive failure questionnaire (CFQ) was completed by 50 'significant other' who knew the patients very well. There was no statistically significant difference between the self and informant versions of the CFQ. Some EF test scores, specifically the Stroop Test, TMT and EF composite scores, correlated significantly with the outcome measures, with correlations ranging from .29 to .55. The RQCST explained 40-49% variance in the outcome measures, while the addition of the EF composite score not only resulted in 57-62% variance accounted for but also added incremental validity to the RQCST in predicting the behavioral measures, with the exception of cognitive failures. This study has shown that although EF test scores, specifically the Stroop Test, TMT and EF composite scores, can be used to predict real-world behavior after moderate TBI in Ghana, such predictions are likely to be limited. The general implication for cross-cultural neuropsychology is that the (limited) ecological validity of EF tests may not necessarily be affected by whether the tests were administered in settings where they have not been standardized. This argument is, however, tenable granted that the test taker's backgrounds are

  19. Mild and moderate pediatric traumatic brain injury: replace routine repeat head computed tomography with neurologic examination.

    Science.gov (United States)

    Aziz, Hassan; Rhee, Peter; Pandit, Viraj; Ibrahim-Zada, Irada; Kulvatunyou, Narong; Wynne, Julie; Zangbar, Bardiya; O'Keeffe, Terence; Tang, Andrew; Friese, Randall S; Joseph, Bellal

    2013-10-01

    Opinion is divided on the role of routine repeat head computed tomography (RHCT) for guiding clinical management in pediatric patients with blunt head trauma. We hypothesize that routine RHCT does not lead to change in management in mild and moderate traumatic brain injury (TBI). This is a 3-year retrospective study of all patients of age 2 years to 18 years with blunt TBI admitted to our Level 1 trauma center with an abnormal head CT. Indications for RHCT (routine vs. neurologic deterioration) and their findings (progression or improvement) were recorded. Neurosurgical intervention was defined as extraventricular drain placement, craniectomy, or craniotomy. Primary outcome was a change in management after RHCT. A total of 291 pediatric patients were identified; of which 191 patients received an RHCT. Routine RHCT did not lead to neurosurgical intervention in the mild and moderate TBI group. In patients who received RHCT due to neurologic decline (n = 7), radiographic progression was seen on 85% of the patients (n = 6), with subsequent neurosurgical interventions in three patients. Two of these patients had a Glasgow Coma Scale (GCS) score of less than 8 at admission. Our study showed that the neurologic examination can be trusted and is reliable in pediatric blunt TBI patients in determining when an RHCT scan is necessary. We recommend that RHCT is required routinely in patients with intracranial hemorrhage with GCS score of 8 or less and in patients with GCS greater than 8 and that RHCT be performed only when there are clinical indications. Diagnostic/therapeutic study, level IV.

  20. Predicting emotional well-being following traumatic brain injury: a test of mediated and moderated models.

    Science.gov (United States)

    Kendall, Elizabeth; Terry, Deborah

    2009-09-01

    This study examined two models for predicting emotional well-being following traumatic brain injury (TBI), namely the Lazarus and Folkman (1984) mediated model of stress and coping and the stress-buffer hypothesis (Cohen & Edwards, 1988). The mediated model suggests that antecedent variables (i.e., personal and environmental resources) will predict emotional well-being, but their effect will be mediated through cognitive variables, such as appraisal and coping. In contrast, the moderated (buffer) hypothesis suggests that resources will protect individuals from the effects of stress, so will have different relationships with outcome at different levels of perceived stress. Ninety individuals with TBI were recruited from a major hospital in Brisbane, Australia. They and their relatives completed questionnaires at three time intervals: discharge, one month and nine months post-discharge, discharge being in 1998. Hierarchical regression was used to examine the relationships among the proposed predictors, mediators and outcomes. Support was found for some aspects of both models in the short-term. In the long-term, stress-buffer effects were no longer apparent. However, with the exception of family support, the predictors all influenced long-term adjustment through their impact on short-term adjustment. The role of family support as a direct predictor of emotional well-being in the long-term is highlighted. The findings have the potential to enable the identification of "at risk" individuals prior to discharge and can highlight important foci for rehabilitation. Specifically, the study has identified the importance of early psychological intervention to address appraisal and the need to engage families in rehabilitation.

  1. Diagnostic Accuracy, Sensitivity, and Specificity of Executive Function Tests in Moderate Traumatic Brain Injury in Ghana.

    Science.gov (United States)

    Adjorlolo, Samuel

    2016-04-27

    The sociocultural differences between Western and sub-Saharan African countries make it imperative to standardize neuropsychological tests in the latter. However, Western-normed tests are frequently administered in sub-Saharan Africa because of challenges hampering standardization efforts. Yet a salient topical issue in the cross-cultural neuropsychology literature relates to the utility of Western-normed neuropsychological tests in minority groups, non-Caucasians, and by extension Ghanaians. Consequently, this study investigates the diagnostic accuracy, sensitivity, and specificity of executive function (EF) tests (The Stroop Test, Trail Making Test, and Controlled Oral Word Association Test), and a Revised Quick Cognitive Screening Test (RQCST) in a sample of 50 patients diagnosed with moderate traumatic brain injury and 50 healthy controls in Ghana. The EF test scores showed good diagnostic accuracy, with area under the curve (AUC) values of the Trail Making Test scores ranging from .746 to .902. With respect to the Stroop Test scores, the AUC values ranged from .793 to .898, while Controlled Oral Word Association Test had AUC value of .787. The RQCST scores discriminated between the groups, with AUC values ranging from .674 to .912. The AUC values of composite EF score and a neuropsychological score created from EF and RQCST scores were .936 and. 942, respectively. Additionally, the Stroop Test, Trail Making Test, EF composite score, and RQCST scores showed good to excellent sensitivities and specificities. In general, this study has shown that commonly used EF tests in Western countries have diagnostic accuracy, sensitivity, and specificity when administered in Ghanaian samples. The findings and implications of the study are discussed. © The Author(s) 2016.

  2. Measurement of physical performance and objective fatigability in people with mild-to-moderate traumatic brain injury.

    Science.gov (United States)

    Merritta, Catherine; Cherian, Binu; Macaden, Ashish S; John, Judy Ann

    2010-06-01

    The aims of this study were to objectively measure the physical performance and physical endurance of patients with traumatic brain injury with minimization of cognitive and psychological fatigue, and to compare the physical performance of brain injured patients with that of healthy controls. This was a nonrandomized partially blinded controlled study. The study setting was the Outpatient Multidisciplinary Brain Injury Clinic in the Department of Physical Medicine and Rehabilitation of a tertiary care university teaching hospital. Participants included an experimental group that comprised independently ambulant men (age 18-55 years) with mild-to-moderate traumatic brain injury (n = 24) who complained of greater fatigue than before their injury and an age-matched and sex-matched control group (n = 24). The intervention included the Six-Minute Walk Test. The primary outcome measures were the Six-Minute Walk Distance, the Fatigue Severity Scale, Addenbrooke's Cognitive Examination, and the Fatigue Visual Numeric Scale; the secondary outcome measures were the Physiological Cost Index of Walking and the Borg Scale of Perceived Exertion. The Six-Minute Walk Distance of the experimental group (452.33+/-68.816) when compared with that of the control group (518.08+/-92.114) was reduced by 12.7 and 30.5%, respectively, when compared with the predicted Six-Minute Walking Distance (650.04+/-79.142) for the same age and sex. The mean Fatigue Severity Scale values were 2.51 and 1.62 for the experimental and control groups, respectively. The mean Addenbrooke's Cognitive Examination Score for the patients was 85.5+/-7.265. In conclusion, the Six-Minute Walk Test is useful in segregating physical fatigue from cognitive and psychological aspects of fatigue when cognitive and psychological dimensions are known. The Six-Minute Walk Test can be used as a tool for exercise intensity prescription in men with mild-to-moderate brain injury, to avoid the deleterious effects of fatigue.

  3. Work-related mild-moderate traumatic brain injuries due to falls.

    Science.gov (United States)

    Wei, Wenli; Liu, Margaret; Fergenbaum, Jennifer; Comper, Paul; Colantonio, Angela

    2010-01-01

    Workplace falls are a common cause of head injuries; however, detailed study of this is limited. The objective of the study was to examine the person, environment and occupation factors associated with work-related traumatic brain injuries (WrTBI) due to falls from elevation (FFE) and falls from the same level (FFSL). This study is a retrospective chart review. Data was extracted from consecutive medical records of workers who sustained a head injury at work and were referred to the Toronto Rehabilitation Institute for clinical assessment. FFE were more likely to occur in men and result in multiple traumas, compared to FFSL. FFSL occurred more equally among men and women. Slippery conditions and placement of objects were common for WrTBI due to FFSL. Change in elevation was common for WrTBI due to FFE. WrTBI due to FFE most often occurred in trades, transport occupations and the construction industry, whereas WrTBI due to FFSL most often occurred in professional, management, skilled positions and the manufacturing industry. Types of falls resulting in brain injury and their mechanisms of injury vary across industries and occupations. The study provides information for more tailored workplace safety strategies and primary prevention across industries.

  4. Moderate-severe traumatic brain injury causes delayed loss of white matter integrity: evidence of fornix deterioration in the chronic stage of injury.

    Science.gov (United States)

    Adnan, Areeba; Crawley, Adrian; Mikulis, David; Moscovitch, Morris; Colella, Brenda; Green, Robin

    2013-01-01

    To examine structural integrity loss in the fornix from 5-30 months after moderate and severe traumatic brain injury (TBI) using diffusion tensor imaging. MRIs were prospectively undertaken in 29 adults with moderate and severe TBI at two time points. Fractional anisotropy (FA) was calculated for the fornix (column/body, right crux and left crux) at 5 and 30 months post-injury. Paired t-tests revealed significant FA reductions with large effect sizes across time in the column/body, p fornix plays a critical role in memory, this may be a contributing factor to the poor clinical outcomes observed in these patients.

  5. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    Science.gov (United States)

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury. © The Author(s) 2014.

  6. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.

    Science.gov (United States)

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R

    2017-09-01

    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  7. Early Computed Tomography Frontal Abnormalities Predict Long-Term Neurobehavioral Problems But Not Affective Problems after Moderate to Severe Traumatic Brain Injury

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Coers, Annemieke; van der Naalt, Joukje

    2016-01-01

    Behavioral problems are serious consequences of moderate to severe traumatic brain injury (TBI) and have a negative impact on outcome. There may be two types: neurobehavioral problems, manifesting as inadequate social behavior resulting from prefrontal system damage, and affective behavioral

  8. Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in craniectomy patients with moderate traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Muhammad R. Ahmad

    2014-03-01

    Full Text Available Background: Brain relaxation and prevention from cerebral edema are essential in craniectomy. Osmotherapy with 20% mannitol are generally used to withdraw fluid from the brain parenchyma, however may cause hemodynamic fluctuation, due to increase diuresis. On the other hand 0.5 M hypertonic sodium lactate (HSL appeared as an alternative of osmotherapy. This study  aimed to observe the effect of hypertonic sodium lactate (HSL on brain relaxation, blood glucose level and hemodynamic variables in craniectomy due to moderate brain injury.Methods: A randomized controlled study of 42 cases with moderate brain injury, aged 18 - 65 years, ASA 1 - 3, between September-November 2012, was carried out. The patients were divided into group M (n = 21 that received 2.5 mL/kg 20% mannitol and group HSL that received 2.5 mL/kg 0.5M HSL. Mean arterial pressures (MAP, central venous pressures (CVP and urine output were measured after induction, and at 15, 30, 45, 60 min after infusion. Brain relaxation was assessed at a four-point scale after opening the duramater. Blood glucose levels were measured before induction and at 60 min after the infusion. Appropriate statistical tests were used for comparison. Unpaired t-test was used to compare hemodynamic and blood glucose level, and chi-square was used to compare brain relaxation.Results: MAP at 60 minute was significantly higher in HSL group than M group (81.66 ± 7.85 vs 74.33 ± 6.18 mmHg; p = 0.002. There was no difference in brain relaxation (p = 0.988. A significant increase in blood glucose level was observed in group HSL (17.95 ± 11.46 mg/dL; p = 0.001.Conclusion: Half-molar HSL was as effective as 20% mannitol in producing brain relaxation, with better hemodynamic stability and gave significant increase in blood glucose level.Keywords: brain relaxation, hemodynamic, hypertonic sodium lactate, mannitol, traumatic brain injury

  9. A meta-analysis of working memory impairments in survivors of moderate-to-severe traumatic brain injury.

    Science.gov (United States)

    Dunning, Darren L; Westgate, Briony; Adlam, Anna-Lynne R

    2016-10-01

    To establish the magnitude of deficits in working memory (WM) and short-term memory (STM) in those with moderate-to-severe traumatic brain injury (TBI) relative to age-matched, healthy controls and to explore the moderating effects of time since injury and age at injury on these impairments. Twenty-one studies that compared the WM and/or STM abilities of individuals with at least a moderate TBI relative to healthy controls were included in a random effects meta-analysis. Measures used to examine memory performance were categorized by modality (visuospatial, verbal) and memory system (WM, STM). Individuals with TBI had significant deficits in verbal STM (Cohen's d = .41), visuospatial WM (Cohen's d = .69), and verbal WM (Cohen's d = .37) relative to controls. Greater decrements in verbal STM and verbal WM skills were associated with longer time postinjury. Larger deficits were observed in verbal WM abilities in individuals with older age at injury. Evidence for WM impairments following TBI is consistent with previous research. Larger verbal STM and verbal WM deficits were related to a longer time postinjury, suggesting that these aspects of memory do not "recover" over time and instead, individuals might show increased rates of cognitive decline. Age at injury was associated with the severity of verbal WM impairments, with larger deficits evident for injuries that occurred later in life. Further research needs to chart the long-term effects of TBI on WM and to compare the effects of injury on verbal relative to visuospatial memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Is Computerized Cognitive Testing Useful in Children and Adolescents with Moderate-to-Severe Traumatic Brain Injury?

    Science.gov (United States)

    Plourde, Vickie; Brooks, Brian L

    2017-04-01

    Children and adolescents with moderate-to-severe traumatic brain injury (TBI) present with short and long-term neuropsychological deficits following their injury. The aim of this study was to investigate the utility of a brief computerized test battery for evaluating cognitive functioning sub-acutely following a TBI. Participants (n=33) sustained a moderate-to-severe TBI, were between 8 and 18 years old, and were assessed using CNS Vital Signs (CNSVS) within 6 months post-injury (median=0.6 month). Participants with TBI were matched to 33 healthy controls based on age, sex, and handedness to compare their cognitive functioning on the CNSVS battery. Children and adolescents with moderate-to-severe TBI had significantly lower scores and large effect sizes on Reaction Time, Complex Attention, and Cognitive Flexibility domains, as well as medium effect sizes on two Visual Memory test scores and one Psychomotor Speed test score. A significantly higher percentage of participants with TBI had cognitive impairment on Reaction Time domain score compared to the control group. Finally, CNSVS domain scores correctly categorized 76% of participants as either group with TBI or control group. CNSVS may be a useful tool for screening cognitive abilities in children and adolescents who are early in their recovery from a moderate-to-severe TBI, particularly when a rapid screening evaluation can help guide management, interventions, and track recovery. (JINS, 2017, 23, 304-313).

  11. Mild Concussion, but Not Moderate Traumatic Brain Injury, Is Associated with Long-Term Depression-Like Phenotype in Mice.

    Directory of Open Access Journals (Sweden)

    Nikita M Bajwa

    Full Text Available Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI, a repeated mild CHI (rmCHI consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI. Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi. CCI animals showed significant motor and sensory deficits in the early (1-7 dpi and long-term (90 dpi stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.

  12. Induced moderate hypothermia for the treatment of severe traumatic brain injury: West Virginia's first research case.

    Science.gov (United States)

    Schmidt, John H; Shelford, Daniel L; Reyes, Bernardo J

    2009-01-01

    The role of hypothermia in the improvement of outcomes among patients suffering severe head injury remains controversial. The "National Acute Brain Injury Study: Hypothermia (NABIS:H)" is a series of prospective trials trying to determine if this therapy provides a beneficial effect. This report describes the case of a patient ejected from a motor vehicle, who presented with a decreased level of consciousness (Glasgow Coma Scale of 5). This case illustrates our local experience with the current trial (NABIS:H IIR) being conducted in five other hospitals in the US and Canada. This was the first patient treated in West Virginia utilizing this technology. We discuss the clinical aspects of the case as well as the challenges establishing a system-wide educational program to ensure staff participation and compliance with the study protocol.

  13. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Science.gov (United States)

    Ilie, Gabriela; Adlaf, Edward M; Mann, Robert E; Boak, Angela; Hamilton, Hayley; Asbridge, Mark; Colantonio, Angela; Turner, Nigel E; Rehm, Jürgen; Cusimano, Michael D

    2014-01-01

    Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI) among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates. Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8). Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying), bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study. TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for more tailored injury prevention efforts.

  14. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates.Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8. Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying, bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study.TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for more tailored injury prevention efforts.

  15. Does Apolipoprotein e4 Status Moderate the Association of Family Environment with Long-Term Child Functioning following Early Moderate to Severe Traumatic Brain Injury? A Preliminary Study.

    Science.gov (United States)

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L; Kurowski, Brad G

    2016-09-01

    To examine whether apolipoprotein e4 (APOE) status moderates the association of family environment with child functioning following early traumatic brain injury (TBI). Sixty-five children with moderate to severe TBI and 70 children with orthopedic injury (OI) completed assessments 6, 12, 18 months, and 3.5 and 6.8 years post injury. DNA was extracted from saliva samples and genotyped for APOE e4 status. Linear mixed models examined moderating effects of APOE e4 status on associations between two family environment factors (parenting style, home environment) and three child outcomes (executive functioning, behavioral adjustment, adaptive functioning). Children with TBI who were carriers of the e4 allele showed poorer adaptive functioning relative to non-carriers with TBI and children with OI in the context of low authoritarianism. At high levels of authoritarianism, non-carriers with TBI showed the poorest adaptive functioning among groups. There were no main effects or interactions involving APOE and executive functioning or behavioral adjustment. The APOE e4 allele was detrimental for long-term adaptive functioning in the context of positive parenting, whereas in less optimal parenting contexts, being a non-carrier was detrimental. We provide preliminary evidence for an interaction of APOE e4 status and parenting style in predicting long-term outcomes following early TBI. (JINS, 2016, 22, 859-864).

  16. Life after Adolescent and Adult Moderate and Severe Traumatic Brain Injury: Self-Reported Executive, Emotional, and Behavioural Function 2–5 Years after Injury

    Directory of Open Access Journals (Sweden)

    Torun Gangaune Finnanger

    2015-01-01

    Full Text Available Survivors of moderate-severe Traumatic Brain Injury (TBI are at risk for long-term cognitive, emotional, and behavioural problems. This prospective cohort study investigated self-reported executive, emotional, and behavioural problems in the late chronic phase of moderate and severe TBI, if demographic characteristics (i.e., age, years of education, injury characteristics (Glasgow Coma Scale score, MRI findings such as traumatic axonal injury (TAI, or duration of posttraumatic amnesia, symptoms of depression, or neuropsychological variables in the first year after injury predicted long-term self-reported function. Self-reported executive, emotional, and behavioural functioning were assessed among individuals with moderate and severe TBI (N=67, age range 15–65 years at time of injury 2–5 years after TBI, compared to a healthy matched control group (N=72. Results revealed significantly more attentional, emotional regulation, and psychological difficulties in the TBI group than controls. Demographic and early clinical variables were associated with poorer cognitive and emotional outcome. Fewer years of education and depressive symptoms predicted greater executive dysfunction. Younger age at injury predicted more aggressive and rule-breaking behaviour. TAI and depressive symptoms predicted Internalizing problems and greater executive dysfunction. In conclusion, age, education, TAI, and depression appear to elevate risk for poor long-term outcome, emphasising the need for long-term follow-up of patients presenting with risk factors.

  17. Life after Adolescent and Adult Moderate and Severe Traumatic Brain Injury: Self-Reported Executive, Emotional, and Behavioural Function 2–5 Years after Injury

    Science.gov (United States)

    Finnanger, Torun Gangaune; Olsen, Alexander; Skandsen, Toril; Lydersen, Stian; Vik, Anne; Evensen, Kari Anne I.; Catroppa, Cathy; Håberg, Asta K.; Andersson, Stein; Indredavik, Marit S.

    2015-01-01

    Survivors of moderate-severe Traumatic Brain Injury (TBI) are at risk for long-term cognitive, emotional, and behavioural problems. This prospective cohort study investigated self-reported executive, emotional, and behavioural problems in the late chronic phase of moderate and severe TBI, if demographic characteristics (i.e., age, years of education), injury characteristics (Glasgow Coma Scale score, MRI findings such as traumatic axonal injury (TAI), or duration of posttraumatic amnesia), symptoms of depression, or neuropsychological variables in the first year after injury predicted long-term self-reported function. Self-reported executive, emotional, and behavioural functioning were assessed among individuals with moderate and severe TBI (N = 67, age range 15–65 years at time of injury) 2–5 years after TBI, compared to a healthy matched control group (N = 72). Results revealed significantly more attentional, emotional regulation, and psychological difficulties in the TBI group than controls. Demographic and early clinical variables were associated with poorer cognitive and emotional outcome. Fewer years of education and depressive symptoms predicted greater executive dysfunction. Younger age at injury predicted more aggressive and rule-breaking behaviour. TAI and depressive symptoms predicted Internalizing problems and greater executive dysfunction. In conclusion, age, education, TAI, and depression appear to elevate risk for poor long-term outcome, emphasising the need for long-term follow-up of patients presenting with risk factors. PMID:26549936

  18. Cognitive performance in transient global hypoxic brain injury due to moderate drowning.

    Science.gov (United States)

    Nucci, Mariana Penteado; Lukasova, Katerina; Vieira, Gilson; Sato, João Ricardo; Amaro Júnior, Edson

    2017-09-19

    Drowning is a serious and frequently neglected public health threat. Primary respiratory impairment after submersion often leads to brain dysfunction. Depending on the period of global hypoxia (respiratory failure), clinical aspects of neurological dysfunction are evident on the first evaluation after the water rescue. Nowadays, many neuropsychological assessments after drowning are inconclusive, with some studies reporting only minor neurological or cognitive impairments. The aim of this study is to identify measures in neuropsychological tests that most contribute to classify volunteers as moderate drowning subjects or healthy controls. To the best of our knowledge, this study is the first neuropsychological prospective case-control study of moderate drowning in a country with large coastal cities. Fifteen moderate drowning patients (DP), who met the inclusion criteria, were compared with 18 healthy controls (HC). All subjects were assessed on memory, learning, visual spatial ability, executive function, attention, and general intellectual functioning and underwent structural magnetic resonance (MR) imaging of the brain at 3.0 T, in order to exclude subjects with anatomic abnormalities. Neuropsychological tests assessing learning, execution function, and verbal fluency-Rey Auditory Verbal Learning Test (RAVLT) general learning ability, Digit Span total, Phonological Verbal Fluency (total FAS correct), and Brief Visuospatial Memory Test Revised (BVMT) correct recognition-have the strongest discriminating ability, using predictive models via the partial least squares (PLS) approach for data classification, while the other tests have shown similar predictive values between groups. Learning, execution function, and verbal fluency domains were the most critically affected domains. Serious impairments in the same domains have already been reported in severe drowning cases, and we hypothesize that subtle alterations found in moderate drowning cases, although not

  19. Unsupervised categorization with individuals diagnosed as having moderate traumatic brain injury: Over-selective responding.

    Science.gov (United States)

    Edwards, Darren J; Wood, Rodger

    2016-01-01

    This study explored over-selectivity (executive dysfunction) using a standard unsupervised categorization task. Over-selectivity has been demonstrated using supervised categorization procedures (where training is given); however, little has been done in the way of unsupervised categorization (without training). A standard unsupervised categorization task was used to assess levels of over-selectivity in a traumatic brain injury (TBI) population. Individuals with TBI were selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and were asked to categorize two-dimensional items (pictures on cards), into groups that they felt were most intuitive, and without any learning (feedback from experimenter). This was compared against categories made by a control group for the same task. The findings of this study demonstrate that individuals with TBI had deficits for both easy and difficult categorization sets, as indicated by a larger amount of one-dimensional sorting compared to control participants. Deficits were significantly greater for the easy condition. The implications of these findings are discussed in the context of over-selectivity, and the processes that underlie this deficit. Also, the implications for using this procedure as a screening measure for over-selectivity in TBI are discussed.

  20. Autobiographical memory and episodic future thinking after moderate to severe traumatic brain injury

    DEFF Research Database (Denmark)

    Rasmussen, Katrine Willemoes; Berntsen, Dorthe

    2014-01-01

    Converging evidence suggests that autobiographical memory and episodic future thinking share a common neurocognitive basis. Although previous research has shown that traumatic brain injury (TBI) can impair the ability to remember the personal past, episodic future thinking has not previously been...... asked to report a series of events that had happened to them in the past and a series of events that might happen to them in the future. Transcriptions were scored according to a reliable system for categorizing internal (episodic) and external (semantic) information. For each event described......, participants also completed two modified Autobiographical Memory Questionnaire items to assess self-reported phenomenal qualities associated with remembering and imagining. In addition, TBI patients underwent neuropsychological assessment. Results revealed that TBI patients recalled/imagined proportionally...

  1. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  2. Parent management of the school reintegration needs of children and youth following moderate or severe traumatic brain injury.

    Science.gov (United States)

    Roscigno, Cecelia I; Fleig, Denise K; Knafl, Kathleen A

    2015-01-01

    School reintegration following children's traumatic brain injury (TBI) is still poorly understood from families' perspectives. We aimed to understand how both unique and common experiences during children's school reintegration were explained by parents to influence the family. Data came from an investigation using descriptive phenomenology (2005-2007) to understand parents' experiences in the first five years following children's moderate to severe TBI. Parents (N = 42 from 37 families in the United States) participated in two 90-min interviews (first M = 15 months; second M = 27 months). Two investigators independently coded parents' discussions of school reintegration using content analysis to understand the unique and common factors that parents perceived affected the family. Parents' school negotiation themes included the following: (1) legal versus moral basis for helping the child; (2) inappropriate state and local services that did not consider needs specific to TBI; and (3) involvement in planning, implementing and evaluating the child's education plan. Parents perceived that coordinated and collaboration leadership with school personnel lessened families' workload. Families who home-schooled had unique challenges. School reintegration can add to family workload by changing roles and relationships and by adding to parents' perceived stress in managing of the child's condition. Moderate to severe traumatic brain injury is assumed to be the primary cause of children's morbidities post-injury. Despite laws in the United States meant to facilitate children's school reintegration needs, parents often perceived that policies and practices differed from the intentions of laws and added to the family workload and stress. The school environment of the child (physical, cultural or psychological setting) plays an important long-term role in shaping family roles, relationships and management of the child's condition.

  3. Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long-term cognitive recovery following mild to moderate traumatic brain injury

    Science.gov (United States)

    Schütz, Christian; Stover, John F.; Thompson, Hilaire J.; Hoover, Rachel C.; Morales, Diego M.; Schouten, Joost W.; McMillan, Asenia; Soltesz, Kristie; Motta, Melissa; Spangler, Zachery; Neugebauer, Edmund; McIntosh, Tracy K.

    2008-01-01

    Objectives Posttraumatic hypotension is believed to increase morbidity and mortality in traumatically brain-injured patients. Using a clinically relevant model of combined traumatic brain injury with superimposed hemorrhagic hypotension in rats, the present study evaluated whether a reduction in mean arterial blood pressure aggravates regional brain edema formation, regional cell death, and neurologic motor/cognitive deficits associated with traumatic brain injury. Design Experimental prospective, randomized study in rodents. Setting Experimental laboratory at a university hospital. Subjects One hundred nineteen male Sprague-Dawley rats weighing 350-385 g. Interventions Experimental traumatic brain injury of mild to moderate severity was induced using the lateral fluid percussion brain injury model in anesthetized rats (n = 89). Following traumatic brain injury, in surviving animals one group of animals was subjected to pressure-controlled hemorrhagic hypotension, maintaining the mean arterial blood pressure at 50-60 mm Hg for 30 mins (n = 47). The animals were subsequently either resuscitated with lactated Ringer’s solution (three times shed blood volume, n = 18) or left uncompensated (n = 29). Other groups of animals included those with isolated traumatic brain injury (n = 34), those with isolated hemorrhagic hypotension (n = 8), and sham-injured control animals receiving anesthesia and surgery alone (n = 22). Measurements and Main Results The withdrawal of 6-7 mL of arterial blood significantly reduced mean arterial blood pressure by 50% without decreasing arterial oxygen saturation or Pao2. Brain injury induced significant cerebral edema (p hypotension. Brain injury-induced neurologic deficits persisted up to 20 wks after injury and were also not aggravated by the hemorrhagic hypotension. Cognitive dysfunction persisted for up to 16 wks postinjury. The superimposition of hemorrhagic hypotension significantly delayed the time course of cognitive recovery

  4. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  5. The absence of protective effect of candesartan and angiotensin IV in the moderate brain injury in rats

    International Nuclear Information System (INIS)

    Nasser, M.; Botelle, L.; Javellaud, J.; Oudart, N.; Achard, J-M

    2012-01-01

    Background: angiotensin receptor blockers (ARB) are protective in various models of experimental ischemic stroke. This protective effect is mediated by the stimulation of non-AT1 receptors by angiotensin II and angiotensin IV. Since traumatic brain injury shares with ischemic cerebral injury several common mechanisms, we examined if a pretreatment with the ARB candesartan, or a post-treatment with angiotensin IV are also protective in a rat model of blunt traumatic brain injury (TBI). Methods :adults Sprague Dawley rats were treated for five days with candesartan (0.5 mg/kg/day) or saline by gavage prior to the induction of diffuse moderate TBI using the impact-acceleration model. Two others groups of rats were treated by a daily intraperitoneal injection of angiotensin IV (1.5 mg/kg/day) or saline for five days following TBI. Overall neurological insult were assessed daily by measuring the neurological score. Sensitive deficits (scotch test) and sensorimotor deficits (beam-walking test) were evaluated daily from day 1 to 7 and at day 15; cognitive impairment (object recognition test) was evaluated at day 15. Results : TBI induced significant sensitive and sensorimotor deficits that were maximal at day 1 and spontaneously improved with time. At day 15, traumatised animals had a marked alteration of the working memory. Neither treatment with candesartan, angiotensin IV or with erythropoietin decreased the severity of the initial sensorimotor deficits, nor accelerate the recovery rate. Candesartan, angiotensin IV had likewise no protective effect on the cognitive deficit evaluated to day 15. Conclusion: pretreatment with candesartan and post-treatment with angiotensin IV are both ineffective to protect against sensorimotor and c ognitive impairment in a rat model of impact-acceleration TBI. (author)

  6. Medical Symptom Validity Test Performance Following Moderate-Severe Traumatic Brain Injury: Expectations Based on Orientation Log Classification.

    Science.gov (United States)

    Macciocchi, Stephen N; Seel, Ronald T; Yi, Angela; Small, Sarah

    2017-05-01

    This study examined performance on the Medical Symptom Validity test (MSVT) during acute rehabilitation for moderate-severe traumatic brain injury (TBI) stratified by Orientation Log (O-Log) scores. Participants were 77 prospectively enrolled persons who sustained moderate-severe TBI and were acutely hospitalized secondary to the cognitive, medical and physical sequelae of their TBI. Participants were administered neuropsychological metrics, the O-Log and the MSVT a mean of 44 days post injury. Significantly lower neurocognitive test scores were observed among participants who remained in post-traumatic amnesia (O-Log scores ranging from 20 to 24) versus those who were oriented (O-Log scores ranging from 25 to 30). MSVT performance was lower among participants who remained in post-traumatic amnesia. When participants O-Log scores were unimpaired (30), performance on the MSVT was also unimpaired on immediate recognition (IR) and delayed recognition (DR). A small percentage of participants performed below MSVT interpretive expectations on CNS. As O-Log scores decreased, MSVT performance also declined on some, but not all MSVT metrics. The sample as a whole performed at or above expectations on MSVT criterion B2 (IR) = 96.6%; (DR) = 94.8%; consistency (CNS) = 92.9%; paired associate (PA) = 86.4% and delayed free recall (FR) = 46.8%. MSVT performance stratified by O-Log scores provides basal expectation levels for persons with acute, moderate-severe impairment in cognitive skills secondary to TBI. Our data demonstrate that persons with significant neurocognitive impairment who are oriented generally perform at or above MSVT interpretive guidelines. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. National Variability in Intracranial Pressure Monitoring and Craniotomy for Children With Moderate to Severe Traumatic Brain Injury

    Science.gov (United States)

    Van Cleve, William; Kernic, Mary A.; Ellenbogen, Richard G.; Wang, Jin; Zatzick, Douglas F.; Bell, Michael J.; Wainwright, Mark S.; Groner, Jonathan I.; Mink, Richard B.; Giza, Christopher C.; Boyle, Linda Ng; Mitchell, Pamela H.; Rivara, Frederick P.; Vavilala, Monica S.

    2014-01-01

    BACKGROUND Traumatic brain injury (TBI) is a significant cause of mortality and disability in children. Intracranial pressure monitoring (ICPM) and craniotomy/craniectomy (CRANI) may affect outcomes. Sources of variability in the use of these interventions remain incompletely understood. OBJECTIVE To analyze sources of variability in the use of ICPM and CRANI. METHODS Retrospective cross-sectional study of patients with moderate/severe pediatric TBI with the use of data submitted to the American College of Surgeons National Trauma Databank. RESULTS We analyzed data from 7140 children at 156 US hospitals during 7 continuous years. Of the children, 27.4% had ICPM, whereas 11.7% had a CRANI. Infants had lower rates of ICPM and CRANI than older children. A lower rate of ICPM was observed among children hospitalized at combined pediatric/adult trauma centers than among children treated at adult-only trauma centers (relative risk = 0.80; 95% confidence interval 0.66-0.97). For ICPM and CRANI, 18.5% and 11.6%, respectively, of residual model variance was explained by between-hospital variation in care delivery, but almost no correlation was observed between within-hospital tendency toward performing these procedures. CONCLUSION Infants received less ICPM than older children, and children hospitalized at pediatric trauma centers received less ICPM than children at adult-only trauma centers. In addition, significant between-hospital variability existed in the delivery of ICPM and CRANI to children with moderate-severe TBI. PMID:23863766

  8. Health-related quality of life 3 years after moderate to severe traumatic brain injury: a prospective cohort study.

    Science.gov (United States)

    Grauwmeijer, Erik; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M

    2014-07-01

    To evaluate the time course of health-related quality of life (HRQoL) after moderate to severe traumatic brain injury (TBI) and to identify its predictors. Prospective cohort study with follow-up measurements at 3, 6, 12, 18, 24, and 36 months after TBI. Patients with moderate to severe TBI discharged from 3 level-1 trauma centers. Patients (N=97, 72% men) with a mean age ± SD of 32.8±13.0 years (range, 18-65y), hospitalized with moderate (23%) or severe (77%) TBI. Not applicable. HRQoL was measured with the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), functional outcomes with the Glasgow Outcome Scale (GOS), Barthel Index, FIM, and Functional Assessment Measure, and mood with the Wimbledon Self-Report Scale. The SF-36 domains showed significant improvement over time for Physical Functioning (PPhysical (PPhysical Component Summary (PCS) score, whereas the Mental Component Summary (MCS) score remained stable. At 3-year follow-up, HRQoL of patients with TBI was the same as that in the Dutch normative population. Time after TBI, hospital length of stay (LOS), FIM, and GOS were independent predictors of the PCS, whereas LOS and mood were predictors of the MCS. After TBI, the physical component of HRQoL showed significant improvement over time, whereas the mental component remained stable. Problems of disease awareness seem to play a role in self-reported mental HRQoL. After TBI, mood status is a better predictor of the mental component of HRQoL than functional outcome, implying that mood should be closely monitored during and after rehabilitation. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokohama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T 2 *-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  10. Anger Self-Management Training for Chronic Moderate to Severe Traumatic Brain Injury: Results of a Randomized Controlled Trial.

    Science.gov (United States)

    Hart, Tessa; Brockway, Jo Ann; Maiuro, Roland D; Vaccaro, Monica; Fann, Jesse R; Mellick, David; Harrison-Felix, Cindy; Barber, Jason; Temkin, Nancy

    To test efficacy of 8-session, 1:1 treatment, anger self-management training (ASMT), for chronic moderate to severe traumatic brain injury (TBI). Three US outpatient treatment facilities. Ninety people with TBI and elevated self-reported anger; 76 significant others (SOs) provided collateral data. Multicenter randomized controlled trial with 2:1 randomization to ASMT or structurally equivalent comparison treatment, personal readjustment and education (PRE). Primary outcome assessment 1 week posttreatment; 8-week follow-up. Response to treatment defined as 1 or more standard deviation change in self-reported anger. SO-rated anger, emotional and behavioral status, satisfaction with life, timing of treatment response, participant and SO-rated global change, and treatment satisfaction. State-Trait Anger Expression Inventory-Revised Trait Anger (TA) and Anger Expression-Out (AX-O) subscales; Brief Anger-Aggression Questionnaire (BAAQ); Likert-type ratings of treatment satisfaction, global changes in anger and well-being. After treatment, ASMT response rate (68%) exceeded that of PRE (47%) on TA but not AX-O or BAAQ; this finding persisted at 8-week follow-up. No significant between-group differences in SO-reported response rates, emotional/behavioral status, or life satisfaction. ASMT participants were more satisfied with treatment and rated global change in anger as significantly better; SO ratings of global change in both anger and well-being were superior for ASMT. ASMT was efficacious and persistent for some aspects of problematic anger. More research is needed to determine optimal dose and essential ingredients of behavioral treatment for anger after TBI.

  11. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    Science.gov (United States)

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and

  12. Event-based prospective memory performance during subacute recovery following moderate to severe traumatic brain injury in children: Effects of monetary incentives.

    Science.gov (United States)

    McCauley, Stephen R; Pedroza, Claudia; Chapman, Sandra B; Cook, Lori G; Hotz, Gillian; Vásquez, Ana C; Levin, Harvey S

    2010-03-01

    There are very few studies investigating remediation of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, we used 2 levels of motivational enhancement (dollars vs. pennies) to improve EB-PM in children with moderate to severe TBI in the subacute recovery phase. Children with orthopedic injuries (OI; n = 61), moderate (n = 28), or severe (n = 30) TBI were compared. Significant effects included Group x Motivation Condition (F(2, 115) = 3.73, p children (p children with moderate, but not severe, TBI. Other strategies to improve EB-PM in these children at a similar point in recovery remain to be identified and evaluated.

  13. Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings.

    Science.gov (United States)

    Rundhaug, Nils Petter; Moen, Kent Gøran; Skandsen, Toril; Schirmer-Mikalsen, Kari; Lund, Stine B; Hara, Sozaburo; Vik, Anne

    2015-01-01

    The influence of alcohol is assumed to reduce consciousness in patients with traumatic brain injury (TBI), but research findings are divergent. The aim of this investigation was to study the effects of different levels of blood alcohol concentration (BAC) on the Glasgow Coma Scale (GCS) scores in patients with moderate and severe TBI and to relate the findings to brain injury severity based on the admission CT scan. In this cohort study, 265 patients (age range 16-70 years) who were admitted to St. Olavs University Hospital with moderate and severe TBI during a 7-year period were prospectively registered. Of these, 217 patients (82%) had measured BAC. Effects of 4 BAC groups on GCS score were examined with ordinal logistic regression analyses, and the GCS scores were inverted to give an OR > 1. The Rotterdam CT score based on admission CT scan was used to adjust for brain injury severity (best score 1 and worst score 6) by stratifying patients into 2 brain injury severity groups (Rotterdam CT scores of 1-3 and 4-6). Of all patients with measured BAC, 91% had intracranial CT findings and 43% had BAC > 0 mg/dl. The median GCS score was lower in the alcohol-positive patients (6.5, interquartile range [IQR] 4-10) than in the alcohol-negative patients (9, IQR 6-13; p brain injury itself seemed to overrun the depressing effect of the alcohol on the CNS. This finding is in agreement with the assumption of many clinicians in the emergency situation.

  14. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury PCS and PTSD

    Science.gov (United States)

    2015-10-01

    DATE: October 2015 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) and 11. SPONSOR/MONITOR’S REPORT U.S. Army Medical Research and Materiel Command...hyperbaric oxygen therapy; TBI: traumatic brain injury; PPCS: persistent post- concussion syndrome 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Patterns of cortical thinning in relation to event-based prospective memory performance three months after moderate to severe traumatic brain injury in children.

    Science.gov (United States)

    McCauley, Stephen R; Wilde, Elisabeth A; Merkley, Tricia L; Schnelle, Kathleen P; Bigler, Erin D; Hunter, Jill V; Chu, Zili; Vásquez, Ana C; Levin, Harvey S

    2010-01-01

    While event-based prospective memory (EB-PM) tasks are a familiar part of daily life for children, currently no data exists concerning the relation between EB-PM performance and brain volumetrics after traumatic brain injury (TBI). This study investigated EB-PM in children (7 to 17 years) with moderate to severe TBI or orthopedic injuries. Participants performed an EB-PM task and concurrently underwent neuroimaging at three months postinjury. Surface reconstruction and cortical thickness analysis were performed using FreeSurfer software. Cortical thickness was significantly correlated with EB-PM (adjusting for age). Significant thinning in the left (dorsolateral and inferior prefrontal cortex, anterior and posterior cingulate, temporal lobe, fusiform, and parahippocampal gyri), and right hemispheres (dorsolateral, inferior, and medial prefrontal cortex, cingulate, and temporal lobe) correlated positively and significantly with EB-PM performance; findings are comparable to those of functional neuroimaging and lesion studies of EB-PM.

  16. Neuropsychiatric diagnosis and management of chronic sequelae of war-related mild to moderate traumatic brain injury.

    Science.gov (United States)

    Halbauer, Joshua D; Ashford, J Wesson; Zeitzer, Jamie M; Adamson, Maheen M; Lew, Henry L; Yesavage, Jerome A

    2009-01-01

    Soldiers with a traumatic brain injury (TBI) present with an array of neuropsychiatric symptoms that can be grouped into nosological clusters: (1) cognitive dysfunctions: difficulties in memory, attention, language, visuospatial cognition, sensory-motor integration, affect recognition, and/or executive function typically associated with neocortical damage; (2) neurobehavioral disorders: mood, affect, anxiety, posttraumatic stress, and psychosis, as well as agitation, sleep problems, and libido loss, that may have been caused by damage to the cortex, limbic system, and/or brain stem monoaminergic projection systems; (3) somatosensory disruptions: impaired smell, vision, hearing, equilibrium, taste, and somatosensory perception frequently caused by trauma to the sensory organs or their projections through the brain stem to central processing systems; (4) somatic symptoms: headache and chronic pain; and (5) substance dependence. TBI-related cognitive impairment is common in veterans who have served in recent conflicts in the Middle East and is often related to blasts from improvised explosive devices. Although neurobehavioral disorders such as depression and posttraumatic stress disorder commonly occur after combat, the presentation of such disorders in those with head injury may pass undetected with use of current diagnostic criteria and neuropsychological instruments. With a multidimensional approach (such as the biopsychosocial model) applied to each symptom cluster, psychological, occupational, and social dysfunction can be delineated and managed.

  17. Are self-reported symptoms of executive dysfunction associated with objective executive function performance following mild to moderate traumatic brain injury?

    Science.gov (United States)

    Schiehser, Dawn M.; Delis, Dean C.; Filoteo, J. Vincent; Delano-Wood, Lisa; Han, S. Duke; Jak, Amy J.; Drake, Angela I.; Bondi, Mark W.

    2012-01-01

    Background and objective We examined the relationship between self-reported pre- and post-injury changes in executive dysfunction, apathy, disinhibition, and depression, and performance on neuropsychological tests of executive function, attention/processing speed, and memory in relation to mood levels and effort test performance in individuals in the early stages of recovery from mild to moderate traumatic brain injury (TBI). Method Participants were 71 noncombat military personnel who were in a semiacute stage of recovery (<3 months post injury) from mild to moderate TBI. Pre- and post-TBI behaviors were assessed with the Frontal Systems Behavior Scale (FrSBe; Grace & Malloy, 2001) and correlated with levels of depressive symptoms, effort test performance, and performance on objective measures of attention, executive function, and memory. Results Self-reported symptoms of executive dysfunction generally failed to predict performance on objective measures of executive function and memory, although they predicted poorer performance on measures of attention/processing speed. Instead, higher levels of depressive symptomatology best predicted poorer performance on measures of executive function and memory. However, the relationship between memory performance and TBI symptoms was no longer significant when effort performance was controlled. Conclusions Our findings suggest that, among individuals in early recovery from mild to moderate TBI, self-reported depressive symptoms, rather than patients’ cognitive complaints, are associated with objective executive function. However, self-reported cognitive complaints may be associated with objectively measured inattention and slow processing speed. PMID:21958432

  18. Penetrating brain injury

    Directory of Open Access Journals (Sweden)

    Achyut Prashad Sharma

    2013-12-01

    Full Text Available In the past 20 years, there has been an increase in the incidence of head injuries caused by gunshot wounds.  Penetrating brain injury is a traumatic brain injury caused by high-velocity projectiles or low-velocity sharp objects. A wound in which the projectile breaches the cranium but does not exit is referred as a penetrating wound, and an injury in which the projectile passes entirely through the head, leaving both entrance  and exit wounds, is referred to as a perforating wound. A large number of these patients who survive their initial wounding will nevertheless expire shortly after admission to the hospital. Until the introduction of aseptic surgery in the last quarter of the nineteenth century, penetrating missile injuries of the brain were almost universally fatal. We have learned a great deal about gunshot wounds and their management from military experience gained during times of war, when a large number of firearm-related casualties are treated in a short period of time. Newly designed protective body armor has reduced the incidence of penetrating brain injuries significantly. Many of the victims in the vicinity of a cased explosive or an improvised explosive device will incur injuries by fragments. Blast injury is a common mechanism of traumatic brain injury among soldiers serving in war zone. Each war has had different lessons to teach. World War I for example, proved the efficacy of vigorous surgical intervention. During World War II, the importance of initial dural repair and antibiotic medication was first, debated, then acknowledged, and finally, universally accepted. The incidence of blast-induced traumatic brain injury has increased substantially in recent military conflicts. Blast-induced neurotrauma is the term given to describe an injury to the brain that occurs after exposure to a blast. Resent conflict has exposed military personnel to sophisticated explosive devices generating blast overpressure that results in

  19. How impulsivity relates to compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury.

    Science.gov (United States)

    Rochat, Lucien; Beni, Catia; Billieux, Joël; Annoni, Jean-Marie; Van der Linden, Martial

    2011-01-01

    Impulsivity is a core feature in patients with traumatic brain injury (TBI). The aim of the study is to investigate how a specific dimension of impulsivity, namely urgency (the tendency to act rashly when distressed), might shed new light on the aetiology of compulsive buying proneness in patients with TBI and to explore how urgency and compulsive buying relate to the burden perceived by the caregivers. Caregivers of 74 patients with TBI were given 3 questionnaires in order to assess their subjective burden as well as patients' impulsivity and compulsive buying proneness. Both urgency and compulsive buying tendencies significantly increased after TBI. Furthermore, path analyses revealed that current urgency was both directly and indirectly related to the subjective burden perceived by the caregivers, and this indirect pathway was mediated by compulsive buying. Urgency plays a central role in understanding specific problematic behaviours after TBI and their impact on caregivers. These findings are discussed in light of the cognitive processes underlying the urgency component of impulsivity in relation to the occurrence of compulsive buying behaviours after TBI. Copyright © 2011 S. Karger AG, Basel.

  20. SECONDARY BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Ida Ayu Basmatika

    2013-03-01

    Full Text Available Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial such as hipoxia, hypotensi, hyponatremia, hypertermia, hypoglycemia or hyperglycemia. The cause of intracranial such as extradural, subdural, intraserebral, intraventrikular, dan subarachnoid hemorrhage. Beside that secondary injury can also be caused by edema and infection. Post-traumatic cerebral injured is characterized by direct tissue damage, impaired regulation of cerebral blood flow (cerebral blood flow / CBF, and disruption of metabolism. Manifestations of secondary brain injured include increased intracranial pressure, ischemic brain damage, cerebral hypoxia and hypercarbi, as well as disruption of cerebral autoregulation. The first priority is to stabilize the patient's cervical spine injury, relieve and maintain airway, ensure adequate ventilation (breathing, and making venous access for fluid resuscitation pathways (circulation and assessing the level of awareness and disability. This steps is crucial in patients with head injured to prevent hypoxia and hypotension, which is the main cause of secondary brain injury.

  1. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention.

    Science.gov (United States)

    Papa, Linda; Lewis, Lawrence M; Silvestri, Salvatore; Falk, Jay L; Giordano, Philip; Brophy, Gretchen M; Demery, Jason A; Liu, Ming Cheng; Mo, Jixiang; Akinyi, Linnet; Mondello, Stefania; Schmid, Kara; Robertson, Claudia S; Tortella, Frank C; Hayes, Ronald L; Wang, Kevin K W

    2012-05-01

    This study compared early serum levels of ubiquitin C-terminal hydrolase (UCH-L1) from patients with mild and moderate traumatic brain injury (TBI) with uninjured and injured controls and examined their association with traumatic intracranial lesions on computed tomography (CT) scan (CT positive) and the need for neurosurgical intervention (NSI). This prospective cohort study enrolled adult patients presenting to three tertiary care Level I trauma centers after blunt head trauma with loss of consciousness, amnesia, or disorientation and a Glasgow Coma Scale (GCS) score 9 to 15. Control groups included normal uninjured controls and nonhead injured trauma controls presenting to the emergency department with orthopedic injuries or motor vehicle crash without TBI. Blood samples were obtained in all trauma patients within 4 hours of injury and measured by enzyme-linked immunosorbent assay for UCH-L1 (ng/mL ± standard error of the mean). There were 295 patients enrolled, 96 TBI patients (86 with GCS score 13-15 and 10 with GCS score 9-12), and 199 controls (176 uninjured, 16 motor vehicle crash controls, and 7 orthopedic controls). The AUC for distinguishing TBI from uninjured controls was 0.87 (95% confidence interval [CI], 0.82-0.92) and for distinguishing those TBIs with GCS score 15 from controls was AUC 0.87 (95% CI, 0.81-0.93). Mean UCH-L1 levels in patients with CT negative versus CT positive were 0.620 (± 0.254) and 1.618 (± 0.474), respectively (p < 0.001), and the AUC was 0.73 (95% CI, 0.62-0.84). For patients without and with NSI, levels were 0.627 (0.218) versus 2.568 (0.854; p < 0.001), and the AUC was 0.85 (95% CI, 0.76-0.94). UCH-L1 is detectable in serum within an hour of injury and is associated with measures of injury severity including the GCS score, CT lesions, and NSI. Further study is required to validate these findings before clinical application. II, prognostic study.

  2. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  3. Process of implementing collaborative care and its impacts on the provision of care and rehabilitation services to patients with a moderate or severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Talbot LR

    2014-07-01

    Full Text Available Lise R Talbot,1,2 Annie Lévesque,1 Josée Trottier1 1School of Nursing Sciences, Faculty of Medicine and Health Sciences, University of Sherbrooke, 2Étienne-Le Bel Clinical Research Centre and the Research Centre on Aging, Sherbrooke, QC, Canada Objective: The introduction of new services in a rehabilitation center is a unique opportunity to introduce a new model of care and services between two institutions. A hospital and a rehabilitation center experienced a clinical management model inspired by an American approach – collaborative care. The purpose of this study was to describe the implementation of this approach and to provide a perception of the quality of care and services provided to patients with moderate or severe traumatic brain injury and to their caregivers. Materials and methods: In this qualitative study, individual semistructured interviews were conducted with patients and their caregivers in the hospital and rehabilitation center where the patients were treated. Individual semistructured interviews were conducted with administrators, and two focus groups were held with clinicians before and after the implementation. Results and conclusion: Ten days’ waiting time were saved with the collaborative approach. Implementing the collaborative care approach has been found to have several benefits, including improved communication, coordination of services between institutions, and better preparation, awareness, and involvement of patients and their families. Administrators, clinicians, patients, and caregivers expressed their opinions on the organization of care and services, the needs and expectations of patients and their caregivers, their participation in terms of roles and responsibilities, their perception of continuity of care, their satisfaction with the care process, and their suggestions for improvements. Keywords: traumatic brain injury, collaborative care, rehabilitation, quality of care

  4. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  5. Therapeutic temperature modulation in severe or moderate traumatic brain injury: a propensity score analysis of data from the Nationwide Japan Neurotrauma Data Bank.

    Science.gov (United States)

    Miyata, Kei; Ohnishi, Hirofumi; Maekawa, Kunihiko; Mikami, Takeshi; Akiyama, Yukinori; Iihoshi, Satoshi; Wanibuchi, Masahiko; Mikuni, Nobuhiro; Uemura, Shuji; Tanno, Katsutoshi; Narimatsu, Eichi; Asai, Yasufumi

    2016-02-01

    In patients with severe traumatic brain injury (TBI), a randomized controlled trial revealed that outcomes did not significantly improve after therapeutic hypothermia (TH) or normothermia (TN). However, avoiding pyrexia, which is often associated with intracranial disorders, might improve clinical outcomes. The objective of this study was to compare neurological outcomes among patients with moderate and severe TBI after therapeutic temperature modulation (TTM) in the absence of other interventions. Data from 1091 patients were obtained from the Japan Neurotrauma Data Bank Project 2009, a cohort observational study. Patients with cardiac arrest, those with a Glasgow Coma Scale score of 3 and dilated fixed pupils, and those whose cause of death was injury to another area of the body were excluded, leaving 687 patients aged 16 years or older in this study. The patients were divided into 2 groups: the TTM group underwent TN (213 patients) or TH (82 patients), and the control group (392 patients) did not receive TTM. The primary end point for this study was the rate of poor outcome at hospital discharge, and the secondary end point was in-hospital death. Out of the 208 total items in the database, 29 variables that could potentially affect outcome were matched using the propensity score (PS) method in order to reduce selection bias and balance the baseline characteristics. From each group, 141 patients were extracted using the PS-matching process. Among the patients in the TTM group, 29 had undergone TH and 112 had undergone TN. In a log-rank test using Kaplan-Meier survival curves, no significant differences in patient outcome or death were observed between the 2 groups (poor outcome, p = 0.83; death, p = 0.18). A Cox proportional-hazards regression analysis established the HR for poor outcome and mortality at 1.03 (95% CI 0.78-1.36, p = 0.83) and 1.34 (95% CI 0.87-2.07, p = 0.18), respectively. There was no clear improvement in neurological outcomes after TTM in

  6. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    Science.gov (United States)

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  7. BPSD following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI in Brazil. Objective: We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Methods: Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Results: Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Conclusion: Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  8. BPSD following traumatic brain injury

    Science.gov (United States)

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis

    2013-01-01

    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. OBJECTIVE We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. METHODS Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. RESULTS Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. CONCLUSION Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery. PMID:29213850

  9. Pediatric nurses' perceived knowledge and beliefs of evidence-based practice in the care of children and adolescents with moderate-to-severe traumatic brain injury.

    Science.gov (United States)

    Oyesanya, Tolu O; Snedden, Traci R

    2018-04-01

    Pediatric nurses play a significant role in all phases of traumatic brain injury (TBI) recovery, particularly during the hospital stay. Although evidence-based nursing practice is known to improve patient outcomes, limited research exists on nurses' evidence-based perceived knowledge and beliefs specific to TBI care. As nurses' perceived knowledge and beliefs are known to guide their practice behaviors, this assessment is important to overall TBI outcomes. The purpose of this study was to evaluate pediatric nurses' evidence-based perceived knowledge and beliefs in providing care for children and adolescents with moderate-to-severe TBI. Data for this study were obtained from a larger parent study on nurses' perceptions of caring for patients of all ages with moderate-to-severe TBI. The parent study was an exploratory, cross-sectional electronic survey of registered nurses across all hospital departments within a large Midwestern health system. Only data specific to pediatric nurses (n = 330) were analyzed for this study. Descriptive statistics and latent class analysis (LCA) were performed. Pediatric nurses, on average, were 38.79 years, female (90.37%), had over a decade of nursing experience (13.55 years), and practiced as a staff nurse (80.07%) on an inpatient unit (45.51%). Findings indicated pediatric nurses reported overall low levels of evidence-based perceived knowledge and had inaccurate beliefs about caring for patients with TBI. LCA indicated two distinct homogenous subgroups specific to evidence-based perceived knowledge: low (41%) and high (59%). Nurses in the low evidence-based perceived knowledge group were younger, had less nursing experience, worked primarily on an inpatient unit, and cared for patients with TBI at a higher frequency compared to high evidence-based perceived knowledge nurses. Additionally, there were significant differences in beliefs about sex-based patient differences after TBI and the role of nurses in caring for patients with

  10. Effect of Age on Glasgow Coma Scale in Patients with Moderate and Severe Traumatic Brain Injury: An Approach with Propensity Score-Matched Population

    Directory of Open Access Journals (Sweden)

    Cheng-Shyuan Rau

    2017-11-01

    Full Text Available Background: The most widely used methods of describing traumatic brain injury (TBI are the Glasgow Coma Scale (GCS and the Abbreviated Injury Scale (AIS. Recent evidence suggests that presenting GCS in older patients may be higher than that in younger patients for an equivalent anatomical severity of TBI. This study aimed to assess these observations with a propensity-score matching approach using the data from Trauma Registry System in a Level I trauma center. Methods: We included all adult patients (aged ≥20 years old with moderate to severe TBI from 1 January 2009 to 31 December 2016. Patients were categorized into elderly (aged ≥65 years and young adults (aged 20–64 years. The severity of TBI was defined by an AIS score in the head (AIS 3‒4 and 5 indicate moderate and severe TBI, respectively. We examined the differences in the GCS scores by age at each head AIS score. Unpaired Student’s t- and Mann–Whitney U-tests were used to analyze normally and non-normally distributed continuous data, respectively. Categorical data were compared using either the Pearson chi-square or two-sided Fisher’s exact tests. Matched patient populations were allocated in a 1:1 ratio according to the propensity scores calculated using NCSS software with the following covariates: sex, pre-existing chronic obstructive pulmonary disease, systolic blood pressure, hemoglobin, sodium, glucose, and alcohol level. Logistic regression was used to evaluate the effects of age on the GCS score in each head AIS stratum. Results: The study population included 2081 adult patients with moderate to severe TBI. These patients were categorized into elderly (n = 847 and young adults (n = 1234: each was exclusively further divided into three groups of patients with head AIS of 3, 4, or 5. In the 162 well-balanced pairs of TBI patients with head AIS of 3, the elderly demonstrated a significantly higher GCS score than the young adults (14.1 ± 2.2 vs. 13.1 ± 3

  11. PERSONALITY CHANGES IN BRAIN INJURY

    Science.gov (United States)

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications. PMID:21677207

  12. Computed tomography-estimated specific gravity at hospital admission predicts 6-month outcome in mild-to-moderate traumatic brain injury patients admitted to the intensive care unit.

    Science.gov (United States)

    Degos, Vincent; Lescot, Thomas; Icke, Christian; Le Manach, Yannick; Fero, Katherin; Sanchez, Paola; Hadiji, Bassem; Zouaoui, Abederrezak; Boch, Anne-Laure; Abdennour, Lamine; Apfel, Christian C; Puybasset, Louis

    2012-05-01

    It is clear that patients with a severe traumatic brain injury (TBI) develop secondary, potentially lethal neurological deterioration. However, it is difficult to predict which patients with mild-to-moderate TBI (MM-TBI), even after intensive care unit (ICU) admission, will experience poor outcome at 6 months. Standard computed tomography (CT) imaging scans provide information that can be used to estimate specific gravity (eSG). We have previously demonstrated that higher eSG measurements in the standard CT reading were associated with poor outcomes after severe TBI. The aim of this study was to determine whether eSG of the intracranial content predicts 6-month outcome in MM-TBI. We analyzed admission clinical and CT scan data (including eSG) of 66 patients with MM-TBI subsequently admitted to our neurosurgical ICU. Primary outcome was defined as a Glasgow Outcome Scale score of 1 to 3 after 6 months. Discriminating power (area under the receiver operating characteristic curve [ROC-AUC], 95% confidence interval) of eSG to predict 6-month poor outcome was calculated. The correlation of eSG with the main ICU characteristics was then compared. Univariate and stepwise multivariate analyses showed an independent association between eSG and 6-month poor outcome (P = 0.001). ROC-AUC of eSG for the prediction of 6-month outcomes was 0.87 (confidence interval: 0.77-0.96). Admission eSG values were correlated with the main ICU characteristics, specifically 14-day mortality (P = 0.004), length of mechanical ventilation (P = 0.01), length of ICU stay (P = 0.045), and ICU procedures such as intracranial pressure monitoring (P eSG of routine CT scans was correlated with mortality, ICU severity, and predicted 6-month poor outcome. An external validation with studies that include the spectrum of TBI severities is warranted to confirm our results.

  13. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD)

    Science.gov (United States)

    2017-10-01

    and civilians using standard accepted instruments . • Primary outcomes: Working Memory and the Neurobehavioral Symptom Inventory. Insert a picture or...Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) PRINCIPAL INVESTIGATOR: Paul G. Harch, M.D. CONTRACTING ORGANIZATION...Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  14. Prediction of outcome after moderate and severe traumatic brain injury: External validation of the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) and Corticoid Randomisation after Significant Head injury (CRASH) prognostic models

    NARCIS (Netherlands)

    B. Roozenbeek (Bob); H.F. Lingsma (Hester); F.E. Lecky (Fiona); J. Lu (Juan); J. Weir (James); I. Butcher (Isabella); G.S. McHugh (Gillian); G.D. Murray (Gordon); P. Perel (Pablo); A.I.R. Maas (Andrew); E.W. Steyerberg (Ewout)

    2012-01-01

    textabstractObjective: The International Mission on Prognosis and Analysis of Clinical Trials and Corticoid Randomisation After Significant Head injury prognostic models predict outcome after traumatic brain injury but have not been compared in large datasets. The objective of this is study is to

  15. Traumatic Brain Injury and Aggression.

    Science.gov (United States)

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  16. Traumatic Brain Injury - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ... W XYZ List of All Topics All Traumatic Brain Injury - Multiple Languages To use the sharing features on this page, ...

  17. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning.

    Science.gov (United States)

    Rosenberg, Hannah; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick; McDonald, Skye

    2015-07-01

    Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative emotions that is vulnerable to brain injury. However, studies typically do not equate for differential difficulty between emotions. We aimed to examine whether emotion recognition deficits in people with TBI were specific to negative emotions, while equating task difficulty, and to determine whether perception deficits might be accounted for by other cognitive processes. Twenty-seven people with TBI and 28 matched control participants identified 6 basic emotions at 2 levels of intensity (a) the conventional 100% intensity and (b) "equated intensity"-that is, an intensity that yielded comparable accuracy rates across emotions in controls. (a) At 100% intensity, the TBI group was impaired in recognizing anger, fear, and disgust but not happiness, surprise, or sadness and performed worse on negative than positive emotions. (b) At equated intensity, the TBI group was poorer than controls overall but not differentially poorer in recognizing negative emotions. Although processing speed and nonverbal reasoning were associated with emotion accuracy, injury severity by itself was a unique predictor. When task difficulty is taken into account, individuals with TBI show impairment in recognizing all facial emotions. There was no evidence for a specific impairment for negative emotions or any particular emotion. Impairment was accounted for by injury severity rather than being a secondary effect of reduced neuropsychological functioning. (c) 2015 APA, all rights reserved).

  18. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  19. Brain Injury Association of America

    Science.gov (United States)

    ... com/Godspeed-Story-Pag.. Read More... BIAA Applauds Trump Administration's Opioid Emergency Declaration; Calls for More Resources ... The Brain Injury Association of America salutes the Trump Administration for directing the Department of Health and ...

  20. Social functioning after traumatic brain injury.

    Science.gov (United States)

    Temkin, Nancy R; Corrigan, John D; Dikmen, Sureyya S; Machamer, Joan

    2009-01-01

    To determine the relationship between adult-onset traumatic brain injury (TBI) and social functioning including employment, social relationships, independent living, recreation, functional status, and quality of life 6 months or longer after injury. Not applicable. Systematic review of the published, peer-reviewed literature. Not applicable. Fourteen primary and 25 secondary studies were identified that allowed comparison to controls for adults who were at least 6 months post-TBI. TBI decreases the probability of employment after injury in those who were workers before their injury, lengthens the timing of their return if they do return to work, and decreases the likelihood that they will return to the same position. Those with moderate and severe TBI are clearly affected, but there was insufficient evidence of a relationship between unemployment and mild TBI. Penetrating head injury sustained in wartime is clearly associated with increased unemployment. TBI also adversely affects leisure and recreation, social relationships, functional status, quality of life, and independent living. Although there is a dose-response relationship between severity of injury and social outcomes, there is insufficient evidence to determine at what level of severity the adverse effects are demonstrated. TBI clearly has adverse effects on social functioning for adults. While some consequences might arise from injuries to other parts of the body, those with moderate to severe TBI have more impaired functioning than do those with other injuries alone.

  1. Dysautonomia after pediatric brain injury.

    Science.gov (United States)

    Kirk, Katherine A; Shoykhet, Michael; Jeong, Jong H; Tyler-Kabara, Elizabeth C; Henderson, Maryanne J; Bell, Michael J; Fink, Ericka L

    2012-08-01

    Dysautonomia after brain injury is a diagnosis based on fever, tachypnea, hypertension, tachycardia, diaphoresis, and/or dystonia. It occurs in 8 to 33% of adults with brain injury and is associated with poor outcome. We hypothesized that children with brain injury with dysautonomia have worse outcomes and prolonged rehabilitation, and sought to determine the prevalence of dysautonomia in children and to characterize its clinical features. We developed a database of children (n = 249, 154 males, 95 females; mean [SD] age 11 years 10 months [5 y 7 mo]) with traumatic brain injury, cardiac arrest, stroke, infection of the central nervous system, or brain neoplasm admitted for rehabilitation to The Children's Institute of Pittsburgh between 2002 and 2009. Dysautonomia diagnosis, injury type, clinical signs, length of stay, and Functional Independence Measure for Children (WeeFIM) testing were extracted from medical records, and analysed for differences between groups with and without dysautonomia. Dysautonomia occurred in 13% of children with brain injury (95% confidence interval 9.3-18.0%), occurring in 10% after traumatic brain injury and 31% after cardiac arrest. The combination of hypertension, diaphoresis, and dystonia best predicted a diagnosis of dysautonomia (area under the curve = 0.92). Children with dysautonomia had longer stays, worse WeeFIM scores, and improved less on the score's motor component (all p ≤ 0.001). Dysautonomia is common in children with brain injury and is associated with prolonged rehabilitation. Prospective study and standardized diagnostic approaches are needed to maximize outcomes. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  2. Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M

    2014-11-15

    A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The

  3. Magnetic resonance imaging (MRI) in mild and moderate head injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Nakazawa, Shozo; Okada, Takurou; Kobayashi, Shiro; Yajima, Kouzo (Nippon Medical School, Tokyo (Japan)); Tsuji, Yukihide

    1991-02-01

    One hundred and fifty-nine patients admitted for mild or moderate head injuries were studied in order to establish the advantage of magnetic resonance imaging (MRI) over computerized tomography (CT) in the acute stage. One hundred and twenty-three lesions were demonstrated by MRI in 106 patients. In contrast, CT demonstrated only 74 lesions in 76 patients. The advantage of MRI over CT in the imaging of these lesions was remarkable in cases of basal skull fractures or lesions in the cerebral parenchyma, especially in case of non-hemorrhagic contusions or focal brain edemas. MRI was superior to CT in demonstrating these lesions in 64 patients of our series. However, in 6 cases of subarachnoid hemorrhage located in the Sylvian fissure, CT was superior to MRI. It was thought that lesions were less commonly demonstrated by CT in cases of mild or moderate head injuries. However, many lesions were confirmed by MRI in these cases. MRI was thus found to be far superior to CT in demonstrating intracranial lesions in mild or moderate head injuries. (author).

  4. Traumatic Brain Injury

    Science.gov (United States)

    ... not always visible on your skin. A skull fracture is when the skull cracks. Sometimes broken bones cut into your brain and cause bleeding or ... brain. They show if there is a skull fracture or bleeding, bruising, or blood ... skating, horse riding, and skiing and snowboarding avoid dangerous sports ...

  5. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  6. Neuroproteomic study of nitrated proteins in moderate traumatic brain injured rats treated with gamma glutamyl cysteine ethyl ester administration post injury: Insight into the role of glutathione elevation in nitrosative stress.

    Science.gov (United States)

    Henderson, Moses; Rice, Brittany; Sebastian, Andrea; Sullivan, Patrick G; King, Christina; Robinson, Renã A S; Reed, Tanea T

    2016-12-01

    The aims of this study are to establish a time point to determine the most beneficial time to administer GCEE post incident to reduce oxidative damage and second, by using redox proteomics, to determine if GCEE can readily suppress 3-NT modification in TBI animals. By using a moderate traumatic brain injury model with Wistar rats, it is hypothesized that the role of 3-nitrotyrosine (3-NT) formation as an intermediate will predict the involvement of protein nitration/nitrosation and oxidative damage in the brain. In this experiment, the levels of protein carbonyls, 4-hydroxynonenal, and 3-nitrotyrosine were significantly elevated in TBI injured, saline treated rats compared with those who sustained an injury and were treated with 150 mg/kg of the glutathione mimetic, GCEE. Determining the existence of elevated 3-NT levels provides insight into the relationship between the protein nitration/nitrosation and the oxidative damage, which can determine the pathogenesis and progression of specific neurological diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Defense and Veterans Brain Injury Center

    Science.gov (United States)

    ... content Search form Search Basket Contact Us DVBIC Defense and Veterans Brain Injury Center About DVBIC Leadership ... link is external) Read more DCoE news articles » Defense and Veterans Brain Injury Center Crisis Intervention (24/ ...

  8. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  9. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  10. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  11. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  12. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  13. Moderators, Mediators, and Nonspecific Predictors of Treatment Outcome in an Intervention for Everyday Task Improvement in Persons With Executive Deficits After Brain Injury

    NARCIS (Netherlands)

    Bertens, D.; Fasotti, L.; Boelen, D.H.E.; Kessels, R.P.C.

    2016-01-01

    OBJECTIVE: To identify moderators, mediators, and predictors of everyday task performance after an experimental combination of errorless learning and goal management training. DESIGN: Predictor analysis of a randomized controlled intervention trial. SETTING: Outpatient rehabilitation centers.

  14. Moderators, mediators, and nonspecific predictors of treatment outcome in an intervention for everyday task improvement in persons with executive deficits after brain injury

    NARCIS (Netherlands)

    Bertens, D.; Fasotti, L.; Boelen, D.H.E.; Kessels, R.P.C.

    2016-01-01

    OBJECTIVE: To identify moderators, mediators, and predictors of everyday task performance after an experimental combination of errorless learning and goal management training. DESIGN: Predictor analysis of a randomized controlled intervention trial. SETTING: Outpatient rehabilitation

  15. Association between the Osteoporosis Self-Assessment Tool for Asians Score and Mortality in Patients with Isolated Moderate and Severe Traumatic Brain Injury: A Propensity Score-Matched Analysis.

    Science.gov (United States)

    Rau, Cheng-Shyuan; Kuo, Pao-Jen; Wu, Shao-Chun; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2016-12-03

    Background: The purpose of this study was to use a propensity score-matched analysis to investigate the association between the Osteoporosis Self-Assessment Tool for Asians (OSTA) scores and clinical outcomes of patients with isolated moderate and severe traumatic brain injury (TBI). Methods: The study population comprised 7855 patients aged ≥40 years who were hospitalized for treatment of isolated moderate and severe TBI (an Abbreviated Injury Scale (AIS) ≥3 points only in the head and not in other regions of the body) between 1 January 2009 and 31 December 2014. Patients were categorized as high-risk (OSTA score -1; n = 5359). Two-sided Pearson's chi-squared, or Fisher's exact tests were used to compare categorical data. Unpaired Student's t -test and Mann-Whitney U test were performed to analyze normally and non-normally distributed continuous data, respectively. Propensity score-matching in a 1:1 ratio was performed using NCSS software, with adjustment for covariates. Results: Compared to low-risk patients, high- and medium-risk patients were significantly older and injured more severely. The high- and medium-risk patients had significantly higher mortality rates, longer hospital length of stay, and a higher proportion of admission to the intensive care unit than low-risk patients. Analysis of propensity score-matched patients with adjusted covariates, including gender, co-morbidity, blood alcohol concentration level, Glasgow Coma Scale score, and Injury Severity Score revealed that high- and medium-risk patients still had a 2.4-fold (odds ratio (OR), 2.4; 95% confidence interval (CI), 1.39-4.15; p = 0.001) and 1.8-fold (OR, 1.8; 95% CI, 1.19-2.86; p = 0.005) higher mortality, respectively, than low-risk patients. However, further addition of age as a covariate for the propensity score-matching demonstrated that there was no significant difference between high-risk and low-risk patients or between medium-risk and low-risk patients, implying that older age

  16. Maxillofacial injuries and traumatic brain injury--a pilot study.

    Science.gov (United States)

    Rajandram, Rama Krsna; Syed Omar, Syed Nabil; Rashdi, Muhd Fazly Nizam; Abdul Jabar, Mohd Nazimi

    2014-04-01

    Maxillofacial injuries comprising hard tissue as well as soft tissue injuries can be associated with traumatic brain injuries due to the impact of forces transmitted through the head and neck. To date, the role of maxillofacial injury on brain injury has not been properly documented with some saying it has a protective function on the brain while others opposing this idea. This cross-sectional retrospective study evaluated all patients with maxillofacial injuries. The aim of the study was to analyze the occurrence and relationship of maxillofacial injuries with traumatic brain injuries. We retrospectively studied the hospital charts of all trauma patients seen at the accident and emergency department of UKM Medical Centre from November 2010 until November 2011. A detail analysis was then carried out on all patients who satisfied the inclusion and exclusion criteria. A total of 11294 patients were classified as trauma patients in which 176 patients had facial fractures and 292 did not have facial fractures. Middle face fractures was the most common pattern of facial fracture seen. Traumatic brain injury was present in 36.7% of maxillofacial cases. A significant association was found between facial fractures and traumatic brain injury (P maxillofacial injuries with or without facial fractures are at risk of acute or delayed traumatic brain injury. All patients should always have proper radiological investigations together with a proper observation and follow-up schedule. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Traumatic brain injury-induced sleep disorders

    Directory of Open Access Journals (Sweden)

    Viola-Saltzman M

    2016-02-01

    Full Text Available Mari Viola-Saltzman, Camelia Musleh Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA Abstract: Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. Keywords: traumatic brain injury, insomnia, hypersomnia, sleep apnea, periodic limb movement disorder, fatigue

  18. Traumatic Brain Injury: Hope Through Research

    Science.gov (United States)

    ... a traumatic brain injury, marked by difficulty with perception, thinking, remembering, and concentration; during this acute stage, ... of nerve cells in the brain causing strange sensations, emotions, and behavior, or sometimes convulsions, muscle spasms, ...

  19. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  20. Brain protection by magnesium ion against radioaction brain injury

    International Nuclear Information System (INIS)

    Yang Meiyu; Wang Lili; Tu Yu

    2010-01-01

    Radiation brain injury is a serious complication among the radiotherapy of brain tumors. It is demonstrated that the protective action of magnesium ion in the brain injury from some experimental studies recent years, which is the prospective neuro protective agents overall merits. This article is summarized the causes and the variance of magnesium ion in the brain tissue afterwards the radioactive brain injury, additionally the defense mechanism of magnesium ion from the aspects of inflammation reduction, encephaledema alleviation, anti-apoptosis and improvement of nerve function. (authors)

  1. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology. 2011;44:158-164. Rochat L...well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and Pappagallo, 2005; Koob and Volkow, 2010). Physical dependence

  2. Opioid Abuse After Traumatic Brain Injury: Evaluation Using Rodet Models

    Science.gov (United States)

    2014-07-01

    impulsivity relates to compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology...mechanism for the continued misuse/abuse of opioid drugs as well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and

  3. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  4. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  5. Diagnostic efficiency of demographically corrected Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III indices in moderate to severe traumatic brain injury and lower education levels.

    Science.gov (United States)

    Walker, Alexandra J; Batchelor, Jennifer; Shores, E Arthur; Jones, Mike

    2009-11-01

    Despite the sensitivity of neuropsychological tests to educational level, improved diagnostic accuracy for demographically corrected scores has yet to be established. Diagnostic efficiency statistics of Wechsler Adult Intelligence Scale-III (WAIS-III) and Wechsler Memory Scale-III (WMS-III) indices that were corrected for education, sex, and age (demographically corrected) were compared with age corrected indices in individuals aged 16 to 75 years with moderate to severe traumatic brain injury (TBI) and 12 years or less education. TBI participants (n = 100) were consecutive referrals to an outpatient rehabilitation service and met careful selection criteria. Controls (n = 100) were obtained from the WAIS-III/WMS-III standardization sample. Demographically corrected indices did not provide higher diagnostic efficiency than age corrected indices and this result was supported by reanalysis of the TBI group against a larger and unmatched control group. Processing Speed Index provided comparable diagnostic accuracy to that of combined indices. Demographically corrected indices were associated with higher cut-scores to maximize overall classification, reflecting the upward adjustment of those scores in a lower education sample. This suggests that, in clinical practice, the test results of individuals with limited education may be more accurately interpreted with the application of demographic corrections. Diagnostic efficiency statistics are presented, and future research directions are discussed.

  6. Personality Disturbances Associated with Traumatic Brain Injury.

    Science.gov (United States)

    Prigatano, George P.

    1992-01-01

    Reviews personality disturbances associated with traumatic brain injury. Attempts to clarify terms and review empirical findings. Notes that longitudinal prospective studies that use appropriate control groups are needed. Suggests future research may benefit by considering long-term effects of early agitation following traumatic brain injury and…

  7. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury.

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-09-05

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury.

  8. Pediatric traumatic brain injury affects multisensory integration.

    Science.gov (United States)

    Königs, Marsh; Weeda, Wouter D; van Heurn, L W Ernest; Vermeulen, R Jeroen; Goslings, J Carel; Luitse, Jan S K; Poll-The, Bwee Tien; Beelen, Anita; van der Wees, Marleen; Kemps, Rachèl J J K; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap

    2017-02-01

    To investigate the impact of pediatric traumatic brain injury (TBI) on multisensory integration in relation to general neurocognitive functioning. Children with a hospital admission for TBI aged between 6 and 13 years (n = 94) were compared with children with trauma control (TC) injuries (n = 39), while differentiating between mild TBI without risk factors for complicated TBI (mild RF- ; n = 19), mild TBI with ≥1 risk factor (mild RF+ ; n = 45), and moderate/severe TBI (n = 30). We measured set-shifting performance based on visual information (visual shift condition) and set-shifting performance based on audiovisual information, requiring multisensory integration (audiovisual shift condition). Effects of TBI on set-shifting performance were traced back to task strategy (i.e., boundary separation), processing efficiency (i.e., drift rate), or extradecisional processes (i.e., nondecision time) using diffusion model analysis. General neurocognitive functioning was measured using estimated full-scale IQ (FSIQ). The TBI group showed selectively reduced performance in the audiovisual shift condition (p = .009, Cohen's d = -0.51). Follow-up analyses in the audiovisual shift condition revealed reduced performance in the mildRF+ TBI group and moderate/severe TBI group (ps ≤ .025, ds ≤ -0.61). These effects were traced back to lower drift rate (ps ≤ .048, ds ≤ -0.44), reflecting reduced multisensory integration efficiency. Notably, accuracy and drift rate in the audiovisual shift condition partially mediated the relation between TBI and FSIQ. Children with mildRF+ or moderate/severe TBI are at risk for reduced multisensory integration efficiency, possibly contributing to decreased general neurocognitive functioning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Plasticity and injury in the developing brain.

    Science.gov (United States)

    Johnston, Michael V; Ishida, Akira; Ishida, Wako Nakajima; Matsushita, Hiroko Baber; Nishimura, Akira; Tsuji, Masahiro

    2009-01-01

    The child's brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity-dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of several disorders including neurofibromatosis, tuberous sclerosis, Fragile X syndrome and Rett syndrome. Many of the same pathways involved in synaptic plasticity, such as glutamate-mediated excitation, can also mediate brain injury when the brain is exposed to stress or energy failure such as hypoxia-ischemia. Recent evidence indicates that cell death pathways activated by injury differ between males and females. This new information about the molecular pathways involved in brain plasticity and injury are leading to insights that will provide better therapies for pediatric neurological disorders.

  10. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  11. [Automobile driving after a brain injury].

    Science.gov (United States)

    Mosberg, A; Østen, P E; Schanke, A K

    2000-11-20

    Little is known about driving fitness after brain damage. The present study describes 62 brain injured patients, 36 with cerebral vascular accidents, 15 with traumatic brain injuries, and 11 with other neurological diseases, mean age 50 years, who after thorough assessment had been found fit enough for driving a car. 15 months later they were sent a questionnaire about their driving behaviour and skills. A higher number of traffic incidents were found after brain injury, but the difference was not significant. Patients with traumatic brain injury had a significantly higher number of traffic incidents post-injury than patients with stroke. A majority of those involved in incidents were young males with traumatic brain injury, who had deficits in cognitive executive functions. Patients with traumatic brain injuries seem to need special attention when assessed for driving. Time to follow-up is too short for the results to be conclusive for the whole material of brain-injured patients. Further studies should be conducted.

  12. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Traumatic brain injury and forensic neuropsychology.

    Science.gov (United States)

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  14. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  15. Dysautonomia after severe traumatic brain injury.

    NARCIS (Netherlands)

    Hendricks, H.T.; Heeren, J.H.M.; Vos, P.E.

    2010-01-01

    BACKGROUND: Dysautonomia after traumatic brain injury (TBI) is characterized by episodes of increased heart rate, respiratory rate, temperature, blood pressure, muscle tone, decorticate or decerebrate posturing, and profuse sweating. This study addresses the incidence of dysautonomia after severe

  16. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  17. Negative Neuroplasticity in Chronic Traumatic Brain Injury and Implications for Neurorehabilitation

    OpenAIRE

    Tomaszczyk, Jennifer C.; Green, Nathaniel L.; Frasca, Diana; Colella, Brenda; Turner, Gary R.; Christensen, Bruce K.; Green, Robin E. A.

    2014-01-01

    Based on growing findings of brain volume loss and deleterious white matter alterations during the chronic stages of injury, researchers posit that moderate-severe traumatic brain injury (TBI) may act to “age” the brain by reducing reserve capacity and inducing neurodegeneration. Evidence that these changes correlate with poorer cognitive and functional outcomes corroborates this progressive characterization of chronic TBI. Borrowing from a framework developed to explain cognitive aging (Mahn...

  18. Dementia resulting from traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Joana Ramalho

    Full Text Available ABSTRACT Traumatic brain injury (TBI represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.

  19. Stereotypic movement disorder after acquired brain injury.

    Science.gov (United States)

    McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A

    2002-05-01

    Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.

  20. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  1. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  2. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... child is classified as having traumatic brain injury whose brain injuries are caused by an external... adversely affect educational performance. The term includes children with open or closed head injuries, but does not include children with brain injuries that are congenital or degenerative or caused by birth...

  3. Lipid Peroxidation in Brain Injury (Experimental Study

    Directory of Open Access Journals (Sweden)

    V. N. Yelsky

    2009-01-01

    Full Text Available Objective: to study the general mechanisms responsible for the formation and stepwise development of the endogenous intoxication syndrome in the injury. Material and methods. One hundred and thirty animals with experimental brain injury (a blow upon the calvarium delivered by a free weight falling were examined to study the pro- and antioxidant systems, the enzymatic activity in the blood and brain tissue homogenates; the markers of endogenous intoxication, such as medium-weight molecules, were determined. According to the neurological deficit scale developed by A. Ya. Yevtushenko (1989, the animals were divided into 2 groups: 1 those with a good (compensated posttraumatic course and 2 those with a poor (decompensated one. A package of the applied statistical programs «STADIA.6.1/prof» and «STATISTIKA» was employed. Results. Brain injury was used as an example to show how the posttraumatic endogenous intoxication syndrome developed. The latter developed on the cascade principle with the stepwise involvement of the homeostatic systems and with the more aggravated injury. The syndrome is determined by the initiation of processes of lipid peroxidation with the accumulation of its products and by the exhausted spares of antioxidant systems. This leads to hyperenzymemia (the enhanced activity of cathepsin D, acid phosphatase in the brain tissues and blood and to the blood accumulation of toxic substances (medium-weight molecules (toxemia. Key words: posttraumatic endogenous intoxication syndrome, lipid peroxidation, brain injury.

  4. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  5. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  6. Traumatic Brain Injury and Sleep Disorders

    OpenAIRE

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. T...

  7. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study ... All moderate and severe head injury patients admitted to Groote Schuur Hospital over a 3-month period were studied prospectively. Data were obtained from ...

  8. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  9. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  10. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  11. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  12. Plasticity and Injury in the Developing Brain

    OpenAIRE

    JOHNSTON, Michael V.; ISHIDA, Akira; ISHIDA, Wako Nakajima; MATSUSHITA, Hiroko Baber; NISHIMURA, Akira; TSUJI, Masahiro

    2008-01-01

    The child’s brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of severa...

  13. Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2010-01-01

    directly to the brain after craniotomy 154 or 240 kPa Unknown 2.8 or 20 kPa 40 kPa 1 or 10 MPa Redistribution of phosphorylated neurofilament H...m a: 1𔃻) .... !l ~ Blast-induced Mild Traumatic Brain Injury 767 colleagues55 compared neuropsychological test results in a group of primarily...patterns between blast and non-blast-injured subjects, thus providing no support at the neuropsychological level that blast is different. However

  14. Misconceptions about traumatic brain injury among educators: has anything changed over the last 20 years?

    Science.gov (United States)

    McKinlay, Audrey; Buck, Kimberly

    2018-01-28

    To examine educational professionals' knowledge and understanding of childhood brain injury. Educational professionals from all schools in the state of Victoria, Australia, were invited to participate in an online cross-sectional survey consisting of 20 questions assessing knowledge of concussion and 30 questions examining knowledge of traumatic brain injury (n = 364). On average, participants correctly answered 16/20 (80%) questions about concussion and 24.3/30 (81%) about traumatic brain injuries. Participants who had previously taught a child with a brain injury demonstrated greater knowledge of traumatic brain injury, but not concussion, than those who had not. There were no differences in knowledge of concussion or brain injury between participants who had and had not attended a briefing session about concussion. Misconceptions displayed by educators predominantly related to the ongoing effects and impact of both concussion and traumatic brain injury, including effects on emotion, cognition, and social behaviour, as well as the increased risk of multiple injuries following an initial brain injury. When participants' responses to the brain injury questionnaire were compared with results reported by Farmer and Johnson-Gerard in 1997 using the same questionnaire, many of the same misconceptions were evident in the two samples of educational professionals. Although educators demonstrated reasonable understanding of concussion and brain injury, some gaps in knowledge were apparent. Providing educational professionals with further training and professional development regarding childhood brain injuries would enhance their preparedness to manage students with these injuries in the school environment. Implications for Rehabilitation Mild to moderate brain injuries are relatively common among school-aged children, and educators may be required to manage and support students with these injuries in the school environment. This study shows that educators generally

  15. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  16. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  17. TRAUMATIC BRAIN INJURY IN PEDIATRIC AGE GROUP

    Directory of Open Access Journals (Sweden)

    Hayagriva

    2015-11-01

    Full Text Available Traumatic brain injury is one of the major causes of morbidity and mortality in children. The anatomical features, physiological response to injury, neuronal development, and low myelination in children cause different clinical features compared to the adult traumatic brain injury. Our aim is to study the incidence, predisposing factors, clinical presentations, and outcome in pediatric head injuries. The patients included in this retrospective study are under the age of 14 years admitted in the Neurosurgery Department of King George Hospital, Visakhapatnam, which is a tertiary care centre. The study period is two years’ duration from 1.1.2013 to 31.12.2014. Data collected on the basis of history, physical examination, base line investigations, and the plain CT scan is all cases. The pediatric patients were 226 in total 1643 case of head injury cases. There were 64.6% (n=146 males and 35.4% (n=80 females. The age ranged from 12 days to 14 years. Fall from height was the commonest cause of head injury found in 48.6% (n=110 cases, road traffic accidents (RTA in 34.5% (n=78 and other causes 16.8% (n=38; 49 (21.68% patients had associated injuries. At 55.75% (n=126 cases mild head injury with GCS 13-15 was present and severe head injury with GCS less than 8 in 29 (12.8% patients. The 188 patients are treated conservatively, 38 patients underwent different neurosurgical procedures in which 5 patients died. CONCLUSION: Head injury in pediatric age group carries high risk of morbidity and mortality. Good outcome achieved by early diagnosis and referral from primary care centers to tertiary care centers.

  18. No impact of early intervention on late outcome after minimal, mild and moderate head injury

    DEFF Research Database (Denmark)

    Heskestad, Ben; Waterloo, Knut; Baardsen, Roald

    2010-01-01

    To evaluate the effect of an educational intervention on outcome after minimal, mild and moderate head injury.......To evaluate the effect of an educational intervention on outcome after minimal, mild and moderate head injury....

  19. [Acoustic thermometry of the patient brain with traumatic brain injury].

    Science.gov (United States)

    Anosov, A A; Balashov, I S; Beliaev, R V; Vilkov, V A; Garskov, R V; Kazanskiĭ, A S; Mansfel'd, A D; Shcherbakov, M I

    2014-01-01

    Non-invasive deep brain acoustic thermometry is carried out for two patients at Burdenko Neurosurgery Institute. This method is based on the measurements of the own thermal acoustic radiation of the investigated object. These two patients have got the brain injury. Some of their skull bones are absent. Infrared thermometry was also used to measure the surface temperature of the forehead skin. On the basis of the experimental data the temperatures deep within the brain were reconstructed. The values for the two patients are equal to 37.3 0.7 and 37.0 0.3 degrees C.

  20. Prognostic factors in childhood-acquired brain injury.

    Science.gov (United States)

    Shaklai, Sharon; Peretz Fish, Relly; Simantov, M; Groswasser, Z

    2018-01-01

    A long-term follow-up study comparing children after anoxic brain injury (AnBI) with those after traumatic brain injury (TBI) was conducted, and prognostic factors were mapped. A prospective historical study following long-term functional outcome after childhood brain injury was conducted in two phases. The first phase included patients suffering from moderate-severe TBI. The second phase assessed children after AnBI, and the results were compared. Functional outcome was recorded and factors influencing prognosis were outlined. On admission vegetative state (VS) was twice as prevalent in the AnBI subgroup. Approximately 90% of children with TBI and 60% of patients with AnBI gained independency in activities of daily living (ADL) and mobility. Long-term positive outcome, i.e., return to school and open-market employment, were higher in patients with TBI when compared with AnBI (61% and 48.1%, respectively). Significant outcome-predicting factors were VS at admission to rehabilitation, length of loss of consciousness (LOC) up to 11 days and functional independence measure (FIM) score at admission and discharge. Aetiology was not found to be a predicting factor. Duration of unconsciousness is the main long-term negative prognostic outcome factor. Anoxic brain damage, associated with longer periods of unconsciousness also heralds a less favourable outcome.

  1. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  2. Traumatic Brain Injury as a Disorder of Brain Connectivity

    Science.gov (United States)

    Hayes, Jasmeet P.; Bigler, Erin D.; Verfaellie, Mieke

    2017-01-01

    Objectives Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition. Methods We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury. Results The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes. Conclusions TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. PMID:26888612

  3. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  4. Interviewing Children with Acquired Brain Injury (ABI)

    Science.gov (United States)

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  5. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    , assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...

  6. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  7. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  8. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  9. Headache after pediatric traumatic brain injury: a cohort study.

    Science.gov (United States)

    Blume, Heidi K; Vavilala, Monica S; Jaffe, Kenneth M; Koepsell, Thomas D; Wang, Jin; Temkin, Nancy; Durbin, Dennis; Dorsch, Andrea; Rivara, Frederick P

    2012-01-01

    To determine the prevalence of headache 3 and 12 months after pediatric traumatic brain injury (TBI). This is a prospective cohort study of children ages 5 to 17 years in which we analyzed the prevalence of headache 3 and 12 months after mild TBI (mTBI; n = 402) and moderate/severe TBI (n = 60) compared with controls with arm injury (AI; n = 122). The prevalence of headache 3 months after injury was significantly higher after mTBI than after AI overall (43% vs 26%, relative risk [RR]: 1.7 [95% confidence interval (CI): 1.2-2.3]), in adolescents (13-17 years; 46% vs 25%, RR: 1.8 [95% CI: 1.1-3.1]), and in girls (59% vs 24%, RR: 2.4 [95% CI: 1.4-4.2]). The prevalence of headache at 3 months was also higher after moderate/severe TBI than AI in younger children (5-12 years; 60% vs 27%; RR: 2.0 [95% CI: 1.2-3.4]). Twelve months after injury, TBI was not associated with a significantly increased frequency of headache. However, girls with mTBI reported serious headache (≥ 5 of 10 pain scale rating) more often than controls (27% vs 10%, RR: 2.2 [95% CI: 0.9-5.6]). Pediatric TBI is associated with headache. A substantial number of children suffer from headaches months after their head injury. The prevalence of headache during the year after injury is related to injury severity, time after injury, age, and gender. Girls and adolescents appear to be at highest risk of headache in the months after TBI.

  10. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  11. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level......PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... improvement. Higher initial level of symptoms of depression was seen in female relatives. Higher initial level of anxiety was associated with younger patient age, lower level of function and consciousness in the patient and the relative being female or the spouse. CONCLUSION: Future research and interventions...

  12. Resting network plasticity following brain injury.

    Directory of Open Access Journals (Sweden)

    Toru Nakamura

    Full Text Available The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months to 6 months post injury. The findings here indicate that, during recovery from injury, the strength but not the number of network connections diminishes, so that over the course of recovery, the network begins to approximate what is observed in healthy adults. These are the first data examining functional connectivity in a disrupted neural system during recovery.

  13. Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Stuart H. Friess

    2012-01-01

    Full Text Available While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury.

  14. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  15. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    Science.gov (United States)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (pquality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  16. Heterogeneity of brain lesions in pediatric traumatic brain injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Petrie, Joann; Farrer, Thomas J; Dennis, Maureen; Simic, Nevena; Taylor, H Gerry; Rubin, Kenneth H; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Owen Yeates, Keith

    2013-07-01

    Magnetic resonance imaging (MRI) provides a method to identify and quantify abnormalities resulting from traumatic brain injury (TBI). MRI abnormalities in children with TBI have not been fully characterized according to the frequency, location, and quantitative measurement of a range of pathologies critical for studies of neuropsychological outcome. Here, we report MRI findings from a large, multicenter study of childhood TBI, the Social Outcomes of Brain Injury in Kids (SOBIK) study, which compared qualitative and quantitative neuroimaging findings in 72 children with complicated mild-to-severe TBI to 52 children with orthopedic injury (OI). Qualitative analyses of MRI scans coded white matter hyperintensities (WMHs), hemosiderin deposits reflecting prior hemorrhagic lesions, regions of encephalomalacia and/or atrophy, and corpus callosum atrophy and traumatic shear lesions. Two automated quantitative analyses were conducted: (a) FreeSurfer methods computed volumes for total brain, white matter (WM), gray matter (GM), corpus callosum, ventricles, amygdala, hippocampus, basal ganglia, and thalamus along with a ventricle-to-brain ratio (VBR); and (b) voxel-based morphometry (VBM) to identify WM, GM, and cerebrospinal fluid. We also examined performance on the Processing Speed Index (PSI) from the Wechsler Intelligence Scale for Children, Fourth Edition, in relation to the above-mentioned neuroimaging variables. WMHs, hemosiderin deposits, and focal areas of encephalomalacia or atrophy were common in children with TBI, were related to injury severity, and were mostly observed within a frontotemporal distribution. Quantitative analyses showed volumetric changes related to injury severity, especially ventricular enlargement and reduced corpus callosum volume. VBM demonstrated similar findings, but, in addition, GM reductions in the inferior frontal, basal forebrain region, especially in the severe TBI group. The complicated mild TBI group showed few differences from

  17. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  18. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  19. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  20. Early Neuropsychological Tests as Correlates of Productivity 1 Year after Traumatic Brain Injury: A Preliminary Matched Case-Control Study

    Science.gov (United States)

    Ryu, Won Hyung A.; Cullen, Nora K.; Bayley, Mark T.

    2010-01-01

    This study explored the relative strength of five neuropsychological tests in correlating with productivity 1 year after traumatic brain injury (TBI). Six moderate-to-severe TBI patients who returned to work at 1-year post-injury were matched with six controls who were unemployed after 1 year based on age, severity of injury, and Functional…

  1. Astrocyte roles in traumatic brain injury

    Science.gov (United States)

    Burda, Joshua E.; Bernstein, Alexander M.; Sofroniew, Michael V.

    2015-01-01

    Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered. PMID:25828533

  2. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  3. Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves

    Directory of Open Access Journals (Sweden)

    Xin-ze He

    2017-01-01

    Full Text Available Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was (or was not induced. After sciatic nerve injury, tacrolimus, an immunosuppressant, was (or was not intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus exhibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury.

  4. Therapeutic irradiation and brain injury

    International Nuclear Information System (INIS)

    Sheline, G.E.; Wara, W.M.; Smith, V.

    1980-01-01

    This is a review and reanalysis of the literature on adverse effects of therapeutic irradiation on the brain. Reactions have been grouped and considered according to time of appearance. The emphasis of the analysis is on delayed reactions, especially those that occur from a few months to several years after irradiation. All dose specifications were converted into equivalent megavoltage rads. The data were analyzed in terms of total dose, overall treatment time and number of treatment fractions. Also discussed were acute radiation reactions, early delayed radiation reactions, somnolence and leukoencephalopathy post-irradiation/chemotherapy and combined effects of radiation and chemotherapy

  5. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  6. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...

  7. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  8. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  9. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    and reactive astrocytes surrounding the lesion site. In addition, expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and metallothionein-I+II (MT-I+II) were increased in these cells, while the brain-specific MT-III was only moderately upregulated. In IL-6-/- mice, however, the response......Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...... response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages...

  10. Cognitive sequelae in survivors of traumatic frontal lobe injury: comparison between mild and moderate injury effects

    International Nuclear Information System (INIS)

    Anjum, A.; Ahmad, W.; Tahir, M. A.

    2017-01-01

    Objective: To determine the frequency of cognitive deficits in the survivors of traumatic frontal lobe injury of mild to moderate severity. Study Design: Mix method study. Place and Duration of Study: Nishter Hospital Multan, Bahawal Victoria Hospital, Bahawalpur and Sheikh Zaid Hospital Rahim Yar Khan, from Sep 2010 to Jun 2011. Material and Methods: The sample consisted of 55 participants. Fifteen of these were taken from healthy population with the age range of 20-30 years (Mean = 25.7 ± SD = 4.6) and 40 participants were medically documented patients of frontal lobe injury of mild (20) to moderate (20) severity. The age range of mild traumatic frontal lobe injury patients was 20-32 years (Mean= 26.5 ± SD = 4.9). The age range of moderate severity patients was also 20-32 years (Mean= 26.4 ± SD = 5.0). Wechsler Adult Intelligence Scale revised and case history interview were administered to determine cognitive deficits following traumatic frontal lobe injury. Results: Statistical test, one way analysis was used to compare the performance of all these three (control, mild and moderate) groups. Results of present study reflected that cognitive deficits like memory deficits, language problems, trouble in concentrating and difficulty in planning are the major consequences of traumatic frontal lobe injury. Conclusion: To conclude, frontal lobe injury patients not only showed poor performance in clinically-driven structured and comprehensive memory tests when they were compared with healthy people but their performance also varied according to the severity of injury. (author)

  11. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  12. Cognitive retraining in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Diya Nangia

    2012-04-01

    Full Text Available Traumatic brain injury (TBI is often associated with cognitive impairments. The psychological sequelae of cognitive deficits and emotional problems contribute significantly to the disability in the patient and to the distress of the family. The study aimed to develop a cognitive retraining programme to enhance cognitive functioning in TBI. 25 years old male presenting with history of left temporal hemorrhagic contusion with cerebral edema underwent 2 months of a cognitive retaining programme, addressing executive functions impairment. A single case experimental design with pre- and post-assessment was adopted to evaluate changes in the patient in response to the intervention. Improvements were found in cognitive functioning, and in symptom reduction and behaviour. The 2 months hospital based cognitive retraining programme was found to be efficacious in ameliorating symptoms and improving cognitive, social and occupational functioning post traumatic brain injury.

  13. The neuroethics and neurolaw of brain injury.

    Science.gov (United States)

    Aggarwal, Neil Krishan; Ford, Elizabeth

    2013-01-01

    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J

    2014-01-01

    OBJECT: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches...... in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome. METHODS: Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were...... enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic...

  15. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24 Jun 2015 2. REPORT TYPE Journal...transport, intracranial pressure, monitoring, hypoxia, hypotension 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...of productivity8 Previous studies suggest that secondary insults such as hypoxia and hypotension may worsen a brain injury.9-’ 9 Recent recognition

  16. Traumatic Brain Injury: Caregivers’ Problems and Needs

    OpenAIRE

    syed tajjudin syed hassan; WF Khaw; AR Rosna; J Husna

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information,...

  17. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  18. Misconceptions about brain injury in Turkey.

    Science.gov (United States)

    Maviş, Ilknur; Akyıldız, Didem

    2013-01-01

    The aim of the study is to provide information about the knowledge and beliefs that people have regarding brain injury and to examine if the misbeliefs of adults in Turkey are similar to the misconceptions previously reported in the US and UK. Two hundred and fifty-three respondents answered questions about general brain injury knowledge, coma and unconsciousness, memory deficits and brain injury recovery in a questionnaire. Chi-square analyses revealed significant differences based on age, education and gender. Significant differences were determined between Turkish and US participants and Turkish and UK participants by Student t-test analysis. Findings were compared with those reported by previous researchers from the UK and US who administered the same questionnaire. A close examination of the survey makes it clear that the percentages for the 'general knowledge on BI' were found to be higher. Participants' levels of accurate information on coma and unconsciousness and memory deficits ranked secondly and thirdly, respectively. The recovery process paled in significance, as it did not feature very highly. The general public should be informed about the seriousness and pervasiveness of the problems related to consequences of BI before taking decisions concerning language or cognitive therapies for their victims. Healthcare professionals should take roles in advocating reliable publicity primarily by dispelling misconceptions about BI.

  19. Emerging Therapies in Traumatic Brain Injury

    Science.gov (United States)

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  20. CONSEQUENCES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN AND THEIR TREATMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zavadenko

    2006-01-01

    Full Text Available Traumatic brain injury is one of the major causes for invalidization in children. The research purpose is an integrated study of consequences of severe and moderate closed traumatic brain injury in children and evaluation of their dynamics during therapy by means of a no tropic medication — cerebrolysin (Ebewe Pharma, Austria. The total of 283 children aged from 4 to 14 years were examined in the longaterm period of severe and moderate closed traumatic brain injury, from 6 months to 4 years after injury. Their neurological status was characterized by nona specific focal symptoms along with evident motor coordination disturbances, elements of dynamic and staticoloa comotory ataxia, reduction in execution speed of serial movements. Statistically significant differences with ageamatched controls were confirmed for measures of acousticaverbal memory and sustained attention. Posttraumatic epilepsy developed in 16 (5,7% patients with the onset of secondarily generalized seizures in 4–12 months following the injury. Effectiveness of the no tropic medication was evaluated in 60 patients aged from 7 to 12 years, who were distributed into 2 equal groups. The research has confirmed a positive effect of no tropic medication in the treatment of traumatic brain injury consequences manifested in the regression of headaches, fatigue, motor coordination disturbances along with improvements of memory, attention, intellectual performance rates, as well as EEG characteristics.Key words: traumatic brain injury, consequences, children, therapy, nootropic medications.

  1. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2015-11-01

    Restoration of function after brain damage using a neural prosthesis ,” Proc. Natl. Acad. Sci. USA (PNAS), vol. 110, no. 52, pp. 21177-21182...of function after brain damage using a neural prosthesis David J. Guggenmosa,b,1, Meysam Azinc,2, Scott Barbaya,b, Jonathan D. Mahnkend, Caleb Dunhama...can be used effectively to bridge damaged neural pathways functionally and promote recovery after brain injury. brain–machine–brain interface | neural

  2. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  3. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  4. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  5. Mental state attributions and diffusion tensor imaging after traumatic brain injury in children.

    Science.gov (United States)

    Levin, Harvey S; Wilde, Elisabeth A; Hanten, Gerri; Li, Xiaoqi; Chu, Zili David; Vásquez, Ana C; Cook, Lori; Yallampalli, Ragini; Hunter, Jill V

    2011-01-01

    We studied social cognition in 49 children 3 months after moderate to severe traumatic brain injury (TBI) and in 39 children with orthopedic injury (OI). Children underwent diffusion tensor imaging (DTI) and a mental attribution task showing two triangles. Mental state attributions increased when one triangle reacted to intentions of the other, but less so in the TBI than the OI group. DTI identified injury to white matter microstructure in the TBI group, but the relation of DTI to mental attributions did not differ between groups. Moderate to severe TBI produces white matter disconnections that may affect social cognitive networks.

  6. In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography.

    Science.gov (United States)

    Papa, Linda; Mittal, Manoj K; Ramirez, Jose; Ramia, Michelle; Kirby, Sara; Silvestri, Salvatore; Giordano, Philip; Weber, Kurt; Braga, Carolina F; Tan, Ciara N; Ameli, Neema J; Lopez, Marco; Zonfrillo, Mark

    2016-01-01

    In adults, glial fibrillary acidic protein (GFAP) has been shown to out-perform S100β in detecting intracranial lesions on computed tomography (CT) in mild traumatic brain injury (TBI). This study examined the ability of GFAP and S100β to detect intracranial lesions on CT in children and youth involved in trauma. This prospective cohort study enrolled a convenience sample of children and youth at two pediatric and one adult Level 1 trauma centers following trauma, including both those with and without head trauma. Serum samples were obtained within 6 h of injury. The primary outcome was the presence of traumatic intracranial lesions on CT scan. There were 155 pediatric trauma patients enrolled, 114 (74%) had head trauma and 41 (26%) had no head trauma. Out of the 92 patients who had a head CT, eight (9%) had intracranial lesions. The area under the receiver operating characteristic curve (AUC) for distinguishing head trauma from no head trauma for GFAP was 0.84 (0.77-0.91) and for S100β was 0.64 (0.55-0.74; p<0.001). Similarly, the AUC for predicting intracranial lesions on CT for GFAP was 0.85 (0.72-0.98) versus 0.67 (0.50-0.85) for S100β (p=0.013). Additionally, we assessed the performance of GFAP and S100β in predicting intracranial lesions in children ages 10 years or younger and found the AUC for GFAP was 0.96 (95% confidence interval [CI] 0.86-1.00) and for S100β was 0.72 (0.36-1.00). In children younger than 5 years old, the AUC for GFAP was 1.00 (95% CI 0.99-1.00) and for S100β 0.62 (0.15-1.00). In this population with mild TBI, GFAP out-performed S100β in detecting head trauma and predicting intracranial lesions on head CT. This study is among the first published to date to prospectively compare these two biomarkers in children and youth with mild TBI.

  7. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  8. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Science.gov (United States)

    2012-12-01

    Traumatic brain injury: football , warfare, and long- term effects. N. Engl. J. Med. 363, 1293–1296. Elder, G. A., Dorr, N. P., De Gasperi, R., Gama Sosa, M. A...al. (2012). Intranasal administration of nerve growth fac - tor ameliorate beta-amyloid deposi- tion after traumatic brain injury in rats. Brain Res

  9. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  10. Subjective complaints after acquired brain injury: presentation of the Brain Injury Complaint Questionnaire (BICoQ).

    Science.gov (United States)

    Vallat-Azouvi, Claire; Paillat, Cyrille; Bercovici, Stéphanie; Morin, Bénédicte; Paquereau, Julie; Charanton, James; Ghout, Idir; Azouvi, Philippe

    2018-04-01

    The objective of the present study was to present a new complaint questionnaire designed to assess a wide range of difficulties commonly reported by patients with acquired brain injury. Patients (n =  619) had been referred to a community re-entry service at a chronic stage after brain injury, mainly traumatic brain injury (TBI). The Brain Injury Complaint Questionnaire (BICoQ) includes 25 questions in the following domains: cognition, behavior, fatigue and sleep, mood, and somatic problems. A self and a proxy questionnaire were given. An additional question was given to the relative, about the patient's awareness of his difficulties. The questionnaires had a good internal coherence, as measured with Cronbach's alpha. The most frequent complaints were, in decreasing order, mental slowness, memory troubles, fatigue, concentration difficulties, anxiety, and dual tasking problems. Principal component analysis with varimax rotation yielded six underlying factors explaining 50.5% of total variance: somatic concerns, cognition, and lack of drive, lack of control, psycholinguistic disorders, mood, and mental fatigue/slowness. About 52% of patients reported fewer complaints than their proxy, suggesting lack of awareness. The total complaint scores were not significantly correlated with any injury severity measure, but were significantly correlated with disability and poorer quality of life (Note: only factor 2 [cognition/lack of drive] was significantly related to disability.) The BICoQ is a simple scale that can be used in addition to traditional clinical and cognitive assessment measures, and to assess awareness of everyday life problems. © 2017 Wiley Periodicals, Inc.

  11. Risk Factors for Institutionalization After Traumatic Brain Injury Inpatient Rehabilitation.

    Science.gov (United States)

    Eum, Regina S; Brown, Allen W; Watanabe, Thomas K; Zasler, Nathan D; Goldstein, Richard; Seel, Ronald T; Roth, Elliot J; Zafonte, Ross D; Glenn, Mel B

    To create a profile of individuals with traumatic brain injury (TBI) who received inpatient rehabilitation and were discharged to an institutional setting using characteristics measured at rehabilitation discharge. The Traumatic Brain Injury Model Systems National Database is a prospective, multicenter, longitudinal database for people with moderate to severe TBI. We analyzed data for participants enrolled from January 2002 to June 2012 who had lived in a private residence before TBI. This cross-sectional study used logistic regression analyses to identify sociodemographic factors, lengths of stay, and cognitive and physical functioning levels that differentiated patients discharged to institutional versus private settings. Older age, living alone before TBI, and lower levels of function at rehabilitation discharge (independence in locomotion, bladder management, comprehension, and social interaction) were significantly associated with higher institutionalization rates and provided the best models identifying factors associated with institutionalization. Institutionalization was also associated with decreased independence in bed-chair-wheelchair transfers and increased duration of posttraumatic amnesia. Individuals institutionalized after inpatient rehabilitation for TBI were older, lived alone before injury, had longer posttraumatic amnesia durations, and were less independent in specific functional characteristics. Research evaluating the effect of increasing postdischarge support and improving treatment effectiveness in these functional areas is recommended.

  12. Time dysperception perspective for acquired brain injury.

    Science.gov (United States)

    Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Danese, Emanuela; Caltagirone, Carlo; Spalletta, Gianfranco

    2014-01-13

    Distortions of time perception are presented by a number of neuropsychiatric illnesses. Here we survey timing abilities in clinical populations with focal lesions in key brain structures recently implicated in human studies of timing. We also review timing performance in amnesic and traumatic brain injured patients in order to identify the nature of specific timing disorders in different brain damaged populations. We purposely analyzed the complex relationship between both cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will clarify whether time distortions are a manifestation of, or a mechanism for, cognitive and behavioral symptoms of neuropsychiatric disorders.

  13. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    Science.gov (United States)

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P sleep symptoms (P Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  15. Traumatic Brain Injury: Are We Conducting Enough Resarch

    Science.gov (United States)

    2017-04-17

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 7 APR 2017 1. Your paper, entitled Traumatic Brain Injury: Are We Conducting Enough...review and approval.) NA - Pubmed searches w ere the only source of data 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Traumatic Brain Injury...Traumatic Brain Injury: Are We Conducting Enough Research? Capt Mariya Gusman MD, Lt Col Jonathan A Sosnov MD, Jeffrey T Howard PhD Background

  16. Hypersexuality or altered sexual preference following brain injury.

    Science.gov (United States)

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  17. Hypersexuality or altered sexual preference following brain injury.

    OpenAIRE

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury.

  18. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  20. Fear of falling after brain injury.

    Science.gov (United States)

    Collicutt McGrath, Joanna

    2008-07-01

    To investigate the prevalence and nature of fear of falling in a sample of people with severe acquired brain injury. A descriptive study. A regional inpatient neurological rehabilitation unit. One hundred and five adults with acquired brain injury of mixed aetiology. All 105 participants were rated by observers who were asked to judge the degree to which fear behaviour interfered with rehabilitation therapy (activity limitation). Eighty-two participants also rated themselves. They were asked to report the degree of distress caused by fear. Both participants and observers were asked to describe the focus of any reported fear. Two stepwise logistic regression analyses were carried out to identify variables that predicted fear giving rise to significant activity limitation and fear giving rise to significant subjective distress. Self and observer rating scales designed and constructed specifically for the study. Raters reported significant fear-related activity limitation in 12-15% of participants. Significant fear-related subjective distress was reported by 40% of participants. Fear of falling, fear of physical harm and fear of not making sufficient rehabilitation progress dominated the reports of both observers and participants. The variables predicting significant activity limitation were premorbid alcohol misuse, low functional ability and the occurrence of a fall since onset. The variables predicting significant subjective distress were poor motor coordination and organization, and good verbal comprehension. Fear of falling is a clinically significant phenomenon in younger adults recovering from severe acquired brain injury. Fear sufficient to cause high degrees of subjective distress was often not evident to observers. Proactive questioning about fear of falling is therefore advisable when working clinically with this group.

  1. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  2. [Injuries to the upper cervical medulla in severe brain injuries].

    Science.gov (United States)

    Woischneck, D; Kapapa, T; Grimm, C; Skalej, M; Schmitz, B; Blumstein, N; Firsching, R

    2011-10-01

    Cranial magnetic resonance imaging (MRI) was performed in 250 patients who had been unconscious post-trauma for at least 24 hours. The frequency and the characteristics of injuries to the upper cervical myelon were determined. Between 1996 and 2009, MRI was carried out within 8 days of trauma. No lesions of the upper cervical medulla were found without accompanying damage to the medulla oblongata. Two groups were found to have a lesion in the upper cervical myelon. (i) In 3.2 % of the patients in a state of deep coma MRI revealed lesions in the entire brain stem. These died without waking from coma. (ii) 2 % of the patients were found to have additional damage to the distal medulla oblongata. These victims of high-speed traumas awoke from coma after 2-3 days. They revealed frontal contusions of the brain and traumatic subarachnoidal hemorrhages. Injuries to the bony upper cervical spine and/or the skull base were frequent. Four of them died, one patient survived with severe disabilities. Two types of lesions involving the upper cervical myelon could be differentiated, both of which occur only in association with lesions in the medulla oblongata. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Integrative Medicine in Traumatic Brain Injury.

    Science.gov (United States)

    Drake, David F; Hudak, Anne M; Robbins, William

    2017-05-01

    Complementary and alternative medicine (CAM) is a group of diverse medical and health care systems, practices, and products that are not presently considered to be a part of conventional medicine. Integrative medicine combines treatment with conventional medical practices and elements of CAM in which there is strong evidence in efficacy and safety. Although there is growing interest in the integrative medical approach in treating the patient population with traumatic brain injury, there is a paucity in high-quality clinical trials supporting its use. This article reviews the background and current clinical data concerning some of the more common CAM interventions. Published by Elsevier Inc.

  4. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  5. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  6. Investigation of Prognostic Ability of Novel Imaging Markers for Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2011-10-01

    Imaging Markers in the Assessment of Traumatic Brain Injury Patients 3 * Select Type of Submission : New IRB Application 4 Original Version #: ID...naturally occurring radioactivity, electroretinography, ultrasound , diagnostic infrared imaging , doppler blood flow, and echocardiography; (e) moderate...exercise, muscular strength testing, body composition assessment , and flexibility testing where appropriate given the age, weight, and health of the

  7. Interpersonal Relatedness and Psychological Functioning Following Traumatic Brain Injury: Implications for Marital and Family Therapists

    Science.gov (United States)

    Bay, Esther H.; Blow, Adrian J.; Yan, Xie

    2012-01-01

    Recovery from a mild-to-moderate traumatic brain injury (TBI) is a challenging process for injured persons and their families. Guided by attachment theory, we investigated whether relationship conflict, social support, or sense of belonging were associated with psychological functioning. Community-dwelling persons with TBI (N = 75) and their…

  8. Risk factors and outcomes associated with post-traumatic headache after mild traumatic brain injury

    NARCIS (Netherlands)

    Yilmaz, Tansel; Roks, Gerwin; de Koning, Myrthe; Scheenen, Myrthe; van der Horn, Harm; Plas, Gerben; Hageman, Gerard; Schoonman, Guus; Spikman, Jacoba; van der Naalt, Joukje

    2017-01-01

    Objectives: To determine the prevalence and potential risk factors of acute and chronic post-traumatic headache (PTH) in patients with mild to moderate traumatic brain injury (TBI) in a prospective longitudinal observational multicentre study. Acute PTH (aPTH) is defined by new or worsening of

  9. Traumatic Brain Injury in the Workplace.

    Science.gov (United States)

    Paci, Michael; Infante-Rivard, Claire; Marcoux, Judith

    2017-09-01

    Work-related traumatic brain injuries (TBIs) are not well documented in the literature. Published studies mostly rely on worker databases that fail to provide clinically relevant information. Our objective is to describe the characteristics of hospitalized patients and their work-related TBI. We used the Québec provincial trauma and TBI program databases to identify all patients with a diagnosis of work-related TBI admitted to the Montreal General Hospital, a level 1 trauma center, between 2000 and 2014. Data from their medical records were extracted using a predetermined information sheet. Simple descriptive statistics (means and percentages) were used to summarize the data. A total of 285 cases were analyzed. Workplace TBI patients were middle-aged (mean, 43.62 years), overwhelmingly male (male:female 18:1), mostly healthy, and had completed a high school level education. Most workers were from the construction industry; falling was the most common mechanism of injury. The majority of patients (76.8%) presented with a mild TBI; only a minority (14%) required neurosurgery. The most common finding on computed tomography was skull fracture. The median length of hospitalization was 7 days, after which most patients were discharged directly home. A total of 8.1% died of their injuries. Our study found that most hospitalized victims of work-related TBI had mild injury; however, some required neurosurgical intervention and a non-negligible proportion died of their injury. Improving fall prevention, accurately document helmet use and increasing the safety practice in the construction industry may help decrease work-related TBI burden.

  10. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  11. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  12. MRI of radiation injury to the brain

    International Nuclear Information System (INIS)

    Curnes, J.T.; Laster, D.W.; Ball, M.R.; Moody, D.M.; Witcofski, R.L.

    1986-01-01

    Nine patients with a history of radiation of 2400-6000 rad (24-60 Gy) to the brain were examined by magnetic resonance imaging (MRI) and computed tomography (CT). MRI demonstrated abnormalities in the periventricular white matter in all patients. The abnormal periventricular signal was characterized by a long T2 and was demonstrated best on coronal spin-echo (SE) 1000/80 images. A characteristic scalloped appearance at the junction of the gray-white matter was seen on MR images of seven patients, and represented extensive white-matter damage involving the more peripheral arcuate fiber systems. This differs from transependymal absorption, which is seen best on SE 3000/80 images and has a smooth peripheral margin. Cranial CT demonstrated white-matter lucencies in six cases but generally failed to display the extent of white-matter injury demonstrated by MRI. MRI is uniquely suited to detect radiation injury to the brain because of its extreme sensitivity to white-matter edema

  13. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  14. Traumatic Brain Injury: Caregivers’ Problems and Needs

    Directory of Open Access Journals (Sweden)

    syed tajjudin syed hassan

    2011-03-01

    Full Text Available Traumatic brain injury (TBI is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, fi nancial inadequacy, anxiety, distress, coping defi cits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, fi nancial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders. Keywords: caregivers, rehabilitation, traumatic brain injury

  15. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  16. Ethics of neuroimaging after serious brain injury.

    Science.gov (United States)

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  17. Long-term neurologic outcomes after traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Cernak, Ibolja; Noble-Haeusslein, Linda; Potolicchio, Samuel; Temkin, Nancy

    2009-01-01

    To determine the relations between traumatic brain injury (TBI) and several neurologic outcomes 6 months or more after TBI. Not applicable. Systematic review of the published, peer-reviewed literature. Not applicable. We identified 75 studies that examined the relations between TBI and neurologic outcomes. Unprovoked seizures are causally related to penetrating TBI as well as to moderate and severe TBI. There was only limited evidence of an association between seizures and mild TBI. Dementia of the Alzheimer's type (DAT) was associated with moderate and severe TBI, but not with mild TBI unless there was loss of consciousness (LOC); the evidence for the latter was limited. Parkinsonism was associated with moderate and severe TBI, but there was only modest evidence of a link with mild TBI without LOC. Dementia pugilistica was associated with professional boxing. There was insufficient evidence to support an association between TBI and both multiple sclerosis and amyotrophic lateral sclerosis. TBI appeared to produce a host of postconcussive symptoms (eg, memory problems, dizziness, and irritability). Moderate and severe TBI were associated with endocrine problems such as hypopituitarism and growth hormone deficiency and possibly with diabetes insipidus. There was only limited evidence of an association between mild TBI and the development of ocular/visual motor deterioration. TBI is strongly associated with several neurologic disorders 6 months or more after injury. Clinicians caring for TBI patients should monitor them closely for the development of these disorders. While some of these disorders can be treated after they arise (eg, seizures), a greater public health benefit would be achieved by preventing them before they develop. Research efforts to develop therapies aimed at secondary prevention are currently underway.

  18. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  19. Family adaptation 18 months after traumatic brain injury in early childhood.

    Science.gov (United States)

    Stancin, Terry; Wade, Shari L; Walz, Nicolay C; Yeates, Keith Owen; Taylor, H Gerry

    2010-05-01

    The purpose of this study was to examine family adaptation to a traumatic brain injury (TBI) in young children during the first 18-month postinjury, when compared with children who had an orthopedic injury. A concurrent cohort/prospective research design was used with repeated assessments of children aged 3 to 6 years with TBI or orthopedic injury requiring hospitalization and their families. Shortly after injury and at 6-, 12-, and 18-month postinjury, parents of 99 children with TBI (20 severe, 64 moderate, 15 mild) and 117 with orthopedic injury completed standardized assessments of family functioning, parental distress and coping, injury-related burden, and noninjury-related parent stressors and resources. Mixed models analyses examined group differences in parental burden and distress adjusted for race and social demographic factors. Both moderate and severe TBI were associated with higher levels of injury-related stress than orthopedic injury, with stress levels diminishing over time in all groups. Severe TBI was also associated with greater psychological distress on the Brief Symptom Inventory but not with more depressive symptoms. Family functioning and social resources moderated the relationship of TBI severity to injury-related burden and caregiver distress, respectively. Lower child adaptive skills were associated with poorer family outcome but group differences remained even when controlling for this effect. Severe TBI in young children has adverse consequences for parents and families during the first 18-month postinjury. The consequences lessen over time for many families and vary as a function of social resources.

  20. Traumatic brain injury among refugees and asylum seekers.

    Science.gov (United States)

    McPherson, Jacob I

    2017-12-28

    Refugees and asylum seekers face many challenges in their pursuit of a safe home. The journey for displaced individuals can be extremely dangerous and many do not survive or go missing. Survivors face significant risks of injury, abuse, and torture. Traumatic brain injury is one of the most common and disabling injuries sustained by these populations. This already complex condition can have profound implications on these groups and their families due to factors related to mental health, cultural perspectives, and their ability to navigate healthcare systems. A literature review was performed to investigate the incidence and prevalence of torture and traumatic brain injury in displaced and fleeing populations. Impacts of traumatic brain injury and residency status on outcomes in these individuals were also examined. The incidence and prevalence of torture and traumatic brain injury among refugees and asylum seekers is significant. These populations may access healthcare systems differently than other groups and as a result may experience a unique health-related outcomes following traumatic brain injury. This information should sensitize healthcare providers to a potential history of traumatic brain injury sustained by patients/clients who are refugees or asylum seekers and may serve to guide some clinical encounters. Implications for rehabilitation Traumatic brain injuries are commonly sustained by refugees and asylum seekers. Cultural factors may complicate how refugees and asylum seekers understand, report, and manage these injuries. The above may be worsened by cognitive, emotional, and behavioral changes following traumatic brain injury. Rehabilitation providers should be aware of potential traumatic brain injury history during encounters with refugee and asylum seeker populations, especially if a history of torture is suspected.

  1. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury

    Science.gov (United States)

    2008-06-19

    brain slices were treated after injury with either a nootropic agent (aniracetam, cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...pharmacological approach. 15. SUBJECT TERMS traumatic brain injury, cell necrosis, neuroprotection, nootropics , epilepsy, long-term potentiation...render their use problematic in an effective brain tourniquet system. We chose to focus our investigations on the nootropic (cognition enhancing) drugs

  2. Apathy following traumatic brain injury: a review.

    Science.gov (United States)

    Worthington, Andrew; Wood, Rodger Ll

    2018-04-13

    Apathy is a common problem after traumatic brain injury (TBI) and can have a major impact on cognitive function, psychosocial outcome and engagement in rehabilitation. For scientists and clinicians it remains one of the least understood aspects of brain-behaviour relationships encompassing disturbances of cognition, motivation, emotion and action, and is variously an indication of organic brain disease or psychiatric disorder. Apathy can be both sign and symptom and has been proposed as a diagnosis in its own right as well as a secondary feature of other conditions. This review considers previous approaches to apathy in terms of relevant psychological constructs and those neural counterparts most likely to be implicated after TBI. Neurobehavioural disorders of apathy are characterised chiefly by dysfunction of executive control of goal-oriented behaviour or the neural substrates of reward-based and emotional learning. We argue that it is possible to distinguish a primary disorder of apathy as an organic neurobehavioural state from secondary presentations due to an impoverished environment or psychological disturbance which has implications for treatment. Copyright © 2018. Published by Elsevier Ltd.

  3. Impact of additional extracranial injuries on outcome after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Jacobs, B.; Biert, J.; Vugt, A.B. van; Brauer, J.; Vos, P.E.

    2006-01-01

    Many patients with mild traumatic brain injury (MTBI) concurrently sustain extracranial injuries; however, little is known about the impact of these additional injuries on outcome. We assessed the impact of additional injuries on the severity of postconcussional symptoms (PCS) and functional outcome

  4. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    more common in males and young people. Keywords: Traumatic Brain Injury, Plasma Glucose, Cortisol, ... disability and death among young adults through a variety of mechanisms, and is now recognised as a .... such as ischaemic stroke, intracranial haemorrhage or traumatic brain injury and is associated with increased.

  5. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  6. Showering habits: time, steps, and products used after brain injury.

    Science.gov (United States)

    Reistetter, Timothy A; Chang, Pei-Fen J; Abreu, Beatriz C

    2009-01-01

    This pilot study describes the showering habits of people with brain injury (BI) compared with those of people without BI (WBI). The showering habits of 10 people with BI and 10 people WBI were measured and compared. A videotaped session recorded and documented the shower routine. The BI group spent longer time showering, used more steps, and used fewer products than the WBI group. A moderately significant relationship was found between time and age (r = .46, p = .041). Similarly, we found significant correlations between number of steps and number of products used (r = .64, p = .002) and between the number of products used and education (r = .47, p = .044). Results suggest that people with BI have showering habits that differ from those WBI. Correlations, regardless of group, showed that older people showered longer, and people with more education used more showering products.

  7. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  8. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  9. The impact of pediatric traumatic brain injury (TBI) on family functioning: a systematic review.

    Science.gov (United States)

    Rashid, Marghalara; Goez, Helly R; Mabood, Neelam; Damanhoury, Samah; Yager, Jerome Y; Joyce, Anthony S; Newton, Amanda S

    2014-01-01

    To explore the impact moderate to severe traumatic brain injury (TBI) in a child has on family functioning. The search was conducted using 9 bibliographic databases for articles published between 1980 and 2013. Two reviewers independently screened for inclusion and assessed study quality. Two reviewers extracted study data and a third checked for completeness and accuracy. Findings are presented by three domains: injury-related burden and stress, family adaptability, and family cohesion. Nine observational studies were included. Across the studies, differences between study groups for family functioning varied, but there was a trend for more dysfunction in families whose child had a severe TBI as compared to families whose child had a moderate TBI or orthopedic injury. In three studies, injury-associated burden was persistent post-injury and was highest in families whose child had a severe TBI followed by families with a child who had a moderate TBI. One study found fathers reported more family dysfunction caused by their child's injury compared to mothers. Two studies found that mothers' adaptability depended on social support and stress levels while fathers' adaptability was independent of these factors and injury severity. Moderate to severe TBI has a significant, long-standing impact on family functioning. Factors associated with family adaptability vary by parental role.

  10. Diffusion tensor imaging of incentive effects in prospective memory after pediatric traumatic brain injury.

    Science.gov (United States)

    McCauley, Stephen R; Wilde, Elisabeth A; Bigler, Erin D; Chu, Zili; Yallampalli, Ragini; Oni, Margaret B; Wu, Trevor C; Ramos, Marco A; Pedroza, Claudia; Vásquez, Ana C; Hunter, Jill V; Levin, Harvey S

    2011-04-01

    Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n=37) or moderate-to-severe TBI (n=40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p=0.003), left orbitofrontal WM (pchildren.

  11. Music interventions for acquired brain injury.

    Science.gov (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  12. Nonsurgical interventions after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Nygren-de Boussard, Catharina; Holm, Lena W; Cancelliere, Carol

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding the impact of nonsurgical interventions on persistent symptoms after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "rehabilitation." Inclusion criteria were...... of 7 studies related to nonsurgical interventions were found to have a low risk of bias. One studied the effect of a scheduled telephone intervention offering counseling and education on outcome and found a significantly better outcome for symptoms (6.6 difference in adjusted mean symptom score; 95...... evidence suggests that early, reassuring educational information is beneficial after MTBI. Well-designed intervention studies are required to develop effective treatments and improve outcomes for adults and children at risk for persistent symptoms after MTBI....

  13. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...... behavior was registered with the Agitated Behavior Scale (ABS). The nurse or therapist allocated the individual patient assessed ABS during each shift. Intensity of agitated behavior was tested using exact test. A within-subject shift effect was analyzed with repeated-measure ANOVA. Findings: The onset...... of agitated behavior was at a median of 14 (1–28) days from admission. Seven patients remained agitated beyond 3 weeks from onset. Severe intensity of agitation was observed in 86 of 453 nursing shifts. Differences in agitated behavior between day, evening, and night shifts were found, F(2.20) = 7.90, p...

  14. Traumatic brain injury: caregivers' problems and needs.

    Science.gov (United States)

    Hassan, S T S; Khaw, W F; Rosna, A R; Husna, J

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers' problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, financial inadequacy, anxiety, distress, coping deficits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, financial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders.

  15. Brain injury in a forensic psychiatry population.

    Science.gov (United States)

    Colantonio, A; Stamenova, V; Abramowitz, C; Clarke, D; Christensen, B

    2007-12-01

    The prevalence and profile of adults with a history of traumatic brain injury (TBI) has not been studied in large North American forensic mental health populations. This study investigated how adults with a documented history of TBI differed with the non-TBI forensic population with respect to demographics, psychiatric diagnoses and history of offences. A retrospective chart review of all consecutive admissions to a forensic psychiatry programme in Toronto, Canada was conducted. Information on history of TBI, psychiatric diagnoses, living environments and types of criminal offences were obtained from medical records. History of TBI was ascertained in 23% of 394 eligible patient records. Compared to those without a documented history of TBI, persons with this history were less likely to be diagnosed with schizophrenia but more likely to have alcohol/substance abuse disorder. There were also differences observed with respect to offence profiles. This study provides evidence to support routine screening for a history of TBI in forensic psychiatry.

  16. Destination memory in traumatic brain injuries.

    Science.gov (United States)

    Wili Wilu, Amina; Coello, Yann; El Haj, Mohamad

    2018-03-17

    Destination memory, which is socially driven, refers to the ability to remember to whom one has sent information. Our study investigated destination memory in patients with traumatic brain injuries (TBIs). Patients and control participants were invited to tell proverbs (e.g., "the pen is mightier than the sword") to pictures of celebrities (e.g., Barack Obama). Then they were asked to indicate to which celebrity they had previously told the proverbs. Besides the assessment of destination memory, participants performed a binding task in which they were required to associate letters with their corresponding location. Analysis demonstrated less destination memory and binding in patients with TBIs than in controls. In both populations, significant correlations were observed between destination memory and performances on the binding task. These findings demonstrate difficulty in the ability to attribute information to its appropriate destination in TBI patients, perhaps owing to difficulties in binding separate information together to form a coherent representation of an event in memory.

  17. Rehabilitation of persons with traumatic brain injury.

    Science.gov (United States)

    The objective of this NIH Consensus Statement is to inform the biomedical research and clinical practice communities of the results of the NIH Consensus Development Conference on Rehabilitation of Persons with Traumatic Brain Injury. The statement provides state-of-the-art information regarding effective rehabilitation measures for persons who have suffered a traumatic brain injury (TBI) and presents the conclusions and recommendations of the consensus panel regarding these issues. In addition, the statement identifies those areas that deserve further investigation. Upon completion of this educational activity, the reader should possess a clear working clinical knowledge of the state of the art regarding this topic. The target audience for this statement includes, but is not limited to, pediatricians, family practitioners, internists, neurologists, physiatrists, psychologists, and behavioral medicine specialists. Participants were a non-Federal, nonadvocate, 16-member panel representing the fields of neuropsychology, neurology, psychiatry, behavioral medicine, family medicine, pediatrics, physical medicine and rehabilitation, speech and hearing, occupational therapy, nursing, epidemiology, biostatistics and the public. In addition, 23 experts from these same fields presented data to the panel and a conference audience of 883. The literature was searched through Medline and an extensive bibliography of references was provided to the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. A compendium of evidence was prepared by the panel which included a contribution from a patient with TBI, a report from an Evidence Based Practice Center of the Agency for Health Care Policy and Research, and a report from the National Center for Injury Prevention and Control at the Centers for Disease Control and Prevention. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined

  18. Neuroprotective Strategies after Repetitive Mild Traumatic Brain Injury

    Science.gov (United States)

    2011-06-01

    performance in the HBOT groups improved sig- nificantly and was highly correlated with increased ipsilat- eral hippocampal blood volume ( cerebrovascular ...Oxygen Therapy Induces Cerebrovascular Changes and Improves Complex Learning/Memory in a Rat Open Head Bonk Chronic Brain Contusion Model. Undersea...injury. Dynamic brain trauma includes direct injury where trauma is directly imposed on the brain (e.g., non- accidental trauma, contact sports, falls

  19. Neuropsychological assessment in two cases of adult mild traumatic brain injury with a history of childhood head trauma.

    Science.gov (United States)

    Moss, Robert A; Priluck, Jacob; Bonilla, Xavier; Evans, Charles; Macedo, Pedro S

    2017-01-01

    The existence of residual cognitive deficits following mild traumatic brain injury (MTBI) has been a topic of controversy. The current paper describes neuropsychological assessment in two cases of adulthood mild traumatic brain injury. Both patients showed objective results demonstrating cognitive impairment. The first patient experienced a head trauma around the age of 4 and the other patient had a head injury around the age of 7. Discussion focuses on the need for the systematic consideration of a history of childhood head injury as a moderating factor that may account for why a subgroup of patients show cognitive deficits following MTBI.

  20. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2011-09-01

    reaching chamber and a single banana -flavored food pellet (45 mg, Bioserv) was placed into a shallow food well 2 cm from the front wall on an external...Kansas City, Kansas, September 21, 2010. Invited Speaker, Neural Bases of Recovery after Brain Injury, Neuroplasticity in the Mature Brain, 20th...in rats. Eur. J. Neurosci. 17, 623–627. Rema, V., and Ebner, F.F. (2003). Lesions of mature barrel field cortex interfere with sensory processing and

  1. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  2. Iatrogenic traumatic brain injury during tooth extraction.

    Science.gov (United States)

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  3. Dysautonomia after severe traumatic brain injury.

    Science.gov (United States)

    Hendricks, H T; Heeren, A H; Vos, P E

    2010-09-01

    Dysautonomia after traumatic brain injury (TBI) is characterized by episodes of increased heart rate, respiratory rate, temperature, blood pressure, muscle tone, decorticate or decerebrate posturing, and profuse sweating. This study addresses the incidence of dysautonomia after severe TBI, the clinical variables that are associated with dysautonomia, and the functional outcome of patients with dysautonomia. A historic cohort study in patients with severe TBI [Glasgow Coma Scale (GCS) dysautonomia was 11.8%. Episodes of dysautonomia were prevalent during a mean period of 20.1 days (range 3-68) and were often initiated by discomfort. Patients with dysautonomia showed significant longer periods of coma (24.78 vs. 7.99 days) and mechanical ventilation (22.67 vs. 7.21 days). Dysautonomia was associated with diffuse axonal injury (DAI) [relative risk (RR) 20.83, CI 4.92-83.33] and the development of spasticity (RR 16.94, CI 3.96-71.42). Patients with dysautonomia experienced more secondary complications. They tended to have poorer outcome. Dysautonomia occurs in approximately 10% of patients surviving severe TBI and is associated with DAI and the development of spasticity at follow-up. The initiation of dysautonomia by discomfort supports the Excitatory: Inhibitory Ratio model as pathophysiological mechanism.

  4. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  5. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  6. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  7. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    Science.gov (United States)

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  8. First in vivo traumatic brain injury imaging via magnetic particle imaging

    Science.gov (United States)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  9. DARPA challenge: developing new technologies for brain and spinal injuries

    Science.gov (United States)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  10. Does distracting pain justify performing brain computed tomography in multiple traumas with mild head injury?

    Science.gov (United States)

    Sadeghian, Homa; Motiei-Langroudi, Rouzbeh

    2016-06-01

    Traumatic brain injury (TBI) is a significant health concern classified as mild, moderate, and severe. Although the indications to perform brain computed tomography (CT) are clear in moderate and severe cases, there still exists controversy in mild TBI (mTBI). We designed the study to evaluate the significance of distracting pain in patients with mTBI. The study population included patients with mild traumatic brain injury (GCS ≥13). Moderate and high risk factors including age brain CT scans; 330 patients were enrolled (184 DP+ and 146 DP-). Overall, two DP+ and one DP- patients had mild cerebral edema in brain CT (p > 0.99). No patients had any neurologic symptoms or signs in follow-up. Our results show that in the absence of any other risk factors, distracting pain from other organs (limbs, pelvis, and non-cervical spine) cannot be regarded as a brain CT indication in patients with mild TBI, as it is never associated with significant intracranial lesions.

  11. Delayed, post-injury treatment with aniracetam improves cognitive performance after traumatic brain injury in rats.

    Science.gov (United States)

    Baranova, Anna I; Whiting, Mark D; Hamm, Robert J

    2006-08-01

    Chronic cognitive impairment is an enduring aspect of traumatic brain injury (TBI) in both humans and animals. Treating cognitive impairment in the post-traumatic stages of injury often involves the delivery of pharmacologic agents aimed at specific neurotransmitter systems. The current investigation examined the effects of the nootropoic drug aniracetam on cognitive recovery following TBI in rats. Three experiments were performed to determine (1) the optimal dose of aniracetam for treating cognitive impairment, (2) the effect of delaying drug treatment for a period of days following TBI, and (3) the effect of terminating drug treatment before cognitive assessment. In experiment 1, rats were administered moderate fluid percussion injury and treated with vehicle, 25, or 50 mg/kg aniracetam for 15 days. Both doses of aniracetam effectively reduced injury-induced deficits in the Morris water maze (MWM) as measured on postinjury days 11-15. In experiment 2, injured rats were treated with 50 mg/kg aniracetam or vehicle beginning on day 11 postinjury and continuing for 15 days. MWM performance, assessed on days 26-30, indicates that aniracetam-treated animals performed as well as sham-injured controls. In experiment 3, animals were injured and treated with aniracetam for 15 days. Drug treatment was terminated during MWM testing on postinjury days 16-20. In this experiment, aniracetam-treated rats did not perform better than vehicle-treated rats. The results of these experiments indicate that aniracetam is an effective treatment for cognitive impairment induced by TBI, even when treatment is delayed for a period of days following injury.

  12. Perceived difficulty in use of everyday technology in persons with acquired brain injury of different severity: a comparison with controls.

    Science.gov (United States)

    Fallahpour, Mandana; Kottorp, Anders; Nygård, Louise; Lund, Maria Larsson

    2014-07-01

    To compare the perceived difficulty in use of everyday technology in persons with acquired brain injury with different levels of severity of disability with that of controls. This comparison study recruited 2 samples of persons with acquired brain injury and controls, comprising a total of 161 participants, age range 18-64 years. The long and short versions of the Everyday Technology Use Questionnaire and the Extended Glasgow Outcome Scale were used to evaluate participants. Persons with acquired brain injury demonstrated lower mean levels of perceived ability in use of everyday technology than controls (F = 21.84, degrees of freedom = 1, p technology between persons with severe disability and good recovery, between persons with severe disability and controls, and between persons with moderate disability and controls. No significant mean difference was found between persons with severe disability and moderate disability, between persons with moderate disability and good recovery, and between persons with good recovery and controls. Perceived difficulty in using everyday technology is significantly increased among persons with acquired brain injury with severe to moderate disability compared with controls. Rehabilitation services should consider the use of everyday technology in order to increase participation in everyday activities after acquired brain injury.

  13. Outcome of moderate and severe thermal injuries at Kenyatta ...

    African Journals Online (AJOL)

    The main parameters studied included the age, sex, and depth of burn injury, inhalation injury and percentage total burn surface area (%TBSA). Other parameters recorded were the type of burn, pre-morbid or co-morbid illnesses, specimen culture and sensitivity and the length of hospital stay. Single variable analyses ...

  14. Robotic assessment of sensorimotor deficits after traumatic brain injury.

    Science.gov (United States)

    Debert, Chantel T; Herter, Troy M; Scott, Stephen H; Dukelow, Sean

    2012-06-01

    Robotic technology is commonly used to quantify aspects of typical sensorimotor function. We evaluated the feasibility of using robotic technology to assess visuomotor and position sense impairments following traumatic brain injury (TBI). We present results of robotic sensorimotor function testing in 12 subjects with TBI, who had a range of initial severities (9 severe, 2 moderate, 1 mild), and contrast these results with those of clinical tests. We also compared these with robotic test outcomes in persons without disability. For each subject with TBI, a review of the initial injury and neuroradiologic findings was conducted. Following this, each subject completed a number of standardized clinical measures (Fugl-Meyer Assessment, Purdue Peg Board, Montreal Cognitive Assessment, Rancho Los Amigos Scale), followed by two robotic tasks. A visually guided reaching task was performed to assess visuomotor control of the upper limb. An arm position-matching task was used to assess position sense. Robotic task performance in the subjects with TBI was compared with findings in a cohort of 170 person without disabilities. Subjects with TBI demonstrated a broad range of sensory and motor deficits on robotic testing. Notably, several subjects with TBI displayed significant deficits in one or both of the robotic tasks, despite normal scores on traditional clinical motor and cognitive assessment measures. The findings demonstrate the potential of robotic assessments for identifying deficits in visuomotor control and position sense following TBI. Improved identification of neurologic impairments following TBI may ultimately enhance rehabilitation.

  15. Traumatic brain injuries from work accidents: a retrospective study.

    Science.gov (United States)

    Salem, A M O; Jaumally, B A; Bayanzay, K; Khoury, K; Torkaman, A

    2013-07-01

    The United Arab Emirates is a rapidly developing country with recent expansion in construction and manufacturing. To investigate the occurrence and outcomes following occupational traumatic brain injury (TBI) requiring hospital admission. Records for all TBI cases admitted to an Abu Dhabi hospital between 2005 and 2009 were reviewed. Data on mechanisms of occupational injuries, Glasgow Coma Scale (GCS) on admission and Glasgow Outcome Scale (GOS) on follow-up, were analysed. Of 581 TBI cases reviewed, 56 (10%) cases were reported as occupational by either the patient or the informant accompanying the patient. All cases were male migrants, and 63% were aged 25-44. Falls accounted for 63% of cases, falling objects 34% and motor vehicle collisions 4%. Median GCS score was 13 for all cases. Median hospital stay was 7.5 days. Intensive care unit admission data were available in 47 cases, of which 34% (16) were admitted with a median stay of 5 days. GOS data were available in 95% (53) of cases, with good recovery in 81% cases, moderate-to-severe disability in 11% of cases and death in 8% (4) cases. Occupational TBI requiring hospitalization is most frequently due to falls and falling objects, with potentially grave consequences. This study further highlights the urgent need to implement preventative measures to improve construction worker safety.

  16. Traumatic Brain Injury in Rats Induces Lung Injury and Systemic Immune Suppression

    NARCIS (Netherlands)

    Vermeij, Jan-Dirk; Aslami, Hamid; Fluiter, Kees; Roelofs, Joris J.; van den Bergh, Walter M.; Juffermans, Nicole P.; Schultz, Marcus J.; Van der Sluijs, Koen; van de Beek, Diederik; van Westerloo, David J.

    2013-01-01

    Traumatic brain injury (TBI) is frequently complicated by acute lung injury, which is predictive for poor outcome. However, it is unclear whether lung injury develops independently or as a result of mechanical ventilation after TBI. Further, TBI is strongly associated with the development of

  17. Family function and its relationship to injury severity and psychiatric outcome in children with acquired brain injury: a systematized review.

    Science.gov (United States)

    Lax Pericall, Maria Teresa; Taylor, Eric

    2014-01-01

    The psychological and psychiatric outcome of children with acquired brain injury is influenced by many variables. A review was undertaken to clarify the contribution of family function, how it relates to injury severity, and what particular aspects of family function influence psychological outcome in this group. A systematized review of the literature of studies published between 1970 and 2012 from OvidMedline, PsychoInfo, PsycARTICLES, and Cochrane was undertaken focusing on family function, injury severity, and psychiatric outcome. Thirty-six papers met the inclusion criteria. Injury severity was linked to the development of organic personality change. Family function before injury, measured by the Family Assessment Device or the Clinical Rating Scale, had a statistically significant effect on general psychological functioning in six out of eight studies. Family function had a significant effect for oppositional defiant disorder and secondary attention-deficit-hyperactivity disorder. The effects of family function may differ depending on the age of the child and the severity of the injury. Some styles of parenting moderated recovery. After injury, family function was related to the child's contemporaneous psychiatric symptoms. The level of evidence for these papers was 3 or 4 (Oxford Centre for Evidence-based Medicine criteria). Screening for some aspects of family functioning before injury and family function during the rehabilitation phase may identify children at risk of psychiatric disorders. © 2013 Mac Keith Press.

  18. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  19. Persuasive discourse impairments in traumatic brain injury.

    Science.gov (United States)

    Ghayoumi, Zahra; Yadegari, Fariba; Mahmoodi-Bakhtiari, Behrooz; Fakharian, Esmaeil; Rahgozar, Mehdi; Rasouli, Maryam

    2015-03-01

    Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI.

  20. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  1. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  2. Traumatic brain injury neuropsychology in Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Quijano María Cristina

    2012-04-01

    Full Text Available Objetive: comparative analysis between control group and patients with TBI to determine whetherthere neuropsychological differences at 6 months of evolution, to guide timely interventioncommensurate with the needs of this population. Materials and methods: a total of 79 patientswith a history of TBI with a minimum of 6 months of evolution and 79 control subjects were evaluated.Both groups with a mean age of 34 and without previous neurological or psychiatric disorders and an average schooling of 11 years for the control group and 9 years for the TBI group.The Glasgow Coma Scale in the TBI group was classified as moderate with 11 points. The BriefNeuropsychological Evaluation in Spanish Neuropsi was applied to both groups. Results: significantdifferences (p≤0.05 in the tasks of orientation, attention, memory, language, reading andwriting were found. Conclusions: TBI generates significant neuropsychological changes, even sixmonths after discharge from the health service. It suggests that patients with head injury requiretreatment after overcoming the initial stage.

  3. Music therapy for acquired brain injury.

    Science.gov (United States)

    Bradt, Joke; Magee, Wendy L; Dileo, Cheryl; Wheeler, Barbara L; McGilloway, Emer

    2010-07-07

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, sensory processing and emotional disturbances. This may severely reduce a survivor's quality of life. Music therapy has been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions and sensory perceptions. A systematic review is needed to gauge the efficacy of music therapy as a rehabilitation intervention for people with ABI. To examine the effects of music therapy with standard care versus standard care alone or standard care combined with other therapies on gait, upper extremity function, communication, mood and emotions, social skills, pain, behavioral outcomes, activities of daily living and adverse events. We searched the Cochrane Stroke Group Trials Register (February 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 2, 2009), MEDLINE (July 2009), EMBASE (August 2009), CINAHL (March 2010), PsycINFO (July 2009), LILACS (August 2009), AMED (August 2009) and Science Citation Index (August 2009). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted experts and music therapy associations. There was no language restriction. Randomized and quasi-randomized controlled trials that compared music therapy interventions and standard care with standard care alone or combined with other therapies for people older than 16 years of age who had acquired brain damage of a non-degenerative nature and were participating in treatment programs offered in hospital, outpatient or community settings. Two review authors independently assessed methodological quality and extracted data. We present results using mean differences (using post-test scores) as all outcomes were measured with the same scale. We included seven studies (184 participants). The results suggest that rhythmic

  4. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  5. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  6. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  7. Falls and traumatic brain injury among older adults.

    Science.gov (United States)

    Filer, William; Harris, Matthew

    2015-04-01

    This commentary discusses traumatic brain injury (TBI) related to falls among elderly individuals, as well as common TBI sequelae and their treatment. It also discusses the current understanding of TBI-related dementia and chronic traumatic encephalopathy.

  8. Rehabilitation of discourse impairments after acquired brain injury.

    Science.gov (United States)

    Gindri, Gigiane; Pagliarin, Karina Carlesso; Casarin, Fabíola Schwengber; Branco, Laura Damiani; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz

    2014-01-01

    Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  9. Rates of symptom reporting following traumatic brain injury.

    Science.gov (United States)

    Dikmen, Sureyya; Machamer, Joan; Fann, Jesse R; Temkin, Nancy R

    2010-05-01

    This study examines rates of reporting of new or worse post-traumatic symptoms for patients with a broad range of injury severity at 1 month and 1 year after traumatic brain injury (TBI), as compared with those whose injury spared the head, and assesses variables related to symptom reporting at 1 year post-injury. Seven hundred thirty two TBI subjects and 120 general trauma comparison (TC) subjects provided new or worse symptom information at 1 month and/or 1 year post-injury. Symptom reporting at 1 year post-injury was compared in subgroups based on basic demographics, preexisting conditions, and severity of brain injury. The TBI group reported significantly more symptoms at 1 month and 1 year after injury than TCs (each p < .001). Although symptom endorsement declined from 1 month to 1 year, 53% of people with TBI and 24% of TC continued to report 3 or more symptoms at 1 year post-injury. Symptom reporting in the TBI group was significantly related to age, gender, preinjury alcohol abuse, pre-injury psychiatric history, and severity of TBI. Symptom reporting is common following a traumatic injury and continues to be experienced by a substantial number of TBI subjects of all severity levels at 1 year post-injury.

  10. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  11. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  12. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury.

    Science.gov (United States)

    Bernier, Rachel Anne; Roy, Arnab; Venkatesan, Umesh Meyyappan; Grossner, Emily C; Brenner, Einat K; Hillary, Frank Gerard

    2017-01-01

    Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferentiation of networks (as noted in other clinical populations) and these effects would be associated with cognitive dysfunction. Graph theory was implemented to examine functional connectivity during periods of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs). Using a functional brain atlas derived from 83 functional imaging studies, graph theory was used to examine network dynamics and determine whether dedifferentiation accounts for changes in connectivity. Regions of interest were assigned to one of three groups: task-positive, default mode, or other networks. Relationships between these metrics were then compared with performance on neuropsychological tests. Hyperconnectivity in TBI was most commonly observed as increased within-network connectivity. Network strengths within networks that showed differences between TBI and HCs were correlated with performance on five neuropsychological tests typically sensitive to deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN) during task was associated with better performance on Digit Span Backward, a measure of working memory [ R 2 (18) = 0.28, p  = 0.02]. In other words, increased differentiation of networks during task was associated with better working memory. Hyperconnectivity within the task-positive network during rest was not associated with behavior. Negative correlation weights were not associated with behavior. The primary hypothesis that hyperconnectivity

  13. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rachel Anne Bernier

    2017-07-01

    Full Text Available ObjectiveChanges in functional network connectivity following traumatic brain injury (TBI have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferentiation of networks (as noted in other clinical populations and these effects would be associated with cognitive dysfunction.MethodsGraph theory was implemented to examine functional connectivity during periods of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs. Using a functional brain atlas derived from 83 functional imaging studies, graph theory was used to examine network dynamics and determine whether dedifferentiation accounts for changes in connectivity. Regions of interest were assigned to one of three groups: task-positive, default mode, or other networks. Relationships between these metrics were then compared with performance on neuropsychological tests.ResultsHyperconnectivity in TBI was most commonly observed as increased within-network connectivity. Network strengths within networks that showed differences between TBI and HCs were correlated with performance on five neuropsychological tests typically sensitive to deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN during task was associated with better performance on Digit Span Backward, a measure of working memory [R2(18 = 0.28, p = 0.02]. In other words, increased differentiation of networks during task was associated with better working memory. Hyperconnectivity within the task-positive network during rest was not associated with behavior. Negative correlation weights were not associated with behavior

  14. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  15. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  16. Predicting institutionalization after traumatic brain injury inpatient rehabilitation.

    Science.gov (United States)

    Eum, Regina S; Seel, Ronald T; Goldstein, Richard; Brown, Allen W; Watanabe, Thomas K; Zasler, Nathan D; Roth, Elliot J; Zafonte, Ross D; Glenn, Mel B

    2015-02-15

    Risk factors contributing to institutionalization after inpatient rehabilitation for people with traumatic brain injury (TBI) have not been well studied and need to be better understood to guide clinicians during rehabilitation. We aimed to develop a prognostic model that could be used at admission to inpatient rehabilitation facilities to predict discharge disposition. The model could be used to provide the interdisciplinary team with information regarding aspects of patients' functioning and/or their living situation that need particular attention during inpatient rehabilitation if institutionalization is to be avoided. The study population included 7219 patients with moderate-severe TBI in the Traumatic Brain Injury Model Systems (TBIMS) National Database enrolled from 2002-2012 who had not been institutionalized prior to injury. Based on institutionalization predictors in other populations, we hypothesized that among people who had lived at a private residence prior to injury, greater dependence in locomotion, bed-chair-wheelchair transfers, bladder and bowel continence, feeding, and comprehension at admission to inpatient rehabilitation programs would predict institutionalization at discharge. Logistic regression was used, with adjustment for demographic factors, proxy measures for TBI severity, and acute-care length-of-stay. C-statistic and predictiveness curves validated a five-variable model. Higher levels of independence in bladder management (adjusted odds ratio [OR], 0.88; 95% CI 0.83, 0.93), bed-chair-wheelchair transfers (OR, 0.81 [95% CI, 0.83-0.93]), and comprehension (OR, 0.78 [95% CI, 0.68, 0.89]) at admission were associated with lower risks of institutionalization on discharge. For every 10-year increment in age was associated with a 1.38 times higher risk for institutionalization (95% CI, 1.29, 1.48) and living alone was associated with a 2.34 times higher risk (95% CI, 1.86, 2.94). The c-statistic was 0.780. We conclude that this simple model

  17. Parenting Style Is Related to Executive Dysfunction After Brain Injury in Children

    Science.gov (United States)

    Potter, Jennifer L.; Wade, Shari L.; Walz, Nicolay C.; Cassedy, Amy; Yeates, Keith O.; Stevens, M. Hank; Taylor, H. Gerry

    2013-01-01

    Objective The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Method Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3–7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Results Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. Conclusion These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI. PMID:21928918

  18. Parenting style is related to executive dysfunction after brain injury in children.

    Science.gov (United States)

    Potter, Jennifer L; Wade, Shari L; Walz, Nicolay C; Cassedy, Amy; Stevens, M Hank; Yeates, Keith O; Taylor, H Gerry

    2011-11-01

    The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3-7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI.

  19. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury

    OpenAIRE

    Bernier, Rachel Anne; Roy, Arnab; Venkatesan, Umesh Meyyappan; Grossner, Emily C.; Brenner, Einat K.; Hillary, Frank Gerard

    2017-01-01

    Objective Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferenti...

  20. A quantitative MRI method for imaging blood-brain barrier leakage in experimental traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Blood-brain barrier (BBB disruption is common following traumatic brain injury (TBI. Dynamic contrast enhanced (DCE MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field and magnetization (M0 distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI, and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI.

  1. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  3. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  4. Parental distress, parenting practices, and child adaptive outcomes following traumatic brain injury.

    Science.gov (United States)

    Micklewright, Jackie L; King, Tricia Z; O'Toole, Kathleen; Henrich, Chris; Floyd, Frank J

    2012-03-01

    Moderate and severe pediatric traumatic brain injuries (TBI) are associated with significant familial distress and child adaptive sequelae. Our aim was to examine the relationship between parental psychological distress, parenting practices (authoritarian, permissive, authoritative), and child adaptive functioning 12-36 months following TBI or orthopedic injury (OI). Injury type was hypothesized to moderate the relationship between parental distress and child adaptive functioning, demonstrating a significantly stronger relationship in the TBI relative to OI group. Authoritarian parenting practices were hypothesized to mediate relationship between parental distress and child adaptive functioning across groups. Groups (TBI n = 21, OI n = 23) did not differ significantly on age at injury, time since injury, sex, race, or SES. Parents completed the Brief Symptom Inventory, Parenting Practices Questionnaire, and Vineland-II. Moderation and mediation hypotheses were tested using hierarchical multiple regression and a bootstrapping approach, respectively. Results supported moderation and revealed that higher parental psychological distress was associated with lower child adaptive functioning in the TBI group only. Mediation results indicated that higher parental distress was associated with authoritarian parenting practices and lower adaptive functioning across groups. Results suggest that parenting practices are an important area of focus for studies attempting to elucidate the relationship between parent and child functioning following TBI.

  5. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  6. DIAGNOSIS AND CORRECTION OF COGNITIVE DISORDERS IN CHILDREN WITH TRAUMATIC BRAIN INJURY SEQUELAE

    Directory of Open Access Journals (Sweden)

    S. A. Nemkova

    2014-01-01

    Full Text Available The article is dedicated to the relevant aspects of complex diagnosis and treatment of cognitive disorders in children and adolescents with traumatic brain injury (TBI sequelae in the long term. Traumatic brain injury is one of the most important issues of the modern neuroscience due to high incidence rate and incapacitation severity. A steady increase in TBI sequelae, many of which are cognitive disorders (cerebro-asthenic and psychoorganic syndromes, post‑traumatic dementia accompanied by various symptoms of vegetative dysfunction syndrome, has been observed in children in the recent years. The factors affecting severity of TBI sequelae in children are severity of the injury, age at the injury, time elapsed since the injury and localization of the lesion. Disturbances of memory and attention (75%, hand-eye coordination, cerebro-asthenic disorders (88% and chronic headaches (95% are prevalent in the structure of cognitive disorders after a minor TBI. Severer cognitive dysfunctions accompanied by pathological neurological symptoms resulting in difficulties in learning, self‑service and negatively affecting social adaptation in general are observed in 94-100% of the children having suffered moderate or severe TBI. The article discusses the modern methods of complex diagnosis and pathogenetically substantiated techniques of drug therapy of cognitive disorders in patients with traumatic brain injury sequelae in detail.  

  7. Combined high cervical spine and brain stem injuries: a complex and devastating injury in children.

    Science.gov (United States)

    Meyer, Philippe-Gabriel; Meyer, Fabien; Orliaguet, Gilles; Blanot, Stéphane; Renier, Dominique; Carli, Pierre

    2005-10-01

    In young children, high cervical spine injuries (HCSI) can result in inaugural reversible, cardiac arrest or apnea. We noted in children sustaining such injuries an unusual incidence of associated brain stem injuries and defined a special pattern of combined lesions. Children with HSCI surviving inaugural cardiac arrest/apnea were selected for a retrospective analysis of a trauma data bank. Epidemiologic, clinical, and radiological characteristics, and outcome were reviewed and compared with those of the rest of the trauma population with severe neurologic injuries (defined by a Glasgow Coma Scale brain stem injury in all patients. Children with combined lesions had more frequent severe facial and skull base fractures compared with the rest of the population. They also were younger and sustained more frequent severe distracting injury to the neck than the rest of the population. Mortality rate (69%) was 2.6-fold higher than that observed in children without HCSI. In survivors, none demonstrated spinal cord injury resulting in persistent peripheral neurologic deficits, but only one achieved a good recovery. Combined HCSI and brain stem injuries must be suspected in young children sustaining a severe distracting injury to the craniocervical junction. Early recognition of these catastrophic injuries by systematic spiral cervical spine and brain stem computed tomographic scan evaluation is mandatory.

  8. Neuropsychological Consequences of Traumatic Brain Injury in Children and Adolescents.

    Science.gov (United States)

    Lord-Maes, Janiece; Obrzut, John E.

    1996-01-01

    This article discusses recent findings concerning cognitive outcomes in traumatic brain injury (TBI) in children and adolescents, with a particular focus on age differences with TBI. It suggests a relationship between specific learning disorders and brain dysfunction, addresses differential hemispheric functioning with TBI, and outlines recent…

  9. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  10. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  11. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    and reactive astrocytes surrounding the lesion site. In addition, expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and metallothionein-I+II (MT-I+II) were increased in these cells, while the brain-specific MT-III was only moderately upregulated. In IL-6-/- mice, however, the response...... of brain macrophages and reactive astrocytes was markedly depressed and the number of NSE positive neurons was reduced. Brain damage-induced GM-CSF and MT-I+II expression were also markedly depressed compared to IL-6+/+ mice. In contrast, MT-III immunoreactivity was markedly increased in brain macrophages......Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...

  12. Prediction of outcome in mild to moderate head injury : A review

    NARCIS (Netherlands)

    van der Naalt, J

    2001-01-01

    This paper reviews the functional outcome of patients sustaining mild and moderate head injury (HI). Discrepancies across studies in the definition of minor, mild, and moderate HI are discussed in terms of hindering the interpretation of recovery. The predictive value of acute severity indices,

  13. Response of the cerebral vasculature following traumatic brain injury.

    Science.gov (United States)

    Salehi, Arjang; Zhang, John H; Obenaus, Andre

    2017-07-01

    The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.

  14. WMS-III findings in litigants following moderate to extremely severe brain trauma.

    Science.gov (United States)

    Langeluddecke, Pauline M; Lucas, Sara K

    2005-07-01

    Published information pertaining to the clinical utility of the WMS-III in assessing memory impairment in traumatic brain injury (TBI) remains inadequate. WMS-III findings are reported for 180 litigants with post-acute moderate to extremely severe TBI, classified into three groups according to injury severity, and a healthy control group. A significant "dose-response" relationship was found between memory impairment and TBI severity for most of the WMS-III indexes and subtests. Effect sizes were large for the Immediate and General Memory Indexes and medium for the Working Memory Index. In general, TBI had a greater effect on the Visual than Auditory Indexes. Effect sizes were greatest for Family Pictures and least for the auditory recognition and working memory tasks. Group findings indicate the immediate memory tasks to be clinically useful in relation to a severe or extremely severe TBI, but not for less severe trauma. Delayed memory tasks do not provide information additional to that obtained from immediate memory measures. The revised Tulsky indexes are no more sensitive to the effects of TBI than the original ones. Differences between WMS-III memory indexes are unlikely to be of diagnostic utility although memory-intelligence discrepancies may be.

  15. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  16. Impact of helmet use on traumatic brain injury from road traffic accidents in Cambodia.

    Science.gov (United States)

    Gupta, Saksham; Klaric, Katherine; Sam, Nang; Din, Vuthy; Juschkewitz, Tina; Iv, Vycheth; Shrime, Mark G; Park, Kee B

    2018-01-02

    Rapid urbanization and motorization without corresponding increases in helmet usage have made traumatic brain injury due to road traffic accidents a major public health crisis in Cambodia. This analysis was conducted to quantify the impact of helmets on severity of injury, neurosurgical indication, and functional outcomes at discharge for motorcycle operators who required hospitalization for a traumatic brain injury following a road traffic accident in Cambodia. The medical records of 491 motorcycle operators who presented to a major tertiary care center in Cambodia with traumatic brain injury were retrospectively analyzed using multivariate logistic regression. The most common injuries at presentation were contusions (47.0%), epidural hematomas (30.1%), subdural hematomas (27.9%), subarachnoid hemorrhages (12.4%), skull fractures (21.4%), and facial fractures (18.5%). Moderate-to-severe loss of consciousness was present in 36.3% of patients. Not wearing a helmet was associated with an odds ratio of 2.20 (95% confidence interval [CI], 1.15-4.22) for presenting with moderate to severe loss of consciousness compared to helmeted patients. Craniotomy or craniectomy was indicated for evacuation of hematoma in 20.0% of cases, and nonhelmeted patients had 3.21-fold higher odds of requiring neurosurgical intervention (95% CI, 1.25-8.27). Furthermore, lack of helmet usage was associated with 2.72-fold higher odds of discharge with functional deficits (95% CI, 1.14-6.49). In total, 30.1% of patients were discharged with severe functional deficits. Helmets demonstrate a protective effect and may be an effective public health intervention to significantly reduce the burden of traumatic brain injury in Cambodia and other developing countries with increasing rates of motorization across the world.

  17. New vignettes for the experimental manipulation of injury cause in prospective mild traumatic brain injury research.

    Science.gov (United States)

    Sullivan, Karen A; Edmed, Shannon L

    2016-01-01

    This study developed standardized vignettes that depict a mild traumatic brain injury (TBI) from one of several causes and subjected them to formal expert review. A base vignette was developed using the World Health Organization operational criteria for mild TBI. Eight specific causes (e.g. sport vs assault) were examined. A convenience sample of mild TBI experts with a discipline background of Neuropsychology from North America, Australasia and Europe (n = 21) used an online survey to evaluate the vignettes and rated the role of cause on outcome. The vignette suite was rated as fitting the mild TBI WHO operational diagnostic criteria at least moderately well. When compared to other factors, cause was not rated as significantly contributing to outcome. When evaluated in isolation, approximately half of the sample rated cause as important or very important and at least two of three clinical outcomes were associated with a different cause. The vignettes may be useful in experimental mild TBI research. They enable the injury parameters to be controlled so that the effects of cause can be isolated and examined empirically. Such studies should advance understanding of the role of this factor in mild TBI outcome.

  18. Prospective Tracking and Analysis of Traumatic Brain Injury in Veterans and Military Personnel.

    Science.gov (United States)

    Licona, Nytzia E; Chung, Joyce S; Poole, John H; Salerno, Rose M; Laurenson, Nancy M; Harris, Odette A

    2017-02-01

    To describe the ongoing Clinical Tracking Form (CTF) study of the Defense and Veterans Brain Injury Center (DVBIC). Prospective longitudinal study. Data at baseline and postinjury are collected on participants through interview and questionnaire, review of medical records, and periodic follow-ups throughout their lifetime. A regional DVBIC site located at a Veterans Affairs Medical Center. Participants (N=211; age range, 18-75y) were enrolled between January 1, 2005, and December 31, 2012, at a regional DVBIC site. Not applicable. Injury information, functioning, and psychological health. Sixty percent of 211 participants were identified as having severe traumatic brain injuries (TBIs), 14% moderate TBIs, and 26% mild TBIs. Of these 211 participants, 79% sustained closed head injuries, 15% penetrating head injuries, and 6% were not reported. Comparing the severity of TBI in combat versus stateside situations, most of the mild injuries (71%) occurred in combat locations, while most of the severe injuries (62%) occurred in the United States. Among those injured in combat, blast-related TBIs (82%) greatly outnumbered non-blast-related TBIs, regardless of severity. The CTF study serves as a significant resource of data to understand the effect and outcomes of TBI in the military population. The lifelong experience of military veterans across the full spectrum of TBI and recovery will be recorded through the CTF, and will translate into more informed clinical decisions and educational efforts to guide future research pathways. Copyright © 2016 American Congress of Rehabilitation Medicine. All rights reserved.

  19. Cognitive Improvement after Mild Traumatic Brain Injury Measured with Functional Neuroimaging during the Acute Period.

    Directory of Open Access Journals (Sweden)

    Glenn R Wylie

    Full Text Available Functional neuroimaging studies in mild traumatic brain injury (mTBI have been largely limited to patients with persistent post-concussive symptoms, utilizing images obtained months to years after the actual head trauma. We sought to distinguish acute and delayed effects of mild traumatic brain injury on working memory functional brain activation patterns < 72 hours after mild traumatic brain injury (mTBI and again one-week later. We hypothesized that clinical and fMRI measures of working memory would be abnormal in symptomatic mTBI patients assessed < 72 hours after injury, with most patients showing clinical recovery (i.e., improvement in these measures within 1 week after the initial assessment. We also hypothesized that increased memory workload at 1 week following injury would expose different cortical activation patterns in mTBI patients with persistent post-concussive symptoms, compared to those with full clinical recovery. We performed a prospective, cohort study of working memory in emergency department patients with isolated head injury and clinical diagnosis of concussion, compared to control subjects (both uninjured volunteers and emergency department patients with extremity injuries and no head trauma. The primary outcome of cognitive recovery was defined as resolution of reported cognitive impairment and quantified by scoring the subject's reported cognitive post-concussive symptoms at 1 week. Secondary outcomes included additional post-concussive symptoms and neurocognitive testing results. We enrolled 46 subjects: 27 with mild TBI and 19 controls. The time of initial neuroimaging was 48 (+22 S.D. hours after injury (time 1. At follow up (8.7, + 1.2 S.D., days after injury, time 2, 18 of mTBI subjects (64% reported moderate to complete cognitive recovery, 8 of whom fully recovered between initial and follow-up imaging. fMRI changes from time 1 to time 2 showed an increase in posterior cingulate activation in the mTBI subjects

  20. Risk Factors for Traumatic Brain Injuries During Falls in Older Persons.

    Science.gov (United States)

    Hwang, Hei-Fen; Cheng, Chui-Hsuan; Chien, Ding-Kuo; Yu, Wen-Yu; Lin, Mau-Roung

    2015-01-01

    To identify risk factors for traumatic brain injuries (TBIs) during falls in older Taiwanese people. Case patients consisted of 113 patients aged 60 years or older with a moderate/severe TBI due to a fall. Two control groups: (1) 339 older patients with a soft-tissue injury; and (2) 113 with a mild-TBI due to a fall. Proxies were required to provide information for a considerable number of patients. Matched case-control study. The emergency departments of 3 general hospitals. Sociodemographic, lifestyle behavior, chronic condition, medication use, functional abilities, and fall-related characteristics. When patients with a soft-tissue injury were assigned to the control group, men were 2.06-fold more likely to have a moderate/severe TBI than women. Subjects who took antiarrhythmics within 4 hours of a fall were 2.59-fold more likely to have a moderate/severe TBI than those who took none. Subjects who were negotiating stairs and getting in/out of the bed/chair were 3.12-fold and 2.97-fold, respectively, more likely to have a moderate/severe TBI than those who fell while walking. Falling backward and sideways was 4.07-fold and 2.30-fold, respectively, more likely to cause a moderate/severe TBI than falling forward. When patients with a mild-TBI were assigned to the control group, results were similar, with the exception that the effect of antiarrhythmic use became nonsignificant and subjects who took 2 or more medications were 3.07-fold more likely to have a moderate/severe TBI than those who took none. Avoiding a head impact during a backward or sideways fall, reducing unnecessary use of polypharmacy and antiarrhythmics, and maintaining safety during stair negotiation and bed/chair transfer may protect an elderly person from a severe brain injury.

  1. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  2. Family Adaptation 18 Months After Traumatic Brain Injury in Early Childhood

    Science.gov (United States)

    Stancin, Terry; Wade, Shari L.; Walz, Nicolay C.; Yeates, Keith Owen; Taylor, H. Gerry

    2014-01-01

    Objective The purpose of this study was to examine family adaptation to a traumatic brain injury (TBI) in young children during the first 18-month postinjury, when compared with children who had an orthopedic injury. Methods A concurrent cohort/prospective research design was used with repeated assessments of children aged 3 to 6 years with TBI or orthopedic injury requiring hospitalization and their families. Shortly after injury and at 6-, 12-, and 18-month postinjury, parents of 99 children with TBI (20 severe, 64 moderate, 15 mild) and 117 with orthopedic injury completed standardized assessments of family functioning, parental distress and coping, injury-related burden, and noninjury-related parent stressors and resources. Mixed models analyses examined group differences in parental burden and distress adjusted for race and social demographic factors. Results Both moderate and severe TBI were associated with higher levels of injury-related stress than orthopedic injury, with stress levels diminishing over time in all groups. Severe TBI was also associated with greater psychological distress on the Brief Symptom Inventory but not with more depressive symptoms. Family functioning and social resources moderated the relationship of TBI severity to injury-related burden and caregiver distress, respectively. Lower child adaptive skills were associated with poorer family outcome but group differences remained even when controlling for this effect. Conclusions Severe TBI in young children has adverse consequences for parents and families during the first 18-month postinjury. The consequences lessen over time for many families and vary as a function of social resources. PMID:20431399

  3. Predicting Longitudinal Patterns of Functional Deficits in Children with Traumatic Brain Injury

    Science.gov (United States)

    Fay, Taryn B.; Yeates, Keith Owen; Wade, Shari L.; Drotar, Dennis; Stancin, Terry; Taylor, H. Gerry

    2010-01-01

    Longitudinal patterns of functional deficits were investigated in 37 children with severe traumatic brain injuries (TBI), 40 children with moderate TBI, and 44 children with orthopedic injuries (OI). They were from 6 to 12 years of age when injured. Their neuropsychological, behavioral, adaptive, and academic functioning was assessed at 6 months, 12 months, and 3-5 years post injury. Functional deficits (neuropsychological, adaptive, and academic functioning. Severe TBI also predicted a greater total number of functional deficits across domains at each occasion. However, many children with severe TBI showed no deficits from 6 months to 4 years post injury in one or more outcome domains. The findings help to clarify the course of recovery for individual children following TBI. PMID:19413442

  4. A prospective pilot investigation of brain volume, white matter hyperintensities and haemorrhagic lesions after mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Michael eJarrett

    2016-02-01

    Full Text Available Traumatic brain injury (TBI is among the most common neurological disorders. Haemorrhagic lesions and white matter hyperintensities (WMH are radiological features associated with moderate and severe traumatic brain injury TBI. Brain volume reductions have also been observed during the months following injury. In concussion, no signs of injury are observed on conventional MRI, which may be a true feature of concussion or merely due to the limited sensitivity of imaging techniques used so far. Moreover, it is not known whether volume reductions are due to the resolution of trauma related edema or a true volume loss. Forty five collegiate level ice hockey players (20 female and 15 controls (9 female 40 players underwent 3T MRI for haemorrhages (multi echo susceptibility weighted imaging (SWI, WMH (three dimensional FLAIR and brain volume at the beginning and the end of the hockey season. Concussed athletes underwent additional imaging and neuropsychological testing atthree days, two weeks, and two months after injury. At the end of the hockey season, brain volume was reduced compared to controls by 0.32% (p<0.034 in the whole cohort and by 0.26% (p<0.09 in the concussed athletes. Two weeks and two months after concussion, brain volume was reduced by -0.08% (p=0.027 and -0.23% (p=0.035, respectively. In athletes, the WMH were significantly closer to the interface between grey matter and white matter compared to controls. No significant changes in thenumber of WMH over the duration of the study were found in athletes. No microhaemorrhages were detected as a result of concussion or playing a season of ice hockey. We conclude that mild TBI does not lead to transient increases in brain volume and no new microbleeds or WMH are detectable after concussion. Brain volume reductions appear by two weeks after concussion and persist until at least two months after concussion. Brain volume is reduced between the beginning and the end of the icehockey season.

  5. Clinical significance of determination of serum NSE and plasma ET, IGF-II, CNP levels in patients with acute brain injury

    International Nuclear Information System (INIS)

    Chen Bo

    2010-01-01

    Objective: To investigate the clinical significance of changes of plasma ET, IGF-II, CNP and serum NSE contents in patients with acute brain injury. Methods: Serum contents of neuron specific enolase (NSE) were measured with chemiluminescence immunoassay and plasma endothelin (ET), insulin-like growth factor-II (IGF-II) and C-type natriuretic peptide (CNP) were measured with radioimmunoassay in 30 patients with acute brain injury and 35 controls. Results: Serum contents of NSE and plasma IGF-II, CNP were not much different in patients with mild brain injury from those in controls (P >0.05), but plasma contents of ET were already significantly higher in patients with mild brain injury than those in controls(P < 0.01). The serum NSE and plasma ET levels in patients with moderate and severe brain injury were significantly higher than those in patients with mild brain injury and controls (P < 0.01). Decrease of plasma levels of IGF-II and CNP was not significant in patients with mild brain injury (vs controls). However, the plasma levels of IGF-II and CNP were significantly lower in patients with moderate and severe brain injury than those in patients with mild brain injury and controls (P <0.01). As a whole, the magnitude of changes of these parameters was proportional to the severity of the injury. Conclusion: Changes of serum NSE and plasma IGF-II, ET and CNP levels were closely related to the pathological process of brain injury. Determination of these parameters was of clinical importance for evaluation of the severity of injury and outcome prediction. (authors)

  6. Social Competence at Two Years after Childhood Traumatic Brain Injury.

    Science.gov (United States)

    Anderson, Vicki; Beauchamp, Miriam H; Yeates, Keith Owen; Crossley, Louise; Ryan, Nicholas; Hearps, Stephen J C; Catroppa, Cathy

    2017-07-15

    Children with traumatic brain injury (TBI) are at risk for social impairment, but research has yet to document the trajectory of these skills post-injury and factors that may predict social problems. This study addressed these gaps in knowledge, reporting on findings from a prospective, longitudinal follow-up study that investigated social outcomes post-injury and explored factors contributing to these outcomes at two years post-injury. The sample included 113 children, 74 with TBI and 39 typically developing (TD) controls. TBI participants were recruited on presentation to the hospital. Parents rated pre-injury function at that time, and all children underwent magnetic resonance imaging (MRI). Participants were followed up at two years post-injury. Outcomes were social adjustment, social participation, social relationships, and social cognition. Predictors of social outcomes examined included brain lesion characteristics, child cognition (6 months post-TBI), and behavior and environmental factors (pre-injury and two years). Reduced social adjustment (p = 0.011) and social participation (p Poor social adjustment was predicted by externalizing behavior problems and younger age at injury. Reduced social participation was linked to internalizing behavior problems. Greater lesion volume, lower socioeconomic status, and family burden contributed to poorer social relationships, whereas age at injury predicted social cognition. Within the TBI group, 23% of children exhibited social impairments. Younger age at injury, greater pre-injury, and current behavior problems and family dysfunction, and poorer intelligence quotient (IQ), processing speed, and empathy were linked to impairment. Further follow-up is required to track social recovery and the influences of cognition, brain, and environment over time.

  7. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  8. Central diabetes insipidus in pediatric severe traumatic brain injury.

    Science.gov (United States)

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a decompressive craniectomy for elevated intracranial pressure (p = 0.04). The incidence of central diabetes insipidus in pediatric patients with severe traumatic brain injury is 18%. Mortality was associated with early central diabetes insipidus onset and cerebral edema on head computed tomography. Central diabetes insipidus nonsurvivors were less likely to have received intracranial pressure monitoring, thiopental coma and decompressive craniectomy.

  9. Dementia resulting from traumatic brain injury: what is the pathology?

    Science.gov (United States)

    Shively, Sharon; Scher, Ann I; Perl, Daniel P; Diaz-Arrastia, Ramon

    2012-10-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2- and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed.

  10. Fatal traumatic brain injury with electrical weapon falls.

    Science.gov (United States)

    Kroll, Mark W; Adamec, Jiri; Wetli, Charles V; Williams, Howard E

    2016-10-01

    While generally reducing morbidity and mortality, electrical weapons have risks associated with their usage, including eye injuries and falls. With sufficient probe spread, an uncontrolled fall to the ground typically occurs along with the possibility of a fatal brain injury. We analyzed possible risk factors including running and elevated surfaces with established head-injury criteria to estimate the risk of brain injury. We searched for cases of arrest-related or in-custody death, with TASER(®) electrical weapon usage where fall-induced injuries might have contributed to the death. We found 24 cases meeting our initial inclusion criteria of a fatal fall involving electronic control. We then excluded 5 cases as intentional jumps, leaving 19 cases of forced falls. Autopsy reports and other records were analyzed to determine which of these deaths were from brain injury caused by the fall. We found 16 probable cases of fatal brain injuries induced by electronic control from electrical weapons. Out of 3 million field uses, this gives a risk of 5.3 ± 2.6 PPM which is higher than the theoretical risk of electrocution. The mean age was 46 ± 14 years which is significantly greater that the age of the typical ARD (36 ± 10). Probe shots to the subject's back may present a higher risk of a fatal fall. The use of electronic control presents a small but real risk of death from fatal traumatic brain injury. Increased age represents an independent risk factor for such fatalities. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Severe traumatic head injury: prognostic value of brain stem injuries detected at MRI.

    Science.gov (United States)

    Hilario, A; Ramos, A; Millan, J M; Salvador, E; Gomez, P A; Cicuendez, M; Diez-Lobato, R; Lagares, A

    2012-11-01

    Traumatic brain injuries represent an important cause of death for young people. The main objectives of this work are to correlate brain stem injuries detected at MR imaging with outcome at 6 months in patients with severe TBI, and to determine which MR imaging findings could be related to a worse prognosis. One hundred and eight patients with severe TBI were studied by MR imaging in the first 30 days after trauma. Brain stem injury was categorized as anterior or posterior, hemorrhagic or nonhemorrhagic, and unilateral or bilateral. Outcome measures were GOSE and Barthel Index 6 months postinjury. The relationship between MR imaging findings of brain stem injuries, outcome, and disability was explored by univariate analysis. Prognostic capability of MR imaging findings was also explored by calculation of sensitivity, specificity, and area under the ROC curve for poor and good outcome. Brain stem lesions were detected in 51 patients, of whom 66% showed a poor outcome, as expressed by the GOSE scale. Bilateral involvement was strongly associated with poor outcome (P brain stem injuries detected at MR imaging are poor prognostic signs. Nonhemorrhagic injuries showed the highest positive predictive value for good outcome.

  12. Deficits in analogical reasoning in adolescents with traumatic brain injury.

    Science.gov (United States)

    Krawczyk, Daniel C; Hanten, Gerri; Wilde, Elisabeth A; Li, Xiaoqi; Schnelle, Kathleen P; Merkley, Tricia L; Vasquez, Ana C; Cook, Lori G; McClelland, Michelle; Chapman, Sandra B; Levin, Harvey S

    2010-01-01

    Individuals with traumatic brain injury (TBI) exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically developing (TD) controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems), distraction (distractor item present or absent), and animacy (living or non-living items in the problems). We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical-behavior correlations as observed in TD individuals.

  13. Ability to manage everyday technology after acquired brain injury.

    Science.gov (United States)

    Kassberg, Ann-Charlotte; Malinowsky, Camilla; Jacobsson, Lars; Lund, Maria Larsson

    2013-01-01

    To investigate and describe how persons with an acquired brain injury (ABI) manage everyday technology (ET) in their daily activities and to explore whether the ability to manage ET was related to the severity of the disability. Eighty-one persons with ABI were observed while managing ET by using the Management of Everyday Technology Assessment (META). The Glasgow Outcome Scale-Extended (GOSE) was used to assess the severity of disability after the ABI. A computer application of a Rasch measurement model was used to generate measures of the participants' ability to manage ET and the measures were compared groupwise with analysis of covariance (ANCOVA). The degree of severity of disability had a significant main effect on the ability to manage ET. The groups with severe and moderate disability exhibited a significantly lower ability to manage ET compared to the group with good recovery. The result indicates that the ability to manage ET in daily activities can be related to the global severity of disability after ABI. This demonstrates the importance of considering the ability to manage ET to support the performance of activities at home, at work and in society in persons with ABI.

  14. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  15. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  16. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  17. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  18. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2016-01-01

    Full Text Available Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury.

  19. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  20. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. The role of free radicals in traumatic brain injury.

    Science.gov (United States)

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  2. Capillaries in the Brain Microcirculatory Bed in the Acute Period of Experimental Brain Injury

    Directory of Open Access Journals (Sweden)

    V. Ye. Klimenko

    2010-01-01

    Full Text Available Objective: to provide a morphochemical evaluation of the capillaries in the brain microcirculatory bed of experimental animals in the acute period of brain injury (BI. Materials and methods. An experiment was carried out on 40 sexually mature Wister rats. Gradual BI was inflicted by a falling load blow on the right parietotemporal region, as described by T. F. Sokolova (1986. Brain magnetic resonance imaging was made in the animals an hour after injury infliction to define the extent of the damage and its site. Morphological studies of the brain were conducted 24 and 72 hours and 7 days after the injury. The capillaries were identified by the injection technique (Indian ink imbedding. The NO-producing function of endotheliocytes was evaluated using the NADPH-diaphorase histochemical technique. To study microcirculatory changes, the similar brain portions ipsilateral to the site of injury and in the intact hemisphere were compared in each animal. The changes in the diameter of capillaries, the volume density of the microcirculatory bed, the exchange surface area and activity of NADPH diaphorase in the capillary wall were analyzed. The findings were processed by the variation statistical method, by determining the arithmetic mean, the standard error of the arithmetic mean, and the test of significance. The findings give an insight into the mechanisms responsible for secondary ischemic lesions in the early period of brain injury. The NO-dependent capillary blood flow reduction leading to hypoxia may be one of the most important causes of secondary cerebral lesion. All changes in the dynamics of microvessels (their lumen and area are in line with the activity of the enzyme. Conclusion. In severe BI, changes in the brain microcirculatory bed, its capillary link in particular, are manifested not only with in a traumatic injury focus, but also involve the brain as a whole. Key words: brain, brain njury, capillaries, nitric oxide (NO.

  3. Clinical significance of measurement of plasma ET-1 and CGRP levels in patients with traumatic brain injury

    International Nuclear Information System (INIS)

    Jing Daping; Cheng Guanghua

    2007-01-01

    Objective: To study the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury of different severity. Methods: 107 patients with traumatic brain injury were divided into three group on the basis of GCS: mild group (n=25, GCS>12), moderate group (n=33, GCS9-12) and severe group (n=49, GCS3-8). The plasma ET-1 and CGRP levels in these patients and 30 controls were determined with RIA. Results: 1) The plasma ET-1 levels in patients with traumatic brain injury were signilieantly higher than those in controls, the more severe the illness, the higher the ET-1 levels. 2)The plasma CGRP levels in patients of mild and moderate brain injury were found significantly higher than those in controls, while no significant differences were found between those in severe and control group. 3)The more severe the illness was, the lower CGRP/ET-1 ratio were found. Conclusion: The changes of plasma levels of ET-1 and CGRP and the CGRP/ET-1 ratio in the patients with traumatic brain injury were correlated with the severity of the illness, and might be of prognostic value. (authors)

  4. Neuroimaging Cerebrovascular Function and Diffuse Axonal Injury after Traumatic Brain Injury and Response to Sildenafil Treatment

    Science.gov (United States)

    2016-04-05

    brain coverage using the dedicated perfusion labeling neck coil. All images were acquired with 200um2 in-plane resolution, slice thickness 800um. Resting... damage after mild traumatic brain injury: a pilot study. J Neurotrauma 24:1447-59 12. Bederson JB, Bartkowski HM, Moon K, Halks-Miller M, Nishimura...Mol Psychiatry 18:963-74 121. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N. 2013. Inhaled nitric oxide reduces secondary brain damage after

  5. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  6. A narrative literature review of depression following traumatic brain injury: prevalence, impact, and management challenges

    Directory of Open Access Journals (Sweden)

    Juengst SB

    2017-06-01

    Full Text Available Shannon B Juengst,1,2 Raj G Kumar,3 Amy K Wagner3–5 1Department of Physical Medicine and Rehabilitation, 2Department of Rehabilitation Counseling, University of Texas Southwestern Medical Center, Dallas, TX, 3Department of Physical Medicine and Rehabilitation, 4Department of Neuroscience, 5Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Depression is one of the most common conditions to emerge after traumatic brain injury (TBI, and despite its potentially serious consequences it remains undertreated. Treatment for post-traumatic depression (PTD is complicated due to the multifactorial etiology of PTD, ranging from biological pathways to psychosocial adjustment. Identifying the unique, personalized factors contributing to the development of PTD could improve long-term treatment and management for individuals with TBI. The purpose of this narrative literature review was to summarize the prevalence and impact of PTD among those with moderate to severe TBI and to discuss current challenges in its management. Overall, PTD has an estimated point prevalence of 30%, with 50% of individuals with moderate to severe TBI experiencing an episode of PTD in the first year after injury alone. PTD has significant implications for health, leading to more hospitalizations and greater caregiver burden, for participation, reducing rates of return to work and affecting social relationships, and for quality of life. PTD may develop directly or indirectly as a result of biological changes after injury, most notably post-injury inflammation, or through psychological and psychosocial factors, including pre injury personal characteristics and post-injury adjustment to disability. Current evidence for effective treatments is limited, although the strongest evidence supports antidepressants and cognitive behavioral interventions. More personalized approaches to treatment and further research into unique therapy combinations

  7. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi

    2007-02-01

    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  8. Current pre-hospital traumatic brain injury management in China

    Science.gov (United States)

    Kou, Kou; Hou, Xiang-yu; Sun, Jian-dong; Chu, Kevin

    2014-01-01

    BACKGROUND: Traumatic brain injury (TBI) is associated with most trauma-related deaths. Secondary brain injury is the leading cause of in-hospital deaths after traumatic brain injury. By early prevention and slowing of the initial pathophysiological mechanism of secondary brain injury, pre-hospital service can significantly reduce case-fatality rates of TBI. In China, the incidence of TBI is increasing and the proportion of severe TBI is much higher than that in other countries. The objective of this paper is to review the pre-hospital management of TBI in China. DATA SOURCES: A literature search was conducted in January 2014 using the China National Knowledge Infrastructure (CNKI). Articles on the assessment and treatment of TBI in pre-hospital settings practiced by Chinese doctors were identified. The information on the assessment and treatment of hypoxemia, hypotension, and brain herniation was extracted from the identified articles. RESULTS: Of the 471 articles identified, 65 met the selection criteria. The existing literature indicated that current practices of pre-hospital TBI management in China were sub-optimal and varied considerably across different regions. CONCLUSION: Since pre-hospital care is the weakest part of Chinese emergency care, appropriate training programs on pre-hospital TBI management are urgently needed in China. PMID:25548596

  9. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina

    2013-12-01

    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  10. Acute Inflammatory Response in Rodent Brain and Blood Following a Blast Induced Traumatic Brain Injury

    Science.gov (United States)

    2014-11-01

    dehydrated with 30% sucrose before storing at -80 °C. Thirty micron coronal sections were stained with a primary antibody against microglia ...strongly Iba-1 stained cells as compared to controls. These results indicate blast exposure induces activation of microglia in the hippocampus... Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain, behaviour and Immunity 26: 1191-1201. Loane, D. J

  11. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury

    NARCIS (Netherlands)

    F.K. Korley (Frederick K.); R. Diaz-Arrastia (Ramon); A.H.B. Wu (Alan H. B.); J.K. Yue (John); G. Manley (Geoffrey); H.I. Sair (Haris I.); J.E. van Eyk (Jennifer); A.D. Everett (Allen D.); D. Okonkwo (David); A.B. Valadka (Alex); W.A. Gordon (Wayne A.); A.I.R. Maas (Andrew I.R.); P. Mukherjee (Pratik); E.L. Yuh (Esther); H.F. Lingsma (Hester); A.M. Puccio (Ava); D.M. Schnyer (David)

    2016-01-01

    textabstractBrain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency

  12. Neuroendocrine Abnormalities in Patients with Traumatic Brain Injury

    Science.gov (United States)

    1991-01-01

    oxytocin (41). However. global brain damage may not substantially increase ACTH secretion. Our study in rats showed that fluid percussion brain injury...who were comatose following trauma. Plasma cortisol and aldosterone levels wcre measured at 4-h intervals throughout three consecutive 24-h cycles in...148). In dog and rabbit, hypothalamic compressive lesion led to a hypothyroidisr within 4 weeks (30). The relationship between responses to head

  13. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  14. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    Science.gov (United States)

    2009-01-14

    In 1969, Olney found that subcutaneous injection of monosodium glutamate resulted in necrotic brain lesions in the hypothalamus of newborn mice...Thesis: "Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury" Name of Candidate: Michael Doh Molecular & Cell...TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Pharmacological Treatment Of Glutamate Excitotoxicity Following Traumatic

  15. Brain volume loss contributes to arousal and empathy dysregulation following severe traumatic brain injury.

    Science.gov (United States)

    Rushby, Jacqueline A; McDonald, Skye; Fisher, Alana C; Kornfeld, Emma J; De Blasio, Frances M; Parks, Nicklas; Piguet, Olivier

    2016-01-01

    Severe traumatic brain injury (TBI) often leads to deficits in physiological arousal and empathy, which are thought to be linked. This study examined whether injury-related brain volume loss in key limbic system structures is associated with these deficits. Twenty-four adults with TBI and 24 matched Controls underwent MRI scans to establish grey matter volumes in the amygdala, thalamus, and hippocampus. EEG and skin conductance levels were recorded to index basal physiological arousal. Self-report emotional empathy levels were also assessed. The TBI group had reduced brain volumes, topographic alpha differences, and lower emotional empathy compared to Controls. Regional brain volumes were differentially correlated to arousal and self-report empathy. Importantly, lower volume in pertinent brain structures correlated with lower empathy, for participants with and without TBI. Overall we provide new insights into empathic processes after TBI and their relationship to brain volume loss.

  16. Does safety climate moderate the influence of staffing adequacy and work conditions on nurse injuries?

    Science.gov (United States)

    Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T

    2007-01-01

    Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.

  17. Executive function after severe childhood traumatic brain injury - Age-at-injury vulnerability periods: The TGE prospective longitudinal study.

    Science.gov (United States)

    Krasny-Pacini, Agata; Chevignard, Mathilde; Lancien, Sabine; Escolano, Sylvie; Laurent-Vannier, Anne; De Agostini, Maria; Meyer, Philippe

    2017-04-01

    Executive function (EF) impairment is a major predictor of overall outcome after traumatic brain injury (TBI). TBI severity is a factor of poor outcome, but most studies include a majority of children with mild and moderate TBI. The aims of this study were to estimate EF impairment after severe childhood TBI and to explore factors predicting EF outcome. The secondary aim was to compare recovery trajectories by age-at-injury groups. This was a prospective longitudinal study of children with severe TBI who were tested for EFs by performance-based tests and questionnaires at 3, 12 and 24 months. Children with TBI (n=65) showed significant impairment in working memory, inhibition, attention and global EF, with little or no recovery at 24 months. For flexibility and performance-based EF score, children were impaired at 3 months only and showed normal scores by 12 months. No impairment was found in planning. At 3 and 24 months, Glasgow Coma Scale score and parental education predicted global EF. Coma length was not a significant predictor of outcome. Age at injury predicted progress in EF, but the relationship was not linear; children 10-12 years old at injury showed better outcome than older and younger children. EFs are impaired after severe TBI in childhood. The relationship between age at injury and outcome is not linear. Relying on only performance-based EF tests can underestimate EF impairment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  19. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  20. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  1. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury

    NARCIS (Netherlands)

    Kampen, P.J. van; Martina, J.D.; Vos, P.E.; Hoedemaekers, C.W.E.; Hendricks, H.T.

    2011-01-01

    BACKGROUND: Heterotopic ossification (HO) is a frequent complication after traumatic brain injury (TBI). The current preliminary study is intended to provide additional data on the potential roles that brain injury severity, concomitant orthopaedic trauma, and specific intensive care complicating

  2. Script generation and the dysexecutive syndrome in patients with brain injury

    NARCIS (Netherlands)

    Boelen, Danielle H. E.; Allain, Philippe; Spikman, Jacoba M.; Fasotti, Luciano

    2011-01-01

    Objective: The authors investigated whether patients with brain injury suffering from dysexecutive symptoms had difficulties with script generation. Method: Forty-eight patients with brain injury of various etiology with complaints of executive dysfunctioning and deficient scores on executive tests

  3. Relationship of preinjury caregiver and family functioning to community integration in adults with traumatic brain injury.

    Science.gov (United States)

    Sady, Maegan D; Sander, Angelle M; Clark, Allison N; Sherer, Mark; Nakase-Richardson, Risa; Malec, James F

    2010-10-01

    To investigate the relationship of preinjury caregiver and family functioning to community integration outcomes in persons with traumatic brain injury (TBI). Inception cohort. Three TBI Model Systems inpatient rehabilitation facilities. Persons with TBI (N=141) and their caregivers admitted to inpatient rehabilitation and followed up at 1 to 2 years after injury. Not applicable. Community Integration Questionnaire and the Social and Occupation scales of the Craig Handicap Assessment and Reporting Technique. There were significant interactions of several preinjury caregiver and family variables with injury severity. For persons with complicated mild/moderate injury, better family functioning was associated with greater home integration, and less caregiver distress was associated with better social integration. For persons with severe injuries, greater caregiver perceived social support was associated with better outcomes in productivity and social integration. Preinjury caregiver and family characteristics interact with injury severity to affect outcomes in persons with injury. Research on outcomes should include measures of caregiver and family functioning. Early interventions targeted toward decreasing caregiver distress, increasing support, and improving family functioning may have a positive impact on later outcomes. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Health Outcomes of Traumatic Brain Injury Among Refugee Survivors of Torture.

    Science.gov (United States)

    Keatley, Eva; dʼAlfonso, Alana; Abeare, Christopher; Keller, Allen; Bertelsen, Nathan S

    2015-01-01

    To compare spontaneous reporting of health complaints in a sample of refugee survivors of torture with a history of moderate/severe traumatic brain injury (TBI) with survivors of torture without TBI and analyze the contribution of posttraumatic stress disorder symptoms to health outcomes. Treatment-seeking refugee survivors of torture with a moderate/severe TBI (n = 85) and a control group (n = 72) of survivors who suffered a physical injury during their persecution but had no history of a head injury. Health outcomes included a self-report of general physical health (scale 1-5), number of medical visits, and a scaled score of the number of health complaints. The Harvard Trauma Questionnaire (HTQ) was used to measure posttraumatic stress disorder. Moderate/severe TBI was associated with more health complaints but not higher HTQ scores. TBI and HTQ scores are independently associated with a greater number of health complaints, and an interaction between TBI and HTQ scores suggests that the relationship between moderate/severe TBI and the number of health complaints strengthened with increased posttraumatic stress disorder symptom severity. Health complaints may be a common expression of psychological trauma, and service providers should be certain to explore both medical and psychological contributors when assessing refugee survivors of torture.

  5. Man versus machine: comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Shrader, Carole R

    2013-01-01

    NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The purpose of this study was to compare NeuroQuant with the radiologist's traditional approach, based on visual inspection, in 20 outpatients with mild or moderate traumatic brain injury (TBI). Each MRI was analyzed with NeuroQuant, and the resulting volumetric analyses were compared with the attending radiologist's interpretation. The radiologist's traditional approach found atrophy in 10.0% of patients; NeuroQuant found atrophy in 50.0% of patients. NeuroQuant was more sensitive for detecting brain atrophy than the traditional radiologist's approach.

  6. Clinical utility of the Tower of London--Drexel University, Second Edition (TOLDX) after adolescent traumatic brain injury.

    Science.gov (United States)

    Donders, Jacobus; Larsen, Tory

    2012-01-01

    The performance of 43 adolescents with traumatic brain injury was evaluated on the Tower of London-Drexel University, second edition (TOLDX; Culbertson & Zillmer, 2005), and compared to that of 43 demographically matched healthy controls. TOLDX variables had a classification accuracy of 69.77%, with clinical patients demonstrating deficits in pre-planning of a schema as well as keeping subgoals in spatial working memory during execution. Time to follow commands and diffuse lesions on neuroimaging accounted for moderate amounts of variance in TOLDX variables. The findings support the clinical utility of the TOLDX in the assessment of adolescents with traumatic brain injury.

  7. Injury versus non-injury factors as predictors of post-concussive symptoms following mild traumatic brain injury in children

    Science.gov (United States)

    McNally, Kelly A.; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H. Gerry; Yeates, Keith Owen

    2013-01-01

    Objective To examine the relative contributions of injury characteristics and non-injury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Methods Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months post-injury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) pre-morbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of pre-injury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI) Results Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Conclusions Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, non-injury factors are more consistently related to persistent PCS. PMID:23356592

  8. The Structural Connectome of Children With Traumatic Brain Injury

    NARCIS (Netherlands)

    Königs, Marsh; van Heurn, L. W. Ernest; Bakx, Roel; Vermeulen, R. Jeroen; Goslings, J. Carel; Poll-The, Bwee Tien; van der Wees, Marleen; Catsman-Berrevoets, Coriene E.; Oosterlaan, Jaap; Pouwels, Petra J. W.

    2017-01-01

    This study aimed to investigate the impact of mild to severe pediatric TBI on the structural connectome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild(RF+), n = 20) or moderate/severe TBI (n=16) at

  9. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Information obtained included the sociodemographic characteristics, type of injury, durations of unconsciousness (LOC) and posttraumatic amnesia (PTA), psychiatric and psychoactive substance use history. Psychiatric diagnosis was based on the criteria of the 10th edition of the International Classification of Diseases ...

  10. Mild Traumatic Brain Injury Pocket Guide (CONUS)

    Science.gov (United States)

    2010-01-01

    gastrointestinal ( GERD /GI) dysfunction Assessment and Treatment Appetite Changes Nausea history `y Pre-injury causes of appetite issues `y Define triggers and...Multidimensional Assessment of Fatigue (MAF) http://www.son.washington.edu/ research /maf Neurobehavioral Symptom Inventory (NSI) http...y The DVBIC Regional Care Coordinator (RCC) Program is a network of professionals ( nurses , social workers, counselors) specializing in TBI who

  11. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  12. Growth hormone deficiency after traumatic brain injury in adults: when to test and how to treat?

    Science.gov (United States)

    Kelestimur, Fahrettin

    2009-06-01

    Hypopituitarism has numerous potential causes, and it is becoming clear that traumatic brain injury (TBI), including traffic accidents and sport-related injuries, is commonly associated with pituitary dysfunction. Mechanisms of pituitary damage after TBI include direct injury and vascular problems, and more recent research suggests that autoimmunity may also be involved. There may also be a genetic influence, as the E3 allele of the ApoE gene may provide some protection from post-traumatic hypopituitarism. Studies suggest that patients with mild or moderate TBI are likely to recover pituitary function over time. In patients with severe TBI, however, adrenocorticotrophic hormone and growth hormone deficiencies may persist. Patients who experience TBI should, therefore, be followed up carefully and evaluated for pituitary dysfunction to ensure that appropriate hormone replacement therapy can be provided if needed.

  13. Fitness training for cardiorespiratory conditioning after traumatic brain injury.

    Science.gov (United States)

    Hassett, Leanne; Moseley, Anne M; Harmer, Alison R

    2017-12-29

    Reduced cardiorespiratory fitness (cardiorespiratory deconditioning) is a common consequence of traumatic brain injury (TBI). Fitness training may be implemented to address this impairment. The primary objective of this updated review was to evaluate whether fitness training improves cardiorespiratory fitness in people who have sustained a TBI. The secondary objectives were to evaluate whether fitness training improves body function and structure (physical and cognitive impairments, psychological responses resulting from the injury), activity limitations and participation restrictions in people who have sustained a TBI as well as to evaluate its safety, acceptance, feasibility and suitability. We searched 10 electronic databases (the Cochrane Injuries Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Embase; PubMed (MEDLINE); CINAHL; AMED; SPORTDiscus; PsycINFO; PEDro and PsycBITE) and the International Clinical Trials Registry Platform for relevant trials. In addition we screened reference lists from systematic reviews related to the topic that we identified from our search, and from the included studies, and contacted trialists to identify further studies. The search was run in August 2017. Randomised controlled studies with TBI participants were eligible if they compared an exercise programme incorporating cardiorespiratory fitness training to usual care, a non-exercise intervention, or no intervention. Two authors independently screened the search results, extracted data and assessed bias. We contacted all trialists for additional information. We calculated mean difference (MD) or standardised mean difference (SMD) and 95% confidence intervals (CI) for continuous data, and odds ratio with 95% CI for dichotomous data. We pooled data when there were sufficient studies with homogeneity. Two new studies incorporating 96 participants were identified in this update and were added to the six previously included studies. A total of

  14. Cognitive Task Demands and Discourse Performance after Traumatic Brain Injury

    Science.gov (United States)

    Byom, Lindsey; Turkstra, Lyn S.

    2017-01-01

    Background: Social communication problems are common in adults with traumatic brain injury (TBI), particularly problems in spoken discourse. Social communication problems are thought to reflect underlying cognitive impairments. Aims: To measure the contribution of two cognitive processes, executive functioning (EF) and theory of mind (ToM), to the…

  15. Headache in traumatic brain injuries from blunt head trauma

    OpenAIRE

    Chelse, Ana B.; Epstein, Leon G.

    2015-01-01

    Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI) among a large cohort of children 2-18 years of age.

  16. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  17. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    Science.gov (United States)

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  18. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  19. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability and it is associated with hormonal and metabolic disorders. This work was carried out to investigate the relationship between some stress hormones (i.e. prolactin and cortisol) and plasma glucose level in TBI ...

  20. Fluoxetine as a treatment for emotional lability after brain injury.

    Science.gov (United States)

    Sloan, R L; Brown, K W; Pentland, B

    1992-01-01

    Emotional lability or emotionalism is a relatively common phenomenon and frequently occurs following vascular or traumatic brain injury. It is distressing and embarrassing to sufferers and their families, and often interferes with rehabilitation. At present there is no satisfactory or reliable treatment for this condition. We describe an open trial using fluoxetine, a newer antidepressant with a specific serotonergic action, in the treatment of emotional lability due to brain injury. Six consecutive cases of emotional lability attending a rehabilitation unit were studied (five cases of cerebrovascular accident and one of traumatic brain injury). Response to treatment was measured using a modification of the scale described by Lawson and MacLeod [1]. All showed a marked improvement within one week of commencing fluoxetine and the drug was well tolerated with no reported side-effects. The speed of onset and degree of improvement suggest that fluoxetine may be a useful agent in the treatment of emotional lability due to brain injury. Our observations indicate that further investigation of the role of fluoxetine in the treatment of emotional lability is warranted.

  1. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  2. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  3. Pathological and immunohistochemical study of lethal primary brain stem injuries

    Directory of Open Access Journals (Sweden)

    Rongchao Sun

    2012-05-01

    Full Text Available Abstract Background Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI and their diagnostic significance. Methods A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases and a control group (20 cases. Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP. Under low power (×100 and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata. Data were recorded and analyzed statistically. Results Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P P  Conclusions These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1345298818712204

  4. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  5. Working with Parents of Students with Traumatic Brain Injuries.

    Science.gov (United States)

    Rhein, Barbara; And Others

    Intended for educators working with children who have suffered traumatic brain injuries (TBI), this brief paper addresses parent issues, administrative issues, and programmatic issues. Noted are the five stages of adjustment typically experienced by parents: shock, elation, reality, crisis, and mourning. Professionals are encouraged to be informed…

  6. Swallowing Disorders in Severe Brain Injury in the Arousal Phase.

    Science.gov (United States)

    Bremare, A; Rapin, A; Veber, B; Beuret-Blanquart, F; Verin, E

    2016-08-01

    The objective of this study was to determine the clinical characteristics of swallowing disorders in severe brain injury in the arousal phase after coma. Between December 1, 2013 and June 30, 2014, eleven patients with severe acquired brain injury who were admitted to rehabilitation center (Male 81.8 %; 40.7 ± 14.6 years) were included in the study. Evaluation of swallowing included a functional examination, clinical functional swallowing test, and naso-endoscopic swallowing test. All patients had swallowing disorders at admission. The first functional swallowing test showed oral (77.8 %) and pharyngeal (66.7 %) food bolus transport disorders; and alterations in airway protection mechanisms (80 %). Swallowing test under endoscopic control showed a disorder in swallowing coordination in 55.6 % of patients tested. Seven (63.6 %) patients resumed oral feeding within an average of 6 weeks after admission to rehabilitation center and 14 weeks after acquired brain injury. Six (85.7 %) of these seven patients continued to require modified solid and liquid textures. Swallowing disorders are a major concern in severe brain injury in the arousal phase. Early bedside assessment of swallowing is essential for detection of swallowing disorders to propose appropriate medical rehabilitation care to these patients in a state of altered consciousness.

  7. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    The phenomenon of parental traumatic brain injury was characterised by denial, anger, grief, guilt, anxiety, over-protectiveness, social isolation, and change in many areas of the participants' lives. The adolescents coped using both approaches and avoidance styles of coping. Religion was a theme in the lives of all four ...

  8. Endogenous lipoid pneumonia in a cachectic patient after brain injury.

    Science.gov (United States)

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP.

  9. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Traumatic brain injury in children | Coughlan | South African Family ...

    African Journals Online (AJOL)

    South African Family Practice. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 45, No 5 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Traumatic brain injury in children. M Coughlan, G Fieggen ...

  11. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    This retrospective, descriptive, quantitative study included children admitted to the RCWMCH with severe traumatic brain injury (TBI) between June 2006 and April 2011, who required intracranial monitoring. We used the Division of Paediatric Neurosurgery's TBI database to identify cases for inclusion in the study and to ...

  12. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  13. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    Objectives. This retrospective review of a prospectively entered and maintained hybrid electronic trauma registry was intended to develop a comprehensive overview of traumatic brain injury (TBI) in children and adolescents and to compare it with previous audits from our local environment and from other developing world ...

  14. Minor traumatic brain injuries – what is new? | Hollander ...

    African Journals Online (AJOL)

    Minor traumatic brain injuries – what is new? D Hollander, J Coventry, M Du Trevou. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  15. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    Background: Management of brain injury can pose enormous challenges to the health team. There are many studies aimed at discovering or developing pharmacotherapeutic agents targeted at improving outcome of head-injured patients. This paper reviews the role of oxidative stress in neuronal loss following traumatic ...

  16. Minor traumatic brain injuries – what is new?

    African Journals Online (AJOL)

    Research has concentrated on indications for neuroimaging, management guidelines for sports-related concussion and sequelae of minor traumatic brain injuries (mTBIs). Despite the emergence of several guidelines there is little agreement on several important issues, including the definition of mTBIs and concussion.

  17. Spoken Persuasive Discourse Abilities of Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Moran, Catherine; Kirk, Cecilia; Powell, Emma

    2012-01-01

    Purpose: The aim of this study was to examine the performance of adolescents with acquired brain injury (ABI) during a spoken persuasive discourse task. Persuasive discourse is frequently used in social and academic settings and is of importance in the study of adolescent language. Method: Participants included 8 adolescents with ABI and 8 peers…

  18. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  19. The Role of Substance P in Ischaemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert Vink

    2013-01-01

    Full Text Available Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.

  20. Penetrating brain injury with a bike key: a case report.

    Science.gov (United States)

    Das, Joe M; Chandra, Satheesh; Prabhakar, Rajmohan B

    2015-12-01

    Penetrating brain injury (PBI) may be caused by low-velocity or high-velocity objects. Several objects are known to cause such injury ranging from knives to rooster pecks. However, an assault with the key of a bike causing PBI has not been reported in the literature. The objective of this study was to report the case of a 21-year-old male patient, who presented after an assault with a bike key. The key was impacted in the left parietal region. Left parietal craniotomy was done and the key was removed. There was an underlying parenchymal contusion, which was excised. On post-operative day two, the patient developed motor aphasia, which subsided in subsequent days with antiedema measures. At the first month follow-up, the patient was having normal speech and consciousness. Prompt treatment of penetrating brain injury is important and angiography is not always necessary for PBI.

  1. Genomic responses in rat cerebral cortex after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mathiesen Tiit

    2005-11-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future

  2. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  3. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain from the damaging effects of propagating oedema and intracranial hypertension. However, there are no clearly defined indications or specified guidelines for patient selection for ...

  4. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... adequate decompression for patients with severe TBI. Studies of potential gains in cranial volume against size of craniectomy have shown that small craniectomies risk brain herniation with venous infarction at the bone margins.[2]. In our patient, a large fronto-temporo-parietal free bone flap was raised.

  5. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  6. Misconceptions about traumatic brain injury among probation services.

    Science.gov (United States)

    O'Rourke, Conall; Linden, Mark A; Lohan, Maria

    2018-05-01

    The prevalence of traumatic brain injury (TBI) among offender populations is significantly higher than among the general population. Despite this, no study has yet assessed the knowledge of members of the probation service surrounding TBI. Knowledge was assessed among members of the Probation Board for Northern Ireland (PBNI) using a cross-sectional online version of the Common Misconceptions about TBI (CM-TBI) questionnaire. Mean total misconception scores, along with scores on four subdomains (recovery, sequelae, insight, and hidden injury) were calculated. Analysis of variance was used to explore differences in misconceptions based on the collected demographic information. The overall mean percentage of misconceptions for the group was 22.37%. The subdomain with the highest rate of misconceptions (38.21%) was insight into injury which covered misconceptions around offenders' self-awareness of injuries. Those who knew someone with a brain injury scored significantly higher in the CM-TBI total score, F(1,63) = 6.639, p = 0.012, the recovery subdomain, F(1,63) = 10.080, p = 0.002, and the insight subdomain, F(1,63) = 5.834, p = 0.019. Additionally, significant training deficits around TBI were observed among the probation service. This study is the first of its kind to examine the level of understanding around TBI within probation services. The findings reflect potential barriers to identification and rehabilitation of TBI for offenders coming into contact with the criminal justice system. A lack of identification coupled with misconceptions about TBI could lead to inaccurate court reporting with a subsequent impact on sentencing. Implications for Rehabilitation Despite being one of the first points of contact for offenders entering the criminal justice system, members of the probation service reported having no formal training on traumatic brain injury (TBI). The subdomain with the highest rate of misconceptions (insight into injury

  7. Educational, vocational, psychosocial, and quality-of-life outcomes for adult survivors of childhood traumatic brain injury.

    Science.gov (United States)

    Anderson, Vicki; Brown, Sandra; Newitt, Heidi; Hoile, Hannah

    2009-01-01

    To examine long-term outcomes from child traumatic brain injury (TBI) and relevance of injury severity. A retrospective cross-sectional design. One hundred and twenty-four young adult survivors of childhood TBI (81 men), aged 18 to 30 years at evaluation (mean = 23.5, SD = 2.9), with injury on average 13.7 years prior to evaluation divided according to injury severity: mild (n = 60), moderate (n = 27), and severe (n = 37). Questionnaires assessed educational and employment status, psychosocial function, and quality-of-life issues. Functional difficulties persisted into adulthood. Injury severity was a particularly strong predictor of long-term outcomes, with environmental factors playing a less consistent role. Survivors of severe TBI were particularly vulnerable, demonstrating global impairment: poorer school performance, employment difficulties, poor quality of life, and increased risk of mental health problems. Mild and moderate TBI were more benign, although lower educational attainment and employment status were identified, and moderate TBI was associated with late developing mental health issues. Traumatic brain injury is a lifelong problem, compromising the individual's capacity to meet developmental expectations across a wide range of functional domains.

  8. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  9. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    Injury Using Novel Matrices and Human Bone Marrow Stem Cells.” 4th Annual Los Angeles Tissue Engineering Meeting, UCLA Dec. 2006. (c) Presentations...Task 1). Task 1: Differentiate Adult Stem Cells into Neurons. Each of three different adult stem cell types (ADSCs, MSCs and amniotic -derived...gel properties. Evaluate gel material properties such as liquid to gel transition temperature, fiber and pore sizes, mechanical strength, resistance

  10. Profile analyses of the Personality Assessment Inventory following military-related traumatic brain injury.

    Science.gov (United States)

    Kennedy, Jan E; Cooper, Douglas B; Reid, Matthew W; Tate, David F; Lange, Rael T

    2015-05-01

    Personality Assessment Inventory (PAI) profiles were examined in 160 U.S. service members (SMs) following mild-severe traumatic brain injury (TBI). Participants who sustained a mild TBI had significantly higher PAI scores than those with moderate-severe TBI on eight of the nine clinical scales examined. A two-step cluster analysis identified four PAI profiles, heuristically labeled "High Distress", "Moderate Distress", "Somatic Distress," and "No Distress". Postconcussive and posttraumatic stress symptom severity was highest for the High Distress group, followed by the Somatic and Moderate Distress groups, and the No Distress group. Profile groups differed in age, ethnicity, rank, and TBI severity. Findings indicate that meaningful patterns of behavioral and personality characteristics can be detected in active duty military SMs following TBI, which may prove useful in selecting the most efficacious rehabilitation strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Pragmatic skills after childhood traumatic brain injury: Parents' perspectives.

    Science.gov (United States)

    Keck, Casey S; Creaghead, Nancy A; Turkstra, Lyn S; Vaughn, Lisa M; Kelchner, Lisa N

    2017-09-01

    The purpose of this study was to characterize pragmatic deficits after childhood traumatic brain injury (TBI) within the home environment social contexts where they occur. We used a descriptive qualitative approach to describe parents' experiences in communicating with their child with TBI. Participants were ten mothers of children ages 6-12 years who had sustained a moderate to severe TBI more than one year prior to the study. Mothers' experiences were collected through semi-structured interviews and questionnaires. Interviews were analyzed using a deductive framework to develop social contexts and pragmatic deficit themes for communication in the home. Overall, mothers primarily described their children with TBI as exhibiting average or near average pragmatic skills at home, but nine observed some pragmatic deficits and/or social behavior problems. There were four in-home social contexts in which pragmatic deficits were observed. Emergent themes also included outside-of-the home social contexts and social behavior problems. There was some overlap of pragmatic deficit and social behavior problem themes among contexts, but many deficits were context specific. This study's pragmatic deficit themes expanded on prior childhood TBI pragmatic investigations by identifying contexts in and outside of the home in which pragmatic deficits may occur after TBI. Learning Outcomes Readers will be able to describe the day-to-day social contexts that may be impacted by pragmatic deficits after childhood TBI. Readers will be able to compare the pragmatic deficit themes identified as occurring in the home to those occurring outside of the home. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Deficits in analogical reasoning in adolescents with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Daniel C Krawczyk

    2010-08-01

    Full Text Available Individuals with traumatic brain injury (TBI exhibit deficits in executive control, which may impact their reasoning abilities. Analogical reasoning requires working memory and inhibitory abilities. In this study, we tested adolescents with moderate to severe TBI and typically-developing (TD controls on a set of picture analogy problems. Three factors were varied: complexity (number of relations in the problems, distraction (distractor item present or absent, and animacy (living or non-living items in the problems. We found that TD adolescents performed significantly better overall than TBI adolescents. There was also an age effect present in the TBI group where older participants performed better than younger ones. This age effect was not observed in the TD group. Performance was affected by complexity and distraction. Further, TBI participants exhibited lower performance with distractors present than TD participants. The reasoning deficits exhibited by the TBI participants were correlated with measures of executive function that required working memory updating, attention, and attentional screening. Using MRI-derived measures of cortical thickness, correlations were carried out between task accuracy and cortical thickness. The TD adolescents showed negative correlations between thickness and task accuracy in frontal and temporal regions consistent with cortical maturation in these regions. This study demonstrates that adolescent TBI results in impairments in analogical reasoning ability. Further, TBI youth have difficulty effectively screening out distraction, which may lead to failures in comprehension of the relations among items in visual scenes. Lastly, TBI youth fail to show robust cortical-behavior correlations as observed in TD individuals.

  13. Neuroinflammatory responses to traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2015-03-01

    Full Text Available Wellingson Silva Paiva,1 Angelica Duarte Correia,2 Suely Kazue Marie2 1Division of Neurological Surgery, 2Laboratory of Medical Investigation 15, Department of Neurology, University of São Paulo Medical School, Sao Paulo, Brazil We read with great interest the recent study by Lozano et al1 published in the Neuropsychiatric Disease and Treatment. The recovery after traumatic brain injury (TBI is related to severity of the initial injury (primary injury and the presence of secondary injury.2 Evidences suggest that inflammation, oxidative stress, excitotoxicity, apoptosis, and neuroendocrine responses play an important role in the development of secondary brain injury.3 Therefore, an important part in the management of patients with TBI is trying to minimize the occurrence of deleterious secondary lesions. Lozano et al’s1 paper focused on the role of neuroinflammation in brain injury.Although some studies have described experimental drugs which may eventually have neuroprotective effects in patients with TBI,2–4 there is currently no approved pharmacological treatment for neuroinflammatory effects of the acute phase of the injury. The dissociation between experimental data with positive results and consecutive clinical trials with negative results leads to a dilemma for the treatment of patients with TBI. And, we agree with Lozano et al1 that further clarification of the neuroinflammatory mechanisms could be the basis for addressing the gap between bench and clinical results to provide better treatment and reduce death and sequelae of TBI.View original paper by Lozano and colleagues.

  14. Incidence of self-reported brain injury and the relationship with substance abuse: findings from a longitudinal community survey

    Directory of Open Access Journals (Sweden)

    Butterworth Peter

    2010-03-01

    Full Text Available Abstract Background Traumatic or serious brain injury (BI has persistent and well documented adverse outcomes, yet 'mild' or 'moderate' BI, which often does not result in hospital treatment, accounts for half the total days of disability attributed to BI. There are currently few data available from community samples on the incidence and correlates of these injuries. Therefore, the study aimed to assess the 1 incidence of self-reported mild (not requiring hospital admission and moderate (admitted to hospital brain injury (BI, 2 causes of injury 3 physical health scores and 4 relationship between BI and problematic alcohol or marijuana use. Methods An Australian community sequential-cohort study (cohorts aged 20-24, 40-44 and 60-64 years at wave one used a survey methodology to assess BI and substance use at baseline and four years later. Results Of the 7485 wave one participants, 89.7% were re-interviewed at wave two. There were 56 mild (230.8/100000 person-years and 44 moderate BI (180.5/100000 person-years reported between waves one and two. Males and those in the 20-24 year cohort had increased risk of BI. Sports injury was the most frequent cause of BI (40/100 with traffic accidents being a greater proportion of moderate (27% than mild (7% BI. Neither alcohol nor marijuana problems at wave one were predictors of BI. BI was not a predictor of developing substance use problems by wave two. Conclusions BI were prevalent in this community sample, though the incidence declined with age. Factors associated with BI in community samples differ from those reported in clinical samples (e.g. typically traumatic brain injury with traffic accidents the predominate cause. Further, detailed evaluation of the health consequences of these injuries is warranted.

  15. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  16. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  17. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  18. Motorcycle helmet effectiveness in reducing head, face and brain injuries by state and helmet law.

    Science.gov (United States)

    Olsen, Cody S; Thomas, Andrea M; Singleton, Michael; Gaichas, Anna M; Smith, Tracy J; Smith, Gary A; Peng, Justin; Bauer, Michael J; Qu, Ming; Yeager, Denise; Kerns, Timothy; Burch, Cynthia; Cook, Lawrence J

    2016-12-01

    Despite evidence that motorcycle helmets reduce morbidity and mortality, helmet laws and rates of helmet use vary by state in the U.S. We pooled data from eleven states: five with universal laws requiring all motorcyclists to wear a helmet, and six with partial laws requiring only a subset of motorcyclists to wear a helmet. Data were combined in the Crash Outcome Data Evaluation System's General Use Model and included motorcycle crash records probabilistically linked to emergency department and inpatient discharges for years 2005-2008. Medical outcomes were compared between partial and universal helmet law settings. We estimated adjusted relative risks (RR) and 95 % confidence intervals (CIs) for head, facial, traumatic brain, and moderate to severe head/facial injuries associated with helmet use within each helmet law setting using generalized log-binomial regression. Reported helmet use was higher in universal law states (88 % vs. 42 %). Median charges, adjusted for inflation and differences in state-incomes, were higher in partial law states (emergency department $1987 vs. $1443; inpatient $31,506 vs. $25,949). Injuries to the head and face, including traumatic brain injuries, were more common in partial law states. Effectiveness estimates of helmet use were higher in partial law states (adjusted-RR (CI) of head injury: 2.1 (1.9-2.2) partial law single vehicle; 1.4 (1.2, 1.6) universal law single vehicle; 1.8 (1.6-2.0) partial law multi-vehicle; 1.2 (1.1-1.4) universal law multi-vehicle). Medical charges and rates of head, facial, and brain injuries among motorcyclists were lower in universal law states. Helmets were effective in reducing injury in both helmet law settings; lower effectiveness estimates were observed in universal law states.

  19. Prediction of Clinically Important Traumatic Brain Injury in Pediatric Minor Head Trauma; proposing Pediatric Traumatic Brain Injury (PTBI Prognostic Rule

    Directory of Open Access Journals (Sweden)

    Babak Nakhjavan-Shahraki

    2017-01-01

    Full Text Available Background: The present study assesses independent predictors of clinically important traumatic brain injury (ciTBI in order to design a prognostic rule for identification of high risk children with mild head injury. Materials and Methods: In a retrospective cross-sectional study, 3,199 children with mild traumatic brain injury (TBI brought to emergency ward of three hospitals in Tehran, Iran were gathered, from April 2014 to April 2016. The associations between probable predictors of ciTBI in children with mild TBI were assessed and a prediction rule for identification of high risk children in need of computed tomography (CT scan was designed based on a stepwise multivariate logistic regression. Results: 592 (18.5% children had ciTBI. History of loss of conciseness (odds ratio [OR]=3.0; p

  20. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  1. No impact of early intervention on late outcome after minimal, mild and moderate head injury

    Directory of Open Access Journals (Sweden)

    Baardsen Roald

    2010-02-01

    Full Text Available Abstract Objectives To evaluate the effect of an educational intervention on outcome after minimal, mild and moderate head injury. Methods Three hundred and twenty six patients underwent stratified randomization to an intervention group (n = 163 or a control group (n = 163. Every second patient was allocated to the intervention group. Participants in this group were offered a cognitive oriented consultation two weeks after the injury, while subjects allocated to the control group were not. Both groups were invited to follow up 3 and 12 months after injury. Results A total of 50 (15% patients completed the study (intervention group n = 22 (13%, control group n = 28 (17%, not significant. There were no statistically significant differences between the intervention group and the control group. Conclusions There was no effect on outcomes from an early educational intervention two weeks after head injury.

  2. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.

    Science.gov (United States)

    Hillary, Frank G; Rajtmajer, Sarah M; Roman, Cristina A; Medaglia, John D; Slocomb-Dluzen, Julia E; Calhoun, Vincent D; Good, David C; Wylie, Glenn R

    2014-01-01

    There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.

  3. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.

    Directory of Open Access Journals (Sweden)

    Frank G Hillary

    Full Text Available There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI. A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1 physical disruption results in increased functional connectivity, or hyperconnectivity, and 2 hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.

  4. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    Science.gov (United States)

    2016-12-01

    brain), brain tumors, encephalopathy (a disease that causes brain dysfunction), memory problems, sleep disorders, strokes, and dementia (Zehtabchi...useful in diagnosing epilepsy, multiple sclerosis, brain abscesses, brain tumors, mild traumatic brain injury, and hypertensive encephalopathy ...Bebek, N., Baykan, B., & Gokyigit, A. (2016). Appraisal of epileptic pain as a rare symptom of seizures. Epilepsy & Behavior, 55, 101–107. Pinho, F

  5. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    Science.gov (United States)

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  7. Perinatal Hypoxic-Ischemic brain injury; MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Seo, Chang Hye [Inje University Pusan Paik Hospital, Pusan (Korea, Republic of)

    1994-09-15

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult.

  8. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  9. Long-term outcome from childhood traumatic brain injury: intellectual ability, personality, and quality of life.

    Science.gov (United States)

    Anderson, Vicki; Brown, Sandra; Newitt, Heidi; Hoile, Hannah

    2011-03-01

    Only a handful of studies have attempted to explore very long-term outcomes from childhood traumatic brain injury (TBI). These studies have generally failed to fully consider the impact of injury severity or employ measures sensitive to the survivor's day-to-day function. This study examined outcomes in adulthood, with a focus on functional abilities including education, employment, and quality of life (QOL), and employed predictors including injury severity, age at injury, socioeconomic factors, intelligence, and personality. The study was retrospective and cross-sectional and included 50 adult survivors of child TBI (31 males), aged 19-30 years at evaluation (M = 24.2, SD = 3.6), with injury on average 13.3 years prior to evaluation. Participants were divided according to injury severity-mild (n = 20), moderate (n = 12), and severe (n = 18)-completed an intellectual evaluation and questionnaires regarding educational and employment status, personality, and quality of life. Intellectual and personality measures indicated good outcomes, with mean scores for all groups in the average range and few severity-based findings. In contrast, those with more severe TBI were more likely to have educational and employment problems. QOL was significantly reduced in the context of severe insult, with lower IQ and personality factors most predictive of outcome in this domain. Mild and moderate TBI were generally more benign. Findings suggest that, while TBI is a lifelong problem, its impact is most dramatic in the domain of QOL, where a complex interaction occurs between injury factors, cognition, and personality. (c) 2011 APA, all rights reserved

  10. [The effects of dancing on the brain and possibilities as a form of rehabilitation in severe brain injuries].

    Science.gov (United States)

    Kullberg-Turtiainen, Marjo

    2013-01-01

    Very little research has been done on the effect of dancing on the rehabilitation of patients having a severe brain injury. In addition to motor problems, the symptom picture of the sequelae of severe brain injuries often involves strong fatigability, reduced physiological arousal, disturbances of coordination of attention, difficulties of emotional control and impairment of memory. This review deals with the neural foundation of dancing and the possibilities of dancing in the rehabilitation of severe brain injuries.

  11. [The consequences of closed traumatic brain injury and piracetam efficacy in their treatment in adolescents].

    Science.gov (United States)

    Zavadenko, N N; Guzilova, L S

    2008-01-01

    The efficacy of piracetam in the treatment of the consequences of moderate and severe closed traumatic brain injury was assessed in 42 patients, aged 12-18 years, who suffered traumatic disorders 1,5-5 years before this study. Adolescents from the main group (20 patients) received piracetam in dosage of 40-50 mg/kg (or 1600-2400 mg daily) during one month. 22 patients of the second group were examined as controls. The positive therapeutic effects of piracetam on cognitive (memory, attention, executive functions) and motor (coordination) functions as well as the speed of cognitive and motor performance were demonstrated in this study.

  12. Community Reintegration Problems Among Veterans and Active Duty Service Members With Traumatic Brain Injury.

    Science.gov (United States)

    McGarity, Suzanne; Barnett, Scott D; Lamberty, Greg; Kretzmer, Tracy; Powell-Cope, Gail; Patel, Nitin; Nakase-Richardson, Risa

    To examine community reintegration problems among Veterans and military service members with mild or moderate/severe traumatic brain injury (TBI) at 1 year postinjury and to identify unique predictors that may contribute to these difficulties. VA Polytrauma Rehabilitation Centers. Participants were 154 inpatients enrolled in the VA TBI Model Systems Program with available injury severity data (mild = 28.6%; moderate/severe = 71.4%) and 1-year postinjury outcome data. Prospective, longitudinal cohort. Community reintegration outcomes included independent driving, employability, and general community participation. Additional measures assessed depression, posttraumatic stress, and cognitive and motor functioning. In the mild TBI (mTBI) group, posttraumatic stress disorder and depressive symptoms were associated with lower levels of various community reintegration outcomes. In the moderate/severe TBI group, cognition and motor skills were significantly associated with lower levels of community participation, independent driving, and employability. Community reintegration is problematic for Veterans and active duty service members with a history of TBI. Unique comorbidities across injury severity groups inhibit full reintegration into the community. These findings highlight the ongoing rehabilitation needs of persons with TBI, specifically evidence-based mental healthcare, in comprehensive rehabilitation programs consistent with a chronic disease management model.

  13. A comparison of adult outcomes for males compared to females following pediatric traumatic brain injury.

    Science.gov (United States)

    Scott, Charis; McKinlay, Audrey; McLellan, Tracey; Britt, Eileen; Grace, Randolph; MacFarlane, Martin

    2015-07-01

    To identify the association between traumatic brain injury (TBI) and internalizing and externalizing problem behaviors and determine if these apply equally to males and females. The association between adult psychosocial functioning and childhood TBI for males and females was examined using groups with a history of childhood TBI (mild or moderate/severe) or orthopedic injury (injury age, 1-17, assessed 18-31 at >5 years postinjury), including rates of depression and anxiety disorders, substance abuse/dependence and offending behavior. Repeated-measures logistic regression was used to determine if the rates of internalizing and externalizing problem behaviors varied by group and sex. Overall rates of problem behaviors were significantly greater for both moderate/severe TBI (OR = 4.00) and mild TBI (OR = 3.60) groups compared with orthopedic controls. Females were significantly more likely than males to report a history of internalizing problems (OR = 2.22), whereas males were more likely than females to report externalizing problems (OR = 2.10). The sex difference in internalizing/externalizing problems was found consistently across TBI groups and controls. Childhood TBI is associated with psychosocial problems in adulthood, regardless of injury severity. How deficits are expressed differs between the sexes, with important implications for interventions strategies. (c) 2015 APA, all rights reserved).

  14. A systematic review and meta-analysis of sleep architecture and chronic traumatic brain injury.

    Science.gov (United States)

    Mantua, Janna; Grillakis, Antigone; Mahfouz, Sanaa H; Taylor, Maura R; Brager, Allison J; Yarnell, Angela M; Balkin, Thomas J; Capaldi, Vincent F; Simonelli, Guido

    2018-02-02

    Sleep quality appears to be altered by traumatic brain injury (TBI). However, whether persistent post-injury changes in sleep architecture are present is unknown and relatively unexplored. We conducted a systematic review and meta-analysis to assess the extent to which chronic TBI (>6 months since injury) is characterized by changes to sleep architecture. We also explored the relationship between sleep architecture and TBI severity. In the fourteen included studies, sleep was assessed with at least one night of polysomnography in both chronic TBI participants and controls. Statistical analyses, performed using Comprehensive Meta-Analysis software, revealed that chronic TBI is characterized by relatively increased slow wave sleep (SWS). A meta-regression showed moderate-severe TBI is associated with elevated SWS, reduced stage 2, and reduced sleep efficiency. In contrast, mild TBI was not associated with any significant alteration of sleep architecture. The present findings are consistent with the hypothesis that increased SWS after moderate-severe TBI reflects post-injury cortical reorganization and restructuring. Suggestions for future research are discussed, including adoption of common data elements in future studies to facilitate cross-study comparability, reliability, and replicability, thereby increasing the likelihood that meaningful sleep (and other) biomarkers of TBI will be identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. © 2015 EAN.

  16. Impact of road traffic injury to pediatric traumatic brain injury in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Thara Tunthanathip

    2017-01-01

    Full Text Available Background: Motor vehicle is a major transportation in Southern Thailand as the result of road traffic injury and death. Consequently, severe disability and mortality in pediatric traumatic brain injury (TBI were observed from traffic accident, particularly motorcycle accident. To identify the risk of intracranial injury in children, the association of treatment outcome with various factors including mechanisms of injury, clinical characteristics, and intracranial pathology can be assessed. Materials and Methods: This was a retrospective study conducted on children, who were younger than 15 years old with TBI and were enrolled from 2004 to 2015. Several clinically relevant issues were reviewed and statistically analyzed. Results: A total of 948 casualties were enrolled. Compared with falling down, the motorcycle accident was significantly associated with intracranial injury (odds ratio 1.73, 95% confidence interval [CI] 1.08–2.76. Other factors associated with intracranial injury were hemiparesis (odds ratio 5.69, 95% CI 1.44–22.36, positive of basal skull fracture signs (odds ratio 15.66, 95% CI 3.44-71.28, and fixed reaction to light of both pupils (odds ratio 5.74, 95% CI 1.71–19.23. Mortality found in thirty cases (3.2%. Furthermore, the risk of death correlated with motorcycle accident (P = 0.02 and severe head injury (P < 0.001. Neurosurgical intervention was not associated with outcome, but severe head injury, hemorrhagic shock, epidural, and subdural hematoma were impact factors. Conclusion: The findings demonstrate road traffic injury, especially motorcycle accident leading to brain injury and death. Prevention program is a necessary key to decrease mortality and disability in pediatric TBI.

  17. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  18. Indications for brain computed tomography scan after minor head injury.

    Science.gov (United States)

    Sharif-Alhoseini, Mahdi; Khodadadi, Hossein; Chardoli, Mojtaba; Rahimi-Movaghar, Vafa

    2011-10-01

    Minor head injury (MHI) is a common injury seen in Emergency Departments (ED). Computed tomography (CT) scan of the brain is a good method of investigation to diagnose intracranial lesions, but there is a disagreement about indications in MHI patients. We surveyed the post-traumatic symptoms, signs or past historical matters that can be used for the indication of brain CT scan. All patients with MHI who were older than 2 years, had a Glasgow Coma Scale (GCS) score ≥13 and were referred to the ED, underwent brain CT scan. Data on age, headache, vomiting, loss of consciousness (LOC) or amnesia, post-traumatic seizure, physical evidence of trauma above the clavicles, alcohol intoxication, and anticoagulant usage were collected. The main outcome measure was the presence of lesions related to the trauma in brain CT scan. For categorical variables, Chi-square test was used. Six hundred and forty-two patients were examined by brain CT scan after MHI, and 388 patients (60.4%) did not have any risk indicator. Twenty patients (3.1%) had abnormal brain CT scans. The logistic regression model showed that headache (P=0.006), LOC or amnesia (P=0.024) and alcohol (P=0.036) were associated with abnormal brain CT. WE SUGGESTED THAT ABNORMAL BRAIN CT SCAN RELATED TO THE TRAUMA AFTER MHI CAN BE PREDICTED BY THE PRESENCE OF ONE OR MORE OF THE FOLLOWING RISK INDICATORS: Headache, vomiting, LOC or amnesia, and alcohol intoxication. Thus, if any patient has these indicators following MHI, he must be considered as a high-risk MHI.

  19. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  20. Multicenter trial of early hypothermia in severe brain injury.

    Science.gov (United States)

    Clifton, Guy L; Drever, Pamala; Valadka, Alex; Zygun, David; Okonkwo, David

    2009-03-01

    The North American Brain Injury Study: Hypothermia IIR (NABIS:H IIR) is a randomized clinical trial designed to enroll 240 patients with severe brain injury between the ages of 16 and 45 years. The primary outcome measure is the dichotomized Glasgow Outcome Scale (GOS) at 6 months after injury. The study has the power to detect a 17.5% absolute difference in the percentage of patients with a good outcome with a power of 80%. All patients are randomized by waiver of consent unless family is immediately available. Enrollment is within 2.5 h of injury. Patients may be enrolled in the field by emergency medical services personnel affiliated with the study or by study personnel when the patient arrives at the emergency department. Patients who do not follow commands and have no exclusion criteria and who are enrolled in the hypothermia arm of the study are cooled to 35 degrees C as rapidly as possible by intravenous administration of up to 2 liters of chilled crystalloid. Those patients who meet the criteria for the second phase of the protocol (primarily a post-resuscitation GCS 3-8 without hypotension and without severe associated injuries) are cooled to 33 degrees C. Patients enrolled in the normothermia arm receive standard management at normothermia. As of December 2007, 74 patients had been randomized into phase II of the protocol. Patients in the hypothermia arm reached 35 degrees C in 2.7 +/- 1.1 (SD) h after injury and reached 33 degrees C at 4.4 +/- 1.5 h after injury.

  1. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    Science.gov (United States)

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  2. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  3. Invisible Injuries: The Experiences of College Students with Histories of Mild Traumatic Brain Injury

    Science.gov (United States)

    Childers, Carrie; Hux, Karen

    2016-01-01

    This qualitative study explored the college life phenomenon as experienced by students with mild traumatic brain injury (MTBI). Previous research about such students has focused on topics including study strategy use, access of support services, and insights from caregivers or instructors. However, little attention has been paid to the perceptions…

  4. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    Science.gov (United States)

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  5. Cognitive Deficits Post-Traumatic Brain Injury and Their Association with Injury Severity and Gray Matter Volumes.

    Science.gov (United States)

    Livny, Abigail; Biegon, Anat; Kushnir, Tammar; Harnof, Sagi; Hoffmann, Chen; Fruchter, Eyal; Weiser, Mark

    2017-04-01

    Traumatic brain injury (TBI) is known to have a substantial though highly variable impact on cognitive abilities. Due to the wide range of cognitive abilities among healthy individuals, an objective assessment of TBI-related cognitive loss requires an accurate measurement of pre-morbid cognitive performance. To address this problem, we recruited 50 adults who sustained a TBI and had performed a cognitive baseline assessment in adolescence as part of the aptitude tests mandated by the Israeli Defense Forces. This group was matched with non-injured controls (n = 35). Pre- and post-injury cognitive assessments consisted of three domains-namely, verbal abstraction, mathematical reasoning, and non-verbal abstract reasoning (from the Wechsler Adult Intelligence Scale-Third Edition). The difference between post- and pre-injury scores was calculated as a measure of domain-specific cognitive decline. Voxel-based regression was used to correlate cognitive decline with modulated gray matter probability maps controlling for age, Glasgow Coma Scale, and total intracranial volume. Using objectively assessed cognitive scores, we found that abstract reasoning declined in both moderate-severe and mild TBI patients, whereas verbal abstraction declined only in the moderate-severe group. Mathematical reasoning was not affected by TBI. In the TBI patients, non-verbal abstract reasoning post-pre-injury change scores were negatively correlated with the volume of the insula. We conclude that access to pre-morbid neuropsychological data may have facilitated the discovery of the effects of mild TBI on abstract reasoning, as well as a significant correlation between TBI-related decline in this cognitive domain and the volume of the bilateral insula, both of which had not been appreciated in the past.

  6. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    and drinking, meals and social life. Three predominating experiences were: fed by tube, ‘relearning’ to eat, and eating meals together. Conclusions: The preliminary results regarding the four participants suggest that the meaning of food and being able to eat and take part in meals may be nearly the same......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating...

  7. Oral health and Brain Injury: Causal or Casual Relation?

    DEFF Research Database (Denmark)

    Pillai, Rajath; Iyer, Kiran; Spin-Neto, Rubens

    2018-01-01

    Background: To systematically review the current literature investigating the association between oral health and acquired brain injury. Methods: A structured search strategy was applied to PubMed, Embase, Web of Science, and CENTRAL electronic databases until March 2017 by two independent...... reviewers. The preferred reporting items for systematic review and meta-analysis guidelines were used for systematic review. Results: Even though the objective was to assess the association between oral health and acquired brain injury, eligible studies focused solely on different forms of stroke and stroke...... on the possible association between gingivitis and stroke. Patients with stroke generally had poorer oral hygiene practices and oral health. Dental prophylaxis and professional intervention reduced the incidence of stroke. Conclusions: Overall, oral health and stroke were related. Periodontitis and tooth loss...

  8. The neuropathology and neurobiology of traumatic brain injury.

    Science.gov (United States)

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2015-01-01

    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  10. Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury.

    Science.gov (United States)

    Dennis, Maureen; Simic, Nevena; Bigler, Erin D; Abildskov, Tracy; Agostino, Alba; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2013-07-01

    We studied three forms of dyadic communication involving theory of mind (ToM) in 82 children with traumatic brain injury (TBI) and 61 children with orthopedic injury (OI): Cognitive (concerned with false belief), Affective (concerned with expressing socially deceptive facial expressions), and Conative (concerned with influencing another's thoughts or feelings). We analyzed the pattern of brain lesions in the TBI group and conducted voxel-based morphometry for all participants in five large-scale functional brain networks, and related lesion and volumetric data to ToM outcomes. Children with TBI exhibited difficulty with Cognitive, Affective, and Conative ToM. The perturbation threshold for Cognitive ToM is higher than that for Affective and Conative ToM, in that Severe TBI disturbs Cognitive ToM but even Mild-Moderate TBI disrupt Affective and Conative ToM. Childhood TBI was associated with damage to all five large-scale brain networks. Lesions in the Mirror Neuron Empathy network predicted lower Conative ToM involving ironic criticism and empathic praise. Conative ToM was significantly and positively related to the package of Default Mode, Central Executive, and Mirror Neuron Empathy networks and, more specifically, to two hubs of the Default Mode Network, the posterior cingulate/retrosplenial cortex and the hippocampal formation, including entorhinal cortex and parahippocampal cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Factors contributing to outcome following traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2013-01-01

    Traumatic brain injury results in some distinctive patterns of cognitive, behavioural and physical impairment which impact significantly on independent living skills and participation in work or study, social and leisure activities and interpersonal relationships. There is, however, still considerable variability in outcome across individuals in each of the reported domains. This has led to a significant body of research examining factors associated with outcome. A range of injury-related, personal and social factors have been shown to influence survival, as well as cognitive, functional and employment outcome. This paper reviews the factors associated with each of these aspects of outcome specifically injury-related factors, including neuroimaging findings, GCS and PTA, other injuries, and cognitive and behavioural impairments; demographic factors, including age, gender, genetic status, education, pre-injury IQ and employment status; and social factors including family and other social support, cultural factors, pre-injury psychiatric history and coping style. The paper identifies contributions and complex interrelationships of all of these factors to outcome following TBI. It concludes with a brief discussion of the implications of these factors for the rehabilitation process.

  12. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  13. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  14. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    OpenAIRE

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in researc...

  15. Traumatic brain injury: future assessment tools and treatment prospects

    OpenAIRE

    Flanagan, Steve

    2008-01-01

    Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI) is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the probl...

  16. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    OpenAIRE

    Zihl, J.; Almeida, O.

    2015-01-01

    Endocrine dysfunction is a common effect of traumatic brain injury (TBI). In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental f...

  17. Brain Injury Following Repetitive Apnea in Newborn Piglets

    Science.gov (United States)

    Schears, Gregory; Creed, Jennifer; Antoni, Diego; Zaitseva, Tatiana; Greeley, William; Wilson, David F.; Pastuszko, Anna

    Repetitive apnea is associated with a significant increase in extracellular dopamine, generation of free radicals as determined by o-tyrosine formation and increase in Fluoro-Jade staining of degenerating neurons. This increase in extracellular dopamine and of hydroxyl radicals in striatum of newborn brain is likely to be at least partly responsible for the neuronal injury and neurological side effects of repetitive apnea.

  18. Technological memory aid use by people with acquired brain injury

    OpenAIRE

    Jamieson, Matthew; Cullen, Breda; McGee-Lennon, Marilyn; Brewster, Stephen; Evans, Jonathan

    2017-01-01

    Evans, Wilson, Needham, and Brentnall (2003) investigated memory aid use by people with acquired brain injury (ABI) and found little use of technological memory aids. The present study aims to investigate use of technological and other memory aids and strategies 10 years on, and investigate what predicts use. People with ABI and self-reported memory impairments (n = 81) completed a survey containing a memory aid checklist, demographic questions and memory questionnaires. Chi-square analysis s...

  19. Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance

    Science.gov (United States)

    2016-02-01

    USAARL Report No. 2016-16 Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance By Ben Lawson1, Bethany Ranes1, Amanda... Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT

  20. Body representation in patients after vascular brain injuries

    OpenAIRE

    Razmus, Magdalena

    2017-01-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the differe...

  1. Longitudinal Locomotor and Postural Control Following Mild Traumatic Brain Injury

    OpenAIRE

    Fino, Peter C.

    2016-01-01

    Millions of people sustain a mild traumatic brain injury (concussion) each year. While most clinical signs and symptoms resolve within 7-10 days for the majority of typical concussions, some gait and balance tasks have shown abnormalities lasting beyond the resolution of clinical symptoms. These abnormalities can persist after athletes have been medically cleared for competition, yet the implications of such changes are unclear. Most prior research has examined straight gait and standard meas...

  2. Treatment for Depression after Traumatic Brain Injury: A Systematic Review

    OpenAIRE

    Fann, Jesse R.; Hart, Tessa; Schomer, Katherine G.

    2009-01-01

    The aim of this systematic review was to critically evaluate the evidence on interventions for depression following traumatic brain injury (TBI) and provide recommendations for clinical practice and future research. We reviewed pharmacological, other biological, psychotherapeutic, and rehabilitation interventions for depression following TBI from the following data sources: PubMed, CINAHL, PsycINFO, ProQuest, Web of Science, and Google Scholar. We included studies written in English published...

  3. [International multicenter studies of treatment of severe traumatic brain injury].

    Science.gov (United States)

    Talypov, A E; Kordonsky, A Yu; Krylov, V V

    2016-01-01

    Despite the introduction of new diagnostic and therapeutic methods, traumatic brain injury (TBI) remains one of the leading cause of death and disability worldwide. Standards and recommendations on conservative and surgical treatment of TBI patients should be based on concepts and methods with proven efficacy. The authors present a review of studies of the treatment and surgery of severe TBI: DECRA, RESCUEicp, STITCH(TRAUMA), CRASH, CRASH-2, CAPTAIN, NABIS: H ll, Eurotherm 3235. Important recommendations of the international group IMPACT are considered.

  4. Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse

    Science.gov (United States)

    Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Gooyit, Major; Tercovich, Kayleen G.; Peng, Zhihong; Nguyen, Trung T.; Schroeder, Valerie A.; Suckow, Mark A.; Chang, Mayland; Raber, Jacob; Trivedi, Alpa

    2015-01-01

    The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury. PMID:26588471

  5. Injury versus noninjury factors as predictors of postconcussive symptoms following mild traumatic brain injury in children.

    Science.gov (United States)

    McNally, Kelly A; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H Gerry; Yeates, Keith Owen

    2013-01-01

    To examine the relative contributions of injury characteristics and noninjury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months postinjury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) premorbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of preinjury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI). Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, noninjury factors are more consistently related to persistent PCS.

  6. Effect on behavior problems of teen online problem-solving for adolescent traumatic brain injury.

    Science.gov (United States)

    Wade, Shari L; Walz, Nicolay C; Carey, Joanne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2011-10-01

    To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47-17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants.

  7. Effect on Behavior Problems of Teen Online Problem-Solving for Adolescent Traumatic Brain Injury

    Science.gov (United States)

    Walz, Nicolay C.; Carey, JoAnne; McMullen, Kendra M.; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2011-01-01

    PURPOSE: To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). METHODS: A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47–17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. RESULTS: Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. CONCLUSION: Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants. PMID:21890828

  8. Aspiration-Induced Acute Lung Injury in Victims with Isolated Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Gorodovikova

    2009-01-01

    Full Text Available Objective: to determine the time and development rate of acute lung injury (ALI in severe brain injury (SBI complicated by aspiration of gastric contents or blood. Subjects and methods. Twenty-nine patients aged 19 to 70 years, who had isolated SBI, of whom there were 24 males and 5 females, were examined. The patients were divided into 2 groups: those with aspiration of gastric contents (n=9 or blood (n=10. A control group included 10 patients with SBI without aspiration. A PiCCO plus device was used to determine pulmonary extravascular fluid. ALI was diagnosed in accordance with the recommendations of the Research Institute of General Reanimatology, Russian Academy of Medical Sciences. Results. SBI patients with aspiration of gastric contents or blood were found to have significantly increased pulmonary extravascular water (p<0.01 and a lower oxygenation index (<300, which correlated with each other. ALI was recorded in the first hours after injury in about 50% of cases in both patients with gastric contents aspiration and those with blood aspiration. Conclusion. In patients with SBI complicated by aspiration of gastric contents or blood, pulmonary extravascular fluid accumulation concurrent with other signs of injury may be regarded as a criterion for acute lung injury. Key words: severe brain injury, aspiration, acute lung lesion.

  9. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury.

    Science.gov (United States)

    Jin, Guang; Duggan, Michael; Imam, Ayesha; Demoya, Marc A; Sillesen, Martin; Hwabejire, John; Jepsen, Cecilie H; Liu, Baoling; Mejaddam, Ali Y; Lu, Jennifer; Smith, William Michael; Velmahos, George C; Socrate, Simona; Alam, Hasan B

    2012-12-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, intracranial pressure, and brain tissue oxygenation. A custom-designed, computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4-m/s velocity, 100-millisecond dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 hours of shock, animals were randomized to one of three resuscitation groups (n = 7 per group) as follows: (1) isotonic sodium chloride solution; (2) 6% hetastarch, Hex; and (3) Hex and VPA 300 mg/kg (Hex + VPA). Volumes of Hex matched the shed blood, whereas that of the isotonic sodium chloride solution was three times the volume. VPA treatment was started after an hour of shock. After 6 hours of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with 2, 3, 5-Triphenyltetrazolium chloride to quantify the lesion size (mm) and brain swelling (percent change compared with uninjured side). Levels of acetylated histone H3 were determined to quantify acetylation, and myeloperoxidase and interleukine-1β (IL-1β) levels were measured as markers of brain inflammation. Combination of 40% blood loss with cortical impact and a period of shock (2 hours) and resuscitation resulted in a highly reproducible brain injury. Lesion size and brain swelling in the Hex

  10. Executive dysfunction in psychosis following traumatic brain injury (PFTBI).

    Science.gov (United States)

    Batty, Rachel; Francis, Andrew; Thomas, Neil; Hopwood, Malcolm; Ponsford, Jennie; Johnston, Lisa; Rossell, Susan

    2015-01-01

    Executive dysfunction is well established in patients with traumatic brain injury and in schizophrenia (SCZ). However, assessments of executive function in psychosis following traumatic brain injury (PFTBI) are limited and inconsistent, and often do not reflect the deficits demonstrated in patients with traumatic brain injury (TBI) or SCZ. We sought to determine the extent of executive dysfunction in PFTBI relative to three comparison cohorts. Measures of executive function were administered to dually diagnosed patients with PFTBI (n = 10) including tests of mental inhibition and switching, processing speed, and attention: the Stroop Task, Trail Making Test (TMT), and the Attention subtest of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Demographically comparable patients with TBI (n = 10), SCZ (n = 23), and healthy controls (n = 23) underwent an identical battery. Significant executive dysfunction was evident in patients with PFTBI on all measures. Relative to all three comparison cohorts patients with PFTBI performed most poorly. These data present novel evidence of substantially impaired executive function across four task types in PFTBI and suggest that TBI and psychosis have an additive influence on executive function deficits. Treatment programs requiring substantial executive engagement are not suitable for patients dually diagnosed with PFTBI.

  11. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  12. Acquired brain injury self-management programme: a pilot study.

    Science.gov (United States)

    Kendrick, Denise; Silverberg, Noah D; Barlow, Susan; Miller, William C; Moffat, Jacqui

    2012-01-01

    Traditional rehabilitation is not well suited to individuals with chronic mild symptoms following an acquired brain injury. To address this, this study adapted a supported self-management programme (SMP) for this population. The aim of this study was to evaluate the potential effectiveness of this novel SMP. Retrospective case series with repeated measures. Fifty-three participants with chronic mild symptoms following an acquired brain injury (primarily mild traumatic brain injury) completed an SMP. The intervention involved eight coaching sessions with each an occupational therapist and psychologist, carried out in the community and based on SMP principles. The Canadian Occupational Performance Measure was administered at baseline, discharge and 3- and 9-month follow-up. This measure yielded scores for performance and satisfaction with daily functioning, covering the domains of self-care, productivity and leisure. A complete case analysis of programme completers revealed that participants' ratings of their occupational performance and satisfaction improved markedly between baseline and discharge from the SMP. This set of outcome measures remained stable between discharge and the two follow-up points. This pilot study suggests that SMPs may improve daily functioning in individuals with chronic mild ABI symptoms. More methodologically robust clinical trials are warranted.

  13. Standardized outcome assessment in brain injury rehabilitation for younger adults.

    Science.gov (United States)

    Turner-Stokes, L

    2002-05-10

    To explore possible candidates for a common outcome measure for brain injury rehabilitation in younger adults. Patients recovering from brain injury pass through several different stages of rehabilitation, illustrated by the 'Slinky model'. Outcome measures used to assess progress must not only meet scientific criteria for validity and reliability--they must be practical to use in a clinical setting and relevant to the rehabilitation goals at each stage. Within most major rehabilitation settings, the commonest goals focus on reducing disability or dependency. Among the most widely used measures in the UK are the Barthel Index, the Functional Independence Measure (FIM) and the extended Functional Assessment Measure (FIM + FAM). The relationship between these instruments is discussed. No single outcome measure is suitable for all brain injury rehabilitation, but by taking these most widely used measures and understanding the relationship between them, we already have a potential common language in disability measurement between the majority of rehabilitation centres in the UK and beyond. These instruments, however, have clear floor and ceiling effects and further work is needed to agree common measures for rehabilitation intervention that falls outside the sensitivity range of these three scales.

  14. Emerging pharmacological agents to improve survival from traumatic brain injury.

    Science.gov (United States)

    Radosevich, John J; Patanwala, Asad E; Erstad, Brian L

    2013-01-01

    To review emerging pharmacological agents for the treatment of traumatic brain injury with regard to survival outcomes and provide recommendations regarding their use. An Ovid MEDLINE (up to May 2013) and the Cochrane Central Register of Controlled Trials (up to May 2013) search was conducted to identify emerging pharmacological therapies for the treatment of traumatic brain injury. The search was limited to English language and humans. Pharmacological agents that were evaluated with respect to survival as an outcome were included. Based on the search, the investigators identified the following new therapies: beta-receptor antagonists, erythropoiesis stimulating agents, hydroxymethylglutaryl-CoA reductase inhibitors (statins) and progesterone. With the exception of progesterone, which was studied in several small, randomized, controlled trials, the remaining agents were primarily studied in observational retrospective cohorts. For each of the agents identified, a potential increase in survival was noted. Emerging pharmacological agents represent promising treatment options for traumatic brain injury to improve survival. Most of these agents are commercially available for other indications. However, limitations in study design, sample size, duration of treatment, timing of treatment and inclusion of heterogeneous patient populations make it difficult to draw definitive conclusions from the literature.

  15. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  16. Epidemiology of mild traumatic brain injury and neurodegenerative disease.

    Science.gov (United States)

    Gardner, Raquel C; Yaffe, Kristine

    2015-05-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma have been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. This article is part of a Special Issue entitled SI:Traumatic Brain Injury. Published by Elsevier Inc.

  17. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  18. Speed of perceptual grouping in acquired brain injury.

    Science.gov (United States)

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan

    2014-09-01

    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.

  19. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.

    Science.gov (United States)

    Ganpule, S; Alai, A; Plougonven, E; Chandra, N

    2013-06-01

    Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.

  20. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association between the performance on recognition of social emotions and the proportion of affirmative responses on personal moral dilemmas. These results suggested that the preference for utilitarian responses in this type of dilemmas is accompanied by difficulties in social emotion recognition. Overall, our findings suggest that deontological moral judgments are associated with normal social emotion processing and that frontal lobe plays an important role in both emotion and moral judgment.

  1. Cognitive and psychosocial correlates of alexithymia following traumatic brain injury.

    Science.gov (United States)

    Henry, Julie D; Phillips, Louise H; Crawford, John R; Theodorou, Georgia; Summers, Fiona

    2006-01-01

    Changes in emotional and social behaviour are considered to be amongst the most common and debilitating consequences of traumatic brain injury (TBI). Little is known of the effects of TBI on alexithymia, which refers to impairment in aspects of understanding emotions. In the current study TBI patients (N=28) were compared with demographically matched healthy controls (N=31) on the Toronto Alexithymia Scale-20 (TAS-20), a measure that taps three distinct characteristics of the alexithymia concept; difficulty in identifying emotions, difficulty in describing emotions and externally oriented thinking. Patients and controls also completed measures of anxiety, depression, quality of life, and measures of fluency to assess executive function. Patients showed greater levels of alexithymia, in terms of difficulty identifying emotions and reduced introspection. Difficulty in identifying emotions was associated with poorer quality of life, even when depression and anxiety were controlled. Difficulty in identifying emotions was also uniquely associated with executive function deficits. Thus, although studies typically focus on aspects of cognitive change following head injury, these results lend support to Becerra et al.'s (Becerra, R., Amos, A., & Jongenelis, S. (2002). Organic alexithymia: a study of acquired emotional blindness. Brain Injury, 16, 633-645.) notion of an 'organic alexithymia', and suggest that more attention should be focused upon assessment of emotional change post-head injury.

  2. Risk factors related to dysautonomia after severe traumatic brain injury.

    Science.gov (United States)

    Lv, Li-Quan; Hou, Li-Jun; Yu, Ming-Kun; Qi, Xiang-Qian; Chen, Huai-Rui; Chen, Ju-Xiang; Hu, Guo-Han; Luo, Chun; Lu, Yi-Cheng

    2011-09-01

    Dysautonomia after severe traumatic brain injury (TBI) is a clinical syndrome affecting a subgroup of survivors and is characterized by episodes of autonomic dysregulation and muscle overactivity. The purpose of this study was to determine the incidence of dysautonomia after severe TBI in an intensive care unit setting and analyze the risk factors for developing dysautonomia. A consecutive series of 101 patients with severe TBI admitted in a major trauma hospital during a 2-year period were prospectively observed to determine the effects of age, sex, mode of injury, hypertension history, admission systolic blood pressure, fracture, lung injury, admission Glasgow Coma Scale (GCS) score, injury severity score, emergency craniotomy, sedation or analgesia, diffuse axonal injury (DAI), magnetic resonance imaging (MRI) scales, and hydrocephalus on the development of dysautonomia. Risk factors for dysautonomia were evaluated by using logistic regression analysis. Seventy-nine of the 101 patients met inclusion criteria, and dysautonomia was observed in 16 (20.3%) of these patients. Univariate analysis revealed significant correlations between the occurrence of dysautonomia and patient age, admission GCS score, DAI, MRI scales, and hydrocephalus. Sex, mode of injury, hypertension history, admission systolic blood pressure, fracture, lung injury, injury severity score, sedation or analgesia, and emergency craniotomy did not influence the development of dysautonomia. Multivariate logistic regression revealed that patient age and DAI were two independent predictors of dysautonomia. There was no independent association between dysautonomia and admission GCS score, MRI scales, or hydrocephalus. Dysautonomia frequently occurs in patients with severe TBI. A younger age and DAI could be risk factors for facilitating the development of dysautonomia.

  3. Comorbidity of Headache and Depression After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Lucas, Sylvia; Smith, Brendon M; Temkin, Nancy; Bell, Kathleen R; Dikmen, Sureyya; Hoffman, Jeanne M

    2016-02-01

    To examine headache and depression over time in individuals who sustained mild traumatic brain injury (mTBI). Prevalence of headache and depression early after mTBI and at 1 year postinjury as well as the relationship between the two are evaluated. Headache is the most common physical symptom and depression is among the most common psychiatric diagnosis after traumatic brain injury regardless of severity. Headache and depression have been found to be two independent factors related to poor outcome after mTBI, yet there appears to be a paucity of research exploring the comorbidity of these two conditions after injury. Longitudinal survey design over 1 year of 212 participants with mTBI who were admitted to a Level 1 trauma center for observation or other system injuries. Depression was based on a score ≥10 on the Patient Health Questionnaire-9. Headache was based on participant report of new or worse-than-preinjury headache since hospitalization (baseline) or within the previous 3 months at 1 year postinjury. The prevalence of headache and depression at baseline was 64% (135/212) and 15% (31/212), respectively. The prevalence of headache and depression at 1 year was 68% (127/187) and 27% (50/187), respectively. The co-occurrence of headache and depression increased from 11% (23/212) at baseline to 25% (46/187) at 1 year. At 1 year, the risk ratio of individuals who had headache to be depressed was 5.43 (95% CI 2.05-14.40) compared to those without headache (P headache is consistently high over the first year after injury, rate of depression increased over the first year for those who were followed. Given the high rate of comorbidity, those with headache may develop depression over time. Evaluation for possible depression in those with headache after mTBI should be conducted to address both conditions over the year following injury. © 2016 American Headache Society.

  4. Cognitive Predictors of Academic Achievement in Young Children 1 Year Following Traumatic Brain Injury

    Science.gov (United States)

    Fulton, John B.; Yeates, Keith Owen; Taylor, H. Gerry; Walz, Nicolay C.; Wade, Shari L.

    2012-01-01

    Objective To examine cognitive predictors of academic achievement in young children with traumatic brain injury (TBI) and orthopedic injury (OI) shortly after injury and 1 year post-injury. Methods Participants included 3 to 6 year old children, 63 with TBI (46 with moderate TBI and 17 with severe TBI) and a comparison group of 80 children with OI. Academic achievement was assessed approximately 1 month and 12 months post injury, using three subtests from the Woodcock-Johnson Tests of Achievement-Third Edition and the School Readiness Composite from the Bracken Basic Concepts Scale-Revised. General intellectual functioning, memory, and executive functions were measured at the initial assessment using standardized tests. Results Hierarchical linear regression was used to predict academic achievement at the initial and 1-year follow-up assessments. Memory and executive functions were significant predictors of academic achievement at both assessments, after controlling for group membership and demographic variables. Executive function remained a significant predictor of some outcomes after taking general intellectual functioning into account. Predictive relationships did not vary across the TBI and OI groups. Similar results were obtained when regression analyses were completed with only TBI participants using the Glasgow Coma Scale (GCS) score as a predictor, although memory and executive functioning were somewhat less robust in predicting academic achievement than before. Conclusions Both memory and executive function predict academic achievement following TBI in preschool children, although some of the associations may be accounted for by general intellectual functioning. PMID:22563873

  5. Incidence of Disability Among Children 12 Months After Traumatic Brain Injury

    Science.gov (United States)

    Koepsell, Thomas D.; Wang, Jin; Temkin, Nancy; Dorsch, Andrea; Vavilala, Monica S.; Durbin, Dennis; Jaffe, Kenneth M.

    2012-01-01

    Objectives. We examined the burden of disability resulting from traumatic brain injuries (TBIs) among children younger than 18 years. Methods. We derived our data from a cohort study of children residing in King County, Washington, who were treated in an emergency department for a TBI or for an arm injury during 2007–2008. Disabilities 12 months after injury were assessed according to need for specialized educational and community-based services and scores on standardized measures of adaptive functioning and social–community participation. Results. The incidence of children receiving new services at 12 months was about 10-fold higher among those with a mild TBI than among those with a moderate or severe TBI. The population incidence of disability (defined according to scores below the norm means on the outcome measures included) was also consistently much larger (2.8-fold to 28-fold) for mild TBIs than for severe TBIs. Conclusions. The burden of disability caused by TBIs among children is primarily accounted for by mild injuries. Efforts to prevent these injuries as well as to decrease levels of disability following TBIs are warranted. PMID:22994196

  6. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  7. Mild traumatic brain injury: Graph-model characterization of brain networks for episodic memory

    NARCIS (Netherlands)

    Tsirka, V.; Simos, P.G.; Vakis, A.; Kanatsouli, K.; Vourkas, M.; Erimaki, S.; Pachou, E.; Stam, C.J.; Micheloyannis, S.

    2011-01-01

    Episodic memory is among the cognitive functions that can be affected in the acute phase following mild traumatic brain injury (MTBI). The present study used EEG recordings to evaluate global synchronization and network organization of rhythmic activity during the encoding and recognition phases of

  8. Effects and outcomes in civilian and military traumatic brain injury: similarities, differences, and forensic implications.

    Science.gov (United States)

    Lamberty, Greg J; Nelson, Nathaniel W; Yamada, Torrii

    2013-01-01

    Traumatic brain injury (TBI) is a prominent public health problem in both civilian and military settings. This article discusses similarities and differences in the assessment and treatment of TBI and the attendant forensic implications. Acute care and management of moderate/severe TBI tend to be similar across environments, as is the recognition of disability status in affected individuals. By contrast, an increased focus on mild TBI in recent years has resulted in a reliance on self-report and screening measures to validate the occurrence of events leading to injury. This has complicated assessment, treatment and subsequent medicolegal proceedings. The neuropsychological literature has provided significant guidance on these difficult issues, although the complexity of disability adjudication for active duty members of the military and veterans continues to pose challenges for clinicians in evaluative and treatment contexts. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Resuscitation speed affects brain injury in a large animal model of traumatic