WorldWideScience

Sample records for moderate brain injury

  1. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  2. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  3. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  4. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  5. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  6. Observed Parent Behaviors as Time-Varying Moderators of Problem Behaviors Following Traumatic Brain Injury in Young Children

    Science.gov (United States)

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Taylor, H. Gerry; Stancin, Terry; Yeates, Keith Owen; Wade, Shari L.

    2016-01-01

    Parent behaviors moderate the adverse consequences of pediatric traumatic brain injury (TBI); however, it is unknown how these moderating effects change over time. This study examined the moderating effect of observed parent behaviors over time since injury on the relation between TBI and behavioral outcomes. Participants included children, ages…

  7. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  8. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  9. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  10. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  11. Progesterone treatment shows benefit in a pediatric model of moderate to severe bilateral brain injury.

    Directory of Open Access Journals (Sweden)

    Rastafa I Geddes

    Full Text Available Controlled cortical impact (CCI models in adult and aged Sprague-Dawley (SD rats have been used extensively to study medial prefrontal cortex (mPFC injury and the effects of post-injury progesterone treatment, but the hormone's effects after traumatic brain injury (TBI in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.Twenty-eight-day old (PND 28 male Sprague Dawley rats received sham (n = 24 or CCI (n = 47 injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight or vehicle injections on post-injury days (PID 1-7, subjected to behavioral testing from PID 9-27, and analyzed for lesion size at PID 28.The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.

  12. Feasibility of online self-administered cognitive training in moderate-severe brain injury.

    Science.gov (United States)

    Sharma, Bhanu; Tomaszczyk, Jennifer C; Dawson, Deirdre; Turner, Gary R; Colella, Brenda; Green, Robin E A

    2017-07-01

    Cognitive environmental enrichment (C-EE) offers promise for offsetting neural decline that is observed in chronic moderate-severe traumatic brain injury (TBI). Brain games are a delivery modality for C-EE that can be self-administered over the Internet without therapist oversight. To date, only one study has examined the feasibility of self-administered brain games in TBI, and the study focused predominantly on mild TBI. Therefore, the primary purpose of the current study was to examine the feasibility of self-administered brain games in moderate-severe TBI. A secondary and related purpose was to examine the feasibility of remote monitoring of any C-EE-induced adverse symptoms with a self-administered evaluation tool. Ten patients with moderate-severe TBI were asked to complete 12 weeks (60 min/day, five days/week) of online brain games with bi-weekly self-evaluation, intended to measure any adverse consequences of cognitive training (e.g., fatigue, eye strain). There was modest weekly adherence (42.6% ± 4.4%, averaged across patients and weeks) and 70% patient retention; of the seven retained patients, six completed the self-evaluation questionnaire at least once/week for each week of the study. Even patients with moderate-severe TBI can complete a demanding, online C-EE intervention and a self-administered symptom evaluation tool with limited therapist oversight, though at daily rate closer to 30 than 60 min per day. Further self-administered C-EE research is underway in our lab, with more extensive environmental support. Implications for Rehabilitation Online brain games (which may serve as a rehabilitation paradigm that can help offset the neurodegeneration observed in chronic TBI) can be feasibly self-administered by moderate-to-severe TBI patients. Brain games are a promising therapy modality, as they can be accessed by all moderate-to-severe TBI patients irrespective of geographic location, clinic and/or therapist availability, or impairments that

  13. Moderate Traumatic Brain Injury: Clinical Characteristics and a Prognostic Model of 12-Month Outcome.

    Science.gov (United States)

    Einarsen, Cathrine Elisabeth; van der Naalt, Joukje; Jacobs, Bram; Follestad, Turid; Moen, Kent Gøran; Vik, Anne; Håberg, Asta Kristine; Skandsen, Toril

    2018-03-31

    Patients with moderate traumatic brain injury (TBI) often are studied together with patients with severe TBI, even though the expected outcome of the former is better. Therefore, we aimed to describe patient characteristics and 12-month outcomes, and to develop a prognostic model based on admission data, specifically for patients with moderate TBI. Patients with Glasgow Coma Scale scores of 9-13 and age ≥16 years were prospectively enrolled in 2 level I trauma centers in Europe. Glasgow Outcome Scale Extended (GOSE) score was assessed at 12 months. A prognostic model predicting moderate disability or worse (GOSE score ≤6), as opposed to a good recovery, was fitted by penalized regression. Model performance was evaluated by area under the curve of the receiver operating characteristics curves. Of the 395 enrolled patients, 81% had intracranial lesions on head computed tomography, and 71% were admitted to an intensive care unit. At 12 months, 44% were moderately disabled or worse (GOSE score ≤6), whereas 8% were severely disabled and 6% died (GOSE score ≤4). Older age, lower Glasgow Coma Scale score, no day-of-injury alcohol intoxication, presence of a subdural hematoma, occurrence of hypoxia and/or hypotension, and preinjury disability were significant predictors of GOSE score ≤6 (area under the curve = 0.80). Patients with moderate TBI exhibit characteristics of significant brain injury. Although few patients died or experienced severe disability, 44% did not experience good recovery, indicating that follow-up is needed. The model is a first step in development of prognostic models for moderate TBI that are valid across centers. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  15. Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury.

    Science.gov (United States)

    Moein, Houshang; Khalili, Hossein A; Keramatian, Kamyar

    2006-09-01

    Traumatic brain injury is one of the major causes of death and disability among young people. Methylphenidate, a neural stimulant and protective drug, which has been mainly used for childhood attention deficit/hyperactivity disorder, has shown some benefits in late psychosocial problems in patients with traumatic brain injury. Its effect on arousal and consciousness has been also revealed in the sub-acute phase of traumatic brain injury. We studied its effect on the acute phase of moderate and severe traumatic brain injury (TBI) in relation to the length of ICU and hospital admission. Severely and moderately TBI patients (according to inclusion and exclusion criteria) were randomized to treatment and control groups. The treatment group received methylphenidate 0.3mg/kg per dose PO BID by the second day of admission until the time of discharge, and the control group received a placebo. Admission information and daily Glasgow Coma Scale (GCS) were recorded. Medical, surgical, and discharge plans for patients were determined by the attending physician, blinded to the study. Forty patients with severe TBI (GCS = 5-8) and 40 moderately TBI patients (GCS = 9-12) were randomly divided into treatment and control groups on the day of admission. In the severely TBI patients, both hospital and ICU length of stay, on average, were shorter in the treatment group compared with the control group. In the moderately TBI patients while ICU stay was shorter in the treatment group, there was no significant reduction of the period of hospitalization. There were no significant differences between the treatment and control groups in terms of age, sex, post resuscitation GCS, or brain CT scan findings, in either severely or moderately TBI patients. Methylphenidate was associated with reductions in ICU and hospital length of stay by 23% in severely TBI patients (P = 0.06 for ICU and P = 0.029 for hospital stay time). However, in the moderately TBI patients who received methylphenidate

  16. The Evolution of Post-Traumatic Stress Disorder following Moderate-to-Severe Traumatic Brain Injury.

    Science.gov (United States)

    Alway, Yvette; Gould, Kate Rachel; McKay, Adam; Johnston, Lisa; Ponsford, Jennie

    2016-05-01

    Increasing evidence indicates that post-traumatic stress disorder (PTSD) may develop following traumatic brain injury (TBI), despite most patients having no conscious memory of their accident. This prospective study examined the frequency, timing of onset, symptom profile, and trajectory of PTSD and its psychiatric comorbidities during the first 4 years following moderate-to-severe TBI. Participants were 85 individuals (78.8% male) with moderate or severe TBI recruited following admission to acute rehabilitation between 2005 and 2010. Using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Disorders (SCID-I), participants were evaluated for pre- and post-injury PTSD soon after injury and reassessed at 6 months, 12 months, 2 years, 3 years, and 4 years post-injury. Over the first 4 years post-injury, 17.6% developed injury-related PTSD, none of whom had PTSD prior to injury. PTSD onset peaked between 6 and 12 months post-injury. The majority of PTSD cases (66.7%) had a delayed-onset, which for a third was preceded by subsyndromal symptoms in the first 6 months post-injury. PTSD frequency increased over the first year post-injury, remained stable during the second year, and gradually declined thereafter. The majority of subjects with PTSD experienced a chronic symptom course and all developed one or more than one comorbid psychiatric disorder, with mood, other anxiety, and substance-use disorders being the most common. Despite event-related amnesia, post-traumatic stress symptoms, including vivid re-experiencing phenomena, may develop following moderate-to-severe TBI. Onset is typically delayed and symptoms may persist for several years post-injury.

  17. Hypopituitarism after acute brain injury.

    Science.gov (United States)

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  18. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  19. The Prognostic Value of MRI in Moderate and Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Haghbayan, Hourmazd; Boutin, Amélie; Laflamme, Mathieu; Lauzier, François; Shemilt, Michèle; Moore, Lynne; Zarychanski, Ryan; Douville, Vincent; Fergusson, Dean; Turgeon, Alexis F

    2017-12-01

    Traumatic brain injury is a major cause of death and disability, yet many predictors of outcome are not precise enough to guide initial clinical decision-making. Although increasingly used in the early phase following traumatic brain injury, the prognostic utility of MRI remains uncertain. We thus undertook a systematic review and meta-analysis of studies evaluating the predictive value of acute MRI lesion patterns for discriminating clinical outcome in traumatic brain injury. MEDLINE, EMBASE, BIOSIS, and CENTRAL from inception to November 2015. Studies of adults who had MRI in the acute phase following moderate or severe traumatic brain injury. Our primary outcomes were all-cause mortality and the Glasgow Outcome Scale. Two authors independently performed study selection and data extraction. We calculated pooled effect estimates with a random effects model, evaluated the risk of bias using a modified version of Quality in Prognostic Studies and determined the strength of evidence with the Grading of Recommendations, Assessment, Development, and Evaluation. We included 58 eligible studies, of which 27 (n = 1,652) contributed data to meta-analysis. Brainstem lesions were associated with all-cause mortality (risk ratio, 1.78; 95% CI, 1.01-3.15; I = 43%) and unfavorable Glasgow Outcome Scale (risk ratio, 2.49; 95% CI, 1.72-3.58; I = 81%) at greater than or equal to 6 months. Diffuse axonal injury patterns were associated with an increased risk of unfavorable Glasgow Outcome Scale (risk ratio, 2.46; 95% CI, 1.06-5.69; I = 74%). MRI scores based on lesion depth demonstrated increasing risk of unfavorable neurologic outcome as more caudal structures were affected. Most studies were at high risk of methodological bias. MRI following traumatic brain injury yields important prognostic information, with several lesion patterns significantly associated with long-term survival and neurologic outcome. Given the high risk of bias in the current body of literature, large well

  20. Social communication features in children following moderate to severe acquired brain injury: a cross-sectional pilot study.

    Science.gov (United States)

    Breau, Lynn M; Clark, Brenda; Scott, Ori; Wilkes, Courtney; Reynolds, Shawn; Ricci, Florencia; Sonnenberg, Lyn; Zwaigenbaum, Lonnie; Rashid, Marghalara; Goez, Helly R

    2015-04-01

    We compared the social communication deficits of children with moderate to severe acquired brain injury or autism spectrum disorder, while accounting for the role of attention-deficit hyperactivity disorder (ADHD) symptoms. Parents of 20 children aged 6 to 10 years (10 acquired brain injury; 10 autism spectrum disorder) completed the Social Communication Questionnaire, and Conners 3 Parent Short. A multivariate analysis of covariance revealed significant differences between groups in Social Communication Questionnaire restricted repetitive behavior scores, but not reciprocal social interaction or social communication. Multiple linear regressions indicated diagnosis did not predict reciprocal social interaction or social communication scores and that Conners 3 Parent Short Form hyperactivity scores were the strongest predictor of Social Communication Questionnaire reciprocal social interaction scores after accounting for age and Intelligence Quotient. The lack of difference in social communication deficits between groups may help in understanding the pathophysiology underlying the behavioral consequences of acquired brain injury. The link between hyperactivity and reciprocal interaction suggests that targeting hyperactivity may improve social outcomes in children following acquired brain injury. © The Author(s) 2014.

  1. The trajectories of overall disability in the first 5 years after moderate and severe traumatic brain injury.

    Science.gov (United States)

    Forslund, Marit V; Roe, Cecilie; Perrin, Paul B; Sigurdardottir, Solrun; Lu, Juan; Berntsen, Svein; Andelic, Nada

    2017-01-01

    To assess longitudinal trajectories of overall disability after moderate-to-severe traumatic brain injury (TBI) and to examine whether those trajectories could be predicted by socio-demographic and injury characteristics. Demographics and injury characteristics of 105 individuals with moderate-to-severe TBI were extracted from medical records. At the 1-, 2-, and 5-year follow-ups, TBI-related disability was assessed by the GOSE. A hierarchical linear model (HLM) was used to examine functional outcomes up to 5 years following injury and whether those outcomes could be predicted by: time, gender, age, relationship, education, employment pre-injury, occupation, GCS, cause of injury, length of post-traumatic amnesia (PTA), CT findings and injury severity score, as well as the interactions between each of these predictors and time. Higher GOSE trajectories (lower disability) were predicted by younger age at injury and shorter PTA, as well as by the interaction terms of time*PTA and time*employment. Those who had been employed at injury decreased in disability over time, while those who had been unemployed increased in disability. The study results support the view that individual factors generally outweigh injury-related factors as predictors of disability after TBI, except for PTA.

  2. The Family Environment as a Moderator of Psychosocial Outcomes Following Traumatic Brain Injury in Young Children

    Science.gov (United States)

    Yeates, Keith Owen; Taylor, H. Gerry; Walz, Nicolay Chertkoff; Stancin, Terry; Wade, Shari L.

    2010-01-01

    Objective This study sought to determine whether the family environment moderates psychosocial outcomes after traumatic brain injury (TBI) in young children. Method Participants were recruited prospectively from consecutive hospital admissions of 3-6 year old children, and included 19 with severe TBI, 56 with complicated mild/moderate TBI, and 99 with orthopedic injuries (OI). They completed four assessments across the first 18 months post-injury. The initial assessment included measures of parenting style, family functioning, and the quality of the home. Children’s behavioral adjustment, adaptive functioning, and social competence were assessed at each occasion. Mixed model analyses examined the relationship of the family environment to psychosocial outcomes across time. Results The OI and TBI groups differed significantly in social competence, but the family environment did not moderate the group difference, which was of medium magnitude. In contrast, group differences in behavioral adjustment became more pronounced across time at high levels of authoritarian and permissive parenting; among children with severe TBI, however, even those with low levels of permissive parenting showed increases in behavioral problems. For adaptive functioning, better home environments provided some protection following TBI, but not over time for the severe TBI group. These three-way interactions of group, family environment, and time post injury were all of medium magnitude. Conclusions The findings indicate that the family environment moderates the psychosocial outcomes of TBI in young children, but the moderating influence may wane with time among children with severe TBI. PMID:20438212

  3. Rejection Sensitivity as a Moderator of Psychosocial Outcomes Following Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Meadows, Emily A; Owen Yeates, Keith; Rubin, Kenneth H; Taylor, H Gerry; Bigler, Erin D; Dennis, Maureen; Gerhardt, Cynthia A; Vannatta, Kathryn; Stancin, Terry; Hoskinson, Kristen R

    2017-07-01

    The current study examines whether psychosocial outcomes following pediatric traumatic brain injury (TBI) vary as a function of children's rejection sensitivity (RS), defined as their disposition to be hypersensitive to cues of rejection from peers. Children ages 8-13 with a history of severe TBI (STBI, n=16), complicated mild/moderate TBI (n=35), or orthopedic injury (OI, n=49) completed measures assessing self-esteem and RS on average 3.28 years post-injury (SD=1.33, range=1.25-6.34). Parents reported on their child's emotional and behavioral functioning and social participation. Regression analyses found moderation of group differences by RS for three outcomes: social participation, self-perceptions of social acceptance, and externalizing behavior problems. Conditional effects at varying levels of RS indicated that externalizing problems and social participation were significantly worse for children with STBI at high levels of RS, compared to children with OI. Social participation for the STBI group remained significantly lower than the OI group at mean levels of RS, but not at low levels of RS. At high levels of RS, self-perceptions of social acceptance were lower for children with moderate TBI compared to OI, but group differences were not significant at mean or low levels of RS. No evidence of moderation was found for global self-worth, self-perceptions of physical appearance or athletic ability, or internalizing problems. The findings highlight the salient nature of social outcomes in the context of varying levels of RS. These findings may have implications for the design of interventions to improve social outcomes following TBI. (JINS, 2017, 23, 451-459).

  4. The big sell: Managing stigma and workplace discrimination following moderate to severe brain injury.

    Science.gov (United States)

    Stergiou-Kita, Mary; Grigorovich, Alisa; Damianakis, Thecla; Le Dorze, Guylaine; David, Christine; Lemsky, Carolyn; Hebert, Debbie

    2017-01-01

    Misperceptions regarding persons with brain injuries (PWBI) can lead to stigmatization, workplace discrimination and, in turn, influence PWBIs full vocational integration. In this study we explored how stigma may influence return-to-work processes, experiences of stigma and discrimination at the workplace for persons with (moderate to severe) brain injuries, and strategies that can be employed to manage disclosure. Exploratory qualitative study; used in-depth interviews and an inductive thematic analytical approach in data analysis. Ten PWBI and five employment service providers participated. PWBI discussed their work experiences, relationships with supervisors and co-workers and experiences of stigma and/or discrimination at work. Employment service providers discussed their perceptions regarding PWBI's rights and abilities to work, reported incidents of workplace discrimination, and how issues related to stigma, discrimination and disclosure are managed. Three themes were identified: i) public, employer and provider knowledge about brain injury and beliefs about PWBI; ii) incidents of workplace discrimination; iii) disclosure. Misperceptions regarding PWBI persist amongst the public and employers. Incidents of workplace discrimination included social exclusion at the workplace, hiring discrimination, denial of promotion/demotion, harassment, and failure to provide reasonable accommodations. Disclosure decisions required careful consideration of PWBI needs, the type of information that should be shared, and the context in which that information is shared. Public understanding about PWBI remains limited. PWBI require further assistance to manage disclosure and incidents of workplace discrimination.

  5. Community integration 2 years after moderate and severe traumatic brain injury.

    Science.gov (United States)

    Sandhaug, Maria; Andelic, Nada; Langhammer, Birgitta; Mygland, Aase

    2015-01-01

    The aim of this study was to examine community integration by the Community Integration Questionnaire (CIQ) 2 years after injury in a divided TBI sample of moderately and severely injured patients. The second aim was to identify social-demographic, injury-related and rehabilitation associated predictors of CIQ. A cohort study. Outpatient follow-up. Fifty-seven patients with moderate (n = 21) or severe (n = 36) TBI were examined with the Community Integration Questionnaire (CIQ) at 2 years after injury. Possible predictors were analysed in a regression model using CIQ total score at 2 years as the outcome measure. The Community Integration Questionnaire. At 2 years follow-up, there was significant difference between the moderately and severely injured patients in the productivity scores (p productivity level than the severely injured patients. Marital status, injury severity and rehabilitation after injury were associated with community integration 2 years after TBI.

  6. Effect of equiosmolar solutions of hypertonic sodium lactate versus mannitol in craniectomy patients with moderate traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Muhammad R. Ahmad

    2014-03-01

    Full Text Available Background: Brain relaxation and prevention from cerebral edema are essential in craniectomy. Osmotherapy with 20% mannitol are generally used to withdraw fluid from the brain parenchyma, however may cause hemodynamic fluctuation, due to increase diuresis. On the other hand 0.5 M hypertonic sodium lactate (HSL appeared as an alternative of osmotherapy. This study  aimed to observe the effect of hypertonic sodium lactate (HSL on brain relaxation, blood glucose level and hemodynamic variables in craniectomy due to moderate brain injury.Methods: A randomized controlled study of 42 cases with moderate brain injury, aged 18 - 65 years, ASA 1 - 3, between September-November 2012, was carried out. The patients were divided into group M (n = 21 that received 2.5 mL/kg 20% mannitol and group HSL that received 2.5 mL/kg 0.5M HSL. Mean arterial pressures (MAP, central venous pressures (CVP and urine output were measured after induction, and at 15, 30, 45, 60 min after infusion. Brain relaxation was assessed at a four-point scale after opening the duramater. Blood glucose levels were measured before induction and at 60 min after the infusion. Appropriate statistical tests were used for comparison. Unpaired t-test was used to compare hemodynamic and blood glucose level, and chi-square was used to compare brain relaxation.Results: MAP at 60 minute was significantly higher in HSL group than M group (81.66 ± 7.85 vs 74.33 ± 6.18 mmHg; p = 0.002. There was no difference in brain relaxation (p = 0.988. A significant increase in blood glucose level was observed in group HSL (17.95 ± 11.46 mg/dL; p = 0.001.Conclusion: Half-molar HSL was as effective as 20% mannitol in producing brain relaxation, with better hemodynamic stability and gave significant increase in blood glucose level.Keywords: brain relaxation, hemodynamic, hypertonic sodium lactate, mannitol, traumatic brain injury

  7. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  8. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury.

    Science.gov (United States)

    Wade, Shari L; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry

    2016-04-01

    Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. A prospective, longitudinal, observational cohort study conducted at each child's home, school, and hospital, including 3 children's hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67% of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P parenting or with fewer home resources (mean CAFAS of 69.57, 47.45, 49.00, and 23.81 for severe TBI, moderate TBI, complicated mild TBI, and OI

  9. Employment Outcome Ten Years after Moderate to Severe Traumatic Brain Injury: A Prospective Cohort Study.

    Science.gov (United States)

    Grauwmeijer, Erik; Heijenbrok-Kal, Majanka H; Haitsma, Ian K; Ribbers, Gerard M

    2017-09-01

    The objective of this prospective cohort study was to evaluate the probability of employment and predictors of employment in patients with moderate- to- severe traumatic brain injury (TBI) over 10-year follow-up. One hundred nine patients (18-67 years) were included with follow-up measurements 3, 6, 12, 18, 24, and 36 months and 10 years post-TBI. Potential predictors of employment probability included patient characteristics, injury severity factors, functional outcome measured at discharge from the hospital with the Glasgow Outcome Scale (GOS), Barthel Index (BI), Functional Independence Measure (FIM), and the Functional Assessment Measure (FAM). Forty-eight patients (42%) completed the 10-year follow-up. Three months post-TBI, 12% were employed, which gradually, but significantly, increased to 57% after 2-years follow-up (p employed persons had less-severe TBI, shorter length of hospital stay (LOS), and higher scores on the GOS, BI, FIM, and FAM at hospital discharge than unemployed persons. No significant differences in age, sex, educational level, living with partner/family or not, pre-injury employment, professional category, psychiatric symptoms, or discharge destination were found. Longitudinal multivariable analysis showed that time, pre-injury employment, FAM, and LOS were independent predictors of employment probability. We concluded that employment probability 10 years after moderate or severe TBI is related to injury severity and pre-injury employment. Future studies on vocational rehabilitation should focus on modifiable factors and take into consideration the effects of national legislation and national labor market forces.

  10. Deficits in Facial Emotion Recognition Indicate Behavioral Changes and Impaired Self-Awareness after Moderate to Severe Traumatic Brain Injury

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Milders, Maarten V.; Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Herben-Dekker, Meike; van der Naalt, Joukje

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial

  11. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury

    Science.gov (United States)

    Wade, Shari L.; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H. Gerry

    2017-01-01

    IMPORTANCE Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. OBJECTIVE To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. DESIGN, SETTING, AND PARTICIPANTS A prospective, longitudinal, observational cohort study conducted at each child’s home, school, and hospital, including 3 children’s hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67%of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. MAIN OUTCOMES AND MEASURES Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). RESULTS Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P < .001], moderate TBI and OI [difference = 24

  12. Predictors of cognitive and physical fatigue in post-acute mild-moderate traumatic brain injury.

    Science.gov (United States)

    Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Hanson, Karen L; Sorg, Scott F; Orff, Henry; Clark, Alexandra L

    2017-10-01

    Post-traumatic fatigue (PTF) is a common, disabling, and often chronic symptom following traumatic brain injury (TBI). Yet, the impact of chronic cognitive and physical fatigue and their associations with psychiatric, sleep, cognitive, and psychosocial sequelae in mild-moderate TBI remain poorly understood. Sixty Veterans with a history of mild-moderate TBI and 40 Veteran controls (VC) were administered the Modified Fatigue Impact Scale, a validated measure of TBI-related cognitive and physical fatigue as well as measures of neuropsychiatric, psychosocial, sleep, and objective cognitive functioning. Compared to VC, TBI Veterans endorsed significantly greater levels of cognitive and physical fatigue. In TBI, psychiatric symptoms, sleep disturbance, and post-traumatic amnesia (PTA) were associated with both cognitive and physical fatigue, while loss of consciousness (LOC) and poor attention/processing speed were related to elevations in cognitive fatigue only. In regression analyses, anxiety, sleep disturbance, and LOC significantly predicted cognitive fatigue, while only post-traumatic stress symptoms and PTA contributed to physical fatigue. Cognitive and physical fatigue are problematic symptoms following mild-moderate TBI that are differentially associated with specific injury and psychiatric sequelae. Findings provide potential symptom targets for interventions aimed at ameliorating fatigue, and further underscore the importance of assessing and treating fatigue as a multi-dimensional symptom following TBI.

  13. Effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury; a randomized double-blind placebo-controlled clinical trial.

    Science.gov (United States)

    Farzanegan, Gholam Reza; Derakhshan, Nima; Khalili, Hosseinali; Ghaffarpasand, Fariborz; Paydar, Shahram

    2017-10-01

    The aim of the current study was to investigate the effects of atorvastatin on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injury (TBI). The study was conducted as a randomized clinical trial during a 16-month period from May 2015 and August 2016 in a level I trauma center in Shiraz, Southern Iran. We included 65 patients with moderate (GCS: 9-13) to severe (GCS: 5-8) TBI who had brain contusions of less than 30cc volume. We excluded those who required surgical intervention. Patients were randomly assigned to receive daily 20mg atorvastatin for 10days (n=21) or placebo in the same dosage (n=23). The brain contusion volumetry was performed on days 0, 3 and 7 utilizing spiral thin-cut brain CT-Scan (1-mm thickness). The outcome measured included modified Rankin scale (MRS), Glasgow Outcome Scale (GOS) and Disability rating Scale (DRS) which were all evaluated 3months post-injury. There was no significant difference between two study group regarding the baseline, 3rd day and 7th day of the contusion volume and the rate of contusion expansion. However, functional outcome scales of GOS, MRS and DRS at 3-months post-injury were significantly better in atorvastatin arm of the study compared to placebo (p values of 0.043, 0.039 and 0.030 respectively). Even though atorvastatin was not found to be more effective than placebo in reducing contusion expansion rate, it was associated with improved functional outcomes at 3-months following moderate to severe TBI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mild Concussion, but Not Moderate Traumatic Brain Injury, Is Associated with Long-Term Depression-Like Phenotype in Mice.

    Directory of Open Access Journals (Sweden)

    Nikita M Bajwa

    Full Text Available Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI, a repeated mild CHI (rmCHI consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI. Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi. CCI animals showed significant motor and sensory deficits in the early (1-7 dpi and long-term (90 dpi stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.

  15. Healthy body, healthy mind: A mixed methods study of outcomes, barriers and supports for exercise by people who have chronic moderate-to-severe acquired brain injury.

    Science.gov (United States)

    Lorenz, Laura S; Charrette, Ann L; O'Neil-Pirozzi, Therese M; Doucett, Julia M; Fong, Jeffrey

    2018-01-01

    Few people with chronic moderate-to-severe brain injury are following recommended physical activity guidelines. Investigate effects of planned, systematic physical activity while cultivating social and emotional well-being of people with chronic moderate-to-severe brain injury. Moderate-to-intensive physical activity would be associated with improvements in impairment and activity limitation measures (endurance, mobility, gait speed) immediately post-intervention and six weeks later (study week 12). The intervention was a single group pre-/post-intervention study with 14 people with chronic moderate-to-severe brain injury who live in brain injury group homes and exercised 60-90 min, 3 days per week for 6 weeks at a maximum heart rate of 50-80%. Pre-post measures (administered weeks 0, 6 and 12) were the 6 Minute Walk Test, High-level Mobility Assessment Tool and 10 Meter Walk Test. The qualitative component used a brief survey and semi-structured interview guide with participants, family members, and staff. Following program completion, post-intervention group changes were noted on all outcome measures and greater than minimal detectable change for people with brain injury. Three transitioned from low to high ambulatory status and maintained this change at 12 weeks. During interviews, participants agreed the program was stimulating. More than eighty percent liked working out in a group and felt better being active. Program impact included physical, cognitive and social/emotional aspects. Social aspects (group format, trainers) were highly motivating and supported by residents, family, and staff. Investments in transportation and recruiting and training interns to assist participants are critical to program sustainability and expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Functional outcome and health-related quality of life 10 years after moderate-to-severe traumatic brain injury.

    Science.gov (United States)

    Andelic, N; Hammergren, N; Bautz-Holter, E; Sveen, U; Brunborg, C; Røe, C

    2009-07-01

    To describe the functional outcome and health-related quality of life (HRQL) 10 years after moderate-to-severe traumatic brain injury (TBI). A retrospective, population-based study of 62 survivors of working-age with moderate-to-severe TBI injured in 1995/1996, and hospitalized at the Trauma Referral Center in Eastern Norway. Functional status was measured by the Glasgow Outcome Scale-Extended (GOS-E). HRQL was assessed by the SF-36 questionnaire. The mean current-age was 40.8 years. The frequency of epilepsy was 19% and the depression rate 31%. A majority had good recovery (48%) or moderate disability (44%). Employment rate was 58%. Functional and employment status were associated with initial injury severity in contrast to HRQL. Study patients had significantly lower scores in all SF-36 dimensions when compared with the general Norwegian population. At 10-years follow-up, our study population is still in their most productive years and affected domains should be considered in long-term follow-up and intervention programs.

  17. Trauma center designation correlates with functional independence after severe but not moderate traumatic brain injury.

    Science.gov (United States)

    Brown, Joshua B; Stassen, Nicole A; Cheng, Julius D; Sangosanya, Ayodele T; Bankey, Paul E; Gestring, Mark L

    2010-08-01

    The mortality of traumatic brain injury (TBI) continues to decline, emphasizing functional outcomes. Trauma center designation has been linked to survival after TBI, but the impact on functional outcomes is unclear. The objective was to determine whether trauma center designation influenced functional outcomes after moderate and severe TBI. Trauma subjects presenting to an American College of Surgeons (ACS) Level I or II trauma center with a Glasgow Coma Score (GCS) independence (FI) defined as a modified functional independence measure (FIM) of 12, and independent expression (IE) defined as a FIM component of 4. These were compared between Level I and Level II centers in subjects with both moderate (GCS 9-12) and severe (GCS injuries, and comorbidities. Analysis identified 25,170 subjects (72% severe TBI). After adjusting for covariates, ACS Level I designation was associated with FI (odds ratio: 1.16; confidence interval: 1.07-1.24, p < 0.01) and IE (1.10; 1.03-1.17, p < 0.01) after severe TBI. Trauma center designation was not associated with FI or IE after moderate TBI. ACS trauma center designation is significantly associated with FI and IE after severe, but not moderate TBI. Prospective study is warranted to verify and explore factors contributing to this discrepancy.

  18. Functional level during the first 2 years after moderate and severe traumatic brain injury.

    Science.gov (United States)

    Sandhaug, Maria; Andelic, Nada; Langhammer, Birgitta; Mygland, Aase

    2015-01-01

    Long-term outcomes after TBI are examined to a large extent, but longitudinal studies with more than 1-year follow-up time after injury have been fewer in number. The course of recovery may vary due to a number of factors and it is still somewhat unclear which factors are contributing. The aim of this study was to describe the functional level at four time points up to 24 months after traumatic brain injury (TBI) and to evaluate the predictive impact of pre-injury and injury-related factors. A cohort study. Outpatient. Sixty-five patients with moderate (n = 21) or severe (n = 44) TBI. The patients with TBI were examined with Functional Independence Measure (FIM) and Glasgow Outcome Scale Extended (GOSE) at 3 months, 12 months and 24 months after injury. Possible predictors were analysed in a regression model using FIM total score at 24 months as the outcome measure. FIM scores improved significantly from rehabilitation unit discharge to 24 months after injury, with peak levels at 3 and 24 months after injury (p GOSE scores for the whole group and the moderate group improved significantly over time, but the severe group did not. FIM at admission to the rehabilitation unit and GCS score at admission to the rehabilitation unit were closest to being significant predictors of FIM total scores 24 months after injury (B = 0.265 and 2.883, R(2 )= 0.39, p = 0.073, p = 0.081). FIM levels improved during the period from rehabilitation unit discharge to 3 months follow-up; thereafter, there was a 'plateauing' of recovery. In contrast, GOSE 'plateauing' of recovery was at 12 months. The study results may indicate that two of the most used outcome measures in TBI research are more relevant for assessment of the functional recovery in a sub-acute phase than in later stages of TBI recovery.

  19. Home environment, brain injury, & school performance in LBW survivors.

    Science.gov (United States)

    Mahoney, Ashley Darcy; Pinto-Martin, Jennifer; Hanlon, Alexandra

    2014-01-01

    There has been substantial research on low birthweight (LBW) as a predictor of adverse educational and cognitive outcomes. LBW infants perform worse on cognitive battery tests compared to children born at normal birthweight; however, children exposed to similar risks do not all share the same experiences. The complex, interrelated factors responsible for poor cognitive and achievement performance vary for different populations, but researchers hypothesize that the home environment may influence the infants' long-term health outcomes. Examine the home environment as a moderator in the causal pathway from neonatal brain injury to school performance in a secondary analysis of a prospectively studied, geographically defined cohort from the Neonatal Brain Hemorrhage Study. The secondary analysis sample included 543 infants with birthweights of 501 to 2,000 g who were born consecutively in three community hospitals in New Jersey between 1984 and 1986. School performance at age 9 was measured by the Woodcock-Johnson Tests of Achievement. The home environment variables were tested and analyzed using multistep hierarchical regression modeling. A moderating effect between the variable neighborhood observations and brain injury was demonstrated for the outcome math score. The moderating relationship was found in the category of children without brain injury (β = 1.76, p = .005). There were statistically significant and potentially clinical meaningful models when looking at the home environmental variables as they relate to reading and math scores. The findings suggest that at least one variable within a LBW child's socio-environmental milieu can moderate the effects of perinatal brain injury on school performance outcomes.

  20. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  1. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  3. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    Science.gov (United States)

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and

  4. Tracheostomy is associated with decreased hospital mortality after moderate or severe isolated traumatic brain injury.

    Science.gov (United States)

    Baron, David Marek; Hochrieser, Helene; Metnitz, Philipp G H; Mauritz, Walter

    2016-06-01

    Data regarding the impact and timing of tracheostomy in patients with isolated traumatic brain injury (TBI) are ambiguous. Our goal was to evaluate the impact of tracheostomy on hospital mortality in patients with moderate or severe isolated TBI. We performed a retrospective cohort analysis of data prospectively collected at 87 Austrian intensive care units (ICUs). All patients continuously admitted between 1998 and 2010 were evaluated for the study. In total, 4,735 patients were admitted to ICUs with isolated TBI. Of these patients, 2,156 had a moderate or severe TBI (1,603 patients were endotracheally intubated only, 553 patients underwent tracheostomy). Epidemiological data (trauma severity, treatment, and outcome) of the two groups were compared. Patients with moderate or severe isolated TBI undergoing tracheostomy had a similar Glasgow Coma Scale score, median (interquartile range): 6 (3-8) vs 6 (3-8); p = 0.90, and Simplified Acute Physiology Score II, 45 (37-54) vs 45 (35-56); p = 0.86, compared with intubated patients not undergoing tracheostomy. Furthermore, patients undergoing tracheostomy exhibited higher Abbreviated Injury Scale Head scores and had a longer ICU stay for survivors, 30 (22-42) vs 9 (3-17) days; p tracheostomy compared with patients who remained intubated, observed-to-expected mortality ratio (95 % confidence interval): 0.62 (0.53-0.72) vs 1.00 (0.95-1.05) respectively. Despite the greater severity of head injury, patients with isolated TBI who underwent tracheostomy had a lower risk-adjusted mortality than patients who remained intubated. Reasons for this difference in outcome may be multifactorial and require further investigation.

  5. Facial Emotion Recognition Deficits following Moderate-Severe Traumatic Brain Injury (TBI): Re-examining the Valence Effect and the Role of Emotion Intensity

    NARCIS (Netherlands)

    Rosenberg, H.; McDonald, S.; Dethier, M.; Kessels, R.P.C.; Westbrook, R.F.

    2014-01-01

    Many individuals who sustain moderate-severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether

  6. Blood biomarkers in moderate-to-severe traumatic brain injury: potential utility of a multimarker approach in characterizing outcome

    Directory of Open Access Journals (Sweden)

    Alex P Di Battista

    2015-05-01

    Full Text Available Background: Blood biomarkers are valuable tools for elucidating the complex cellular and molecular mechanisms underlying traumatic brain injury (TBI pathophysiology. Profiling distinct classes of biomarkers could aid in the identification and characterization of both initial injury and secondary pathological processes. The purpose of this study was to characterize the prognostic performance, both individually and combined, of a recently developed multimarker panel of circulating biomarkers reflecting specific pathogenic mechanisms including neuroinflammation, oxidative damage and neuroregeneration, in moderate-to-severe TBI patients. Materials and Methods: Peripheral blood samples were drawn from 85 isolated TBI patients (n=60 severe, n=25 moderate at hospital admission, 6-, 12-, and 24-h post-injury. Mortality and neurological outcome were assessed using the extended Glasgow Outcome Score (GOSE. A multiplex platform was designed on MULTI-SPOT® plates to simultaneously analyze human plasma levels of s100 calcium binding protein (s100B, glial fibrillary acidic protein (GFAP, neuron specific enolase (NSE, brain derived neurotrophic factor (BDNF, monocyte chemoattractant protein (MCP-1, intercellular adhesion molecule (ICAM-5, and peroxiredoxin (PRDX-6. Results: Unfavorable outcome was associated with elevations in s100B, GFAP and MCP-1. Mortality was related to differences in 6 of 7 markers analyzed. Combined admission concentrations of s100B, GFAP and MCP-1 were able to discriminate favorable versus unfavorable outcome (AUC = 0.83, and survival versus death (AUC = 0.87, although not significantly better than s100B alone (AUC = 0.82 and 0.86, respectively. Conclusion: The multimarker panel of TBI-related biomarkers performed well in discriminating between unfavorable and favorable outcomes in the acute period after moderate-to-severe TBI. However, these combined biomarkers did not outperform s100B alone.

  7. Dementia After Moderate-Severe Traumatic Brain Injury: Coexistence of Multiple Proteinopathies.

    Science.gov (United States)

    Kenney, Kimbra; Iacono, Diego; Edlow, Brian L; Katz, Douglas I; Diaz-Arrastia, Ramon; Dams-O'Connor, Kristen; Daneshvar, Daniel H; Stevens, Allison; Moreau, Allison L; Tirrell, Lee S; Varjabedian, Ani; Yendiki, Anastasia; van der Kouwe, Andre; Mareyam, Azma; McNab, Jennifer A; Gordon, Wayne A; Fischl, Bruce; McKee, Ann C; Perl, Daniel P

    2018-01-01

    We report the clinical, neuroimaging, and neuropathologic characteristics of 2 patients who developed early onset dementia after a moderate-severe traumatic brain injury (TBI). Neuropathological evaluation revealed abundant β-amyloid neuritic and cored plaques, diffuse β-amyloid plaques, and frequent hyperphosphorylated-tau neurofibrillary tangles (NFT) involving much of the cortex, including insula and mammillary bodies in both cases. Case 1 additionally showed NFTs in both the superficial and deep cortical layers, occasional perivascular and depth-of-sulci NFTs, and parietal white matter rarefaction, which corresponded with decreased parietal fiber tracts observed on ex vivo MRI. Case 2 additionally showed NFT predominance in the superficial layers of the cortex, hypothalamus and brainstem, diffuse Lewy bodies in the cortex, amygdala and brainstem, and intraneuronal TDP-43 inclusions. The neuropathologic diagnoses were atypical Alzheimer disease (AD) with features of chronic traumatic encephalopathy and white matter loss (Case 1), and atypical AD, dementia with Lewy bodies and coexistent TDP-43 pathology (Case 2). These findings support an epidemiological association between TBI and dementia and further characterize the variety of misfolded proteins that may accumulate after TBI. Analyses with comprehensive clinical, imaging, genetic, and neuropathological data are required to characterize the full clinicopathological spectrum associated with dementias occurring after moderate-severe TBI. 2017 American Association of Neuropathologists, Inc. This work is written by US Government employees and is in the public domain in the US.

  8. Medical aspects of pediatric rehabilitation after moderate to severe traumatic brain injury.

    Science.gov (United States)

    Cantore, Lisa; Norwood, Kenneth; Patrick, Peter

    2012-01-01

    Recovery from severe traumatic brain injury (TBI) is prolonged, complicated and challenging. Medical rehabilitation is the bridge from acute medical care and stabilization to community reintegration. The process of caring for the recovering brain introduces unknown challenges of neural plasticity with demands to restore and to also move the child and family back to the developmental trajectory they once knew. While the ongoing focus is to maintain and advance medical stability, co- morbid conditions are addressed, and a plan for ongoing health is established. While no one manuscript can cover all of the medical aspects, this article will present in a "systems review" manner the most challenging and demanding medical conditions that children may confront following severe brain injury.

  9. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    Science.gov (United States)

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  10. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    craniotomy was cut with a trephine by hand over the right motor cortex . An injury cannula was fashioned from the hub of a female leur-lock 20g needle...ABSTRACT This project evaluated the effect of a moderate-level brain injury on risk for opioid abuse using preclinical models in rats . We assessed the...effect of brain injury on the rewarding effects of oxycodone in three rat self-administration procedures and found significant differences in the

  11. Deficits in Facial Emotion Recognition Indicate Behavioral Changes and Impaired Self-Awareness after Moderate to Severe Traumatic Brain Injury

    OpenAIRE

    Spikman, Jacoba M.; Milders, Maarten V.; Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Herben-Dekker, Meike; van der Naalt, Joukje

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial affect recognition, might underlie these behavioral changes. Measurement of behavioral deficits is complicated, because the rating scales used rely on subjective judgement, often lack specificity and ...

  12. How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S

    2013-09-01

    Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.

  13. CONSEQUENCES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN AND THEIR TREATMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zavadenko

    2006-01-01

    Full Text Available Traumatic brain injury is one of the major causes for invalidization in children. The research purpose is an integrated study of consequences of severe and moderate closed traumatic brain injury in children and evaluation of their dynamics during therapy by means of a no tropic medication — cerebrolysin (Ebewe Pharma, Austria. The total of 283 children aged from 4 to 14 years were examined in the longaterm period of severe and moderate closed traumatic brain injury, from 6 months to 4 years after injury. Their neurological status was characterized by nona specific focal symptoms along with evident motor coordination disturbances, elements of dynamic and staticoloa comotory ataxia, reduction in execution speed of serial movements. Statistically significant differences with ageamatched controls were confirmed for measures of acousticaverbal memory and sustained attention. Posttraumatic epilepsy developed in 16 (5,7% patients with the onset of secondarily generalized seizures in 4–12 months following the injury. Effectiveness of the no tropic medication was evaluated in 60 patients aged from 7 to 12 years, who were distributed into 2 equal groups. The research has confirmed a positive effect of no tropic medication in the treatment of traumatic brain injury consequences manifested in the regression of headaches, fatigue, motor coordination disturbances along with improvements of memory, attention, intellectual performance rates, as well as EEG characteristics.Key words: traumatic brain injury, consequences, children, therapy, nootropic medications.

  14. Dynamic change of serum protein S100b and its clinical significance in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie

    2005-01-01

    Objective: To analyze the dynamic change of serum protein S100b in patients with traumatic brain injury and its clinical value in assessing brain damage. Methods: According to Glasgow coma scale (GCS), 102 cases of traumatic brain injury were divided into mild brain injury group (GCS≥13, n=31, Group A), moderate brain injury group (8brain injury group (GCS≤8, n=34, Group C). Serial S100b concentrations were analyzed by enzyme-linked immunosorbent assay (ELISA) in blood samples taken on admission, 12 h, 24 h, 48 h, 72 h and 7 days after traumatic brain injury. Results: The severe brain injury group showed significantly higher concentration of serum S100b, with earlier increase and longer duration, than the mild and moderate brain injury groups. The patients with higher S100b exhibited lower GCS scores and poor clinical prognosis. The increase in S100b could emerge before clinical image evidence indicated so. Conclusions: Serum S100b can be used as a sensitive index for assessment and prediction of traumatic brain injury severity and prognosis.

  15. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates.Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8. Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying, bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study.TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for more tailored injury prevention efforts.

  16. The moderating effects of sex and age on the association between traumatic brain injury and harmful psychological correlates among adolescents.

    Science.gov (United States)

    Ilie, Gabriela; Adlaf, Edward M; Mann, Robert E; Boak, Angela; Hamilton, Hayley; Asbridge, Mark; Colantonio, Angela; Turner, Nigel E; Rehm, Jürgen; Cusimano, Michael D

    2014-01-01

    Although it is well established that sex is a risk factor in acquiring a traumatic brain injury (TBI) among adolescents, it has not been established whether it also moderates the influence of other TBI psychological health correlates. Data were derived from a 2011 population-based cross-sectional school survey, which included 9,288 Ontario 7th-12th graders who completed anonymous self-administered questionnaires in classrooms. Response rate was 62%. Preliminary analyses found no evidence of nonresponse bias in the reporting of TBI. TBI was defined as a hit or blow to the head that resulted in a 5 minutes loss of consciousness or at least one overnight hospitalization due to symptoms associated with it. Reports of lifetime TBI were more common among males than females (23.1%, 95% CI: 20.5, 25.8 vs. 17.1%, 95% CI: 14.7, 19.8). Thirteen correlates were examined and included cigarette smoking, elevated psychological distress, suicide ideation, bully victimization (at school, as well as cyber bullying), bullying others, cannabis use, cannabis dependence and drug use problems, physical injuries, daily smoking, drinking alcohol, binge drinking, use of cannabis, and poor academic performance. Among the outcomes examined, sex moderated the relationship between lifetime TBI and cigarette smoking. In addition, sex and age jointly moderated the relationship between lifetime TBI and daily smoking, alcohol use and physical injuries. Late adolescent males who reported lifetime TBI, relative to females, displayed elevated daily smoking and injuries, whereas their females counterparts displayed elevated past year drinking. Possible bias related to self-report procedures and the preclusion of causal inferences due to the cross-sectional nature of the data are limitations of this study. TBI differences in outcomes need to be assessed for potential moderating effects of sex and age. Results have important implications for more tailored injury prevention efforts.

  17. Does Apolipoprotein e4 Status Moderate the Association of Family Environment with Long-Term Child Functioning following Early Moderate to Severe Traumatic Brain Injury? A Preliminary Study.

    Science.gov (United States)

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L; Kurowski, Brad G

    2016-09-01

    To examine whether apolipoprotein e4 (APOE) status moderates the association of family environment with child functioning following early traumatic brain injury (TBI). Sixty-five children with moderate to severe TBI and 70 children with orthopedic injury (OI) completed assessments 6, 12, 18 months, and 3.5 and 6.8 years post injury. DNA was extracted from saliva samples and genotyped for APOE e4 status. Linear mixed models examined moderating effects of APOE e4 status on associations between two family environment factors (parenting style, home environment) and three child outcomes (executive functioning, behavioral adjustment, adaptive functioning). Children with TBI who were carriers of the e4 allele showed poorer adaptive functioning relative to non-carriers with TBI and children with OI in the context of low authoritarianism. At high levels of authoritarianism, non-carriers with TBI showed the poorest adaptive functioning among groups. There were no main effects or interactions involving APOE and executive functioning or behavioral adjustment. The APOE e4 allele was detrimental for long-term adaptive functioning in the context of positive parenting, whereas in less optimal parenting contexts, being a non-carrier was detrimental. We provide preliminary evidence for an interaction of APOE e4 status and parenting style in predicting long-term outcomes following early TBI. (JINS, 2016, 22, 859-864).

  18. Magnetic susceptibility artifacts in a diffuse brain injury and their pathological significance

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Miyakita, Yasuji; Matsuzawa, Motoshi; Sakakibara, Yohtaro; Takahara, Taro; Yamaguchi, Toshio

    1998-01-01

    In our study, FLAIR images and multishot echo planar imaging T2-weighted images (EPI T2-WI) were used in addition to conventional T1-weighted images, T2-weighted images and T2-weighted sagittal images. In this series we focused our attention on small parenchymatous lesions of a mild or moderate form of diffuse brain injury. These injuries are shown as high intensity areas on T2-weighted images (T2-high intensity lesions) but are not visualized in CT images. This series consisted of 29 patients who were diagnosed with diffuse brain injury and whose CT scans showed a Diffuse Injury I or II. Nineteen patients were studied in an acute or subacute stage. In all but 3 patients, small T2-high intensity lesions were found in the brain parenchyma. In the follow-up study brain edema was suggested because the lesions tended to be absent within 3 months in T2-weighted images and FLAIR. In 10 patients examined during a chronic stage. Small hemorrhages in patients with Diffuse Injury II were shown with variable intensities on the conventional T1- and T2-weighted images, but were visualized with low intensity in an EPI T2-WI. In diffuse brain injuries, small T2-high intensity lesions have been considered to be brain edema or ischemic insults. Our data however, suggested that microhemorrhages associated with brain edema were resent in most of the supratentorial lesions, and in more than a half of the lesions in the corpus callosum and the brain stem. These findings appear similar to contusions, which are defined as traumatic bruises of the neural parenchyma. The use of MRI has increased our understanding of in vivo pathological changes in mild or moderate forms of diffuse brain injury. (K.H.)

  19. Parent management of the school reintegration needs of children and youth following moderate or severe traumatic brain injury.

    Science.gov (United States)

    Roscigno, Cecelia I; Fleig, Denise K; Knafl, Kathleen A

    2015-01-01

    School reintegration following children's traumatic brain injury (TBI) is still poorly understood from families' perspectives. We aimed to understand how both unique and common experiences during children's school reintegration were explained by parents to influence the family. Data came from an investigation using descriptive phenomenology (2005-2007) to understand parents' experiences in the first five years following children's moderate to severe TBI. Parents (N = 42 from 37 families in the United States) participated in two 90-min interviews (first M = 15 months; second M = 27 months). Two investigators independently coded parents' discussions of school reintegration using content analysis to understand the unique and common factors that parents perceived affected the family. Parents' school negotiation themes included the following: (1) legal versus moral basis for helping the child; (2) inappropriate state and local services that did not consider needs specific to TBI; and (3) involvement in planning, implementing and evaluating the child's education plan. Parents perceived that coordinated and collaboration leadership with school personnel lessened families' workload. Families who home-schooled had unique challenges. School reintegration can add to family workload by changing roles and relationships and by adding to parents' perceived stress in managing of the child's condition. Moderate to severe traumatic brain injury is assumed to be the primary cause of children's morbidities post-injury. Despite laws in the United States meant to facilitate children's school reintegration needs, parents often perceived that policies and practices differed from the intentions of laws and added to the family workload and stress. The school environment of the child (physical, cultural or psychological setting) plays an important long-term role in shaping family roles, relationships and management of the child's condition.

  20. Causes and Consequences of Treatment Variation in Moderate and Severe Traumatic Brain Injury : A Multicenter Study

    NARCIS (Netherlands)

    Criossen, Maryse C.; Polinder, Suzanne; Andriessen, Teuntje M.; van der Naalt, Joukje; Haitsma, Iain; Horn, Janneke; Franschman, Gaby; Vos, Pieter E.; Steyerberg, Ewout W.; Lingsma, Hester

    Objectives: Although guidelines have been developed to standardize care in traumatic brain injury, between-center variation in treatment approach has been frequently reported. We examined variation in treatment for traumatic brain injury by assessing factors influencing treatment and the association

  1. Changes of interleukin-1β, tumor necrosis factor α and interleukin-6 in brain and plasma after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    朱涛; 姚智; 袁汉娜; 陆伯刚; 杨树源

    2004-01-01

    Objective: To study the changes of interleukin-1 β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels in brain and plasma after brain injury and to assess the relationship between the cytokine levels and injury severity in rats. Methods: A total of 51 male Wistar rats, weighing 280-340 g, were anesthetized with chloral hydrate (400 mg/kg body weight) through intraperitoneal injection and fixed on a stereotaxic instrument. Severe brain injury was created in 16 rats (severe injury group) and moderate brain injury in 18 rats (moderate injury group) by a fluid percussion model, and cytokine levels of IL-1β, TNFα and IL-6 were measured with biological assay. And sham operation was made on the other 17 rats (control group). Results: In the control group, the levels of IL-1β, TNFα and IL-6 were hardly detected in the cortex of the rats, but in the ipsilateral cortex of the rats in both injury groups, they increased obviously at 8 hours after injury. The increasing degree of these cytokines had no significant difference between the two injury groups. The levels of IL-6 in the plasma of all the rats increased slightly, whereas the levels of IL-1β and TNFα were undetectable. Conclusions: The increase of IL-1β, TNFα and IL-6 levels is closely related to brain injury. The increased cytokine levels in the central nervous system are not parallel to those in the peripheral blood. It suggests that inflammatory cytokines play important roles in the secondary neural damage after brain injury.

  2. Effect of brain-derived neurotrophic factor on the formation of psycho-vegetative syndrome with brain injury

    Directory of Open Access Journals (Sweden)

    Selyanina N.V.

    2016-09-01

    Full Text Available Aim: to determine the role of brain-derived neurotrophic factor in the formation and forecasting of psycho-vegetative syndrome in patients with cerebral mild to moderate injury. Material and Methods. There have been 150 patients with contusion of the brain, examined. Indicators of neurological, psycho-vegetative status, quantitative content of brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in the serum were studied. Results. At patients with brain contusion neurological, psycho-vegetative disturbances and decrease neurotrophic factors are determined. It was found to depend of the content of BDNF and psycho-vegetative indicators. Conclusion. The level of brain-derived neurotrophic factor serum (less than 300 pg/ml is a predictor of psycho-vegetative syndrome in the long term of the brain injury.

  3. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  4. Prospective memory after moderate-to-severe traumatic brain injury: a multinomial modeling approach.

    Science.gov (United States)

    Pavawalla, Shital P; Schmitter-Edgecombe, Maureen; Smith, Rebekah E

    2012-01-01

    Prospective memory (PM), which can be understood as the processes involved in realizing a delayed intention, is consistently found to be impaired after a traumatic brain injury (TBI). Although PM can be empirically dissociated from retrospective memory, it inherently involves both a prospective component (i.e., remembering that an action needs to be carried out) and retrospective components (i.e., remembering what action needs to be executed and when). This study utilized a multinomial processing tree model to disentangle the prospective (that) and retrospective recognition (when) components underlying PM after moderate-to-severe TBI. Seventeen participants with moderate to severe TBI and 17 age- and education-matched control participants completed an event-based PM task that was embedded within an ongoing computer-based color-matching task. The multinomial processing tree modeling approach revealed a significant group difference in the prospective component, indicating that the control participants allocated greater preparatory attentional resources to the PM task compared to the TBI participants. Participants in the TBI group were also found to be significantly more impaired than controls in the when aspect of the retrospective component. These findings indicated that the TBI participants had greater difficulty allocating the necessary preparatory attentional resources to the PM task and greater difficulty discriminating between PM targets and nontargets during task execution, despite demonstrating intact posttest recall and/or recognition of the PM tasks and targets.

  5. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses.

    Science.gov (United States)

    Anglin, Catherine O; Spence, Jeffrey S; Warner, Matthew A; Paliotta, Christopher; Harper, Caryn; Moore, Carol; Sarode, Ravi; Madden, Christopher; Diaz-Arrastia, Ramon

    2013-03-01

    Object Coagulopathy and thrombocytopenia are common after traumatic brain injury (TBI), yet transfusion thresholds for mildly to moderately abnormal ranges of international normalized ratio and platelet count remain controversial. This study evaluates associations between fresh frozen plasma (FFP) and platelet transfusions with long-term functional outcome and survival in TBI patients with moderate hemostatic laboratory abnormalities. Methods This study is a retrospective review of prospectively collected data of patients with mild to severe TBI. Data include patient demographics, several initial injury severity metrics, daily laboratory values, Glasgow Outcome Score- Extended (GOSE) scores, Functional Status Examination (FSE) scores, and survival to 6 months. Correlations were evaluated between these variables and transfusion of FFP, platelets, packed red blood cells (RBCs), cryoprecipitate, recombinant factor VIIa, and albumin. Ordinal regression was performed to account for potential confounding variables to further define relationships between transfusion status and long-term outcome. By analyzing collected data, mild to moderate coagulopathy was defined as an international normalized ratio 1.4-2.0, moderate thrombocytopenia as platelet count 50 × 10(9)/L to 107 × 10(9)/L, and moderate anemia as 21%-30% hematocrit. Results In patients with mild to moderate laboratory hematological abnormalities, univariate analysis shows significant correlations between poor outcome scores and FFP, platelet, or packed RBC transfusion; the volume of FFP or packed RBCs transfused also correlated with poor outcome. Several measures of initial injury and laboratory abnormalities also correlated with poor outcome. Patient age, initial Glasgow Coma Scale score, and highest recorded serum sodium were included in the ordinal regression model using backward variable selection. In the moderate coagulopathy subgroup, patients transfused with FFP were more likely to have a lower GOSE

  6. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  7. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  8. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    Science.gov (United States)

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    Science.gov (United States)

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  10. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  12. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  13. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury.

    Science.gov (United States)

    Divani, Afshin A; Murphy, Amanda J; Meints, Joyce; Sadeghi-Bazargani, Homayoun; Nordberg, Jessica; Monga, Manoj; Low, Walter C; Bhatia, Prerana M; Beilman, Greg J; SantaCruz, Karen S

    2015-07-15

    Blast-induced traumatic brain injury (bTBI) is the "signature" injury of the recent Iraq and Afghanistan wars. Here, we present a novel method to induce bTBI using shock wave (SW) lithotripsy. Using a lithotripsy machine, Wistar rats (N = 70; 408.3 ± 93 g) received five SW pulses to the right side of the frontal cortex at 24 kV and a frequency of 60 Hz. Animals were then randomly divided into three study endpoints: 24 h (n = 25), 72 h (n = 19) and 168 h (n = 26). Neurological and behavioral assessments (Garcia's test, beam walking, Rotarod, and elevated plus maze) were performed at the baseline, and further assessments followed at 3, 6, 24, 72, and 168 h post-injury, if applicable. We performed digital subtraction angiography (DSA) to assess presence of cerebral vasospasm due to induced bTBI. Damage to brain tissue was assessed by an overall histological severity (OHS) score based on depth of injury, area of hemorrhage, and extent of axonal injury. Except for beam walking, OHS was significantly correlated with the other three outcome measures with at least one of their assessments during the first 6 h after the experiment. OHS manifested the highest absolute correlation coefficients with anxiety at the baseline and 6 h post-injury (r(baseline) = -0.75, r(6hrs) = 0.85; p<0.05). Median hemispheric differences for contrast peak values (obtained from DSA studies) for 24, 72, and 168 h endpoints were 3.45%, 3.05% and 0.2%, respectively, with statistically significant differences at 1 versus 7 d (p<0.05) and 3 versus 7 d (p<0.01). In this study, we successfully established a preclinical rat model of bTBI with characteristics similar to those observed in clinical cases. This new method may be useful for future investigations aimed at understanding bTBI pathophysiology.

  14. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  15. Perceived difficulty in use of everyday technology in persons with acquired brain injury of different severity: a comparison with controls.

    Science.gov (United States)

    Fallahpour, Mandana; Kottorp, Anders; Nygård, Louise; Lund, Maria Larsson

    2014-07-01

    To compare the perceived difficulty in use of everyday technology in persons with acquired brain injury with different levels of severity of disability with that of controls. This comparison study recruited 2 samples of persons with acquired brain injury and controls, comprising a total of 161 participants, age range 18-64 years. The long and short versions of the Everyday Technology Use Questionnaire and the Extended Glasgow Outcome Scale were used to evaluate participants. Persons with acquired brain injury demonstrated lower mean levels of perceived ability in use of everyday technology than controls (F = 21.84, degrees of freedom = 1, p technology between persons with severe disability and good recovery, between persons with severe disability and controls, and between persons with moderate disability and controls. No significant mean difference was found between persons with severe disability and moderate disability, between persons with moderate disability and good recovery, and between persons with good recovery and controls. Perceived difficulty in using everyday technology is significantly increased among persons with acquired brain injury with severe to moderate disability compared with controls. Rehabilitation services should consider the use of everyday technology in order to increase participation in everyday activities after acquired brain injury.

  16. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  17. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    Directory of Open Access Journals (Sweden)

    Zeeshan Javed

    2015-01-01

    Full Text Available There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation.

  18. The absence of protective effect of candesartan and angiotensin IV in the moderate brain injury in rats

    International Nuclear Information System (INIS)

    Nasser, M.; Botelle, L.; Javellaud, J.; Oudart, N.; Achard, J-M

    2012-01-01

    Background: angiotensin receptor blockers (ARB) are protective in various models of experimental ischemic stroke. This protective effect is mediated by the stimulation of non-AT1 receptors by angiotensin II and angiotensin IV. Since traumatic brain injury shares with ischemic cerebral injury several common mechanisms, we examined if a pretreatment with the ARB candesartan, or a post-treatment with angiotensin IV are also protective in a rat model of blunt traumatic brain injury (TBI). Methods :adults Sprague Dawley rats were treated for five days with candesartan (0.5 mg/kg/day) or saline by gavage prior to the induction of diffuse moderate TBI using the impact-acceleration model. Two others groups of rats were treated by a daily intraperitoneal injection of angiotensin IV (1.5 mg/kg/day) or saline for five days following TBI. Overall neurological insult were assessed daily by measuring the neurological score. Sensitive deficits (scotch test) and sensorimotor deficits (beam-walking test) were evaluated daily from day 1 to 7 and at day 15; cognitive impairment (object recognition test) was evaluated at day 15. Results : TBI induced significant sensitive and sensorimotor deficits that were maximal at day 1 and spontaneously improved with time. At day 15, traumatised animals had a marked alteration of the working memory. Neither treatment with candesartan, angiotensin IV or with erythropoietin decreased the severity of the initial sensorimotor deficits, nor accelerate the recovery rate. Candesartan, angiotensin IV had likewise no protective effect on the cognitive deficit evaluated to day 15. Conclusion: pretreatment with candesartan and post-treatment with angiotensin IV are both ineffective to protect against sensorimotor and c ognitive impairment in a rat model of impact-acceleration TBI. (author)

  19. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  20. The relationship of resting cerebral blood flow and brain activation during a social cognition task in adolescents with chronic moderate to severe traumatic brain injury: a preliminary investigation.

    Science.gov (United States)

    Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S

    2012-05-01

    Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (pflow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological

  1. Evaluating the prognosis and degree of brain injury by combined S-100 protein and neuron specific enolase determination

    Institute of Scientific and Technical Information of China (English)

    Xihua Wang; Xinding Zhang

    2006-01-01

    Background:S-100 and neuron specific enolase(NSE)possess the characteristics of specific distribution in brain and relative stable content.Some studies suggest that combined detection of the both is of very importance for evaluating the degree of brain injury.OBJECTIVE: To observe the changes of S-100 protein and NSE levels at different time points after acute brain injury,and evaluate the values of combined detection detection of the both for different injury degrees,pathological changes and prognosis.DESIGN: Case-control observation SETTING: Department of Neurosurgery,Second Affiliated Hospital,Lanzhou University.PARTICIPANTS:Thirty-four inpatients with brain injury,19 males and 15 females,aged 15 to 73 years.who received treatment between September 2005 and May 2006 in the Department of Neurosurgery. Second Affiliated Hospital,Lanzhou University,were recruited.The patients were admitted to hospital at 24 hours after brain injury.After admission,skull CT confirmed that they suffered from brain injury.Following Glasgow coma score(GCS)on admission,the patients were assigned into 3 groups:severe group(GCS 3 to 8 points,n=15).moderate group(GCS 9 to 12 points,n=8)and mild group(GCS 13 to 15 points,n=11).Following Glasgow outcome scale(GOS)at 3 months after brain injury,the patients were assigned into good outcome group (GOS 4 to 5 points,good recovery and moderate disability included,n=19)and poor outcome group(GOS 1 to 3 points,severe disability,vegetative state and death,n=15).Ten subjects who received health examination concurrently were chosen as normal control group,including 6 males and 4 females,aged(45.4±14.3)years.In our laboratory,the normal level of NSE was≤15.2 ng/L,and that of S100 was≤0.105 μg/L.METHODS:①Blood samples of control group were collected when the subjects received health examination Blood samples of patients with brain injury were collected at 24 hours,3,7 and 14 days after injury.According to the instructions of NSE and S-100 kits

  2. A pilot randomized controlled trial of on-line interventions to improve sleep quality in adults after mild or moderate traumatic brain injury.

    Science.gov (United States)

    Theadom, Alice; Barker-Collo, Suzanne; Jones, Kelly; Dudley, Margaret; Vincent, Norah; Feigin, Valery

    2018-05-01

    To explore feasibility and potential efficacy of on-line interventions for sleep quality following a traumatic brain injury (TBI). A two parallel-group, randomized controlled pilot study. Community-based. In all, 24 participants (mean age: 35.9 ± 11.8 years) who reported experiencing sleep difficulties between 3 and 36 months after a mild or moderate TBI. Participants were randomized to receive either a cognitive behaviour therapy or an education intervention on-line. Both interventions were self-completed for 20-30 minutes per week over a six-week period. The Pittsburgh Sleep Quality Index assessed self-reported sleep quality with actigraphy used as an objective measure of sleep quality. The CNS Vital Signs on-line neuropsychological test assessed cognitive functioning and the Rivermead Post-concussion Symptoms and Quality of Life after Brain Injury questionnaires were completed pre and post intervention. Both programmes demonstrated feasibility for use post TBI, with 83.3% of participants completing the interventions. The cognitive behaviour therapy group experienced significant reductions ( F = 5.47, p = 0.04) in sleep disturbance (mean individual change = -4.00) in comparison to controls post intervention (mean individual change = -1.50) with a moderate effect size of 1.17. There were no significant group differences on objective sleep quality, cognitive functioning, post-concussion symptoms or quality of life. On-line programmes designed to improve sleep are feasible for use for adults following mild-to-moderate TBI. Based on the effect size identified in this pilot study, 128 people (64 per group) would be needed to determine clinical effectiveness.

  3. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  4. Clinical significance of determination of serum NSE and plasma ET, IGF-II, CNP levels in patients with acute brain injury

    International Nuclear Information System (INIS)

    Chen Bo

    2010-01-01

    Objective: To investigate the clinical significance of changes of plasma ET, IGF-II, CNP and serum NSE contents in patients with acute brain injury. Methods: Serum contents of neuron specific enolase (NSE) were measured with chemiluminescence immunoassay and plasma endothelin (ET), insulin-like growth factor-II (IGF-II) and C-type natriuretic peptide (CNP) were measured with radioimmunoassay in 30 patients with acute brain injury and 35 controls. Results: Serum contents of NSE and plasma IGF-II, CNP were not much different in patients with mild brain injury from those in controls (P >0.05), but plasma contents of ET were already significantly higher in patients with mild brain injury than those in controls(P < 0.01). The serum NSE and plasma ET levels in patients with moderate and severe brain injury were significantly higher than those in patients with mild brain injury and controls (P < 0.01). Decrease of plasma levels of IGF-II and CNP was not significant in patients with mild brain injury (vs controls). However, the plasma levels of IGF-II and CNP were significantly lower in patients with moderate and severe brain injury than those in patients with mild brain injury and controls (P <0.01). As a whole, the magnitude of changes of these parameters was proportional to the severity of the injury. Conclusion: Changes of serum NSE and plasma IGF-II, ET and CNP levels were closely related to the pathological process of brain injury. Determination of these parameters was of clinical importance for evaluation of the severity of injury and outcome prediction. (authors)

  5. Brain Injury Association of America

    Science.gov (United States)

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  6. 31P NMR characterization of graded traumatic brain injury in rats

    International Nuclear Information System (INIS)

    Vink, R.; McIntosh, T.K.; Yamakami, I.; Faden, A.I.

    1988-01-01

    Irreversible tissue injury following central nervous system trauma is believed to result from both mechanical disruption at the time of primary insult, and more delayed autodestructive processes. These delayed events are associated with various biochemical changes, including alterations in phosphate energy metabolism and intracellular pH. Using 31 P NMR, we have monitored the changes in phosphorus energy metabolism and intracellular pH in a single hemisphere of the rat brain over an 8-h period following graded, traumatic, fluid percussion-induced brain injury. Following trauma the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) declined in each injury group. This decline was transitory with low injury (1.0 +/- 0.5 atm), biphasic with moderate (2.1 +/- 0.4 atm) and high (3.9 +/- 0.9 atm) injury, and sustained following severe injury (5.9 +/- 0.7 atm). The initial PCr/Pi decline in the moderate and high injury groups was associated with intracellular acidosis; however, the second decline occurred in the absence of any pH changes. Alterations in ATP occurred only in severely injured animals and such changes were associated with marked acidosis and 100% mortality rate. After 4h, the posttraumatic PCr/Pi ratio correlated linearly with the severity of injury. We suggest that a reduced posttraumatic PCr/Pi ratio may be indicative of altered mitochondrial energy production and may predict a reduced capacity of the cell to recover from traumatic injury

  7. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    Science.gov (United States)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  8. Clinical significance of measurement of plasma ET-1 and CGRP levels in patients with traumatic brain injury

    International Nuclear Information System (INIS)

    Jing Daping; Cheng Guanghua

    2007-01-01

    Objective: To study the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury of different severity. Methods: 107 patients with traumatic brain injury were divided into three group on the basis of GCS: mild group (n=25, GCS>12), moderate group (n=33, GCS9-12) and severe group (n=49, GCS3-8). The plasma ET-1 and CGRP levels in these patients and 30 controls were determined with RIA. Results: 1) The plasma ET-1 levels in patients with traumatic brain injury were signilieantly higher than those in controls, the more severe the illness, the higher the ET-1 levels. 2)The plasma CGRP levels in patients of mild and moderate brain injury were found significantly higher than those in controls, while no significant differences were found between those in severe and control group. 3)The more severe the illness was, the lower CGRP/ET-1 ratio were found. Conclusion: The changes of plasma levels of ET-1 and CGRP and the CGRP/ET-1 ratio in the patients with traumatic brain injury were correlated with the severity of the illness, and might be of prognostic value. (authors)

  9. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  10. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  11. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.

    Science.gov (United States)

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R

    2017-09-01

    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  12. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  13. The Evidence for Brain Injury in Whiplash Injuries

    Directory of Open Access Journals (Sweden)

    Michael P. Alexander

    2003-01-01

    Full Text Available The evidence that brain damage can occur in injuries that produce whiplash is reviewed. The clinical phenomena for the two injuries are the same. Pure whiplash injury implies no, or minimal head contact, but many patients also have head contact against a head rest or the steering wheel or windshield. The relative severity of the neck injury and the head injury distinguishes whiplash from mild closed head injury. If there is brain injury is some patients with whiplash, it, by definition, falls at the mildest end of the concussion spectrum. The relationship between these two injuries is examined.

  14. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  15. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    Science.gov (United States)

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P sleep symptoms (P Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  17. Eyeball pressure stimulation induces subtle sympathetic activation in patients with a history of moderate or severe traumatic brain injury.

    Science.gov (United States)

    Wang, Ruihao; Hösl, Katharina M; Ammon, Fabian; Markus, Jörg; Koehn, Julia; Roy, Sankanika; Liu, Mao; de Rojas Leal, Carmen; Muresanu, Dafin; Flanagan, Steven R; Hilz, Max J

    2018-06-01

    After traumatic brain injury (TBI), there may be persistent central-autonomic-network (CAN) dysfunction causing cardiovascular-autonomic dysregulation. Eyeball-pressure-stimulation (EPS) normally induces cardiovagal activation. In patients with a history of moderate or severe TBI (post-moderate-severe-TBI), we determined whether EPS unveils cardiovascular-autonomic dysregulation. In 51 post-moderate-severe-TBI patients (32.7 ± 10.5 years old, 43.1 ± 33.4 months post-injury), and 30 controls (29.1 ± 9.8 years), we recorded respiration, RR-intervals (RRI), systolic and diastolic blood-pressure (BPsys, BPdia), before and during EPS (120 sec; 30 mmHg), using an ocular-pressure-device (Okulopressor®). We calculated spectral-powers of mainly sympathetic low (LF: 0.04-0.15 Hz) and parasympathetic high (HF: 0.15-0.5 Hz) frequency RRI-fluctuations, sympathetically mediated LF-powers of BPsys, and calculated normalized (nu) LF- and HF-powers of RRI. We compared parameters between groups before and during EPS by repeated-measurement-analysis-of-variance with post-hoc analysis (significance: p < 0.05). At rest, sympathetically mediated LF-BPsys-powers were significantly lower in the patients than the controls. During EPS, only controls significantly increased RRIs and parasympathetically mediated HFnu-RRI-powers, but decreased LF-RRI-powers, LFnu-RRI-powers, and LF-BPsys-powers; in contrast, the patients slightly though significantly increased BPsys upon EPS, without changing any other parameter. In post-moderate-severe-TBI patients, autonomic BP-modulation was already compromised at rest. During EPS, our patients failed to activate cardiovagal modulation but slightly increased BPsys, indicating persistent CAN dysregulation. Our findings unveil persistence of subtle cardiovascular-autonomic dysregulation even years after TBI. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  19. Diffusion Tensor Imaging of Incentive Effects in Prospective Memory after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Wilde, Elisabeth A.; Bigler, Erin D.; Chu, Zili; Yallampalli, Ragini; Oni, Margaret B.; Wu, Trevor C.; Ramos, Marco A.; Pedroza, Claudia; Vásquez, Ana C.; Hunter, Jill V.; Levin, Harvey S.

    2011-01-01

    Abstract Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n = 37) or moderate-to-severe TBI (n = 40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p = 0.003), left orbitofrontal WM (p motivation condition. We infer that the cingulum bundles, orbitofrontal WM, and uncinate fasciculi are important WM structures mediating motivation-based EB-PM responses following moderate-to-severe TBI in children. PMID:21250917

  20. Patients with Moderate and Severe Traumatic Brain Injury: Impact of Preinjury Platelet Inhibitor or Warfarin Treatment.

    Science.gov (United States)

    Tollefsen, Marie Hexeberg; Vik, Anne; Skandsen, Toril; Sandrød, Oddrun; Deane, Susan Frances; Rao, Vidar; Moen, Kent Gøran

    2018-06-01

    We aimed to examine the effect of preinjury antithrombotic medication on clinical and radiologic neuroworsening in traumatic brain injury (TBI) and study the effect on outcome. A total of 184 consecutive patients ≥50 years old with moderate and severe TBI admitted to a level 1 trauma center were included. Neuroworsening was assessed clinically by using the Glasgow Coma Scale (GCS) score and radiologically by using the Rotterdam CT score on repeated time points. Functional outcome was assessed with the Glasgow Outcome Scale Extended 6 months after injury. The platelet inhibitor group (mean age, 77.3 years; n = 43) and the warfarin group (mean age, 73.2 years; n = 20) were significantly older than the nonuser group (mean age, 63.7 years; n = 121; P ≤ 0.001). In the platelet inhibitor group 74% and in the warfarin group, 85% were injured by falls. Platelet inhibitors were not significantly associated with clinical or radiologic neuroworsening (P = 0.37-1.00), whereas warfarin increased the frequency of worsening in GCS score (P = 0.001-0.028) and Rotterdam CT score (P = 0.004). In-hospital mortality was higher in the platelet inhibitor group (28%; P = 0.030) and the warfarin group (50%; P warfarin predicted both mortality and worse outcome. In this study of patients with moderate and severe TBI, preinjury platelet inhibitors did not cause neuroworsening or predict higher mortality or worse outcome. In contrast, preinjury warfarin caused neuroworsening and was an independent risk factor for mortality and worse outcome at 6 months. Hence, fall prevention and liberal use of computed tomography examinations is important in this patient group. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  2. Family adaptation 18 months after traumatic brain injury in early childhood.

    Science.gov (United States)

    Stancin, Terry; Wade, Shari L; Walz, Nicolay C; Yeates, Keith Owen; Taylor, H Gerry

    2010-05-01

    The purpose of this study was to examine family adaptation to a traumatic brain injury (TBI) in young children during the first 18-month postinjury, when compared with children who had an orthopedic injury. A concurrent cohort/prospective research design was used with repeated assessments of children aged 3 to 6 years with TBI or orthopedic injury requiring hospitalization and their families. Shortly after injury and at 6-, 12-, and 18-month postinjury, parents of 99 children with TBI (20 severe, 64 moderate, 15 mild) and 117 with orthopedic injury completed standardized assessments of family functioning, parental distress and coping, injury-related burden, and noninjury-related parent stressors and resources. Mixed models analyses examined group differences in parental burden and distress adjusted for race and social demographic factors. Both moderate and severe TBI were associated with higher levels of injury-related stress than orthopedic injury, with stress levels diminishing over time in all groups. Severe TBI was also associated with greater psychological distress on the Brief Symptom Inventory but not with more depressive symptoms. Family functioning and social resources moderated the relationship of TBI severity to injury-related burden and caregiver distress, respectively. Lower child adaptive skills were associated with poorer family outcome but group differences remained even when controlling for this effect. Severe TBI in young children has adverse consequences for parents and families during the first 18-month postinjury. The consequences lessen over time for many families and vary as a function of social resources.

  3. Parental distress, parenting practices, and child adaptive outcomes following traumatic brain injury.

    Science.gov (United States)

    Micklewright, Jackie L; King, Tricia Z; O'Toole, Kathleen; Henrich, Chris; Floyd, Frank J

    2012-03-01

    Moderate and severe pediatric traumatic brain injuries (TBI) are associated with significant familial distress and child adaptive sequelae. Our aim was to examine the relationship between parental psychological distress, parenting practices (authoritarian, permissive, authoritative), and child adaptive functioning 12-36 months following TBI or orthopedic injury (OI). Injury type was hypothesized to moderate the relationship between parental distress and child adaptive functioning, demonstrating a significantly stronger relationship in the TBI relative to OI group. Authoritarian parenting practices were hypothesized to mediate relationship between parental distress and child adaptive functioning across groups. Groups (TBI n = 21, OI n = 23) did not differ significantly on age at injury, time since injury, sex, race, or SES. Parents completed the Brief Symptom Inventory, Parenting Practices Questionnaire, and Vineland-II. Moderation and mediation hypotheses were tested using hierarchical multiple regression and a bootstrapping approach, respectively. Results supported moderation and revealed that higher parental psychological distress was associated with lower child adaptive functioning in the TBI group only. Mediation results indicated that higher parental distress was associated with authoritarian parenting practices and lower adaptive functioning across groups. Results suggest that parenting practices are an important area of focus for studies attempting to elucidate the relationship between parent and child functioning following TBI.

  4. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  5. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O.; Fair, Joseph E.; Frost, R. Brock; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D.; Gardner, Scott; Stevens, Mark; Larson, Michael J.

    2016-01-01

    Introduction Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a Level One Trauma Center. Methods Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor FIM scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. DOI quantitative injury lesion volumes and degree of midline shift were obtained from day-of-injury (DOI) brain computed tomography (CT) scans. A multiple step-wise regression model including 13 independent variables was created. This model was used to predict post-rehabilitation outcomes, including FIM scores and ability to return to home. PInjury Severity Score 24.7±9.9, and head Abbreviated Injury Scale score 3.73±0.97. Acute hospital length of stay (LOS) was 12.3±8.9 days and rehabilitation LOS was 15.9±9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p=0.004) and discharge (p=0.004) and inversely associated with ability to be discharged to home after rehabilitation (p=0.006). Conclusion In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute injury phase may improve surgeons’ ultimate outcome predictions in TBI patients. Level of Evidence/Study Type Level V, case series, Prognostic/Epidemiological PMID

  6. Impact of helmet use on traumatic brain injury from road traffic accidents in Cambodia.

    Science.gov (United States)

    Gupta, Saksham; Klaric, Katherine; Sam, Nang; Din, Vuthy; Juschkewitz, Tina; Iv, Vycheth; Shrime, Mark G; Park, Kee B

    2018-01-02

    Rapid urbanization and motorization without corresponding increases in helmet usage have made traumatic brain injury due to road traffic accidents a major public health crisis in Cambodia. This analysis was conducted to quantify the impact of helmets on severity of injury, neurosurgical indication, and functional outcomes at discharge for motorcycle operators who required hospitalization for a traumatic brain injury following a road traffic accident in Cambodia. The medical records of 491 motorcycle operators who presented to a major tertiary care center in Cambodia with traumatic brain injury were retrospectively analyzed using multivariate logistic regression. The most common injuries at presentation were contusions (47.0%), epidural hematomas (30.1%), subdural hematomas (27.9%), subarachnoid hemorrhages (12.4%), skull fractures (21.4%), and facial fractures (18.5%). Moderate-to-severe loss of consciousness was present in 36.3% of patients. Not wearing a helmet was associated with an odds ratio of 2.20 (95% confidence interval [CI], 1.15-4.22) for presenting with moderate to severe loss of consciousness compared to helmeted patients. Craniotomy or craniectomy was indicated for evacuation of hematoma in 20.0% of cases, and nonhelmeted patients had 3.21-fold higher odds of requiring neurosurgical intervention (95% CI, 1.25-8.27). Furthermore, lack of helmet usage was associated with 2.72-fold higher odds of discharge with functional deficits (95% CI, 1.14-6.49). In total, 30.1% of patients were discharged with severe functional deficits. Helmets demonstrate a protective effect and may be an effective public health intervention to significantly reduce the burden of traumatic brain injury in Cambodia and other developing countries with increasing rates of motorization across the world.

  7. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokohama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T 2 *-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  8. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. © 2015 EAN.

  9. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  10. Brain injury in sports.

    Science.gov (United States)

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  11. The impact of pediatric traumatic brain injury (TBI) on family functioning: a systematic review.

    Science.gov (United States)

    Rashid, Marghalara; Goez, Helly R; Mabood, Neelam; Damanhoury, Samah; Yager, Jerome Y; Joyce, Anthony S; Newton, Amanda S

    2014-01-01

    To explore the impact moderate to severe traumatic brain injury (TBI) in a child has on family functioning. The search was conducted using 9 bibliographic databases for articles published between 1980 and 2013. Two reviewers independently screened for inclusion and assessed study quality. Two reviewers extracted study data and a third checked for completeness and accuracy. Findings are presented by three domains: injury-related burden and stress, family adaptability, and family cohesion. Nine observational studies were included. Across the studies, differences between study groups for family functioning varied, but there was a trend for more dysfunction in families whose child had a severe TBI as compared to families whose child had a moderate TBI or orthopedic injury. In three studies, injury-associated burden was persistent post-injury and was highest in families whose child had a severe TBI followed by families with a child who had a moderate TBI. One study found fathers reported more family dysfunction caused by their child's injury compared to mothers. Two studies found that mothers' adaptability depended on social support and stress levels while fathers' adaptability was independent of these factors and injury severity. Moderate to severe TBI has a significant, long-standing impact on family functioning. Factors associated with family adaptability vary by parental role.

  12. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  13. Family Adaptation 18 Months After Traumatic Brain Injury in Early Childhood

    Science.gov (United States)

    Stancin, Terry; Wade, Shari L.; Walz, Nicolay C.; Yeates, Keith Owen; Taylor, H. Gerry

    2014-01-01

    Objective The purpose of this study was to examine family adaptation to a traumatic brain injury (TBI) in young children during the first 18-month postinjury, when compared with children who had an orthopedic injury. Methods A concurrent cohort/prospective research design was used with repeated assessments of children aged 3 to 6 years with TBI or orthopedic injury requiring hospitalization and their families. Shortly after injury and at 6-, 12-, and 18-month postinjury, parents of 99 children with TBI (20 severe, 64 moderate, 15 mild) and 117 with orthopedic injury completed standardized assessments of family functioning, parental distress and coping, injury-related burden, and noninjury-related parent stressors and resources. Mixed models analyses examined group differences in parental burden and distress adjusted for race and social demographic factors. Results Both moderate and severe TBI were associated with higher levels of injury-related stress than orthopedic injury, with stress levels diminishing over time in all groups. Severe TBI was also associated with greater psychological distress on the Brief Symptom Inventory but not with more depressive symptoms. Family functioning and social resources moderated the relationship of TBI severity to injury-related burden and caregiver distress, respectively. Lower child adaptive skills were associated with poorer family outcome but group differences remained even when controlling for this effect. Conclusions Severe TBI in young children has adverse consequences for parents and families during the first 18-month postinjury. The consequences lessen over time for many families and vary as a function of social resources. PMID:20431399

  14. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    Science.gov (United States)

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  15. Racial differences in employment outcomes after traumatic brain injury.

    Science.gov (United States)

    Arango-Lasprilla, Juan Carlos; Ketchum, Jessica M; Williams, Kelli; Kreutzer, Jeffrey S; Marquez de la Plata, Carlos D; O'Neil-Pirozzi, Therese M; Wehman, Paul

    2008-05-01

    To examine racial differences in employment status and occupational status 1 year after a traumatic brain injury (TBI). Retrospective study. Longitudinal dataset of the Traumatic Brain Injury Model Systems national database. Subjects with primarily moderate to severe TBI (3468 whites vs 1791 minorities) hospitalized between 1989 and 2005. Not applicable. Employment status (competitively employed or unemployed) and occupational status (professional/managerial, skilled, or manual labor) at 1 year postinjury. Race and/or ethnicity has a significant effect on employment status at 1 year postinjury (chi(1)(2)=58.23, Pstatus, sex, Disability Rating Scale at discharge, marital status, cause of injury, age, and education. The adjusted odds of being unemployed versus competitively employed are 2.17 times (95% confidence interval, 1.78-2.65) greater for minorities than for whites. Race and ethnicity does not have a significant effect on occupational status at 1 year postinjury. With this empirical evidence supporting racial differences in employment outcomes between minorities and whites at 1 year postinjury, priority should be given to tailoring interventions to maximize minority survivors' work-related productivity.

  16. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  17. Incidence of self-reported brain injury and the relationship with substance abuse: findings from a longitudinal community survey

    Directory of Open Access Journals (Sweden)

    Butterworth Peter

    2010-03-01

    Full Text Available Abstract Background Traumatic or serious brain injury (BI has persistent and well documented adverse outcomes, yet 'mild' or 'moderate' BI, which often does not result in hospital treatment, accounts for half the total days of disability attributed to BI. There are currently few data available from community samples on the incidence and correlates of these injuries. Therefore, the study aimed to assess the 1 incidence of self-reported mild (not requiring hospital admission and moderate (admitted to hospital brain injury (BI, 2 causes of injury 3 physical health scores and 4 relationship between BI and problematic alcohol or marijuana use. Methods An Australian community sequential-cohort study (cohorts aged 20-24, 40-44 and 60-64 years at wave one used a survey methodology to assess BI and substance use at baseline and four years later. Results Of the 7485 wave one participants, 89.7% were re-interviewed at wave two. There were 56 mild (230.8/100000 person-years and 44 moderate BI (180.5/100000 person-years reported between waves one and two. Males and those in the 20-24 year cohort had increased risk of BI. Sports injury was the most frequent cause of BI (40/100 with traffic accidents being a greater proportion of moderate (27% than mild (7% BI. Neither alcohol nor marijuana problems at wave one were predictors of BI. BI was not a predictor of developing substance use problems by wave two. Conclusions BI were prevalent in this community sample, though the incidence declined with age. Factors associated with BI in community samples differ from those reported in clinical samples (e.g. typically traumatic brain injury with traffic accidents the predominate cause. Further, detailed evaluation of the health consequences of these injuries is warranted.

  18. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    Science.gov (United States)

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  19. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  20. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  1. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Neurocognitive Models of Medical Decision-Making Capacity in Traumatic Brain Injury Across Injury Severity.

    Science.gov (United States)

    Triebel, Kristen L; Novack, Thomas A; Kennedy, Richard; Martin, Roy C; Dreer, Laura E; Raman, Rema; Marson, Daniel C

    2016-01-01

    To identify neurocognitive predictors of medical decision-making capacity (MDC) in participants with mild and moderate/severe traumatic brain injury (TBI). Academic medical center. Sixty adult controls and 104 adults with TBI (49 mild, 55 moderate/severe) evaluated within 6 weeks of injury. Prospective cross-sectional study. Participants completed the Capacity to Consent to Treatment Instrument to assess MDC and a neuropsychological test battery. We used factor analysis to reduce the battery test measures into 4 cognitive composite scores (verbal memory, verbal fluency, academic skills, and processing speed/executive function). We identified cognitive predictors of the 3 most clinically relevant Capacity to Consent to Treatment Instrument consent standards (appreciation, reasoning, and understanding). In controls, academic skills (word reading, arithmetic) and verbal memory predicted understanding; verbal fluency predicted reasoning; and no predictors emerged for appreciation. In the mild TBI group, verbal memory predicted understanding and reasoning, whereas academic skills predicted appreciation. In the moderate/severe TBI group, verbal memory and academic skills predicted understanding; academic skills predicted reasoning; and academic skills and verbal fluency predicted appreciation. Verbal memory was a predictor of MDC in controls and persons with mild and moderate/severe TBI. In clinical practice, impaired verbal memory could serve as a "red flag" for diminished consent capacity in persons with recent TBI.

  3. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  4. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.

    Directory of Open Access Journals (Sweden)

    Frank G Hillary

    Full Text Available There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI. A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1 physical disruption results in increased functional connectivity, or hyperconnectivity, and 2 hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.

  5. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  6. Insomnia symptoms and behavioural health symptoms in veterans 1 year after traumatic brain injury.

    Science.gov (United States)

    Farrell-Carnahan, Leah; Barnett, Scott; Lamberty, Gregory; Hammond, Flora M; Kretzmer, Tracy S; Franke, Laura M; Geiss, Meghan; Howe, Laura; Nakase-Richardson, Risa

    2015-01-01

    Insomnia and behavioural health symptoms 1 year after traumatic brain injury (TBI) were examined in a clinical sample representative of veterans who received inpatient treatment for TBI-related issues within the Veterans Health Administration. This was a cross-sectional sub-study (n = 112) of the Polytrauma Rehabilitation Centres' traumatic brain injury model system programme. Prevalence estimates of insomnia, depression, general anxiety, nightmares, headache and substance use, stratified by injury severity, were derived. Univariate logistic regression was used to examine unadjusted effects for each behavioural health problem and insomnia by injury severity. Participants were primarily male, insomnia; those with mild TBI were significantly more likely to meet criteria (43%) than those with moderate/severe TBI (22%), χ(2)(1, n = 112) = 5.088, p ≤ 0.05. Univariable logistic regression analyses revealed depressive symptoms and general anxiety were significantly associated with insomnia symptoms after TBI of any severity. Headache and binge drinking were significantly inversely related to insomnia symptoms after moderate/severe TBI, but not MTBI. Veterans with history of TBI, of any severity, and current insomnia symptoms may be at increased risk for depression and anxiety 1 year after TBI.

  7. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  8. A preliminary model for posttraumatic brain injury depression.

    Science.gov (United States)

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  10. Informant Report of Financial Capacity for Individuals With Chronic Acquired Brain Injury: An Assessment of Informant Accuracy.

    Science.gov (United States)

    Sunderaraman, Preeti; Cosentino, Stephanie; Lindgren, Karen; James, Angela; Schultheis, Maria

    2018-03-29

    Primarily, to investigate the association between informant report and objective performance on specific financial capacity (FC) tasks by adults with chronic, moderate to severe acquired brain injury, and to examine the nature of misestimates by the informants. Cross-sectional design. A postacute, community-based rehabilitation center. Data were obtained from 22 chronic acquired brain injury (CABI) adults, mean age of 46.6 years (SD = 8.67), mean years of education of 13.45 years (SD = 2.15), with moderate to severe acquired brain injury (86% had traumatic brain injury), with a mean postinjury period of 17.14 years (SD = 9.5). Whereas the CABI adults completed the Financial Competence Assessment Inventory interview-a combination of self-report and performance-based assessment, 22 informants completed a specifically designed parallel version of the interview. Pearson correlations and 1-sample t tests based on the discrepancy scores between informant report and CABI group's performance were used. The CABI group's performance was not associated with its informant's perceptions. One-sample t tests revealed that informants both underestimated and overestimated CABI group's performance. Results indicate lack of correspondence between self- and informant ratings. Further investigation revealed that misestimations by informants occurred in contrary directions with CABI adults' performance being inaccurately rated. These findings raise critical issues related to assuming that the informant report can be used as a "gold standard" for collecting functional data related to financial management, and the idea that obtaining objective data on financial tasks may represent a more valid method of assessing financial competency in adults with brain injury.

  11. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  12. Depression Anxiety Stress Scales (DASS-21): Factor Structure in Traumatic Brain Injury Rehabilitation.

    Science.gov (United States)

    Randall, Diane; Thomas, Matt; Whiting, Diane; McGrath, Andrew

    To confirm the construct validity of the Depression Anxiety Stress Scales-21 (DASS-21) by investigating the fit of published factor structures in a sample of adults with moderate to severe traumatic brain injury (posttraumatic amnesia > 24 hours). Archival data from 504 patient records at the Brain Injury Rehabilitation Unit at Liverpool Hospital, Australia. Participants were aged between 16 and 71 years and were engaged in a specialist rehabilitation program. The DASS-21. Two of the 6 models had adequate fit using structural equation modeling. The data best fit Henry and Crawford's quadripartite model, which comprised a Depression, Anxiety and Stress factor, as well as a General Distress factor. The data also adequately fit Lovibond and Lovibond's original 3-factor model, and the internal consistencies of each factor were very good (α = 0.82-0.90). This study confirms the structure and construct validity of the DASS-21 and provides support for its use as a screening tool in traumatic brain injury rehabilitation.

  13. Prognosis in moderate and severe traumatic brain injury: External validation of the IMPACT models and the role of extracranial injuries

    NARCIS (Netherlands)

    Lingsma, Hester; Andriessen, Teuntje M. J. C.; Haitsema, Iain; Horn, Janneke; van der Naalt, Joukje; Franschman, Gaby; Maas, Andrew I. R.; Vos, Pieter E.; Steyerberg, Ewout W.

    2013-01-01

    BACKGROUND: Several prognostic models to predict outcome in traumatic brain injury (TBI) have been developed, but few are externally validated. We aimed to validate the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic models in a recent unselected patient

  14. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  15. Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres

    International Nuclear Information System (INIS)

    Yamakami, I.; McIntosh, T.K.

    1989-01-01

    To clarify the effect of experimental brain injury on regional CBF (rCBF), repeated rCBF measurements were performed using radiolabeled microspheres in rats subjected to fluid-percussion traumatic brain injury. Three consecutive microsphere injections in six uninjured control rats substantiated that the procedure induces no significant changes in hemodynamic variables or rCBF. Animals were subjected to left parietal fluid-percussion brain injury of moderate severity (2.1-2.4 atm) and rCBF values were determined (a) prior to injury and 15 min and 1 h following injury (n = 7); and (b) prior to injury and 30 min and 2 h following injury (n = 7). At 15 min post injury, there was a profound reduction of rCBF in all brain regions studied (p less than 0.01). Although rCBF in the hindbrain had recovered to near-normal by 30 min post injury, rCBF in both injured and contralateral (uninjured) forebrain areas remained significantly suppressed up to 1 h post injury. At 2 h post injury, recovery of rCBF to near-normal values was observed in all brain regions except the focal area of injury (left parietal cortex) where rCBF remained significantly depressed (p less than 0.01). This prolonged focal oligemia at the injury site was associated with the development of reproducible cystic necrosis in the left parietotemporal cortex at 4 weeks post injury. Our results demonstrate that acute changes in rCBF occur following experimental traumatic brain injury in rats and that rCBF remains significantly depressed up to 2 h post injury in the area circumscribing the trauma site

  16. Effectiveness of a Treatment for Impairments in Social Cognition and Emotion Regulation (T-ScEmo) After Traumatic Brain Injury : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Westerhof-Evers, Herma J.; Visser-Keizer, Annemarie C.; Fasotti, Luciano; Schonherr, Marleen C.; Vink, Martie; van der Naalt, Joukje; Spikman, Jacoba M.

    Objective: To evaluate the effects of a multifaceted Treatment for Social cognition and Emotion regulation (T-ScEmo) in patients with a traumatic brain injury.  Participants: Sixty-one patients with moderate to severe traumatic brain injury randomly assigned to an experimental T-ScEmo intervention

  17. Brain Injury Safety Tips and Prevention

    Science.gov (United States)

    ... submit" name="commit" type="submit" value="Submit" /> Brain Injury Safety Tips and Prevention Recommend on Facebook ... not grass or dirt. More HEADS UP Video: Brain Injury Safety and Prevention frame support disabled and/ ...

  18. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  19. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  20. Parenting style is related to executive dysfunction after brain injury in children.

    Science.gov (United States)

    Potter, Jennifer L; Wade, Shari L; Walz, Nicolay C; Cassedy, Amy; Stevens, M Hank; Yeates, Keith O; Taylor, H Gerry

    2011-11-01

    The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3-7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI.

  1. Parenting Style Is Related to Executive Dysfunction After Brain Injury in Children

    Science.gov (United States)

    Potter, Jennifer L.; Wade, Shari L.; Walz, Nicolay C.; Cassedy, Amy; Yeates, Keith O.; Stevens, M. Hank; Taylor, H. Gerry

    2013-01-01

    Objective The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Method Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3–7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Results Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. Conclusion These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI. PMID:21928918

  2. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  3. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  4. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  5. Unsupervised categorization with individuals diagnosed as having moderate traumatic brain injury: Over-selective responding.

    Science.gov (United States)

    Edwards, Darren J; Wood, Rodger

    2016-01-01

    This study explored over-selectivity (executive dysfunction) using a standard unsupervised categorization task. Over-selectivity has been demonstrated using supervised categorization procedures (where training is given); however, little has been done in the way of unsupervised categorization (without training). A standard unsupervised categorization task was used to assess levels of over-selectivity in a traumatic brain injury (TBI) population. Individuals with TBI were selected from the Tertiary Traumatic Brain Injury Clinic at Swansea University and were asked to categorize two-dimensional items (pictures on cards), into groups that they felt were most intuitive, and without any learning (feedback from experimenter). This was compared against categories made by a control group for the same task. The findings of this study demonstrate that individuals with TBI had deficits for both easy and difficult categorization sets, as indicated by a larger amount of one-dimensional sorting compared to control participants. Deficits were significantly greater for the easy condition. The implications of these findings are discussed in the context of over-selectivity, and the processes that underlie this deficit. Also, the implications for using this procedure as a screening measure for over-selectivity in TBI are discussed.

  6. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  7. Postinjury personality and outcome in acquired brain injury: the Millon Behavioral Medicine Diagnostic.

    Science.gov (United States)

    Beck, Kelley D; Franks, Susan F; Hall, James R

    2010-03-01

    To examine the relationship between postinjury personality and outcome in individuals with acquired brain injury. It was hypothesized that patients with differing levels of Introversive, Dejected, and Oppositional coping styles as described by Millon's Theory of Personality would show different outcomes after completion of a rehabilitation program. A retrospective chart review and completion of an outcome assessment was undertaken to examine study hypotheses. A postacute brain injury rehabilitation program. Fifty patients who completed the rehabilitation program between 2005 and 2008, who were 18 years of age or older, who possessed at least a sixth-grade reading level, and who completed a valid Millon Behavioral Medicine Diagnostic (MBMD) were selected. Rehabilitation therapists who worked with these patients were also recruited to assess patient outcomes. Charts of patients that met inclusion criteria were reviewed. Rehabilitation therapists completed the outcome measure retrospectively. The MBMD was used to predict outcome. The MBMD is a self-report questionnaire designed to assess psychosocial factors that relate to the course of medical treatment in chronic illness. The Mayo-Portland Adaptability Inventory (MPAI-4) was used to assess patient outcome. It is a 29-item assessment designed to evaluate the common physical, cognitive, emotional, behavioral, and social issues after acquired brain injury. Findings supported our hypotheses that patients with differing levels of Introversive and Oppositional Coping Styles would have significantly different outcomes after rehabilitation. Thus, individuals with mild/moderate to moderate/severe limitations had significantly greater scores on the Introversive and Oppositional coping compared with individuals with more successful outcomes. The results of this study support the idea that postinjury personality is an important factor in understanding outcome after completion of a brain-injury rehabilitation program

  8. Educational professionals' understanding of childhood traumatic brain injury.

    Science.gov (United States)

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  9. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  10. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  11. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  12. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  13. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  14. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  15. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  16. Effects of neurofeedback on the short-term memory and continuous attention of patients with moderate traumatic brain injury: A preliminary randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Reza Rostami

    2017-10-01

    Full Text Available Purpose: There are some studies which showed neurofeedback therapy (NFT can be effective in clients with traumatic brain injury (TBI history. However, randomized controlled clinical trials are still needed for evaluation of this treatment as a standard option. This preliminary study was aimed to evaluate the effect of NFT on continuous attention (CA and short-term memory (STM of clients with moderate TBI using a randomized controlled clinical trial (RCT. Methods: In this preliminary RCT, seventeen eligible patients with moderate TBI were randomly allocated in two intervention and control groups. All the patients were evaluated for CA and STM using the visual continuous attention test and Wechsler memory scale-4th edition (WMS-IV test, respectively, both at the time of inclusion to the project and four weeks later. The intervention group participated in 20 sessions of NFT through the first four weeks. Conversely, the control group participated in the same NF sessions from the fifth week to eighth week of the project. Results: Eight subjects in the intervention group and five subjects in the control group completed the study. The mean and standard deviation of participants' age were (26.75 ± 15.16 years and (27.60 ± 8.17 years in experiment and control groups, respectively. All of the subjects were male. No significant improvement was observed in any variables of the visual continuous attention test and WMS-IV test between two groups (p ≥ 0.05. Conclusion: Based on our literature review, it seems that our study is the only study performed on the effect of NFT on TBI patients with control group. NFT has no effect on CA and STM in patients with moderate TBI. More RCTs with large sample sizes, more sessions of treatment, longer time of follow-up and different protocols are recommended. Keywords: Neurofeedback, Brain injuries, Attention, Short-term memory

  17. Further validation of the Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) in patients with acquired brain injury.

    Science.gov (United States)

    Boosman, Hileen; van Heugten, Caroline M; Winkens, Ieke; Smeets, Sanne M J; Visser-Meily, Johanna M A

    2016-01-01

    The Motivation for Traumatic Brain Injury Rehabilitation Questionnaire (MOT-Q) evaluates motivation for rehabilitation in four subscales: Interest in rehabilitation, Lack of anger, Lack of denial, and Reliance on professional help. The objective of this study was to further validate the MOT-Q in 122 inpatients and 92 outpatients with acquired brain injury (ABI). The main measures were motivation for rehabilitation (MOT-Q), self-awareness (Patient Competency Rating Scale), and treatment motivation (Visual Analogue Scale). The MOT-Q showed adequate feasibility in terms of few items with missing responses and few undecided responses. We found no floor or ceiling effects, and significant item-total MOT-Q correlations for 29 of 31 items. Internal consistency was good for the MOT-Q total and acceptable to good for the subscales. The MOT-Q scores were significantly intercorrelated except for the subscales Lack of denial and Reliance on professional help in the inpatient group. The MOT-Q total and subscales were significantly associated with treatment motivation. The Lack of denial subscale showed no significant association with treatment motivation and no to moderate significant associations with self-awareness. In conclusion, the overall MOT-Q is a valid instrument to assess motivation for rehabilitation in patients with ABI. Further research is needed to examine the validity of the subscales.

  18. Very Early Administration of Progesterone Does Not Improve Neuropsychological Outcomes in Subjects with Moderate to Severe Traumatic Brain Injury

    Science.gov (United States)

    Caveney, Angela F.; Hertzberg, Vicki S; Silbergleit, Robert; Yeatts, Sharon D.; Palesch, Yuko Y.; Levin, Harvey S.; Wright, David W.

    2017-01-01

    Abstract A Phase III, double-blind, placebo-controlled trial (ProTECT III) found that administration of progesterone did not reduce mortality or improve functional outcome as measured by the Glasgow Outcome Scale Extended (GOSE) in subjects with moderate to severe traumatic brain injury. We conducted a secondary analysis of neuropsychological outcomes to evaluate whether progesterone is associated with improved recovery of cognitive and motor functioning. ProTECT III was conducted at 49 level I trauma centers in the United States. Adults with moderate to severe TBI were randomized to receive intravenous progesterone or placebo within 4 h of injury for a total of 4 days. At 6 months, subjects underwent evaluation of memory, attention, executive functioning, language, and fine motor coordination/dexterity. Chi-square analysis revealed no significant difference in the proportion of subjects (263/280 progesterone, 283/295 placebo) with Galveston Orientation and Amnesia Test scores ≥75. Analyses of covariance did not reveal significant treatment effects for memory (Buschke immediate recall, p = 0.53; delayed recall, p = 0.94), attention (Trails A speed, p = 0.81 and errors, p = 0.22; Digit Span Forward length, p = 0.66), executive functioning (Trails B speed, p = 0.97 and errors, p = 0.93; Digit Span Backward length, p = 0.60), language (timed phonemic fluency, p = 0.05), and fine motor coordination/dexterity (Grooved Pegboard dominant hand time, p = 0.75 and peg drops, p = 0.59; nondominant hand time, p = 0.74 and peg drops, p = 0.61). Pearson Product Moment Correlations demonstrated significant (p GOSE scores. Similar to the ProTECT III trial's results of the primary outcome, the secondary outcomes do not provide evidence of a neuroprotective effect of progesterone. PMID:26973025

  19. Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury.

    Science.gov (United States)

    Spikman, Jacoba M; Milders, Maarten V; Visser-Keizer, Annemarie C; Westerhof-Evers, Herma J; Herben-Dekker, Meike; van der Naalt, Joukje

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial affect recognition, might underlie these behavioral changes. Measurement of behavioral deficits is complicated, because the rating scales used rely on subjective judgement, often lack specificity and many patients provide unrealistically positive reports of their functioning due to impaired self-awareness. Accordingly, it is important to find performance based tests that allow objective and early identification of these problems. In the present study 51 moderate to severe TBI patients in the sub-acute and chronic stage were assessed with a test for emotion recognition (FEEST) and a questionnaire for behavioral problems (DEX) with a self and proxy rated version. Patients performed worse on the total score and on the negative emotion subscores of the FEEST than a matched group of 31 healthy controls. Patients also exhibited significantly more behavioral problems on both the DEX self and proxy rated version, but proxy ratings revealed more severe problems. No significant correlation was found between FEEST scores and DEX self ratings. However, impaired emotion recognition in the patients, and in particular of Sadness and Anger, was significantly correlated with behavioral problems as rated by proxies and with impaired self-awareness. This is the first study to find these associations, strengthening the proposed recognition of social signals as a condition for adequate social functioning. Hence, deficits in emotion recognition can be conceived as markers for behavioral problems and lack of insight in TBI patients. This finding is also of clinical importance since, unlike behavioral problems, emotion recognition can be objectively measured early after injury, allowing for early

  20. Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Jacoba M Spikman

    Full Text Available Traumatic brain injury (TBI is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial affect recognition, might underlie these behavioral changes. Measurement of behavioral deficits is complicated, because the rating scales used rely on subjective judgement, often lack specificity and many patients provide unrealistically positive reports of their functioning due to impaired self-awareness. Accordingly, it is important to find performance based tests that allow objective and early identification of these problems. In the present study 51 moderate to severe TBI patients in the sub-acute and chronic stage were assessed with a test for emotion recognition (FEEST and a questionnaire for behavioral problems (DEX with a self and proxy rated version. Patients performed worse on the total score and on the negative emotion subscores of the FEEST than a matched group of 31 healthy controls. Patients also exhibited significantly more behavioral problems on both the DEX self and proxy rated version, but proxy ratings revealed more severe problems. No significant correlation was found between FEEST scores and DEX self ratings. However, impaired emotion recognition in the patients, and in particular of Sadness and Anger, was significantly correlated with behavioral problems as rated by proxies and with impaired self-awareness. This is the first study to find these associations, strengthening the proposed recognition of social signals as a condition for adequate social functioning. Hence, deficits in emotion recognition can be conceived as markers for behavioral problems and lack of insight in TBI patients. This finding is also of clinical importance since, unlike behavioral problems, emotion recognition can be objectively measured early after injury

  1. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  2. Computer aided detection of brain micro-bleeds in traumatic brain injury

    Science.gov (United States)

    van den Heuvel, T. L. A.; Ghafoorian, M.; van der Eerden, A. W.; Goraj, B. M.; Andriessen, T. M. J. C.; ter Haar Romeny, B. M.; Platel, B.

    2015-03-01

    Brain micro-bleeds (BMBs) are used as surrogate markers for detecting diffuse axonal injury in traumatic brain injury (TBI) patients. The location and number of BMBs have been shown to influence the long-term outcome of TBI. To further study the importance of BMBs for prognosis, accurate localization and quantification are required. The task of annotating BMBs is laborious, complex and prone to error, resulting in a high inter- and intra-reader variability. In this paper we propose a computer-aided detection (CAD) system to automatically detect BMBs in MRI scans of moderate to severe neuro-trauma patients. Our method consists of four steps. Step one: preprocessing of the data. Both susceptibility (SWI) and T1 weighted MRI scans are used. The images are co-registered, a brain-mask is generated, the bias field is corrected, and the image intensities are normalized. Step two: initial candidates for BMBs are selected as local minima in the processed SWI scans. Step three: feature extraction. BMBs appear as round or ovoid signal hypo-intensities on SWI. Twelve features are computed to capture these properties of a BMB. Step four: Classification. To identify BMBs from the set of local minima using their features, different classifiers are trained on a database of 33 expert annotated scans and 18 healthy subjects with no BMBs. Our system uses a leave-one-out strategy to analyze its performance. With a sensitivity of 90% and 1.3 false positives per BMB, our CAD system shows superior results compared to state-of-the-art BMB detection algorithms (developed for non-trauma patients).

  3. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  4. Multi-disciplinary rehabilitation for acquired brain injury in adults of working age.

    Science.gov (United States)

    Turner-Stokes, Lynne; Pick, Anton; Nair, Ajoy; Disler, Peter B; Wade, Derick T

    2015-12-22

    severity of brain injury, setting and type and timing of rehabilitation offered. We identified a total of 19 studies involving 3480 people. Twelve studies were of good methodological quality and seven were of lower quality, according to the van Tulder scoring system. Within the subgroup of predominantly mild brain injury, 'strong evidence' suggested that most individuals made a good recovery when appropriate information was provided, without the need for additional specific interventions. For moderate to severe injury, 'strong evidence' showed benefit from formal intervention, and 'limited evidence' indicated that commencing rehabilitation early after injury results in better outcomes. For participants with moderate to severe ABI already in rehabilitation, 'strong evidence' revealed that more intensive programmes are associated with earlier functional gains, and 'moderate evidence' suggested that continued outpatient therapy could help to sustain gains made in early post-acute rehabilitation. The context of multi-disciplinary rehabilitation appears to influence outcomes. 'Strong evidence' supports the use of a milieu-oriented model for patients with severe brain injury, in which comprehensive cognitive rehabilitation takes place in a therapeutic environment and involves a peer group of patients. 'Limited evidence' shows that specialist in-patient rehabilitation and specialist multi-disciplinary community rehabilitation may provide additional functional gains, but studies serve to highlight the particular practical and ethical restraints imposed on randomisation of severely affected individuals for whom no realistic alternatives to specialist intervention are available. Problems following ABI vary. Consequently, different interventions and combinations of interventions are required to meet the needs of patients with different problems. Patients who present acutely to hospital with mild brain injury benefit from follow-up and appropriate information and advice. Those with

  5. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  6. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    Science.gov (United States)

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  7. Inter-Subject Variability of Axonal Injury in Diffuse Traumatic Brain Injury.

    Science.gov (United States)

    Ware, Jeffrey B; Hart, Tessa; Whyte, John; Rabinowitz, Amanda; Detre, John A; Kim, Junghoon

    2017-07-15

    Traumatic brain injury (TBI) is a leading cause of cognitive morbidity worldwide for which reliable biomarkers are needed. Diffusion tensor imaging (DTI) is a promising biomarker of traumatic axonal injury (TAI); however, existing studies have been limited by a primary reliance on group-level analytic methods not well suited to account for inter-subject variability. In this study, 42 adults with TBI of at least moderate severity were examined 3 months following injury and compared with 35 healthy controls. DTI data were used for both traditional group-level comparison and subject-specific analysis using the distribution-corrected Z-score (DisCo-Z) approach. Inter-subject variation in TAI was assessed in a threshold-invariant manner using a threshold-weighted overlap map derived from subject-specific analysis. Receiver operator curve analysis was used to examine the ability of subject-specific DTI analysis to identify TBI subjects with significantly impaired processing speed in comparison with region of interest-based fractional anisotropy (FA) measurements and clinical characteristics. Traditional group-wise analysis demonstrated widespread reductions of white matter FA within the TBI group (voxel-wise p traumatic deficits in processing speed. Significant group-level effects do not necessarily represent consistent effects at the individual level. Better accounting for inter-subject variability in neurobiological manifestations of TBI may substantially improve the ability to detect and classify patterns of injury.

  8. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  9. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  10. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  11. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  12. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  13. Managing cognitive difficulties after traumatic brain injury: a review of online resources for families.

    Science.gov (United States)

    Poulin, Valérie; Dawson, Deirdre R; Bottari, Carolina; Verreault, Cynthia; Turcotte, Samantha; Jean, Alexandra

    2018-03-22

    To identify and critically appraise the content, readability, reliability and usability of websites providing information for managing cognitive difficulties in everyday life for the families of adults with moderate to severe traumatic brain injury. Systematic searches on the Internet for relevant websites were conducted using five search engines, and through consultation of the lists of resources published on websites of traumatic brain injury organizations. Two team members assessed eligibility of the websites. To be included, they had to provide information related to management of cognitive difficulties following moderate to severe traumatic brain injury, to be in English or French and available free of charge. Two reviewers evaluated each website according to: (1) its readability using Flesch-Kincaid Grade Level; (2) the quality of its content using a checklist of eight recommendations for managing memory, attention and executive function problems; (3) its usability (e.g., clear design) and reliability (e.g., currency of information) using the Minervation Validation Instrument for Health Care Web Sites. Of the 38 websites included, 10 provide specific tips for families that cover several domains of cognitive function, including memory, attention and executive function. The most frequent recommendations focused on the use of environmental supports for memory problems (n = 33 websites). The readability of information is below the recommended grade 7 for only nine of the websites. All sites show acceptable usability, but their quality is variable in terms of reliability of the information. This review provides useful information for selecting online resources to educate families about the management of cognitive difficulties following moderate to severe traumatic brain injury, as a complement to information and training provided by the rehabilitation team. Implications for rehabilitation This review describes standardized criteria for the evaluation of the

  14. Lateral automobile impacts and the risk of traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  15. Vocational outcome 6-15 years after a traumatic brain injury.

    Science.gov (United States)

    Lexell, J; Wihlney, A-K; Jacobsson, L J

    2016-01-01

    To describe vocational outcome 6-15 years after a traumatic brain injury (TBI) among individuals who were productive by working or studying at the time of their TBI and determine the associations with variables related to the time of injury and at follow-up. Thirty-four individuals with a mild TBI and 45 with a moderate-to-severe TBI were assessed on average 10 years post-injury. Logistic regression was used to determine the association between their current vocational situation and variables related to the time of injury (gender, age, injury severity and educational level) and at follow-up (time since injury, marital status and overall disability). A total of 67% were productive at follow-up. Age at injury, injury severity and the degree of disability at follow-up were strongly associated with being productive. Younger individuals with milder TBI and less severe disability were significantly more likely to be fully productive. No significant associations were found between productivity and gender, education, time since injury or marital status. This study indicates that return to productivity in a long-term perspective after a TBI is possible, in particular when the individual is young, has sustained a mild TBI and has a milder form of overall disability.

  16. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Driving, brain injury and assistive technology.

    Science.gov (United States)

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  18. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  19. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  20. Interpersonal Relatedness and Psychological Functioning Following Traumatic Brain Injury: Implications for Marital and Family Therapists

    Science.gov (United States)

    Bay, Esther H.; Blow, Adrian J.; Yan, Xie

    2012-01-01

    Recovery from a mild-to-moderate traumatic brain injury (TBI) is a challenging process for injured persons and their families. Guided by attachment theory, we investigated whether relationship conflict, social support, or sense of belonging were associated with psychological functioning. Community-dwelling persons with TBI (N = 75) and their…

  1. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  2. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  3. Potential Moderators of Physical Activity on Brain Health

    Directory of Open Access Journals (Sweden)

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  4. Fatigue in the first year after traumatic brain injury: course, relationship with injury severity, and correlates.

    Science.gov (United States)

    Beaulieu-Bonneau, Simon; Ouellet, Marie-Christine

    2017-10-01

    The objectives of this study were to document the evolution of fatigue in the first year after traumatic brain injury (TBI), and to explore correlates of fatigue. Participants were 210 adults who were hospitalised following a TBI. They completed questionnaires 4, 8, and 12 months post-injury, including the Multidimensional Fatigue Inventory (MFI). Participants with severe TBI presented greater mental and physical fatigue, and reduced activity compared to participants with moderate TBI. For all MFI subscales except reduced motivation, the general pattern was a reduction of fatigue levels over time after mild TBI, an increase of fatigue after severe TBI, and stable fatigue after moderate TBI. Fatigue was significantly associated with depression, insomnia, cognitive difficulties, and pain at 4 months; the same variables and work status at 8 months; and depression, insomnia, cognitive difficulties, and work status at 12 months. These findings suggest that injury severity could have an impact on the course of fatigue in the first year post-TBI. Depression, insomnia, and cognitive difficulties remain strong correlates of fatigue, while for pain and work status the association with fatigue evolves over time. This could influence the development of intervention strategies for fatigue, implemented at specific times for each severity subgroup.

  5. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  6. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  7. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Moderate traumatic brain injury (TBI in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1

  8. Moderate injury in motor-sensory cortex causes behavioral deficits accompanied by electrophysiological changes in mice adulthood.

    Science.gov (United States)

    Ouyang, Wei; Yan, Qichao; Zhang, Yu; Fan, Zhiheng

    2017-01-01

    Moderate traumatic brain injury (TBI) in children often happen when there's a sudden blow to the frontal bone, end with long unconscious which can last for hours and progressive cognitive deficits. However, with regard to the influences of moderate TBI during children adulthood, injury-induced alterations of locomotive ability, long-term memory performance, and hippocampal electrophysiological firing changes have not yet been fully identified. In this study, lateral fluid percussion (LFP) method was used to fabricate moderate TBI in motor and somatosensory cortex of the 6-weeks-old mice. The motor function, learning and memory function, extracellular CA1 neural spikes were assessed during acute and subacute phase. Moreover, histopathology was performed on day post injury (DPI) 16 to evaluate the effect of TBI on tissue and cell morphological changes in cortical and hippocampal CA1 subregions. After moderate LFP injury, the 6-weeks-old mice showed severe motor deficits at the early stage in acute phase but gradually recovered later during adulthood. At the time points in acute and subacute phase after TBI, novel object recognition (NOR) ability and spatial memory functions were consistently impaired in TBI mice; hippocampal firing frequency and burst probability were hampered. Analysis of the altered burst firing shows a clear hippocampal theta rhythm drop. These electrophysiological impacts were associated with substantially lowered NOR preference as compared to the sham group during adulthood. These results suggest that moderate TBI introduced at motorsenory cortex in 6-weeks-old mice causes obvious motor and cognitive deficits during their adulthood. While the locomotive ability progressively recovers, the cognitive deficits persisted while the mice mature as adult mice. The cognitive deficits may be attributed to the general suppressing of whole neural network, which could be labeled by marked reduction of excitability in hippocampal CA1 subregion.

  9. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Biomarkers of brain injury in neonatal encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Chang, Taeun; Kadom, Nadja; Tsuchida, Tammy; Scafidi, Joseph; Glass, Penny; McCarter, Robert; Baumgart, Stephen; Vezina, Gilbert; Nelson, Karin B

    2012-09-01

    To determine if early serum S100B and neuron-specific enolase (NSE) levels are associated with neuroradiographic and clinical evidence of brain injury in newborns with encephalopathy. Patients who received therapeutic whole-body hypothermia were prospectively enrolled in this observational study. Serum specimens were collected at 0, 12, 24, and 72 hours of cooling. S100B and NSE levels were measured by enzyme linked immunosorbent assay. Magnetic resonance imaging was performed in surviving infants at 7-10 days of life. Standardized neurologic examination was performed by a child neurologist at 14 days of life. Multiple linear regression analyses were performed to evaluate the association between S100B and NSE levels and unfavorable outcome (death or severe magnetic resonance imaging injury/significant neurologic deficit). Cutoff values were determined by receiver operating curve analysis. Newborns with moderate to severe encephalopathy were enrolled (n = 75). Median pH at presentation was 6.9 (range, 6.5-7.35), and median Apgar scores of 1 at 1 minute, 3 at 5 minutes, and 5 at 10 minutes. NSE and S100B levels were higher in patients with unfavorable outcomes across all time points. These results remained statistically significant after controlling for covariables, including encephalopathy grade at presentation, Apgar score at 5 minutes of life, initial pH, and clinical seizures. Elevated serum S100B and NSE levels measured during hypothermia were associated with neuroradiographic and clinical evidence of brain injury in encephalopathic newborns. These brain-specific proteins may be useful immediate biomarkers of cerebral injury severity. Copyright © 2012 Mosby, Inc. All rights reserved.

  11. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  12. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  13. Health-related quality of life 3 years after moderate to severe traumatic brain injury: a prospective cohort study.

    Science.gov (United States)

    Grauwmeijer, Erik; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M

    2014-07-01

    To evaluate the time course of health-related quality of life (HRQoL) after moderate to severe traumatic brain injury (TBI) and to identify its predictors. Prospective cohort study with follow-up measurements at 3, 6, 12, 18, 24, and 36 months after TBI. Patients with moderate to severe TBI discharged from 3 level-1 trauma centers. Patients (N=97, 72% men) with a mean age ± SD of 32.8±13.0 years (range, 18-65y), hospitalized with moderate (23%) or severe (77%) TBI. Not applicable. HRQoL was measured with the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), functional outcomes with the Glasgow Outcome Scale (GOS), Barthel Index, FIM, and Functional Assessment Measure, and mood with the Wimbledon Self-Report Scale. The SF-36 domains showed significant improvement over time for Physical Functioning (PPhysical (PPhysical Component Summary (PCS) score, whereas the Mental Component Summary (MCS) score remained stable. At 3-year follow-up, HRQoL of patients with TBI was the same as that in the Dutch normative population. Time after TBI, hospital length of stay (LOS), FIM, and GOS were independent predictors of the PCS, whereas LOS and mood were predictors of the MCS. After TBI, the physical component of HRQoL showed significant improvement over time, whereas the mental component remained stable. Problems of disease awareness seem to play a role in self-reported mental HRQoL. After TBI, mood status is a better predictor of the mental component of HRQoL than functional outcome, implying that mood should be closely monitored during and after rehabilitation. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  15. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  16. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  17. Altered metabolites of the rat hippocampus after mild and moderate traumatic brain injury - a combined in vivo and in vitro 1 H-MRS study.

    Science.gov (United States)

    Singh, Kavita; Trivedi, Richa; Verma, Ajay; D'souza, Maria M; Koundal, Sunil; Rana, Poonam; Baishya, Bikash; Khushu, Subash

    2017-10-01

    Traumatic brain injury (TBI) has been shown to affect hippocampus-associated learning, memory and higher cognitive functions, which may be a consequence of metabolic alterations. Hippocampus-associated disorders may vary depending on the severity of injury [mild TBI (miTBI) and moderate TBI (moTBI)] and time since injury. The underlying hippocampal metabolic irregularities may provide an insight into the pathological process following TBI. In this study, in vivo and in vitro proton magnetic resonance spectroscopy ( 1 H-MRS) data were acquired from the hippocampus region of controls and TBI groups (miTBI and moTBI) at D0 (pre-injury), 4 h, Day 1 and Day 5 post-injury (PI). In vitro MRS results indicated trauma-induced changes in both miTBI and moTBI; however, in vivo MRS showed metabolic alterations in moTBI only. miTBI and moTBI showed elevated levels of osmolytes indicating injury-induced edema. Altered levels of citric acid cycle intermediates, glutamine/glutamate and amino acid metabolism indicated injury-induced aberrant bioenergetics, excitotoxicity and oxidative stress. An overall similar pattern of pathological process was observed in both miTBI and moTBI, with the distinction of depleted N-acetylaspartate levels (indicating neuronal loss) at 4 h and Day 1 and enhanced lactate production (indicating heightened energy depletion leading to the commencement of the anaerobic pathway) at Day 5 in moTBI. To the best of our knowledge, this is the first study to investigate the hippocampus metabolic profile in miTBI and moTBI simultaneously using in vivo and in vitro MRS. Copyright © 2017 John Wiley & Sons, Ltd.

  18. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: implications for morphological, neurological, and biomarker changes

    Directory of Open Access Journals (Sweden)

    Mengdong eLiu

    2015-05-01

    Full Text Available In current military conflicts and civilian terrorism, blast-induced traumatic brain injury (bTBI is the primary cause of neurotrauma. However, the effects and mechanisms of bTBI are poorly understood. Although previous researchers have made significant contributions to establishing animal models for the simulation of bTBI, the precision and controllability of blast-induced injury in animal models must be improved. Therefore, we established a novel rat model to simulate blast-wave injury to the brain. To simulate different extents of bTBI injury, the animals were divided into moderate and severe injury groups. The miniature spherical explosives (PETN used in each group were of different sizes (2.5 mm diameter in the moderate injury group and 3.0 mm diameter in the severe injury group. A specially designed apparatus was able to precisely adjust the positions of the miniature explosives and create eight rats with bTBI simultaneously, using a single electric detonator. Neurological functions, gross pathologies, histopathological changes and the expression levels of various biomarkers were examined after the explosion. Compared with the moderate injury group, there were significantly more neurological dysfunctions, cortical contusions, intraparenchymal hemorrhages, cortical expression of S-100β, MBP, NSE, IL-8, IL-10, iNOS and HIF-1α in the severe injury group. These results demonstrate that we have created a reliable and reproducible bTBI model in rats. This model will be helpful for studying the mechanisms of bTBI and developing strategies for clinical bTBI treatment.

  19. Treatment for delayed brain injury after pituitary irradiation

    International Nuclear Information System (INIS)

    Fujii, Takashi; Misumi, Shuzoh; Shibasaki, Takashi; Tamura, Masaru; Kunimine, Hideo; Hayakawa, Kazushige; Niibe, Hideo; Miyazaki, Mizuho; Miyagi, Osamu.

    1988-01-01

    Treatment for delayed brain injury after pituitary irradiation is discussed. Six cases with delayed brain injury were treated with a combination of dexamethasone or betamethasone, with heparin, glycerol, dextran 40 and some vasodilators. Two cases with temporal lobe syndrome were treated in the early stages of brain injury for a period of over 12 months were almost completely cured, another two cases with chiasma syndrome were treated in the relatively late stages, showed a partial improvement. One case which was irradiated 120 GY during 13 years did not improve. The final case treated with steroids for a short period also resulted in failure and the patient underwent an operation for the removal of the necrotic mass three years after the radiotherapy. Steroid therapy started in the early stages of brain injury after irradiation for over the 12 months is thought to be effective. Heparin therapy was also effective in one out of three cases, but in one of the cases subarachnoid hemorrhage from a traumatic aneurysm occurred during the therapy. In an acute phase, showing edematous change of the injured brain, the administration of glycerol is also thought to be useful. But the effectiveness of the other medicines containing some vasodilators was obscure or doubtful. We propose the following : (1) A meticulous observation is essential for the patients who received high doses of irradiation to diagnose brain injury in the early reversible stage. (2) Steroids should be given immediately in this reversible stage of brain injury before the irreversible ''necrosis'' occurs. (3) Steroids should be maintained for a long period over 12 months. (4) Heparin therapy is also thought to be effective, but careful precautions to avoid hemorrhagic complications before the therapy should be scheduled. This recommended plan may also be used for the treatment of brain injuries after cranial irradiation for other intracranial tumors. (author)

  20. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Jones, H M; Hitchcock, R; Adams, N; Thompson, R J [Addenbrooke' s Hospital, Cambridge (UK)

    1980-09-20

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 ..mu..g/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients.

  1. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    International Nuclear Information System (INIS)

    Phillips, J.P.; Jones, H.M.; Hitchcock, R.; Adams, N.; Thompson, R.J.

    1980-01-01

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 μg/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients. (author)

  2. AFFECTIVE RESPONSES AFTER DIFFERENT INTENSITIES OF EXERCISE IN PATIENTS WITH TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Patricia eRzezak

    2015-06-01

    Full Text Available BACKGROUND: Patients with traumatic brain injury (TBI usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. METHODS: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched healthy volunteers [mean age of 30.58 and SD of 9.53] participated in two sessions of exercise of high and moderate intensity. Anxiety and mood was evaluated, and subjective assessment of experience pre- and post-exercise was assessed. A mixed between and within-subjects GLM analysis was conducted to compare groups [TBI, control] over condition [baseline, session 1, session 2] allowing for group by condition interaction to be determined. Planned comparisons were also conducted to test study hypotheses.RESULTS: Although no group by condition interaction was observed, planned comparisons indicated that baseline differences between patients and controls in anxiety (Cohens’ d=1.80, tension (d=1.31, depression (d=1.18, anger (d=1.08, confusion (d=1.70, psychological distress (d=1.28 and physical symptoms (d=1.42 disappear after one session of exercise, independently of the intensity of exercise. CONCLUSIONS: A single-section of exercise, regardless of exercise intensity, had a positive effect on the affective responses of patients with TBI both by increasing positive valence feelings and decreasing negative ones. Exercise can be an easily accessible intervention that may alleviate depressive symptoms related to brain injury.

  3. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury.

    Science.gov (United States)

    Liu, Xixia; Qiu, Jianhua; Alcon, Sasha; Hashim, Jumana; Meehan, William P; Mannix, Rebekah

    2017-08-15

    Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.

  4. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    Science.gov (United States)

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  5. Community Reintegration Problems Among Veterans and Active Duty Service Members With Traumatic Brain Injury.

    Science.gov (United States)

    McGarity, Suzanne; Barnett, Scott D; Lamberty, Greg; Kretzmer, Tracy; Powell-Cope, Gail; Patel, Nitin; Nakase-Richardson, Risa

    To examine community reintegration problems among Veterans and military service members with mild or moderate/severe traumatic brain injury (TBI) at 1 year postinjury and to identify unique predictors that may contribute to these difficulties. VA Polytrauma Rehabilitation Centers. Participants were 154 inpatients enrolled in the VA TBI Model Systems Program with available injury severity data (mild = 28.6%; moderate/severe = 71.4%) and 1-year postinjury outcome data. Prospective, longitudinal cohort. Community reintegration outcomes included independent driving, employability, and general community participation. Additional measures assessed depression, posttraumatic stress, and cognitive and motor functioning. In the mild TBI (mTBI) group, posttraumatic stress disorder and depressive symptoms were associated with lower levels of various community reintegration outcomes. In the moderate/severe TBI group, cognition and motor skills were significantly associated with lower levels of community participation, independent driving, and employability. Community reintegration is problematic for Veterans and active duty service members with a history of TBI. Unique comorbidities across injury severity groups inhibit full reintegration into the community. These findings highlight the ongoing rehabilitation needs of persons with TBI, specifically evidence-based mental healthcare, in comprehensive rehabilitation programs consistent with a chronic disease management model.

  6. A comparison of IQ and memory cluster solutions in moderate and severe pediatric traumatic brain injury.

    Science.gov (United States)

    Thaler, Nicholas S; Terranova, Jennifer; Turner, Alisa; Mayfield, Joan; Allen, Daniel N

    2015-01-01

    Recent studies have examined heterogeneous neuropsychological outcomes in childhood traumatic brain injury (TBI) using cluster analysis. These studies have identified homogeneous subgroups based on tests of IQ, memory, and other cognitive abilities that show some degree of association with specific cognitive, emotional, and behavioral outcomes, and have demonstrated that the clusters derived for children with TBI are different from those observed in normal populations. However, the extent to which these subgroups are stable across abilities has not been examined, and this has significant implications for the generalizability and clinical utility of TBI clusters. The current study addressed this by comparing IQ and memory profiles of 137 children who sustained moderate-to-severe TBI. Cluster analysis of IQ and memory scores indicated that a four-cluster solution was optimal for the IQ scores and a five-cluster solution was optimal for the memory scores. Three clusters on each battery differed primarily by level of performance, while the others had pattern variations. Cross-plotting the clusters across respective IQ and memory test scores indicated that clusters defined by level were generally stable, while clusters defined by pattern differed. Notably, children with slower processing speed exhibited low-average to below-average performance on memory indexes. These results provide some support for the stability of previously identified memory and IQ clusters and provide information about the relationship between IQ and memory in children with TBI.

  7. Cognitive sequelae in survivors of traumatic frontal lobe injury: comparison between mild and moderate injury effects

    International Nuclear Information System (INIS)

    Anjum, A.; Ahmad, W.; Tahir, M. A.

    2017-01-01

    Objective: To determine the frequency of cognitive deficits in the survivors of traumatic frontal lobe injury of mild to moderate severity. Study Design: Mix method study. Place and Duration of Study: Nishter Hospital Multan, Bahawal Victoria Hospital, Bahawalpur and Sheikh Zaid Hospital Rahim Yar Khan, from Sep 2010 to Jun 2011. Material and Methods: The sample consisted of 55 participants. Fifteen of these were taken from healthy population with the age range of 20-30 years (Mean = 25.7 ± SD = 4.6) and 40 participants were medically documented patients of frontal lobe injury of mild (20) to moderate (20) severity. The age range of mild traumatic frontal lobe injury patients was 20-32 years (Mean= 26.5 ± SD = 4.9). The age range of moderate severity patients was also 20-32 years (Mean= 26.4 ± SD = 5.0). Wechsler Adult Intelligence Scale revised and case history interview were administered to determine cognitive deficits following traumatic frontal lobe injury. Results: Statistical test, one way analysis was used to compare the performance of all these three (control, mild and moderate) groups. Results of present study reflected that cognitive deficits like memory deficits, language problems, trouble in concentrating and difficulty in planning are the major consequences of traumatic frontal lobe injury. Conclusion: To conclude, frontal lobe injury patients not only showed poor performance in clinically-driven structured and comprehensive memory tests when they were compared with healthy people but their performance also varied according to the severity of injury. (author)

  8. Focused and divided attention abilities in the acute phase of recovery from moderate to severe traumatic brain injury.

    Science.gov (United States)

    Robertson, Kayela; Schmitter-Edgecombe, Maureen

    2017-01-01

    Impairments in attention following traumatic brain injury (TBI) can significantly impact recovery and rehabilitation effectiveness. This study investigated the multi-faceted construct of selective attention following TBI, highlighting the differences on visual nonsearch (focused attention) and search (divided attention) tasks. Participants were 30 individuals with moderate to severe TBI who were tested acutely (i.e. following emergence from PTA) and 30 age- and education-matched controls. Participants were presented with visual displays that contained either two or eight items. In the focused attention, nonsearch condition, the location of the target (if present) was cued with a peripheral arrow prior to presentation of the visual displays. In the divided attention, search condition, no spatial cue was provided prior to presentation of the visual displays. The results revealed intact focused, nonsearch, attention abilities in the acute phase of TBI recovery. In contrast, when no spatial cue was provided (divided attention condition), participants with TBI demonstrated slower visual search compared to the control group. The results of this study suggest that capitalizing on intact focused attention abilities by allocating attention during cognitively demanding tasks may help to reduce mental workload and improve rehabilitation effectiveness.

  9. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  10. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    Science.gov (United States)

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  11. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  12. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  13. Serum concentration of ubiquitin c-terminal hydrolase-L1 in detecting severity of traumatic brain injury

    Science.gov (United States)

    Siahaan, A. M. P.; Japardi, I.; Hakim, A. A.

    2018-03-01

    One of the main problems with ahead injury is assessing the severity. While physical examination and imaging had limitations, neuronal damage markers, ubiquitin C-terminal hydrolase-L1 (UCH-L1), released in theblood may provide valuable information about diagnosis the traumatic brain injury (TBI).Analyzing the concentrations of serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), there must have a neuronal injury biomarker, in theTBI patients serum and their association with clinical characteristics and outcome. There were 80 TBI subjects, and there are mild, moderate, and severe involved in this study of case- control. By using ELISA, we studied the profile of serum UCH-L1 levels for TBI patients. TheUCH-L1 serum level of moderate and severe head injury is higher than in mild head injury (pinjury patients. There is no particular correlation found between serum UCH-L1 level and outcome. Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI but do not correlate with outcome.

  14. Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse.

    Directory of Open Access Journals (Sweden)

    Bridgette D Semple

    Full Text Available The gelatinases, matrix metalloproteinases (MMP-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21, approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury.

  15. Early Gelatinase Activity Is Not a Determinant of Long-Term Recovery after Traumatic Brain Injury in the Immature Mouse

    Science.gov (United States)

    Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Gooyit, Major; Tercovich, Kayleen G.; Peng, Zhihong; Nguyen, Trung T.; Schroeder, Valerie A.; Suckow, Mark A.; Chang, Mayland; Raber, Jacob; Trivedi, Alpa

    2015-01-01

    The gelatinases, matrix metalloproteinases (MMP)-2 and MMP-9, are thought to be key mediators of secondary damage in adult animal models of brain injury. Moreover, an acute increase in these proteases in plasma and brain extracellular fluid of adult patients with moderate-to-severe traumatic brain injuries (TBIs) is associated with poorer clinical outcomes and mortality. Nonetheless, their involvement after TBI in the pediatric brain remains understudied. Using a murine model of TBI at postnatal day 21 (p21), approximating a toddler-aged child, we saw upregulation of active and pro-MMP-9 and MMP-2 by gelatin zymography at 48 h post-injury. We therefore investigated the role of gelatinases on long-term structural and behavioral outcomes after injury after acute inhibition with a selective gelatinase inhibitor, p-OH SB-3CT. After systemic administration, p-OH SB-3CT crossed the blood-brain barrier at therapeutically-relevant concentrations. TBI at p21 induced hyperactivity, deficits in spatial learning and memory, and reduced sociability when mice were assessed at adulthood, alongside pronounced tissue loss in key neuroanatomical regions. Acute and short-term post-injury treatment with p-OH SB-3CT did not ameliorate these long-term behavioral, cognitive, or neuropathological deficits as compared to vehicle-treated controls, suggesting that these deficits were independent of MMP-9 and MMP-2 upregulation. These findings emphasize the vulnerability of the immature brain to the consequences of traumatic injuries. However, early upregulation of gelatinases do not appear to be key determinants of long-term recovery after an early-life injury. PMID:26588471

  16. Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahram Mashhadizadeh

    2017-04-01

    Full Text Available Objective(s: Cognitive defects such as learning and memory impairment are amongst the most repetitious sequelae after sever and moderate traumatic brain injury (TBI. It was suggested that ellagic acid (EA, an innate phenol product, display neuroprotective properties against oxidative and inflammatory damages after brain injury. The object of the current study was therapeutic properties of EA on blood-brain barrier (BBB interruption and elevated content of TNF-α in brain tissue followed by neurologic aftereffects, cognitive and brain electrophysiology deficits as outcomes of diffuse TBI in rat. Materials and Methods: TBI was induced by a 200 g weight falling by a 2-m height through a free-falling tube onto the head of anesthetized rat. TBI rats treated immediately after trauma with EA             (100 mg/kg, IP once every 8 hr until 48 hr later. Neurologic outcomes, passive avoidance task (PAT, hippocampal long-term potentiation (LTP, BBB permeability and content of TNF-α in brain tissue were evaluated. Results: TBI induced significant impairments in neurological score, BBB function, PAT and hippocampal LTP in TBI+Veh group in compare with Sham+Veh (P

  17. Inflammation, caffeine and adenosine in neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max

    2014-01-01

    Background: Brain injury during the neonatal period has potentially lifelong consequences for a child. Perinatal infections and inflammation can induce preterm birth and unfavorable cognitive development, Thus inflammation has received enthusiastic interest for potential therapeutic approaches seeking to protect the newborn brain. Experimental evidence demonstrates that inflammation induces brain injury succeeding the initial insult. A key cytokine in brain injury is the tumor necrosis factor...

  18. Symptoms of gonadal dysfunction are more predictive of hypopituitarism than nonspecific symptoms in screening for pituitary dysfunction following moderate or severe traumatic brain injury.

    Science.gov (United States)

    Cuesta, Martín; Hannon, Mark J; Crowley, Rachel K; Behan, Lucy Ann; Tormey, William; Rawluk, Daniel; Delargy, Mark; Agha, Amar; Thompson, Christopher J

    2016-01-01

    The economic and logistic burden of screening for hypopituitarism following moderate/severe traumatic brain injury (TBI) is considerable. A key recommendation in published guidelines is to prioritize for screening those patients with symptoms suggestive of pituitary dysfunction. The purpose of this study was to evaluate the utility of targeted screening for hypopituitarism in long-term survivors after moderate/severe TBI using referrals on the basis of symptoms. In group 1 (G1), consecutive, unselected patients were screened from the Irish National Neurosurgery Centre, whereas in group 2 (G2) patients were targeted based on the presence of symptoms suggestive of pituitary dysfunction. A total of 137 patients (113 male) were systematically screened (G1) and compared to 112 patients (77 male) referred for pituitary evaluation on the basis of suggestive symptoms (G2). The rate of GH, ACTH, gonadotrophin (GT), TSH and ADH deficiency was compared among groups. Patients referred with menstrual dysfunction had more GH (50% vs 11%, P = 0·001), ACTH (60% vs 14%, P hypopituitarism than those consecutively screened. Symptoms of hypogonadism are sufficiently predictive of hypopituitarism to justify screening for hypopituitarism after moderate/severe TBI. Nonspecific symptoms of hypopituitarism are no more predictive than unselected screening. © 2015 John Wiley & Sons Ltd.

  19. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  20. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  1. Characterizing on-road driving performance in individuals with traumatic brain injury who pass or fail an on-road driving assessment.

    Science.gov (United States)

    Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L

    2018-01-15

    To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors

  2. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  3. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  4. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  5. Health-related quality of life after mild, moderate and severe traumatic brain injury: patterns and predictors of suboptimal functioning during the first year after injury.

    Science.gov (United States)

    Scholten, A C; Haagsma, J A; Andriessen, T M J C; Vos, P E; Steyerberg, E W; van Beeck, E F; Polinder, S

    2015-04-01

    The Glasgow Outcome Scale Extended (GOSE) is the established functional outcome scale to assess disability following traumatic brain injury (TBI), however does not capture the patient's subjective perspective. Health-related quality of life (HRQL) does capture the individual's perception of disability after TBI, and has therefore been recognized as an important outcome in TBI. In contrast to GOSE, HRQL enables comparison of health outcome across various disease states and with healthy individuals. We aimed to assess functional outcome, HRQL, recovery, and predictors of 6 and 12-month outcome in a comprehensive sample of patients with mild, moderate or severe TBI, and to examine the relationship between functional impairment (GOSE) and HRQL. A prospective cohort study was conducted among a sample of 2066 adult TBI patients who attended the emergency department (ED). GOSE was determined through questionnaires or structured interviews. Questionnaires 6 and 12 months after ED treatment included socio-demographic information and HRQL measured with Short-Form Health Survey (SF-36; reflecting physical, mental and social functioning) and Perceived Quality of Life Scale (PQoL; measuring degree of satisfaction with functioning). 996 TBI survivors with mild, moderate or severe TBI completed the 6-month questionnaire. Functional outcome and HRQL after moderate or severe TBI was significantly lower than after mild TBI. Patients with moderate TBI showed greatest improvement. After one year, the mild TBI group reached outcomes comparable to population norms. TBI of all severities highly affected SF-36 domains physical and social functioning, and physical and emotional role functioning. GOSE scores were highly related to all SF-36 domains and PQoL scores. Female gender, older age, co-morbidity and high ISS were strongest independent predictors of decreased HRQL at 6 and 12 months after TBI. HRQL and recovery patterns differ for mild, moderate and severe TBI. This study indicates

  6. Emotional recognition from dynamic facial, vocal and musical expressions following traumatic brain injury.

    Science.gov (United States)

    Drapeau, Joanie; Gosselin, Nathalie; Peretz, Isabelle; McKerral, Michelle

    2017-01-01

    To assess emotion recognition from dynamic facial, vocal and musical expressions in sub-groups of adults with traumatic brain injuries (TBI) of different severities and identify possible common underlying mechanisms across domains. Forty-one adults participated in this study: 10 with moderate-severe TBI, nine with complicated mild TBI, 11 with uncomplicated mild TBI and 11 healthy controls, who were administered experimental (emotional recognition, valence-arousal) and control tasks (emotional and structural discrimination) for each domain. Recognition of fearful faces was significantly impaired in moderate-severe and in complicated mild TBI sub-groups, as compared to those with uncomplicated mild TBI and controls. Effect sizes were medium-large. Participants with lower GCS scores performed more poorly when recognizing fearful dynamic facial expressions. Emotion recognition from auditory domains was preserved following TBI, irrespective of severity. All groups performed equally on control tasks, indicating no perceptual disorders. Although emotional recognition from vocal and musical expressions was preserved, no correlation was found across auditory domains. This preliminary study may contribute to improving comprehension of emotional recognition following TBI. Future studies of larger samples could usefully include measures of functional impacts of recognition deficits for fearful facial expressions. These could help refine interventions for emotional recognition following a brain injury.

  7. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  8. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    International Nuclear Information System (INIS)

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-01

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  9. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    Science.gov (United States)

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  10. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. Method: We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo ...

  11. Autobiographical memory and episodic future thinking after moderate to severe traumatic brain injury

    DEFF Research Database (Denmark)

    Rasmussen, Katrine Willemoes; Berntsen, Dorthe

    2014-01-01

    Converging evidence suggests that autobiographical memory and episodic future thinking share a common neurocognitive basis. Although previous research has shown that traumatic brain injury (TBI) can impair the ability to remember the personal past, episodic future thinking has not previously been...... asked to report a series of events that had happened to them in the past and a series of events that might happen to them in the future. Transcriptions were scored according to a reliable system for categorizing internal (episodic) and external (semantic) information. For each event described......, participants also completed two modified Autobiographical Memory Questionnaire items to assess self-reported phenomenal qualities associated with remembering and imagining. In addition, TBI patients underwent neuropsychological assessment. Results revealed that TBI patients recalled/imagined proportionally...

  12. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  13. Post-Inpatient Brain Injury Rehabilitation Outcomes: Report from the National OutcomeInfo Database.

    Science.gov (United States)

    Malec, James F; Kean, Jacob

    2016-07-15

    This study examined outcomes for intensive residential and outpatient/community-based post-inpatient brain injury rehabilitation (PBIR) programs compared with supported living programs. The goal of supported living programs was stable functioning (no change). Data were obtained for a large cohort of adults with acquired brain injury (ABI) from the OutcomeInfo national database, a web-based database system developed through National Institutes of Health (NIH) Small Business Technology Transfer (STTR) funding for monitoring progress and outcomes in PBIR programs primarily with the Mayo-Portland Adaptability Inventory (MPAI-4). Rasch-derived MPAI-4 measures for cases from 2008 to 2014 from 9 provider organizations offering programs in 23 facilities throughout the United States were examined. Controlling for age at injury, time in program, and time since injury on admission (chronicity), both intensive residential (n = 205) and outpatient/community-based (n = 2781) programs resulted in significant (approximately 1 standard deviation [SD]) functional improvement on the MPAI-4 Total Score compared with supported living (n = 101) programs (F = 18.184, p MPAI-4 Ability (F = 14.135, p 1 year post-injury) showed significant, but smaller (approximately 0.5 SD) change on the MPAI-4 relative to supported living programs (F = 17.562, p < 0.001). Results indicate that intensive residential and outpatient/community-based PIBR programs result in substantial positive functional changes moderated by chronicity.

  14. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  15. Diagnostic value of low-field MRI for acute poisoning brain injury

    International Nuclear Information System (INIS)

    Dang Lianrong; He Qinyi

    2012-01-01

    Objective: To investigate the value of low-field MIR in diagnosis of acute CO poisoning brain injury. Methods: The brain MIR and clinical data of 110 patients with acute CO poisoning brain injury confirmed by clinical examination were retrospectively analyzed. Results: Long T1 and T2 signal intensity was showed on MRI in cerebral hemispheres and globus pallidus symmetrically. There were three basic types of MIR manifestations, white matter of brain type, globus pallidus type and brain mixed type. Conclusions: MRI could be used for confirming the degree and range of acute CO poisoning brain injury. It has important clinical value in the diagnosis, staging and prognosis of patients with acute CO poisoning brain injury. (authors)

  16. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  17. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  18. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  19. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  20. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  1. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  2. Cognitive deficits develop 1month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge.

    Science.gov (United States)

    Muccigrosso, Megan M; Ford, Joni; Benner, Brooke; Moussa, Daniel; Burnsides, Christopher; Fenn, Ashley M; Popovich, Phillip G; Lifshitz, Jonathan; Walker, Fredrick Rohan; Eiferman, Daniel S; Godbout, Jonathan P

    2016-05-01

    Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1β in astrocytes and MHCII and IL-1β in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1β, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here

  3. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  4. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Sindhu K Madathil

    Full Text Available Traumatic brain injury (TBI survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1, a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal overexpression of IGF-1 using the controlled cortical impact (CCI injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  5. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    Science.gov (United States)

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  6. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  8. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  9. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  10. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  11. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  12. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  13. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    Science.gov (United States)

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  14. Monetary Incentive Effects on Event-Based Prospective Memory Three Months after Traumatic Brain Injury in Children

    Science.gov (United States)

    Pedroza, Claudia; Chapman, Sandra B.; Cook, Lori G.; Vásquez, Ana C.; Levin, Harvey S.

    2011-01-01

    Information regarding the remediation of event-based prospective memory (EB-PM) impairments following pediatric traumatic brain injury (TBI) is scarce. Addressing this, two levels of monetary incentives were used to improve EB-PM in children ages 7 to 16 years with orthopedic injuries (OI, n = 51), or moderate (n = 25), and severe (n = 39) TBI at approximately three months postinjury. The EB-PM task consisted of the child giving a specific verbal response to a verbal cue from the examiner while performing a battery of neuropsychological measures (ongoing task). Significant effects were found for Age-at-Test, Motivation Condition, Period, and Group. Within-group analyses indicated OI and moderate TBI groups performed significantly better under the high-versus low-incentive condition, but the severe TBI group demonstrated no significant improvement. These results indicate EB-PM can be significantly improved at three months postinjury in children with moderate, but not severe, TBI. PMID:21347945

  15. Clinical evidence of inflammation driving secondary brain injury: A systematic review

    Science.gov (United States)

    Hinson, Holly E.; Rowell, Susan; Schreiber, Martin

    2015-01-01

    Background Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. Objectives The goal of this systematic review is to address the question: “What is the evidence in humans that inflammation is linked to secondary brain injury?” As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Data Sources Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Study Eligibility Criteria Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. Appraisal and Synthesis Methods To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Results Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Limitations Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been

  16. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  17. On the road again after traumatic brain injury: driver safety and behaviour following on-road assessment and rehabilitation.

    Science.gov (United States)

    Ross, Pamela; Ponsford, Jennie L; Di Stefano, Marilyn; Charlton, Judith; Spitz, Gershon

    2016-01-01

    To examine pre- and post-injury self-reported driver behaviour and safety in individuals with traumatic brain injury (TBI) who returned to driving after occupational therapy driver assessment and on-road rehabilitation. A self-report questionnaire, administered at an average of 4.5 years after completing an on-road driver assessment, documenting pre- and post-injury crash rates, near-crashes, frequency of driving, distances driven, driving conditions avoided and navigation skills, was completed by 106 participants, who had either passed the initial driver assessment (pass group n = 74), or required driver rehabilitation, prior to subsequent assessments (rehabilitation group n = 32). No significant difference was found between pre- and post-injury crash rates. Compared to pre-injury, 36.8% of drivers reported limiting driving time, 40.6% drove more slowly, 41.5% reported greater difficulty with navigating and 20.0% reported more near-crashes. The rehabilitation group (with greater injury severity) was significantly more likely to drive less frequently, shorter distances, avoid: driving with passengers, busy traffic, night and freeway driving than the pass group. Many drivers with moderate/severe TBI who completed a driver assessment and rehabilitation program at least 3 months post-injury, reported modifying their driving behaviour, and did not report more crashes compared to pre-injury. On-road driver training and training in navigation may be important interventions in driver rehabilitation programs. Driver assessment and on-road retraining are important aspects of rehabilitation following traumatic brain injury. Many drivers with moderate/severe TBI, reported modifying their driving behaviour to compensate for ongoing impairment and continued to drive safely in the longer term. Navigational difficulties were commonly experienced following TBI, suggesting that training in navigation may be an important aspect of driver rehabilitation.

  18. Problems in accurately diagnosing and follow-up for a higher brain dysfunction after traumatic brain injury

    International Nuclear Information System (INIS)

    Hayakawa, Mineji; Ikoma, Katsunori; Oshiro, Akiko; Hoshino, Hirokatsu; Gando, Satoshi

    2007-01-01

    Recently, the occurrence of a higher brain dysfunction after brain injury has been socially noticed and epidemiological investigations have thus been performed. However, most of these previous investigations tended to be based on populations in a chronic stage after brain trauma. We hypothesized that some patients with a higher brain dysfunction were socially in extreme distress after being discharged from our hospital due to a lack of any follow-up treatment. We investigated this problem to identify possible problems in diagnosing and follow-up for a higher brain dysfunction after blunt traumatic brain injury at a tertiary emergency center. A questionnaire survey was performed for 204 blunt trauma patients who had been admitted during the period from January 2000 thorough December 2003. Clinical examinations were performed for patients suspected of having a higher brain dysfunction based on this questionnaire survey. Three patients had been already diagnosed to have a higher brain dysfunction while other 3 patients were newly diagnosed in this investigation. The newly diagnosed patients discharged from departments other than the neurosurgery department. Computed tomography (CT) was performed in 82% patients (65 patients) to diagnose major brain injury or bone fracture. No magnetic resonance image was performed to detect any minor brain injury in alert patients. Overlooking the occurrence of a higher brain dysfunction may result from an insufficient recognition of higher brain dysfunction and an insufficient sensitivity of the present diagnostic methods available for minor brain injury. An increased awareness regarding the potential of a higher brain dysfunction existing in such patients is therefore needed by the entire medical staff and the general public. (author)

  19. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  20. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  1. Neuropsychiatric aspects of severe brain injuries

    Directory of Open Access Journals (Sweden)

    O. S. Zaitsev

    2012-01-01

    Full Text Available The state-of-the-art of Russian neuropsychiatry and priority developments in different psychopathological syndromes in severe brain injuries are assessed. Many cognitive and emotional impairments are explained in terms of the idea on the organization of psychic activity over time. It is emphasized that to achieve the premorbid levels of an interhemispheric interaction and functional asymmetry of the cerebral hemispheres affords psychic activity recovery. The experience in investigating, classifying, and treating various mental disorders occurring after severe brain injuries is generalized. The basic principles of psychopharmacotherapy and rehabilitation of victims are stated.

  2. A systematic review and meta-analysis of sleep architecture and chronic traumatic brain injury.

    Science.gov (United States)

    Mantua, Janna; Grillakis, Antigone; Mahfouz, Sanaa H; Taylor, Maura R; Brager, Allison J; Yarnell, Angela M; Balkin, Thomas J; Capaldi, Vincent F; Simonelli, Guido

    2018-02-02

    Sleep quality appears to be altered by traumatic brain injury (TBI). However, whether persistent post-injury changes in sleep architecture are present is unknown and relatively unexplored. We conducted a systematic review and meta-analysis to assess the extent to which chronic TBI (>6 months since injury) is characterized by changes to sleep architecture. We also explored the relationship between sleep architecture and TBI severity. In the fourteen included studies, sleep was assessed with at least one night of polysomnography in both chronic TBI participants and controls. Statistical analyses, performed using Comprehensive Meta-Analysis software, revealed that chronic TBI is characterized by relatively increased slow wave sleep (SWS). A meta-regression showed moderate-severe TBI is associated with elevated SWS, reduced stage 2, and reduced sleep efficiency. In contrast, mild TBI was not associated with any significant alteration of sleep architecture. The present findings are consistent with the hypothesis that increased SWS after moderate-severe TBI reflects post-injury cortical reorganization and restructuring. Suggestions for future research are discussed, including adoption of common data elements in future studies to facilitate cross-study comparability, reliability, and replicability, thereby increasing the likelihood that meaningful sleep (and other) biomarkers of TBI will be identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Maternal and Paternal Distress and Coping Over Time Following Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Narad, Megan E; Yeates, Keith O; Taylor, H Gerry; Stancin, Terry; Wade, Shari L

    2017-04-01

    Examine differences in maternal and paternal coping and distress following traumatic brain injury (TBI) and orthopedic injuries (OI). Concurrent cohort/prospective design with five assessments between 1 and an average of 7 years after injury of children aged 3-6 years hospitalized for TBI ( n  = 87) or OI ( n  = 119). Mixed models analyses were used to examine hypotheses. Overall, fathers reported greater depression and general distress than mothers 18 months after injury, but not at long-term follow-up. Active and acceptance coping were unrelated to parental sex, injury factors, or time since injury. A group × rater × time interaction was noted for Denial coping. Following severe TBI, fathers reported greater denial at 18 months, whereas mothers reported greater denial at the long-term follow-up. Denial coping did not differ between mothers and fathers following OI and moderate TBI. Parental response to early TBI is complex and may warrant clinical intervention even years after injury. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. A narrative literature review of depression following traumatic brain injury: prevalence, impact, and management challenges

    Directory of Open Access Journals (Sweden)

    Juengst SB

    2017-06-01

    Full Text Available Shannon B Juengst,1,2 Raj G Kumar,3 Amy K Wagner3–5 1Department of Physical Medicine and Rehabilitation, 2Department of Rehabilitation Counseling, University of Texas Southwestern Medical Center, Dallas, TX, 3Department of Physical Medicine and Rehabilitation, 4Department of Neuroscience, 5Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA Abstract: Depression is one of the most common conditions to emerge after traumatic brain injury (TBI, and despite its potentially serious consequences it remains undertreated. Treatment for post-traumatic depression (PTD is complicated due to the multifactorial etiology of PTD, ranging from biological pathways to psychosocial adjustment. Identifying the unique, personalized factors contributing to the development of PTD could improve long-term treatment and management for individuals with TBI. The purpose of this narrative literature review was to summarize the prevalence and impact of PTD among those with moderate to severe TBI and to discuss current challenges in its management. Overall, PTD has an estimated point prevalence of 30%, with 50% of individuals with moderate to severe TBI experiencing an episode of PTD in the first year after injury alone. PTD has significant implications for health, leading to more hospitalizations and greater caregiver burden, for participation, reducing rates of return to work and affecting social relationships, and for quality of life. PTD may develop directly or indirectly as a result of biological changes after injury, most notably post-injury inflammation, or through psychological and psychosocial factors, including pre injury personal characteristics and post-injury adjustment to disability. Current evidence for effective treatments is limited, although the strongest evidence supports antidepressants and cognitive behavioral interventions. More personalized approaches to treatment and further research into unique therapy combinations

  5. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.

    Science.gov (United States)

    Samini, Fariborz; Samarghandian, Saeed; Borji, Abasalt; Mohammadi, Gholamreza; bakaian, Mahdi

    2013-09-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow coloring principle in turmeric, is a polyphenolic and a major active constituent. Besides anti-inflammatory, thrombolytic and anti-carcinogenic activities, curcumin also possesses strong antioxidant property. The neuroprotective effects of curcumin were evaluated in a weight drop model of cortical contusion trauma in rat. Male Wistar rats (350-400 g, n=9) were anesthetized with sodium pentobarbital (60 mg/kg i.p.) and subjected to head injury. Five days before injury, animals randomly received an i.p. bolus of either curcumin (50 and 100 mg/kg/day, n=9) or vehicle (n=9). Two weeks after the injury and drug treatment, animals were sacrificed and a series of brain sections, stained with hematoxylin and eosin (H&E) were evaluated for quantitative brain lesion volume. Two weeks after the injury, oxidative stress parameter (malondialdehyde) was also measured in the brain. Curcumin (100 mg/kg) significantly reduced the size of brain injury-induced lesions (Pcurcumin (100 mg/kg). Curcumin treatment significantly improved the neurological status evaluated during 2 weeks after brain injury. The study demonstrates the protective efficacy of curcumin in rat traumatic brain injury model. © 2013 Elsevier Inc. All rights reserved.

  6. Baseline performance and learning rate of conceptual and perceptual skill-learning tasks: the effect of moderate to severe traumatic brain injury.

    Science.gov (United States)

    Vakil, Eli; Lev-Ran Galon, Carmit

    2014-01-01

    Existing literature presents a complex and inconsistent picture of the specific deficiencies involved in skill learning following traumatic brain injury (TBI). In an attempt to address this difficulty, individuals with moderate to severe TBI (n = 29) and a control group (n = 29) were tested with two different skill-learning tasks: conceptual (i.e., Tower of Hanoi Puzzle, TOHP) and perceptual (i.e., mirror reading, MR). Based on previous studies of the effect of divided attention on these tasks and findings regarding the effect of TBI on conceptual and perceptual priming tasks, it was predicted that the group with TBI would show impaired baseline performance compared to controls in the TOHP task though their learning rate would be maintained, while both baseline performance and learning rate on the MR task would be maintained. Consistent with our predictions, overall baseline performance of the group with TBI was impaired in the TOHP test, while the learning rate was not. The learning rate on the MR task was preserved but, contrary to our prediction, response time of the group with TBI was slower than that of controls. The pattern of results observed in the present study was interpreted to possibly reflect an impairment of both the frontal lobes as well as that of diffuse axonal injury, which is well documented as being affected by TBI. The former impairment affects baseline performance of the conceptual learning skill, while the latter affects the overall slower performance of the perceptual learning skill.

  7. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  8. Respiratory mechanics in brain injury: A review.

    Science.gov (United States)

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  9. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  10. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  11. A comprehensive picture of 4-year outcome of severe brain injuries. Results from the PariS-TBI study.

    Science.gov (United States)

    Jourdan, C; Bayen, E; Pradat-Diehl, P; Ghout, I; Darnoux, E; Azerad, S; Vallat-Azouvi, C; Charanton, J; Aegerter, P; Ruet, A; Azouvi, P

    2016-04-01

    Survivors of severe traumatic brain injury have a great variety of impairments and participation restrictions. Detailed descriptions of their long-term outcome are critical. We aimed to assess brain injury outcome for subjects with traumatic brain injury in terms of the International classification of functioning, disability and health. Four-year follow-up of an inception cohort of adults with severe traumatic brain injury by using face-to-face interviews with patients and proxies. Among 245 survivors at 4 years, 147 were evaluated (80% male, mean age: 32.5±14.2 years at injury); 46 (32%) presented severe disability, 58 (40%) moderate disability, and 40 (28%) good recovery. Most frequent somatic problems were fatigue, headaches, other pain, and balance. One quarter of subjects had motor impairments. Rates of cognitive complaints ranged from 25 to 68%, the most frequent being memory, irritability, slowness and concentration. With the Hospital Anxiety and Depression Scale, 43% had anxiety and 25% depression. Overall, 79% were independent in daily living activities and 40 to 50% needed help for outdoor or organizational activities on the BICRO-39. Most had regular contacts with relatives or close friends but few contacts with colleagues or new acquaintances. Subjects spent little time in productive activities such as working, studying, looking after children or voluntary work. Quality of life on the QOLIBRI scale was associated with disability level (Plife. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.

    Science.gov (United States)

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-11-01

    Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injuries. Rat pups underwent common carotid artery ligation followed by either 150min (severe model) or 100min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) was used to examine their roles on BBB permeability. Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α's effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Directory of Open Access Journals (Sweden)

    Golam Mustafa

    2017-01-01

    Full Text Available Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.

  14. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Cystatin C Has a Dual Role in Post-Traumatic Brain Injury Recovery

    Directory of Open Access Journals (Sweden)

    Marina Martinez-Vargas

    2014-04-01

    Full Text Available Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.

  16. Home Environment as a Predictor of Long-Term Executive Functioning following Early Childhood Traumatic Brain Injury.

    Science.gov (United States)

    Durish, Christianne Laliberté; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry; Walz, Nicolay C; Wade, Shari L

    2018-01-01

    This study examined the relationship of the home environment to long-term executive functioning (EF) following early childhood traumatic brain injury (TBI). Participants (N=134) were drawn from a larger parent study of 3- to 6-year-old children hospitalized for severe TBI (n=16), complicated mild/moderate TBI (n=44), or orthopedic injury (OI; n=74), recruited prospectively at four tertiary care hospitals in the United States and followed for an average of 6.8 years post-injury. Quality of the home environment, caregiver psychological distress, and general family functioning were assessed shortly after injury (i.e., early home) and again at follow-up (i.e., late home). Participants completed several performance-based measures of EF at follow-up. Hierarchical regression analyses examined the early and late home environment measures as predictors of EF, both as main effects and as moderators of group differences. The early and late home environment were inconsistent predictors of long-term EF across groups. Group differences in EF were significant for only the TEA-Ch Walk/Don't Walk subtest, with poorer performance in the severe TBI group. However, several significant interactions suggested that the home environment moderated group differences in EF, particularly after complicated mild/moderate TBI. The home environment is not a consistent predictor of long-term EF in children with early TBI and OI, but may moderate the effects of TBI on EF. The findings suggest that interventions designed to improve the quality of stimulation in children's home environments might reduce the long-term effects of early childhood TBI on EF. (JINS, 2018, 24, 11-21).

  17. Medical and psychosocial predictors of caregiver distress and perceived burden following traumatic brain injury.

    Science.gov (United States)

    Davis, Lynne C; Sander, Angelle M; Struchen, Margaret A; Sherer, Mark; Nakase-Richardson, Risa; Malec, James F

    2009-01-01

    To determine whether caregivers' medical and psychiatric histories, coping style, and social support predict global distress and perceived burden. Correlational, cohort study. A total of 114 caregivers of persons with moderate to severe traumatic brain injury, assessed 1 year postinjury. Ratings of caregivers' medical and psychiatric history; Disability Rating Scale; Ways of Coping Questionnaire; Multidimensional Scale of Perceived Social Support; Brief Symptom Inventory; and Modified Caregiver Appraisal Scale. Caregivers' medical and psychiatric histories predicted global distress, after accounting for education, sex, income, and relationship, as well as disability of the person with injury. Increased use of escape-avoidance as a coping strategy was related to increased distress. Perceived burden was predicted by disability in the person with injury, use of escape-avoidance, and perceived social support. Caregivers' preinjury functioning is more predictive of global distress, whereas the functioning of the person with injury is more predictive of injury-related burden. Caregivers' medical and psychiatric histories are important considerations when targeting interventions; global stress management strategies may be as important as assisting with injury-related issues.

  18. A Danish national strategy for treatment and rehabilitation after acquired brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase W

    2007-01-01

    This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient rehabilitat......This study describes the establishment of a Danish national strategy for treatment and rehabilitation of acquired brain injury, particularly traumatic brain injury, in 1997. The vision was to create a system of tax-financed continuous treatment, restoration of function, and outpatient...

  19. Effect on behavior problems of teen online problem-solving for adolescent traumatic brain injury.

    Science.gov (United States)

    Wade, Shari L; Walz, Nicolay C; Carey, Joanne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2011-10-01

    To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47-17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants.

  20. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  1. Oculometric Screening for Traumatic Brain Injury in Veterans

    Science.gov (United States)

    2017-06-01

    intake physicals as a detection method for acute injury and for management of brain health in military and VA hospitals. An immersive evaluation of the...risk of traumatic brain injury following deployment. Journal of Head Trauma Rehabilitation, 31(1), 28–35. xviii THIS PAGE INTENTIONALLY LEFT BLANK...device in operational units, military treatment facilities, or VA hospitals. This question will be answered through an immersive qualitative

  2. Traumatic brain injury (TBI) outcomes in an LMIC tertiary care centre and performance of trauma scores.

    Science.gov (United States)

    Samanamalee, Samitha; Sigera, Ponsuge Chathurani; De Silva, Ambepitiyawaduge Pubudu; Thilakasiri, Kaushila; Rashan, Aasiyah; Wadanambi, Saman; Jayasinghe, Kosala Saroj Amarasiri; Dondorp, Arjen M; Haniffa, Rashan

    2018-01-08

    This study evaluates post-ICU outcomes of patients admitted with moderate and severe Traumatic Brain Injury (TBI) in a tertiary neurocritical care unit in an low middle income country and the performance of trauma scores: A Severity Characterization of Trauma, Trauma and Injury Severity Score, Injury Severity Score and Revised Trauma Score in this setting. Adult patients directly admitted to the neurosurgical intensive care units of the National Hospital of Sri Lanka between 21st July 2014 and 1st October 2014 with moderate or severe TBI were recruited. A telephone administered questionnaire based on the Glasgow Outcome Scale Extended (GOSE) was used to assess functional outcome of patients at 3 and 6 months after injury. The economic impact of the injury was assessed before injury, and at 3 and 6 months after injury. One hundred and one patients were included in the study. Survival at ICU discharge, 3 and 6 months after injury was 68.3%, 49.5% and 45.5% respectively. Of the survivors at 3 months after injury, 43 (86%) were living at home. Only 19 (38%) patients had a good recovery (as defined by GOSE 7 and 8). Three months and six months after injury, respectively 25 (50%) and 14 (30.4%) patients had become "economically dependent". Selected trauma scores had poor discriminatory ability in predicting mortality. This observational study of patients sustaining moderate or severe TBI in Sri Lanka (a LMIC) reveals only 46% of patients were alive at 6 months after ICU discharge and only 20% overall attained a good (GOSE 7 or 8) recovery. The social and economic consequences of TBI were long lasting in this setting. Injury Severity Score, Revised Trauma Score, A Severity Characterization of Trauma and Trauma and Injury Severity Score, all performed poorly in predicting mortality in this setting and illustrate the need for setting adapted tools.

  3. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  4. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  5. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    OpenAIRE

    Munakomi, Sunil; Bhattarai, Binod; Mohan Kumar, Bijoy

    2017-01-01

    Purpose: Despite the prevalence and cost of traumatic brain injury related disabilities, there is paucity in the literature on modern approaches to pharmacotherapy. Medications may promote recovery by enhancing some neurological functions without impacting others. Herein we discussed the role of bromocriptine in neurorehabilitation for patients with traumatic brain injury. Methods: A cohort comprising of 36 selective nonsurgical cases of traumatic brain injury in minimally conscious state ...

  6. CT findings of traumatic primary brain-stem injury

    International Nuclear Information System (INIS)

    Hosaka, Yasuaki; Hatashita, Shizuo; Bandou, Kuniaki; Ueki, Yasuyuki; Abe, Kouzou; Koga, Nobunori; Sugimura, Jun; Sakakibara, Tokiwa; Takagi, Suguru

    1984-01-01

    A series of 27 consecutive patients with traumatic primary brain stem injuries was studied. They were diagnosed by means of clinical signs, neurological examination, and computerized tomography (CT). The CT findings of the brain-stem lesions were classified into 4 types: Type H, spotty, high-density; Type H and L, high- and low-densities; Type L, low-density; Type I, isodensity. The Glasgow coma scale (GCS), neurological findings on admission, CT findings (findings in the brain stem, obliteration of perimesencephalic cistern (PMC), and other findings), and the Glasgow outcome scale (GOS) were examined. In the 9 cases of Type H, there was a correlation between the GCS and the GOS, and the spotty, high-density lesions were localized mainly in the dorsal and/or ventral midbrain parenchyma, but these lesions did not show focal signs and symptoms. Without an obliteration of the PMC, Type-H patients did not always have a bad outcome. In the 4 cases of Type H and L, the 2 cases of Type L, and the 12 cases of Type I, there was an obliteration of the PMC. All of the these cases had a bad outcome (1 case of moderate disability, 3 cases of severe disability, and 14 cases of death). The mechanism producing a spotty, high-density area was discussed. The weaker impact (than the other types) and individual anatomical differences weresupposed to make for a spotty, high-density are in the brain stem. (author)

  7. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  8. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  9. Spinal cord injury and its association with blunt head trauma

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2011-09-01

    Full Text Available Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patients admitted in the emergency unit was carried out. Of these patients, 180 with moderate or severe head injury were enrolled. All patients were submitted to three-view spine series X-ray and thin cut axial CT scans for spine trauma investigations.Results: 112 male patients and 78 female patients, whose ages ranged from 11 to 76 years (mean age, 34 years. The most common causes of brain trauma were pedestrians struck by motor vehicles (31.1%, car crashes (27.7%, and falls (25%. Systemic lesions were present in 80 (44.4% patients and the most common were fractures, and lung and spleen injuries. 52.8% had severe and 47.2% moderate head trauma. Fourteen patients (7.8% suffered spinal cord injury (12 in cervical spine, one in lumbar, and one thoracic spine. In elderly patients, the presence of associated lesions and Glasgow Coma Scale (GCS < 9 were statistically significant as risk factors (P < 0.05 for spine injury.Conclusion: Spinal cord injury related to moderate and severe brain trauma usually affects the cervical spine. The incidence of spinal lesions and GCS < 9 points were related to greater incidence of spinal cord injury.Keywords: head injury, spine trauma, risk factors

  10. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  11. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  12. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level...... should focus not only on specific deficits in the patient, but also on how the emotional state and well-being of the relatives evolve, while trying to adjust and cope with a new life-situation....

  13. Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Dhivyaa Alagappan

    2009-04-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  14. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  15. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  16. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  17. Research progress of immune tolerance in the treatment of brain injury

    Directory of Open Access Journals (Sweden)

    Hua YAN

    2014-08-01

    Full Text Available Due to its special anatomical structures and immune pathophysiological mechanisms, brain damage repair is greatly different from damage repair of other systems. Secondary brain injury and inflammation are closely related. As a "double-edged sword", inflammation scavenges hazardous substances on the early stage of injury, but has side effects on normal brain tissue. The use of immunosuppressive therapy or hypothermia can inhibit immune injury, but the presence of reduced immunity may result in infection and tumorigenesis in the long term. Only reducing the autoimmune attack against brain tissue without affecting other immune capacity of the body will be optimized solution, and this paper will make a review on the research of immune tolerance in the treatment of brain injury with optimized program. doi: 10.3969/j.issn.1672-6731.2014.08.017

  18. Family function and its relationship to injury severity and psychiatric outcome in children with acquired brain injury: a systematized review.

    Science.gov (United States)

    Lax Pericall, Maria Teresa; Taylor, Eric

    2014-01-01

    The psychological and psychiatric outcome of children with acquired brain injury is influenced by many variables. A review was undertaken to clarify the contribution of family function, how it relates to injury severity, and what particular aspects of family function influence psychological outcome in this group. A systematized review of the literature of studies published between 1970 and 2012 from OvidMedline, PsychoInfo, PsycARTICLES, and Cochrane was undertaken focusing on family function, injury severity, and psychiatric outcome. Thirty-six papers met the inclusion criteria. Injury severity was linked to the development of organic personality change. Family function before injury, measured by the Family Assessment Device or the Clinical Rating Scale, had a statistically significant effect on general psychological functioning in six out of eight studies. Family function had a significant effect for oppositional defiant disorder and secondary attention-deficit-hyperactivity disorder. The effects of family function may differ depending on the age of the child and the severity of the injury. Some styles of parenting moderated recovery. After injury, family function was related to the child's contemporaneous psychiatric symptoms. The level of evidence for these papers was 3 or 4 (Oxford Centre for Evidence-based Medicine criteria). Screening for some aspects of family functioning before injury and family function during the rehabilitation phase may identify children at risk of psychiatric disorders. © 2013 Mac Keith Press.

  19. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  20. Loss of Financial Management Independence After Brain Injury: Survivors' Experiences.

    Science.gov (United States)

    Koller, Kathryn; Woods, Lindsay; Engel, Lisa; Bottari, Carolina; Dawson, Deirdre R; Nalder, Emily

    2016-01-01

    This pilot study explored the experiences of brain injury survivors after a change in financial management (FM) independence. Using a qualitative descriptive design, 6 participants with acquired brain injury were recruited from a community brain injury organization and participated in semistructured interviews. Data were analyzed using thematic analysis. Three themes emerged from the interviews: (1) trajectory of FM change, involving family members as key change agents; (2) current FM situation, involving FM strategies such as automatic deposits and restricted budgets; and (3) the struggle for control, in which survivors desired control while also accepting supports for FM. This study identifies some of the challenges brain injury survivors face in managing their finances and the adjustment associated with a loss of FM independence. Occupational therapists should be aware of clients' experiences when supporting them through a change in independence. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  1. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  2. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  3. Establishment of a blunt impact-induced brain injury model in rabbits

    OpenAIRE

    LI Kui; CAO Yun-xing; YANG Yong-qiang; YIN Zhi-yong; ZHAO Hui; WANG Li-jun

    2012-01-01

    【Abstract】 Objective: To establish an animal model to replicate the blunt impact brain injury in forensic medicine. Methods: Twenty-four New Zealand white rabbits were randomly divided into control group (n=4), minor injury group (n=10) and severe injury group (n=10). Based on the BIM-Ⅱ Horizontal Bio-impact Machine, self-designed iron bar was used to produce blunt brain injury. Two rabbits from each injury group were randomly selected to monitor the change of in...

  4. Effect on Behavior Problems of Teen Online Problem-Solving for Adolescent Traumatic Brain Injury

    Science.gov (United States)

    Walz, Nicolay C.; Carey, JoAnne; McMullen, Kendra M.; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen

    2011-01-01

    PURPOSE: To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). METHODS: A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47–17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. RESULTS: Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. CONCLUSION: Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants. PMID:21890828

  5. Is performance on the Wechsler test of adult reading affected by traumatic brain injury?

    Science.gov (United States)

    Mathias, J L; Bowden, S C; Bigler, E D; Rosenfeld, J V

    2007-11-01

    The validity of the National Adult Reading Test (NART) as a predictor of premorbid IQ when used with patients who have sustained a traumatic brain injury (TBI) has been questioned in recent years. This study examined whether performance on the Wechsler Test of Adult Reading (WTAR) is similarly affected by TBI in the first year after an injury. The WTAR scores of participants who had sustained a mild TBI (N=82), moderate TBI (N=73), severe TBI (N=61) or an orthopaedic injury (N=95) were compared (cross-sectional study). A subset of 21 mild TBI, 31 moderate TBI, 26 severe TBI and 21 control group participants were additionally reassessed 6 months later to assess the impact of recovery on WTAR scores (longitudinal study). The severe TBI group had significantly lower scores on the WTAR than the mild TBI, moderate TBI and control groups in the cross-sectional study, despite being matched demographically. The findings from the longitudinal study revealed a significant group difference and a small improvement in performance over time but the interaction between group and time was not significant, suggesting that the improvements in WTAR performance over time were not restricted to more severely injured individuals whose performance was temporarily suppressed. These findings suggest that reading performance may be affected by severe TBI and that the WTAR may underestimate premorbid IQ when used in this context, which may cause clinicians to underestimate the cognitive deficits experienced by these patients.

  6. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  7. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  8. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  9. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  10. Traumatic brain injury: Comparison between autopsy and ante-mortem CT.

    Science.gov (United States)

    Panzer, Stephanie; Covaliov, Lidia; Augat, Peter; Peschel, Oliver

    2017-11-01

    The aim of this study was to compare pathological findings after traumatic brain injury between autopsy and ante-mortem computed tomography (CT). A second aim was to identify changes in these findings between the primary posttraumatic CT and the last follow-up CT before death. Through the collaboration between clinical radiology and forensic medicine, 45 patients with traumatic brain injury were investigated. These patients had undergone ante-mortem CT as well as autopsy. During autopsy, the brain was cut in fronto-parallel slices directly after removal without additional fixation or subsequent histology. Typical findings of traumatic brain injury were compared between autopsy and radiology. Additionally, these findings were compared between the primary CT and the last follow-up CT before death. The comparison between autopsy and radiology revealed a high specificity (≥80%) in most of the findings. Sensitivity and positive predictive value were high (≥80%) in almost half of the findings. Sixteen patients had undergone craniotomy with subsequent follow-up CT. Thirteen conservatively treated patients had undergone a follow-up CT. Comparison between the primary CT and the last ante-mortem CT revealed marked changes in the presence and absence of findings, especially in patients with severe traumatic brain injury requiring decompression craniotomy. The main pathological findings of traumatic brain injury were comparable between clinical ante-mortem CT examinations and autopsy. Comparison between the primary CT after trauma and the last ante-mortem CT revealed marked changes in the findings, especially in patients with severe traumatic brain injury. Hence, clinically routine ante-mortem CT should be included in the process of autopsy interpretation. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  11. Mechanisms of gender-linked ischemic brain injury

    Science.gov (United States)

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2010-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872

  12. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  13. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  14. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  15. Optical coherence tomography imaging of cranial meninges post brain injury in vivo

    Institute of Scientific and Technical Information of China (English)

    Woo June Choi; Ruikang K.Wang

    2017-01-01

    We report a new application of optical coherence tomography (OCT) to investigate the cranial meninges in an animal model of brain injury in vivo.The injury is induced in a mouse due to skull thinning,in which the repeated and excessive drilling exerts mechanical stress on the mouse brain through the skull,resulting in acute and mild brain injury.Transcranial OCT imaging reveals an interesting virtual space between the cranial meningeal layers post skull thinning,which is gradually closed within hours.The finding suggests a promise of OCT as an effective tool to monitor the mechanical trauma in the small animal model of brain injury.

  16. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    Science.gov (United States)

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  17. Prevalence of traumatic brain injury in juvenile offenders: a meta-analysis.

    Science.gov (United States)

    Farrer, Thomas J; Frost, R Brock; Hedges, Dawson W

    2013-01-01

    Studies of traumatic brain injury (TBI) among adult populations demonstrate that such injuries can lead to aggressive behaviors. Related findings suggest that incarcerated individuals have high rates of brain injuries. Such studies suggest that traumatic brain injury may be related to the etiology and recidivism of criminal behavior. Relatively few studies have examined the prevalence of TBI using a delinquent juvenile sample. In order to assess the relationship between TBI and juvenile offender status, the current study used meta-analytic techniques to examine the odds of having a TBI among juvenile offenders. Across 9 studies, we found that approximately 30% of juvenile offenders have sustained a previous brain injury. Across 5 studies that used a control group, a calculated summary odds ratio of 3.37 suggests that juvenile offenders are significantly more likely to have a TBI compared to controls. Results suggest that the rate of TBIs within the juvenile offender population is significant and that there may be a relationship between TBIs and juvenile criminal behavior.

  18. Parameterized entropy analysis of EEG following hypoxic-ischemic brain injury

    International Nuclear Information System (INIS)

    Tong Shanbao; Bezerianos, Anastasios; Malhotra, Amit; Zhu Yisheng; Thakor, Nitish

    2003-01-01

    In the present study Tsallis and Renyi entropy methods were used to study the electric activity of brain following hypoxic-ischemic (HI) injury. We investigated the performances of these parameterized information measures in describing the electroencephalogram (EEG) signal of controlled experimental animal HI injury. The results show that (a): compared with Shannon and Renyi entropy, the parameterized Tsallis entropy acts like a spatial filter and the information rate can either tune to long range rhythms or to short abrupt changes, such as bursts or spikes during the beginning of recovery, by the entropic index q; (b): Renyi entropy is a compact and predictive indicator for monitoring the physiological changes during the recovery of brain injury. There is a reduction in the Renyi entropy after brain injury followed by a gradual recovery upon resuscitation

  19. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  20. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  1. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals with acqui......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating......-of-life. The preliminary findings provide knowledge regarding the patient perspective of adapting to and developing new strategies for activities related to eating, however, further prospective, longitudinal research in a larger scale and with repeated interviews is needed....

  2. Profile analyses of the Personality Assessment Inventory following military-related traumatic brain injury.

    Science.gov (United States)

    Kennedy, Jan E; Cooper, Douglas B; Reid, Matthew W; Tate, David F; Lange, Rael T

    2015-05-01

    Personality Assessment Inventory (PAI) profiles were examined in 160 U.S. service members (SMs) following mild-severe traumatic brain injury (TBI). Participants who sustained a mild TBI had significantly higher PAI scores than those with moderate-severe TBI on eight of the nine clinical scales examined. A two-step cluster analysis identified four PAI profiles, heuristically labeled "High Distress", "Moderate Distress", "Somatic Distress," and "No Distress". Postconcussive and posttraumatic stress symptom severity was highest for the High Distress group, followed by the Somatic and Moderate Distress groups, and the No Distress group. Profile groups differed in age, ethnicity, rank, and TBI severity. Findings indicate that meaningful patterns of behavioral and personality characteristics can be detected in active duty military SMs following TBI, which may prove useful in selecting the most efficacious rehabilitation strategies. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  4. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  5. Experiences of giving and receiving care in traumatic brain injury: An integrative review.

    Science.gov (United States)

    Kivunja, Stephen; River, Jo; Gullick, Janice

    2018-04-01

    To synthesise the literature on the experiences of giving or receiving care for traumatic brain injury for people with traumatic brain injury, their family members and nurses in hospital and rehabilitation settings. Traumatic brain injury represents a major source of physical, social and economic burden. In the hospital setting, people with traumatic brain injury feel excluded from decision-making processes and perceive impatient care. Families describe inadequate information and support for psychological distress. Nurses find the care of people with traumatic brain injury challenging particularly when experiencing heavy workloads. To date, a contemporary synthesis of the literature on people with traumatic brain injury, family and nurse experiences of traumatic brain injury care has not been conducted. Integrative literature review. A systematic search strategy guided by the PRISMA statement was conducted in CINAHL, PubMed, Proquest, EMBASE and Google Scholar. Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) integrative review framework guided data reduction, data display, data comparison and conclusion verification. Across the three participant categories (people with traumatic brain injury/family members/nurses) and sixteen subcategories, six cross-cutting themes emerged: seeking personhood, navigating challenging behaviour, valuing skills and competence, struggling with changed family responsibilities, maintaining productive partnerships and reflecting on workplace culture. Traumatic brain injury creates changes in physical, cognitive and emotional function that challenge known ways of being in the world for people. This alters relationship dynamics within families and requires a specific skill set among nurses. Recommendations include the following: (i) formal inclusion of people with traumatic brain injury and families in care planning, (ii) routine risk screening for falls and challenging behaviour to ensure that controls are based on

  6. Association between the Osteoporosis Self-Assessment Tool for Asians Score and Mortality in Patients with Isolated Moderate and Severe Traumatic Brain Injury: A Propensity Score-Matched Analysis.

    Science.gov (United States)

    Rau, Cheng-Shyuan; Kuo, Pao-Jen; Wu, Shao-Chun; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2016-12-03

    Background: The purpose of this study was to use a propensity score-matched analysis to investigate the association between the Osteoporosis Self-Assessment Tool for Asians (OSTA) scores and clinical outcomes of patients with isolated moderate and severe traumatic brain injury (TBI). Methods: The study population comprised 7855 patients aged ≥40 years who were hospitalized for treatment of isolated moderate and severe TBI (an Abbreviated Injury Scale (AIS) ≥3 points only in the head and not in other regions of the body) between 1 January 2009 and 31 December 2014. Patients were categorized as high-risk (OSTA score -1; n = 5359). Two-sided Pearson's chi-squared, or Fisher's exact tests were used to compare categorical data. Unpaired Student's t -test and Mann-Whitney U test were performed to analyze normally and non-normally distributed continuous data, respectively. Propensity score-matching in a 1:1 ratio was performed using NCSS software, with adjustment for covariates. Results: Compared to low-risk patients, high- and medium-risk patients were significantly older and injured more severely. The high- and medium-risk patients had significantly higher mortality rates, longer hospital length of stay, and a higher proportion of admission to the intensive care unit than low-risk patients. Analysis of propensity score-matched patients with adjusted covariates, including gender, co-morbidity, blood alcohol concentration level, Glasgow Coma Scale score, and Injury Severity Score revealed that high- and medium-risk patients still had a 2.4-fold (odds ratio (OR), 2.4; 95% confidence interval (CI), 1.39-4.15; p = 0.001) and 1.8-fold (OR, 1.8; 95% CI, 1.19-2.86; p = 0.005) higher mortality, respectively, than low-risk patients. However, further addition of age as a covariate for the propensity score-matching demonstrated that there was no significant difference between high-risk and low-risk patients or between medium-risk and low-risk patients, implying that older age

  7. Pattern of brain injury and depressed heart rate variability in newborns with hypoxic ischemic encephalopathy.

    Science.gov (United States)

    Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N

    2017-09-01

    BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (α S , α L , and root mean square at short (RMS S ) and long (RMS L ) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMS S (estimate -0.224, SE 0.082, P=0.006), RMS L (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.

  8. Correlating learning and memory improvements to long-term potentiation in patients with brain injury

    Institute of Scientific and Technical Information of China (English)

    Xingfu Peng; Qian Yu

    2008-01-01

    BACKGROUND:Brain injury patients often exhibit learning and memory functional deficits.Long-term potentiation(LTP)is a representative index for studying learning and memory cellular models; the LTP index correlates to neural plasticity. OBJECTIVE:This study was designed to investigate correlations of learning and memory functions to LTP in brain injury patients,and to summarize the research advancements in mechanisms underlying brain functional improvements after rehabilitation intervention. RETRIEVAL STRATEGY:Using the terms "brain injuries,rehabilitation,learning and memory,long-term potentiation",manuscripts that were published from 2000-2007 were retrieved from the PubMed database.At the same time,manuscripts published from 2000-2007 were also retrieved from the Database of Chinese Scientific and Technical Periodicals with the same terms in the Chinese language.A total of 64 manuscripts were obtained and primarily screened.Inclusion criteria:studies on learning and memory,as well as LTP in brain injury patients,and studies focused on the effects of rehabilitation intervention on the two indices; studies that were recently published or in high-impact journals.Exclusion criteria:repetitive studies.LITERATURE EVALUATION:The included manuscripts primarily focused on correlations between learning and memory and LTP,the effects of brain injury on learning and memory,as well as LTP,and the effects of rehabilitation intervention on learning and memory after brain injury.The included 39 manuscripts were clinical,basic experimental,or review studies. DATA SYNTHESIS:Learning and memory closely correlates to LTP.The neurobiological basis of learning and memory is central nervous system plasticity,which involves neural networks,neural circuits,and synaptic connections,in particular,synaptic plasticity.LTP is considered to be an ideal model for studying synaptic plasticity,and it is also a classic model for studying neural plasticity of learning and memory.Brain injury

  9. Delayed radiation injury of brain stem after radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Yang Yunli; Liu Yingxin; Xie Dong; Su Danke; Chen Mingzhong

    2002-01-01

    Objective: To study the clinical characteristics, MRI findings, diagnosis, treatment and prognostic factors of patients with radiation induced brain stem injury in nasopharyngeal carcinoma. Methods: From January 1991 to January 2001, 24 patients with radiation injury of brain stem were treated, 14 males and 10 females. The latency ranged from 6 to 38 months, with a median of 18 months. The lesions were located in the pons in 10 patients, mesencephalon + pons in 4, pons + medulla oblongata in 5, medulla oblongata in 2 and mesencephalon + pons + medulla oblongata in 3. MRI findings showed that the injury was chiefly presented as hypointensity foci on T 1 WI and hyperintensity foci on T 2 WI. Results: Eighteen patients were treated with dexamethasone in the early phase, with symptoms relieved in 12 patients but unimproved in 6 patients. Eight 44% patients died within the 8-38 months, leaving 16 patients surviving for 0.5 to 6.0 years. Conclusions: Radiation injury of brain stem has a short latency with severe symptoms, signifying poor prognosis. It is suggested that adequate reduction of irradiation volume and dose at the brain stem should be able to lower the incidence of brain stem injury

  10. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  11. Neuropsychiatric Disturbances and Hypopituitarism After Traumatic Brain Injury in an Elderly Man

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chang

    2006-01-01

    Full Text Available Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  12. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    Energy Technology Data Exchange (ETDEWEB)

    Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Furtado, Andre [Children' s Hospital of Pittsburgh of UPMC, Department of Pediatric Radiology, Pittsburgh, PA (United States); Lepore, Natasha [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Paquette, Lisa [Children' s Hospital Los Angeles, Center for Fetal and Neonatal Medicine, Los Angeles, CA (United States); Bluml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Southern California, Department of Biomedical Engineering, Los Angeles, CA (United States)

    2012-01-15

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long

  13. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    International Nuclear Information System (INIS)

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2012-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage (IVH) and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the ''connectome'' is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental

  14. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    changes after blast injury. J. Trauma 56, 393–403. Murthy, J.M., Chopra, J.S., and Gulati, D.R. (1979). Subdural hematoma in an adult following a blast...neuronal damage), diffuse brain injury, and subdural hemorrhage. It is still controversial whether primary blast forces directly damage the brain, and if...emboli, leading to infarction (Guy et al., 2000a; Guy et al., 2000b). The most common types of TBI are diffuse axonal injury, contusion, and subdural

  15. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    Science.gov (United States)

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo

  16. Mothers report more child-rearing disagreements following early brain injury than do fathers.

    Science.gov (United States)

    Bendikas, Emily A; Wade, Shari L; Cassedy, Amy; Taylor, H Gerry; Yeates, Keith Owen

    2011-11-01

    To investigate differences between mother's and father's perceptions of marital relationship quality, child rearing disagreements, and family functioning over the initial 18 months following traumatic brain injury (TBI) in early childhood relative to an orthopedic-injury comparison group. Participants included 147 parent-dyads of children with TBI (n = 53) and orthopedic injuries (OI; n = 94) who were between the ages of 3 and 7 years at injury. Family functioning, marital quality, and child-rearing disagreements were assessed shortly after injury and at 6, 12, and 18-month follow-ups, with ratings at the initial assessment completed to reflect preinjury functioning. Mixed model analyses were used to examine mother and father's reports of family functioning, marital quality, and child-rearing disagreements over time as a function of injury severity and parent gender. We found a significant Group x Gender interaction for ratings of love and parenting disagreements. As hypothesized, mothers of children with severe TBI rated the relationship as significantly less loving than did their partners, and mothers of children with both moderate and severe TBI endorsed more parenting disagreements than did their partners. However, fathers reported higher levels of family dysfunction than their partners, regardless of injury type or severity. Implications for treatment based on differences in mothers' and fathers' perceptions of family and marital functioning, and future directions for research, are discussed.

  17. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    Science.gov (United States)

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  18. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  20. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  1. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  2. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  3. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  4. Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.

    Science.gov (United States)

    Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton

    2018-04-02

    Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.

  5. Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor.

    Science.gov (United States)

    Hung, Pi-Lien; Huang, Chao-Ching; Huang, Hsiu-Mei; Tu, Dom-Gene; Chang, Ying-Chao

    2013-08-01

    Low level of thyroid hormone is a strong independent risk factor for white matter (WM) injury, a major cause of cerebral palsy, in preterm infants. Thyroxin upregulates brain-derived neurotrophic factor during development. We hypothesized that thyroxin protected against preoligodendrocyte apoptosis and WM injury in the immature brain via upregulation of brain-derived neurotrophic factor. Postpartum (P) day-7 male rat pups were exposed to hypoxic ischemia (HI) and intraperitoneally injected with thyroxin (T4; 0.2 mg/kg or 1 mg/kg) or normal saline immediately after HI at P9 and P11. WM damage was analyzed for myelin formation, axonal injury, astrogliosis, and preoligodendrocyte apoptosis. Neurotrophic factor expression was assessed by real-time polymerase chain reaction and immunohistochemistry. Neuromotor functions were measured using open-field locomotion (P11 and P21), inclined plane climbing (P11), and beam walking (P21). Intracerebroventricular injection of TrkB-Fc or systemic administration of 7,8-dihydroxyflavone was performed. On P11, the HI group had significantly lower blood T4 levels than the controls. The HI group showed ventriculomegaly and marked reduction of myelin basic protein immunoreactivities in the WM. T4 (1 mg/kg) treatment after HI markedly attenuated axonal injury, astrocytosis, and microgliosis, and increased preoligodendrocyte survival. In addition, T4 treatment significantly increased myelination and selectively upregulated brain-derived neurotrophic factor expression in the WM, and improved neuromotor deficits after HI. The protective effect of T4 on WM myelination and neuromotor performance after HI was significantly attenuated by TrkB-Fc. Systemic 7,8-dihydroxyflavone treatment ameliorated hypomyelination after HI injury. T4 protects against WM injury at both pathological and functional levels via upregulation of brain-derived neurotrophic factor-TrkB signaling in the immature brain.

  6. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  7. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study

    International Nuclear Information System (INIS)

    D’souza, Maria M; Trivedi, Richa; Singh, Kavita; Grover, Hemal; Choudhury, Ajay; Kaur, Prabhjot; Kumar, Pawan; Tripathi, Rajendra Prashad

    2015-01-01

    The aim of the present study is to evaluate diffusion tensor tractography (DTT) as a tool for detecting diffuse axonal injury in patients of acute, mild, and moderate traumatic brain injury (TBI), using two diffusion variables: Fractional anisotropy (FA) and mean diffusivity (MD). The correlation of these indices with the severity of post-concussive symptoms was also assessed. Nineteen patients with acute, mild, or moderate TBI and twelve age- and sex-matched healthy controls were recruited. Following Magnetic Resonance Imaging (MRI) on a 3.0-T scanner, DTT was performed using the ‘fiber assignment by continuous tracking’ (FACT) algorithm for fiber reconstruction. Appropriate statistical tools were used to see the difference in FA and MD values between the control and patient groups. In the latter group, the severity of post-concussive symptoms was assessed six months following trauma, using the Rivermead Postconcussion Symptoms Questionnaire (RPSQ). The patients displayed significant reduction in FA compared to the controls (P < 0.05) in several tracts, notably the corpus callosum, fornix, bilateral uncinate fasciculus, and bilateral superior thalamic radiations. Changes in MD were statistically significant in the left uncinate, inferior longitudinal fasciculus, and left posterior thalamic radiation. A strong correlation between these indices and the RPSQ scores was observed in several white matter tracts. Diffusion tensor imaging (DTI)-based quantitative analysis in acute, mild, and moderate TBI can identify axonal injury neuropathology, over and above that visualized on conventional MRI scans. Furthermore, the significant correlation observed between FA and MD indices and the severity of post-concussive symptoms could make it a useful predictor of the long-term outcome

  8. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  9. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

    OpenAIRE

    S. Porter; I.J. Torres; W. Panenka; Z. Rajwani; D. Fawcett; A. Hyder; N. Virji-Babul

    2017-01-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to asse...

  10. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  11. Characteristics of Firearm Brain Injury Survivors in the Traumatic Brain Injury Model Systems (TBIMS) National Database: A Comparison of Assault and Self-Inflicted Injury Survivors.

    Science.gov (United States)

    Bertisch, Hilary; Krellman, Jason W; Bergquist, Thomas F; Dreer, Laura E; Ellois, Valerie; Bushnik, Tamara

    2017-11-01

    To characterize and compare subgroups of survivors with assault-related versus self-inflicted traumatic brain injuries (TBIs) via firearms at the time of inpatient rehabilitation and at 1-, 2-, and 5-year follow-up. Secondary analysis of data from the Traumatic Brain Injury Model Systems National Database (TBIMS NDB), a multicenter, longitudinal cohort study. Retrospective analyses of a subset of individuals enrolled in the TBIMS NDB. Individuals 16 years and older (N=399; 310 via assault, 89 via self-inflicted injury) with a primary diagnosis of TBI caused by firearm injury enrolled in the TBIMS NDB. Not applicable. Disability Rating Scale, Glasgow Outcome Scale-Extended, sociodemographic variables (sex, age, race, marital status), injury-related/acute care information (posttraumatic amnesia, loss of consciousness, time from injury to acute hospital discharge), and mental health variables (substance use history, psychiatric hospitalizations, suicide history, incarcerations). Individuals who survived TBI secondary to a firearm injury differed by injury mechanism (assault vs self-inflicted) on critical demographic, injury-related/acute care, and mental health variables at inpatient rehabilitation and across long-term recovery. Groups differed in terms of geographic area, age, ethnicity, education, marital status, admission Glasgow Coma Scale score, and alcohol abuse, suicide attempts, and psychiatric hospitalizations at various time points. These findings have implications for prevention (eg, mental health programming and access to firearms in targeted areas) and for rehabilitation planning (eg, by incorporating training with coping strategies and implementation of addictions-related services) for firearm-related TBI, based on subtype of injury. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  13. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  14. Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury.

    Science.gov (United States)

    Dennis, Maureen; Simic, Nevena; Bigler, Erin D; Abildskov, Tracy; Agostino, Alba; Taylor, H Gerry; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen

    2013-07-01

    We studied three forms of dyadic communication involving theory of mind (ToM) in 82 children with traumatic brain injury (TBI) and 61 children with orthopedic injury (OI): Cognitive (concerned with false belief), Affective (concerned with expressing socially deceptive facial expressions), and Conative (concerned with influencing another's thoughts or feelings). We analyzed the pattern of brain lesions in the TBI group and conducted voxel-based morphometry for all participants in five large-scale functional brain networks, and related lesion and volumetric data to ToM outcomes. Children with TBI exhibited difficulty with Cognitive, Affective, and Conative ToM. The perturbation threshold for Cognitive ToM is higher than that for Affective and Conative ToM, in that Severe TBI disturbs Cognitive ToM but even Mild-Moderate TBI disrupt Affective and Conative ToM. Childhood TBI was associated with damage to all five large-scale brain networks. Lesions in the Mirror Neuron Empathy network predicted lower Conative ToM involving ironic criticism and empathic praise. Conative ToM was significantly and positively related to the package of Default Mode, Central Executive, and Mirror Neuron Empathy networks and, more specifically, to two hubs of the Default Mode Network, the posterior cingulate/retrosplenial cortex and the hippocampal formation, including entorhinal cortex and parahippocampal cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Economic Impact of Combat Related Injuries from the Wars in Iraq and Afghanistan

    Science.gov (United States)

    2017-04-01

    study the effects of alterative field and transport treatment protocols on the course and outcomes of moderate to severe traumatic brain injury. Study...Security Administration earnings databases, plus diagnosis-specific civilian data on missing cost factors. We will use case-control studies to better...protocols on the course and outcomes of moderate to severe traumatic brain injury This project’s purpose is to (1) estimate the economic impact of

  16. Economic Impact of Combat-Related Injuries from the Wars in Iraq and Afghanistan

    Science.gov (United States)

    2017-04-01

    study the effects of alterative field and transport treatment protocols on the course and outcomes of moderate to severe traumatic brain injury. Study...Security Administration earnings databases, plus diagnosis-specific civilian data on missing cost factors. We will use case-control studies to better...protocols on the course and outcomes of moderate to severe traumatic brain injury This project’s purpose is to (1) estimate the economic impact of

  17. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  18. Virtual Reality for Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Elisa R. Zanier

    2018-05-01

    Full Text Available In this perspective, we discuss the potential of virtual reality (VR in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  19. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning

    NARCIS (Netherlands)

    Rosenberg, H.; Dethier, M.; Kessels, R.P.C.; Westbrook, R.F.; McDonald, S.

    2015-01-01

    OBJECTIVE: Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative

  20. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  1. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  2. Self-perceived health care needs and delivery of health care services 5 years after moderate-to-severe traumatic brain injury.

    Science.gov (United States)

    Andelic, Nada; Soberg, Helene L; Berntsen, Svein; Sigurdardottir, Solrun; Roe, Cecilie

    2014-11-01

    To describe the self-perceived health care needs of patients with moderate-to-severe traumatic brain injury (TBI) and to assess the impact of the functional level at 1 year after injury on patients' unmet needs at the 5-year follow-up. A prospective follow-up study. Clinical research. A total of 93 patients participated in the 5-year follow-up. We registered demographic and injury-related data at the time of admission and the scores for the Disability Rating Scale, Glasgow Outcome Scale-Extended, and Short Form 36 subscales for physical functioning and mental health at 1 and 5 years. The patients' self-perceived health care needs and use of health care services at 5 years were the main outcome measurements. At the 5-year follow-up, 70% of patients reported at least 1 perceived need. The self-perceived health care needs were met for 39% of the patients. The patients with unmet needs (n = 29 [31%]) reported frequent needs in emotional (65%), vocational (62%), and cognitive (58%) domains. These patients were significantly more likely to present a less severe disability on the Disability Rating Scale at the 1-year follow-up (odds ratio [OR] 0.11 [95% confidence interval {CI}, 0.02-0.7]; P = .02). Worse mental health at the 1-year follow-up and a younger age (16-29 years) largely predicted unmet needs at the 5-year follow-up (OR 3.28 [95% CI, 1.1-10.04], P = .04; and OR 4.93 [95% CI, 0.16-15.2], P = .005, respectively). Gaps between self-perceived health care needs and health care services received at the 5-year follow-up were found. An important message to clinicians who provide health care services in the late TBI phase is that they should be aware of patients' long-term needs regarding cognitive and emotional difficulties. Of equal importance is an emphasis on long-term vocational rehabilitation services. To ensure the appropriateness of health care service delivery, health care services after TBI should be better targeted at less-severe TBI population as well

  3. Performance Monitoring in Children Following Traumatic Brain Injury Compared to Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Amy A. Wilkinson PhD

    2017-10-01

    Full Text Available Children with traumatic brain injury are reported to have deficits in performance monitoring, but the mechanisms underlying these deficits are not well understood. Four performance monitoring hypotheses were explored by comparing how 28 children with traumatic brain injury and 28 typically developing controls (matched by age and sex performed on the stop-signal task. Control children slowed significantly more following incorrect than correct stop-signal trials, fitting the error monitoring hypothesis. In contrast, the traumatic brain injury group showed no performance monitoring difference with trial types, but significant group differences did not emerge, suggesting that children with traumatic brain injury may not perform the same way as controls.

  4. Narrative literature review: Health, activity and participation issues for women following traumatic brain injury.

    Science.gov (United States)

    O'Reilly, Kate; Wilson, Nathan; Peters, Kath

    2017-06-06

    This narrative review will draw attention to the current limitations within the literature related to women following traumatic brain injury in order to stimulate discussion and inform future directions for research. There is a wide-ranging body of research about traumatic brain injury with the higher incidence of brain injury among males reflected in this body of work. As a result, the specific gendered issues facing women with traumatic brain injury are not as well understood. A search of electronic databases was conducted using the terms "traumatic brain injury", "brain injury", "women", "participation", "concussion" and "outcomes". The 36 papers revealed the following five themes (1) Relationships and life satisfaction; (2) Perception of self and body image; (3) Meaningful occupation; (4) Sexuality and sexual health; and (5) Physical function. Without research, which focuses specifically on the experience of women and girls with traumatic brain injury there is a risk that clinical care, policy development and advocacy services will not effectively accommodate them. Implications for rehabilitation Exploring the gendered issues women may experience following traumatic brain injury will enhance clinicians understanding of the unique challenges they face. Such information has the potential to guide future directions for research, policy, and practice. Screening women for hormonal imbalances such as hypopituitarism following traumatic brain injury is recommended as this may assist clinicians in addressing the far reaching implications in regard to disability, quality of life and mood. The growing literature regarding the cumulative effect of repeat concussions following domestic violence and women's increased risk of sport-related concussion may assist clinicians in advocating for appropriate rehabilitation and community support services.

  5. Wechsler Adult Intelligence Scale-Third Edition profiles and their relationship to self-reported outcome following traumatic brain injury.

    Science.gov (United States)

    Harman-Smith, Yasmin E; Mathias, Jane L; Bowden, Stephen C; Rosenfeld, Jeffrey V; Bigler, Erin D

    2013-01-01

    Neuropsychological assessments of outcome after traumatic brain injury (TBI) are often unrelated to self-reported problems after TBI. The current study cluster-analyzed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) subtest scores from mild, moderate, and severe TBI (n=220) and orthopedic injury control (n=95) groups, to determine whether specific cognitive profiles are related to people's perceived outcomes after TBI. A two-stage cluster analysis produced 4- and 6-cluster solutions, with the 6-cluster solution better capturing subtle variations in cognitive functioning. The 6 clusters differed in the levels and profiles of cognitive performance, self-reported recovery, and education and injury severity. The findings suggest that subtle cognitive impairments after TBI should be interpreted in conjunction with patient's self-reported problems.

  6. Facial emotion recognition deficits following moderate-severe Traumatic Brain Injury (TBI): re-examining the valence effect and the role of emotion intensity.

    Science.gov (United States)

    Rosenberg, Hannah; McDonald, Skye; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick

    2014-11-01

    Many individuals who sustain moderate-severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether this "valence effect" might be an artifact of the wide use of static facial emotion stimuli (usually full-blown expressions) which differ in difficulty rather than a real consequence of brain impairment. This study aimed to investigate the valence effect in TBI, while examining emotion recognition across different intensities (low, medium, and high). Twenty-seven individuals with TBI and 28 matched control participants were tested on the Emotion Recognition Task (ERT). The TBI group was more impaired in overall emotion recognition, and less accurate recognizing negative emotions. However, examining the performance across the different intensities indicated that this difference was driven by some emotions (e.g., happiness) being much easier to recognize than others (e.g., fear and surprise). Our findings indicate that individuals with TBI have an overall deficit in facial emotion recognition, and that both people with TBI and control participants found some emotions more difficult than others. These results suggest that conventional measures of facial affect recognition that do not examine variance in the difficulty of emotions may produce erroneous conclusions about differential impairment. They also cast doubt on the notion that dissociable neural pathways underlie the recognition of positive and negative emotions, which are differentially affected by TBI and potentially other neurological or psychiatric disorders.

  7. Does safety climate moderate the influence of staffing adequacy and work conditions on nurse injuries?

    Science.gov (United States)

    Mark, Barbara A; Hughes, Linda C; Belyea, Michael; Chang, Yunkyung; Hofmann, David; Jones, Cheryl B; Bacon, Cynthia T

    2007-01-01

    Hospital nurses have one of the highest work-related injury rates in the United States. Yet, approaches to improving employee safety have generally focused on attempts to modify individual behavior through enforced compliance with safety rules and mandatory participation in safety training. We examined a theoretical model that investigated the impact on nurse injuries (back injuries and needlesticks) of critical structural variables (staffing adequacy, work engagement, and work conditions) and further tested whether safety climate moderated these effects. A longitudinal, non-experimental, organizational study, conducted in 281 medical-surgical units in 143 general acute care hospitals in the United States. Work engagement and work conditions were positively related to safety climate, but not directly to nurse back injuries or needlesticks. Safety climate moderated the relationship between work engagement and needlesticks, while safety climate moderated the effect of work conditions on both needlesticks and back injuries, although in unexpected ways. DISCUSSION AND IMPACT ON INDUSTRY: Our findings suggest that positive work engagement and work conditions contribute to enhanced safety climate and can reduce nurse injuries.

  8. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  9. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  10. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2016-02-01

    excised after severe brain injury . Experimental neurology 2004;190:192-203. 24. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative...Brain Injury PRINCIPAL INVESTIGATORs: Marc Diamond, MD CONTRACTING ORGANIZATION: Washington University, St Louis MO 63110 UT Southwestern, Dallas...of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-13-2-0016 5c. PROGRAM ELEMENT NUMBER 6

  11. Estrone is neuroprotective in rats after traumatic brain injury.

    Science.gov (United States)

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (pcerebral cortical levels of TUNEL-positive staining (pprotective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  12. Placebo-controlled trial of amantadine for severe traumatic brain injury

    DEFF Research Database (Denmark)

    Giacino, Joseph T; Whyte, John; Bagiella, Emilia

    2012-01-01

    Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery.......Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery....

  13. A study of cerebral circulation in patients on moderate hypothermia therapy

    International Nuclear Information System (INIS)

    Honda, Mitsuru; Kushida, Tsuyoshi; Nagao, Takeki; Seiki, Yoshikatsu; Shibata, Iekado

    2003-01-01

    Recently, moderate hypothermia with cooling of the brain to 32-33 deg C has been widely applied to patients with severe brain damage. We evaluated the cerebral circulation of patients treated with moderate hypothermia therapy. In 16 patients with severe brain damage, both Xe-CT and Perfusion CT were performed during moderate hypothermia. The study included 5 head injury patients, 6 anoxic brain patients, 2 subarachnoid hemorrhage patients, 2 cerebral embolization patients and 1 cerebral hemorrhage patient. We measured cerebral blood flow (CBF) values using Xe-CT and mean transit time (MTT) by Perfusion CT and calculated cerebral blood volume (CBV) using an AZ-7000W98 computer system. In 16 patients, moderate hypothermia decreased both CBF (21.4±14.0 ml/100 g/min) and CBV (3.4±2.9 ml/100 g) and increased MTT (9.6±l.9 sec) compared to normal volunteers. However, patients who became brain death during moderate hypothermia maintained high levels of CBF and CBV. Based on the present results, we propose that reduction of CBV and CBF by moderate hypothermia can play important role in protecting brain from damage. (author)

  14. Project Career: Perceived benefits of iPad apps among college students with Traumatic Brain Injury (TBI).

    Science.gov (United States)

    Jacobs, K; Leopold, A; Hendricks, D J; Sampson, E; Nardone, A; Lopez, K B; Rumrill, P; Stauffer, C; Elias, E; Scherer, M; Dembe, J

    2017-09-14

    Project Career is an interprofessional five-year development project designed to improve academic and employment success of undergraduate students with a traumatic brain injury (TBI) at two- and four-year colleges and universities. Students receive technology in the form of iPad applications ("apps") to support them in and out of the classroom. To assess participants' perspectives on technology at baseline and perceived benefit of apps after 6 and 12 months of use. This article address a component of a larger study. Participants included 50 college-aged students with traumatic brain injuries. Statistical analysis included data from two Matching Person and Technology (MPT) assessment forms, including the Survey of Technology Use at baseline and the Assistive Technology Use Follow-Up Survey: Apps Currently Using, administered at 6- and 12-months re-evaluation. Analyses included frequencies and descriptives. Average scores at baseline indicated positive perspectives on technology. At 6 months, quality of life (67%) and academics (76%) improved moderately or more from the use of iPad apps. At 12 months, quality of life (65%) and academics (82%) improved moderately or more from the use of iPad apps. Students with a TBI have positive perspectives on technology use. The results on perceived benefit of apps indicated that students with a TBI (including civilians and veterans) report that the apps help them perform in daily life and academic settings.

  15. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Howarth, D.M.; Lan, L.; Booth, G.; Christie, J.; Bookalil, A.; Pollack, M.; Pacey, D.

    1999-01-01

    Full text: The aim of this study was to use semi-quantitative 99 Tc m -ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99 Tc m -Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  16. Traumatic brain injuries in the construction industry.

    Science.gov (United States)

    Colantonio, Angela; McVittie, Doug; Lewko, John; Yin, Junlang

    2009-10-01

    This study analyses factors associated with work-related traumatic brain injury (TBI), specifically in the construction industry in Ontario, Canada. This cross-sectional study utilized data extracted from the Ontario Workplace Safety and Insurance Board (WSIB) records indicating concussion/intracranial injury that resulted in days off work in 2004-2005. Analyses of 218 TBI cases revealed that falls were the most common cause of injury, followed by being struck by or against an object. Mechanisms of injury and the temporal profile of injury also varied by age. For instance, a significantly higher proportion of injuries occurred in the mornings for young workers compared to older workers. The results of this study provide important information for prevention of TBI which suggest important age-specific strategies for workers in the construction industry.

  17. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    Science.gov (United States)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  18. Reduced brain/serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury.

    Science.gov (United States)

    Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A

    2013-12-01

    The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.

  19. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review.

    Science.gov (United States)

    Simpson-Jones, Mary E; Hunt, Anne W

    2018-04-10

    To broadly examine the literature to identify vision interventions following mild traumatic brain injury. Objectives are to identify: (1) evidence-informed interventions for individuals with visual dysfunction after mild traumatic brain injury; (2) professions providing these interventions; (3) gaps in the literature and areas for further research. A scoping review was conducted of four electronic databases of peer-reviewed literature from the databases earliest records to June 2017. Articles were included if the study population was mild traumatic brain injury/concussion and a vision rehabilitation intervention was tested. Two independent reviewers screened articles for inclusion, extracted data, and identified themes. The initial search identified 3111 records. Following exclusions, 22 articles were included in the final review. Nine studies evaluated optical devices, such as corrective spectacles, contact lenses, prisms, or binasal occlusion. Two studies assessed vision therapy. Ten studies examined vision therapy using optical devices. One study investigated hyperbaric oxygen therapy. Optometrists performed these interventions in most of the studies. Future research should address quality appraisal of this literature, interventions that include older adult and pediatric populations, and interdisciplinary interventions. There are promising interventions for vision deficits following mild traumatic brain injury. However, there are multiple gaps in the literature that should be addressed by future research. Implications for Rehabilitation Mild traumatic brain injury may result in visual deficits that can contribute to poor concentration, headaches, fatigue, problems reading, difficulties engaging in meaningful daily activities, and overall reduced quality of life. Promising interventions for vision rehabilitation following mild traumatic brain injury include the use of optical devices (e.g., prism glasses), vision or oculomotor therapy (e.g., targeted exercises to

  20. Beam diagnostics for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikol`skiy Yu.E.

    2012-06-01

    Full Text Available

    The paper presents aliterature review of domestic and foreign sources of modern methods of diagnostics imaging for traumatic brain injury. Information of the magnetic resonance imaging and computed tomography in the of this disease

  1. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  2. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  3. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Late intellectual and academic outcomes following traumatic brain injury sustained during early childhood.

    Science.gov (United States)

    Ewing-Cobbs, Linda; Prasad, Mary R; Kramer, Larry; Cox, Charles S; Baumgartner, James; Fletcher, Stephen; Mendez, Donna; Barnes, Marcia; Zhang, Xiaoling; Swank, Paul

    2006-10-01

    Although long-term neurological outcomes after traumatic brain injury (TBI) sustained early in life are generally unfavorable, the effect of TBI on the development of academic competencies is unknown. The present study characterizes intelligence quotient (IQ) and academic outcomes an average of 5.7 years after injury in children who sustained moderate to severe TBI prior to 6 years of age. Twenty-three children who suffered inflicted or noninflicted TBI between the ages of 4 and 71 months were enrolled in a prospective, longitudinal cohort study. Their mean age at injury was 21 months; their mean age at assessment was 89 months. The authors used general linear modeling approaches to compare IQ and standardized academic achievement test scores from the TBI group and a community comparison group (21 children). Children who sustained early TBI scored significantly lower than children in the comparison group on intelligence tests and in the reading, mathematical, and language domains of achievement tests. Forty-eight percent of the TBI group had IQs below the 10th percentile. During the approximately 5-year follow-up period, longitudinal IQ testing revealed continuing deficits and no recovery of function. Both IQ and academic achievement test scores were significantly related to the number of intracranial lesions and the lowest postresuscitation Glasgow Coma Scale score but not to age at the time of injury. Nearly 50% of the TBI group failed a school grade and/or required placement in self-contained special education classrooms; the odds of unfavorable academic performance were 18 times higher for the TBI group than the comparison group. Traumatic brain injury sustained early in life has significant and persistent consequences for the development of intellectual and academic functions and deleterious effects on academic performance.

  5. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    Science.gov (United States)

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    Science.gov (United States)

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  7. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning.

    Science.gov (United States)

    Geurtsen, Gert J; van Heugten, Caroline M; Meijer, Ron; Martina, Juan D; Geurts, Alexander C H

    2011-01-01

    To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. A prospective cohort study with waiting list control and 1-year follow-up. Forty-one caregivers of which 28 female. Mean age was 48 ± 8.3 years and 33 caregivers were parents. A structured residential treatment programme was offered to the patients directed at domestic life, work, leisure time and social interactions. The Involvement Evaluation Questionnaire for Brain Injury (IEQ-BI) for emotional burden, the General Health Questionnaire (GHQ) for psychological health and the Family Assessment Device (FAD) for family functioning were used. There was an overall significant effect of Time for all outcome measures (MANOVA T(2 )= 9.1, F(15,317) = 64.1, p = 0.000). The effect sizes were moderate for three IEQ-BI sub-scales (partial η(2 )= 0.12-0.17) and small for two sub-scales (partial η(2 )= 0.05-0.09). The effect size for GHQ was moderate (partial η(2 )= 0.11). As for FAD no significant time effects were present (partial η(2 )= 0.00-0.04). Emotional burden and psychological health of the caregivers improved significantly when patients with acquired brain injury and psychosocial problems followed a residential community reintegration programme. Family dynamics remained stable.

  8. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  9. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  10. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury

    DEFF Research Database (Denmark)

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-01-01

    to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation...... is substantial. OBJECTIVE: The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both...... physical and mental functioning, thus improving the quality of life. METHODS: This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury...

  11. Braque and Kokoschka: Brain Tissue Injury and Preservation of Artistic Skill.

    Science.gov (United States)

    Zaidel, D W

    2017-08-19

    The neural underpinning of art creation can be gleaned following brain injury in professional artists. Any alteration to their artistic productivity, creativity, skills, talent, and genre can help understand the neural underpinning of art expression. Here, two world-renown and influential artists who sustained brain injury in World War I are the focus, namely the French artist Georges Braque and the Austrian artist Oskar Kokoschka. Braque is particularly associated with Cubism, and Kokoschka with Expressionism. Before enlisting, they were already well-known and highly regarded. Both were wounded in the battlefield where they lost consciousness and treated in European hospitals. Braque's injury was in the left hemisphere while Kokoschka's was in the right hemisphere. After the injury, Braque did not paint again for nearly a whole year while Kokoschka commenced his artistic works when still undergoing hospital treatment. Their post-injury art retained the same genre as their pre-injury period, and their artistic skills, talent, creativity, and productivity remained unchanged. The quality of their post-injury artworks remained highly regarded and influential. These neurological cases suggest widely distributed and diffuse neural control by the brain in the creation of art.

  12. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    Science.gov (United States)

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  13. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  14. Diagnostic and treatment challenges in traumatic brain injury patients with severe neuropsychiatric symptoms: insights into psychiatric practice

    Directory of Open Access Journals (Sweden)

    Lauterbach MD

    2015-07-01

    Full Text Available Margo D Lauterbach,1 Paula L Notarangelo,1 Stephen J Nichols,2 Kristy S Lane,1 Vassilis E Koliatsos11The Neuropsychiatry Program at Sheppard Pratt, Sheppard Pratt Health System, Baltimore, MD, 2Department of Emergency Medicine, The University of Tennessee College of Medicine Chattanooga, Chattanooga, TN, USAAbstract: Traumatic brain injury (TBI causes a variety of neuropsychiatric problems that pose diagnostic and treatment challenges for providers. In this report, we share our experience as a referral neuropsychiatry program to assist the general psychiatrist when adult TBI patients with psychiatric symptoms present for evaluation and treatment. We completed a retrospective study of patients with moderate-to-severe TBI and severe neuropsychiatric impairments. We collected information on demographics, nature of injury, symptomatology, diagnoses, and treatments. Data analysis indicates that mood stabilization was a key concern, often requiring aggressive pharmacological management. Cognitive dysfunction was a problem for the majority of patients, but was only medicated in a third, due to poor efficacy or behavioral side effects. The co-occurrence of multiple TBI-related symptoms and diagnoses in this patient cohort emphasizes the need for individualized psychopharmacological approaches and interventions.Keywords: traumatic brain injury, neurobehavioral, treatment

  15. The iconic memory skills of brain injury survivors and non-brain injured controls after visual scanning training.

    Science.gov (United States)

    McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T

    1994-01-01

    Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.

  16. Assessment of emotion processing skills in acquired brain injury using an ability-based test of emotional intelligence.

    Science.gov (United States)

    Hall, Sarah E; Wrench, Joanne M; Wilson, Sarah J

    2018-04-01

    Social and emotional problems are commonly reported after moderate to severe acquired brain injury (ABI) and pose a significant barrier to rehabilitation. However, progress in assessment of emotional skills has been limited by a lack of validated measurement approaches. This study represents the first formal psychometric evaluation of the use of the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) V2.0 as a tool for assessing skills in perceiving, using, understanding and managing emotions following ABI. The sample consisted of 82 participants aged 18-80 years in the postacute phase of recovery (2 months-7 years) after moderate to severe ABI. Participants completed the MSCEIT V2.0 and measures of cognition and mood. Sociodemographic and clinical variables were collated from participant interview and medical files. Results revealed deficits across all MSCEIT subscales (approximately 1 SD below the normative mean). Internal consistency was adequate at overall, area, and branch levels, and MSCEIT scores correlated in expected ways with key demographic, clinical, cognitive, and mood variables. MSCEIT performance was related to injury severity and clinician-rated functioning after ABI. Confirmatory factor analysis favored a 3-factor model of EI due to statistical redundancy of the Using Emotions branch. Overall, these findings suggest that the MSCEIT V2.0 is sensitive to emotion processing deficits after moderate to severe ABI, and can yield valid and reliable scores in an ABI sample. In terms of theoretical contributions, our findings support a domain-based, 3-factor approach for characterizing emotion-related abilities in brain-injured individuals. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Directory of Open Access Journals (Sweden)

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  18. ‘Studying Injured Minds’ - The Vietnam Head Injury Study and 40 years of brain injury research

    Directory of Open Access Journals (Sweden)

    Vanessa eRaymont

    2011-03-01

    Full Text Available The study of those who have sustained traumatic brain injuries (TBI during military conflicts has greatly facilitated research in the fields of neuropsychology, neurosurgery, psychiatry, neurology and neuroimaging. The Vietnam Head Injury Study (VHIS is a prospective, long-term follow-up study of a cohort of 1,221 Vietnam veterans with mostly penetrating brain injuries, which has stretched over more than 40 years. The scope of this study, both in terms of the types of injury and fields of examination, has been extremely broad. It has been instrumental in extending the field of TBI research and in exposing pressing medical and social issues that affect those who suffer such injuries. This review summarizes the history of conflict-related TBI research and the VHIS to date, as well as the vast range of important findings the VHIS has established.

  19. Assessing frontal behavioral syndromes and cognitive functions in traumatic brain injury.

    Science.gov (United States)

    Lengenfelder, Jeannie; Arjunan, Aparna; Chiaravalloti, Nancy; Smith, Angela; DeLuca, John

    2015-01-01

    This study examined the relationship between individual and family ratings on a measure of frontal behaviors using the Frontal Systems Behavior Scale (FrSBe). Additionally, this study investigated whether self-reported symptoms of frontal-lobe dysfunction correspond to neuropsychological performance, particularly those tests measuring executive functions. Thirty-three individuals with moderate-to-severe traumatic brain injury (TBI) and 19 healthy individuals completed the FrSBe and neuropsychological measures. Results indicated that the self-ratings of individuals' apathy, disinhibition, and executive dysfunction significantly increased from before to after injury, as did the family members' ratings, with no significant difference between the patients' and family members' reports for any of the three FrSBe subscales. Although individuals with TBI demonstrated impairments in neuropsychological measures, including measures of executive functioning, few significant correlations were found between the patients' FrSBe ratings and measures of cognitive functioning. This suggests that information from the FrSBe may differ from information gathered during a cognitive evaluation and may enhance our understanding of the behavioral sequelae following TBI that may not be captured by neuropsychological assessment alone.

  20. The Overt Behaviour Scale-Self-Report (OBS-SR) for acquired brain injury: exploratory analysis of reliability and validity.

    Science.gov (United States)

    Kelly, Glenn; Simpson, Grahame K; Brown, Suzanne; Kremer, Peter; Gillett, Lauren

    2017-05-23

    The objectives were to test the properties, via a psychometric study, of the Overt Behaviour Scale-Self-Report (OBS-SR), a version of the OBS-Adult Scale developed to provide a client perspective on challenging behaviours after acquired brain injury. Study sample 1 consisted of 37 patients with primary brain tumour (PBT) and a family-member informant. Sample 2 consisted of 34 clients with other acquired brain injury (mixed brain injury, MBI) and a service-provider informant. Participants completed the OBS-SR (at two time points), and the Awareness Questionnaire (AQ) and Mayo Portland Adaptability Inventory-III (MPAI-III) once; informants completed the OBS-Adult and AQ once only. PBT-informant dyads displayed "good" levels of agreement (ICC 2,k  = .74; OBS-SR global index). Although MBI-informant dyads displayed no agreement (ICC 2,k  = .22; OBS-SR global index), the sub-group (17/29) rated by clinicians as having moderate to good levels of awareness displayed "fair" agreement (ICC 2,k  = .58; OBS-SR global index). Convergent/divergent validity was demonstrated by significant correlations between OBS-SR subscales and MPAI-III subscales with behavioural content (coefficients in the range .36 -.61). Scores had good reliability across one week (ICC 2,k  = .69). The OBS-SR took approximately 15 minutes to complete. It was concluded that the OBS-SR demonstrated acceptable reliability and validity, providing a useful resource in understanding clients' perspectives about their behaviour.

  1. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  2. Spinal cord injury and its association with blunt head trauma

    OpenAIRE

    Paiva, Wellingson S; Oliveira, Arthur MP; Andrade, Almir F; Amorim, Robson LO; Lourenço, Leonardo JO; Teixeira, Manoel J

    2011-01-01

    Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patien...

  3. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  5. Hypopituitarism in pediatric survivors of inflicted traumatic brain injury.

    Science.gov (United States)

    Auble, Bethany A; Bollepalli, Sureka; Makoroff, Kathi; Weis, Tammy; Khoury, Jane; Colliers, Tracy; Rose, Susan R

    2014-02-15

    Endocrine dysfunction is common after accidental traumatic brain injury (TBI). Prevalence of endocrine dysfunction after inflicted traumatic brain injury (iTBI) is not known. The aim of this study was to examine endocrinopathy in children after moderate-to-severe iTBI. Children with previous iTBI (n=14) were evaluated for growth/endocrine dysfunction, including anthropometric measurements and hormonal evaluation (nocturnal growth hormone [GH], thyrotropin surge, morning and low-dose adrenocorticotropin stimulated cortisol, insulin-like growth factor 1, IGF-binding protein 3, free thyroxine, prolactin [PRL], and serum/urine osmolality). Analysis used Fisher's exact test and Wilcoxon's rank-sum test, as appropriate. Eighty-six percent of subjects had endocrine dysfunction with at least one abnormality, whereas 50% had two or more abnormalities, significantly increased compared to an estimated 2.5% with endocrine abnormality in the general population (p<0.001). Elevated prolactin was common (64%), followed by abnormal thyroid function (33%), short stature (29%), and low GH peak (17%). High prolactin was common in subjects with other endocrine abnormalities. Two were treated with thyroid hormone and 2 may require GH therapy. In conclusion, children with a history of iTBI show high risk for endocrine dysfunction, including elevated PRL and growth abnormalities. This effect of iTBI has not been well described in the literature. Larger, multi-center, prospective studies would provide more data to determine the extent of endocrine dysfunction in iTBI. We recommend that any child with a history of iTBI be followed closely for growth velocity and pubertal changes. If growth velocity is slow, PRL level and a full endocrine evaluation should be performed.

  6. Clinical treatment of traumatic brain injury complicated by cranial nerve injury.

    Science.gov (United States)

    Jin, Hai; Wang, Sumin; Hou, Lijun; Pan, Chengguang; Li, Bo; Wang, Hui; Yu, Mingkun; Lu, Yicheng

    2010-09-01

    To discuss the epidemiology, diagnosis and surgical treatment of cranial nerve injury following traumatic brain injury (TBI) for the sake of raising the clinical treatment of this special category of TBI. A retrospective analysis was made of 312 patients with cranial nerve injury among 3417 TBI patients, who were admitted for treatment in this hospital. A total of 312 patients (9.1%) involving either a single nerve or multiple nerves among the 12 pairs of cranial nerves were observed. The extent of nerve injury varied and involved the olfactory nerve (66 cases), optic nerve (78 cases), oculomotor nerve (56 cases), trochlear nerve (8 cases), trigeminal nerve (4 cases), abducent nerve (12 cases), facial nerve (48 cases), acoustic nerve (10 cases), glossopharyngeal nerve (8 cases), vagus nerve (6 cases), accessory nerve (10 cases) and hypoglossal nerve (6 cases). Imaging examination revealed skull fracture in 217 cases, complicated brain contusion in 232 cases, epidural haematoma in 194 cases, subarachnoid haemorrhage in 32 cases, nasal cerebrospinal fluid (CSF) leakage in 76 cases and ear CSF leakage in 8 cases. Of the 312 patients, 46 patients died; the mortality rate associated with low cranial nerve injury was as high as 73.3%. Among the 266 surviving patients, 199 patients received conservative therapy and 67 patients received surgical therapy; the curative rates among these two groups were 61.3% (122 patients) and 86.6% (58 patients), respectively. TBI-complicated cranial nerve injury is subject to a high incidence rate, a high mortality rate and a high disability rate. Our findings suggest that the chance of recovery may be increased in cases where injuries are amenable to surgical decompression. It is necessary to study all 12 pairs of cranial nerves systematically. Clinically, it is necessary to standardise surgical indications, operation timing, surgical approaches and methods for the treatment of TBI-complicated cranial nerve injury. 2010 Elsevier Ltd. All

  7. The influence of post-acute rehabilitation length of stay on traumatic brain injury outcome: a retrospective exploratory study.

    Science.gov (United States)

    Ashley, Jessica G; Ashley, Mark J; Masel, Brent E; Randle, Kevin; Kreber, Lisa A; Singh, Charan; Harrington, David; Griesbach, Grace S

    2018-01-01

    Data regarding length of stay (LOS) in a rehabilitation programme after traumatic brain injury (TBI) are limited. The goal of this study was to examine the effect of LOS and disability on outcome following TBI. Records from patients in a multidisciplinary rehabilitation programme at least 3 months after TBI were analysed retrospectively to study the influence of LOS on functional outcome at different levels of disability. Functional status was determined by the Mayo-Portland Adaptability Inventory (MPAI) and the Community Integration Questionnaire (CIQ). Patients were further grouped by time since injury of 3-12 months or over 1 year. Those with a mild and moderate disabilities and over 1 year chronicity showed improvements after 90 days of rehabilitation. Patients with a severe disability and over 1 year chronicity required at least 180 days to show improvements. Moderately and severely disabled patients with an injury chronicity of 3-12 months showed improvements in the MPAI after 90 days. However, further improvement was observed after 180 days in the severely disabled group. Results suggest that both, level of disability and injury chronicity, should be considered when determining LOS. Data also show an association between LOS and changes in the MPAI and CIQ.

  8. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  9. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time,

  10. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  11. Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome.

    Science.gov (United States)

    Skandsen, Toril; Kvistad, Kjell Arne; Solheim, Ole; Strand, Ingrid Haavde; Folvik, Mari; Vik, Anne

    2010-09-01

    In this prospective cohort study the authors examined patients with moderate to severe head injuries using MR imaging in the early phase. The objective was to explore the occurrence of diffuse axonal injury (DAI) and determine whether DAI was related to level of consciousness and patient outcome. One hundred and fifty-nine patients (age range 5-65 years) with traumatic brain injury, who survived the acute phase, and who had a Glasgow Coma Scale (GCS) score of 3-13 were admitted between October 2004 and August 2008. Of these 159 patients, 106 were examined using MR imaging within 4 weeks postinjury. Patients were classified into 1 of 3 stages of DAI: Stage 1, in which lesions were confined to the lobar white matter; Stage 2, in which there were callosal lesions; and Stage 3, in which lesions occurred in the dorsolateral brainstem. The outcome measure used 12 months postinjury was the Glasgow Outcome Scale-Extended (GOSE). Diffuse axonal injury was detected in 72% of the patients and a combination of DAI and contusions or hematomas was found in 50%. The GCS score was significantly lower in patients with "pure DAI" (median GCS Score 9) than in patients without DAI (median GCS Score 12; p GOSE score of 7, and patients without DAI had a median GOSE score of 8 (p = 0.10). Outcome was better in patients with DAI Stage 1 (median GOSE Score 8) and DAI Stage 2 (median GOSE Score 7.5) than in patients with DAI Stage 3 (median GOSE Score 4; p < 0.001). Thus, in patients without any brainstem injury, there was no difference in good recovery between patients with DAI (67%) and patients without DAI (66%). Diffuse axonal injury was found in almost three-quarters of the patients with moderate and severe head injury who survived the acute phase. Diffuse axonal injury influenced the level of consciousness, and only in patients with DAI was GCS score related to outcome. Finally, DAI was a negative prognostic sign only when located in the brainstem.

  12. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  13. Hypertonic saline (HTS versus standard (isotonic fluid therapy for traumatic brain injuries: a systematic review

    Directory of Open Access Journals (Sweden)

    Andrit Lourens

    2014-12-01

    Full Text Available Traumatic Brain Injury (TBI is one of the foremost causes of mortality secondary to trauma. Poorer outcomes are associated with secondary insults, after the initial brain injury occurred. The management goal of TBI is to prevent or minimise the effects of secondary brain injuries. The primary objective of this systematic review/meta-analysis was to assess the effects of Hypertonic Saline (HTS compared to Standard Fluid Therapy (SFT in the treatment and resuscitation of TBI patients. We searched CENTRAL, MEDLINE (from 1966, EBSCOhost, Scopus, ScienceDirect, Proquest Medical Library and EMBASE (from 1980 in May 2010 and updated searches in February 2011. Data were assessed and extracted by two independent authors. Risk ratios (RR with a 95% confidence interval (CI were used as the effect measure. The review included three RCTs (1184 participants of which two were of high to moderate quality (1005 participants. HTS was not found to be associated with a reduction in mortality (3 RCTs, 1184 participants, RR 0.91, 95%CI 0.76 to 1.09 and morbidity in TBI patients. No significant improvement in haemodynamical stability was found whereas insufficient data were available to indicate a reduction in the intracranial pressure (ICP. In the HTS group, cerebral perfusion pressure (CPP (MD 3.83 mmHg, 95%CI 1.08 to 6.57 and serum sodium level (MD 8 mEq/L, 95%CI 7.47 to 8.53 were higher. Existing studies show no indication that HTS, in comparison to SFT, reduces mortality or morbidity after the occurrence of TBI. Against this backdrop, some uncertainties still exist in terms of the use of different concentrations and volumes of HTS, the timing of administration as well as the benefit in specific injury profiles. As a result, formulating conclusive recommendations is complex.

  14. Prognostic value of FOUR and GCS scores in determining mortality in patients with traumatic brain injury.

    Science.gov (United States)

    Saika, Amrit; Bansal, Sonia; Philip, Mariamma; Devi, Bhagavatula Indira; Shukla, Dhaval P

    2015-09-01

    The Glasgow Coma Scale (GCS) is considered the gold standard for assessment of unconsciousness in patients with traumatic brain injury (TBI) against which other scales are compared. To overcome the disadvantages of GCS, the Full Outline Of Unresponsiveness (FOUR) score was proposed. We aimed to compare the predictability of FOUR score and GCS for early mortality, after moderate and severe TBI. This is a prospective observational study of patients with moderate and severe TBI. Both FOUR and GCS scores were determined at admission. The primary outcome was mortality at the end of 2 weeks of injury. A total of 138 (117 males) patients were included in the study. Out of these, 17 (12.3 %) patients died within 2 weeks of injury. The mean GCS and FOUR scores were 9.5 (range, 3-13) and 11 (0-16), respectively. The total GCS and FOUR scores were significantly lower in patients who did not survive. At a cut-off score of 7 for FOUR score, the AUC was 0.97, with sensitivity of 97.5 and specificity of 88.2 % (p FOUR scores. The predictive value of the FOUR score on admission of patients with TBI is no better than the GCS score.

  15. Outcome of decompressive craniectomy (DC) for severe traumatic brain injury (stbi) in adults

    International Nuclear Information System (INIS)

    Qasmi, S.A.; Ghaffar, A.; Akram, M.

    2015-01-01

    To evaluate the outcomes of decompressive craniectomy (DC) in adults with severe traumatic brain injury (STBI). Study Design: Observational cross-sectional. Place and Duration of Study: Neurosurgical unit CMH Rawalpindi from July, 2011 to June 2014. Material and Methods: Total of 39 patients who underwent DC for STBI were included in the study. Patients of both sexes and of age range 20 - 48 (32.03 +- 8.01) years were included in the study. The DC was performed within 24 and after 24 hours. Parameters recorded were mortality, neurological outcome / complications like brain herniation, wound dehiscence, cerebrospinal fluid (CSF) leak, contusion expansion, sinking flap syndrome, subdural hygromas and hydrocephalus. Data was analyzed by using SPSS version 17 and descriptive statistics, frequency, rate and percentage was computed for presentation of qualitative outcomes. Results: Favourable neurological outcome was seen in 21 patients (53.85%) where as 6 patients (15.38%) had moderate to severe disability and 3 patients (7.69%) were vegetative respectively. Patients operated within 24 hours and with Glasgow coma scale (GCS) range 6-8 had better outcome. Overall 9 patients (23.08%) did not survive the injury and procedure. Conclusion: As high mortality is associated with STBI, DC is an effective option to lower down the refractory intracranial hypertension with an acceptable surgical outcome. (author)

  16. Association between cognitive impairments and obsessive-compulsive spectrum presentations following traumatic brain injury.

    Science.gov (United States)

    Rydon-Grange, Michelle; Coetzer, Rudi

    2017-01-02

    This study examined the association between self-reported obsessive-compulsive spectrum symptomatology and cognitive performance in a sample of patients with traumatic brain injury (TBI). Twenty-four adults with a moderate-severe TBI accessing a community brain injury rehabilitation service were recruited. Age ranged between 19 and 69 years. Participants completed a battery of neuropsychological tasks assessing memory, executive functioning, and speed of information processing. Self-report questionnaires assessing obsessive-compulsive (OC) symptoms and obsessive-compulsive personality disorder (OCPD) traits were also completed. Correlational analyses revealed that deficits in cognitive flexibility were associated with greater self-reported OC symptomatology and severity. Greater OC symptom severity was significantly related to poorer performance on a visual memory task. Verbal memory and speed of information processing impairments were unrelated to OC symptoms. Performance on tasks of memory, executive functioning, and speed of information processing were not associated with OCPD traits. Overall, results indicate that greater OC symptomatology and severity were associated with specific neuropsychological functions (i.e., cognitive flexibility, visual memory). OCPD personality traits were unrelated to cognitive performance. Further research is needed to examine the potential causal relationship and longer-term interactions between cognitive sequelae and obsessive-compulsive spectrum presentations post-TBI.

  17. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  18. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah

    2005-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... in wild-type and IL-6 knockout mice subjected to a cryolesion of the somatosensorial cortex and killed at 0, 1, 4, 8 and 16 days post-lesion. Overall gene expression was analyzed by using Affymetrix genechips/oligonucleotide arrays with approximately 12,400 probe sets corresponding to approximately 10...... in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The results highlight...

  19. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  20. Caregiver burden in Danish family members of patients with severe brain injury

    DEFF Research Database (Denmark)

    Doser, Karoline; Norup, Anne

    2016-01-01

    OBJECTIVE: To investigate caregiver burden and factors associated with caregiver burden among family members of patients with severe brain injury in the chronic phase. Additionally, the study aimed at investigating differences in burden between parents and spouses. METHODS: Forty-four Danish...... caregivers of patients with severe brain injury were contacted 3-6 years post-injury and asked to complete a measure of caregiver burden. RESULTS: Medium, high and low levels of burden were observed in 45%, 16% and 39% of family members, respectively. Higher burden was seen in caregivers of patients...... with more severe injuries, who spent more time on caregiving and reported more unmet needs. Overall, spouses spent significantly more time taking care of their family member than parents and reported higher levels of burden. CONCLUSIONS: The findings emphasized the continuing consequences of brain injury...

  1. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  2. Long-Term Functional and Psychosocial Outcomes After Hypoxic-Ischemic Brain Injury: A Case-Controlled Comparison to Traumatic Brain Injury.

    Science.gov (United States)

    Harbinson, Meredith; Zarshenas, Sareh; Cullen, Nora K

    2017-12-01

    Despite the increasing rate of survival from hypoxic-ischemic brain injury (HIBI), there is a paucity of evidence on the long-term functional outcomes after inpatient rehabilitation among these nontrauma patients compared to patients with traumatic brain injury (TBI). To compare functional and psychosocial outcomes of patients with HIBI to those of case-matched patients with TBI 4-11 years after brain insult. Retrospective, matched case-controlled study. Data at the time of rehabilitation admission and discharge were collected as part of a larger acquired brain injury (ABI) database at Toronto Rehabilitation Institute (TRI) between 1999 and 2009. This study consisted of 11 patients with HIBI and 11 patients with TBI that attended the neuro-rehabilitation day program at TRI during a similar time frame and were matched on age, admission Functional Independence Measure (FIM) scores, and acute care length of stay (ALOS). At 4-11 years following brain insult, patients were reassessed using the FIM, Disability Rating Scale (DRS), Personal Health Questionnaire Depression Scale (PHQ-9), and the Mayo-Portland Adaptability Inventory 4 (MPAI-4). At follow-up, patients with HIBI had significantly lower FIM motor and cognitive scores than patients with TBI (75.3 ± 20.6 versus 88.1 ± 4.78, P MPAI-4 at follow-up (P < .05). The study results suggest that patients with HIBI achieve less long-term functional improvements compared to patients with TBI. Further research is warranted to compare the components of inpatient rehabilitation while adjusting for demographics and clinical characteristics between these 2 groups of patients. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury

    DEFF Research Database (Denmark)

    Lund, Anton; Damholt, Mette B; Strange, Ditte G

    2017-01-01

    Dialysis disequilibrium syndrome (DDS) is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strateg...

  4. Effect of Age on Glasgow Coma Scale in Patients with Moderate and Severe Traumatic Brain Injury: An Approach with Propensity Score-Matched Population

    Directory of Open Access Journals (Sweden)

    Cheng-Shyuan Rau

    2017-11-01

    Full Text Available Background: The most widely used methods of describing traumatic brain injury (TBI are the Glasgow Coma Scale (GCS and the Abbreviated Injury Scale (AIS. Recent evidence suggests that presenting GCS in older patients may be higher than that in younger patients for an equivalent anatomical severity of TBI. This study aimed to assess these observations with a propensity-score matching approach using the data from Trauma Registry System in a Level I trauma center. Methods: We included all adult patients (aged ≥20 years old with moderate to severe TBI from 1 January 2009 to 31 December 2016. Patients were categorized into elderly (aged ≥65 years and young adults (aged 20–64 years. The severity of TBI was defined by an AIS score in the head (AIS 3‒4 and 5 indicate moderate and severe TBI, respectively. We examined the differences in the GCS scores by age at each head AIS score. Unpaired Student’s t- and Mann–Whitney U-tests were used to analyze normally and non-normally distributed continuous data, respectively. Categorical data were compared using either the Pearson chi-square or two-sided Fisher’s exact tests. Matched patient populations were allocated in a 1:1 ratio according to the propensity scores calculated using NCSS software with the following covariates: sex, pre-existing chronic obstructive pulmonary disease, systolic blood pressure, hemoglobin, sodium, glucose, and alcohol level. Logistic regression was used to evaluate the effects of age on the GCS score in each head AIS stratum. Results: The study population included 2081 adult patients with moderate to severe TBI. These patients were categorized into elderly (n = 847 and young adults (n = 1234: each was exclusively further divided into three groups of patients with head AIS of 3, 4, or 5. In the 162 well-balanced pairs of TBI patients with head AIS of 3, the elderly demonstrated a significantly higher GCS score than the young adults (14.1 ± 2.2 vs. 13.1 ± 3

  5. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    Science.gov (United States)

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  6. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  7. The emergence of artistic ability following traumatic brain injury.

    Science.gov (United States)

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  8. Use of Hippotherapy With a Boy After Traumatic Brain Injury: A Case Study.

    Science.gov (United States)

    Erdman, Ellen A; Pierce, Samuel R

    2016-01-01

    The purpose of this case report was to describe the use of hippotherapy with a boy who sustained a brain injury. A 13-year-old boy, 6 months after traumatic brain injury received 12 physical therapy sessions, which included hippotherapy. Improvements were noted in balance, strength, gross motor skills, gait speed, functional mobility, and reported participation. Hippotherapy used with a 13-year-old boy after traumatic brain injury may have had a positive effect in the body structure, activity, and participation domains.

  9. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    Ohguri, Takayuki; Imada, Hajime; Kohshi, Kiyotaka; Kakeda, Shingo; Ohnari, Norihiro; Morioka, Tomoaki; Nakano, Keita; Konda, Nobuhide; Korogi, Yukunori

    2007-01-01

    Purpose: The purpose of the present study was to evaluate the prophylactic effect of hyperbaric oxygen (HBO) therapy for radiation-induced brain injury in patients with brain metastasis treated with stereotactic radiosurgery (SRS). Methods and Materials: The data of 78 patients presenting with 101 brain metastases treated with SRS between October 1994 and September 2003 were retrospectively analyzed. A total of 32 patients with 47 brain metastases were treated with prophylactic HBO (HBO group), which included all 21 patients who underwent subsequent or prior radiotherapy and 11 patients with common predictors of longer survival, such as inactive extracranial tumors and younger age. The other 46 patients with 54 brain metastases did not undergo HBO (non-HBO group). Radiation-induced brain injuries were divided into two categories, white matter injury (WMI) and radiation necrosis (RN), on the basis of imaging findings. Results: Radiation-induced brain injury occurred in 5 lesions (11%) in the HBO group (2 WMIs and 3 RNs) and in 11 (20%) in the non-HBO group (9 WMIs and 2 RNs). The WMI was less frequent for the HBO group than for the non-HBO group (p = 0.05), although multivariate analysis by logistic regression showed that WMI was not significantly correlated with HBO (p = 0.07). The 1-year actuarial probability of WMI was significantly better for the HBO group (2%) than for the non-HBO group (36%) (p < 0.05). Conclusions: The present study showed a potential value of prophylactic HBO for Radiation-induced WMIs, which justifies further evaluation to confirm its definite benefit

  10. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning.

    Science.gov (United States)

    Rosenberg, Hannah; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick; McDonald, Skye

    2015-07-01

    Traumatic brain injury (TBI) impairs emotion perception. Perception of negative emotions (sadness, disgust, fear, and anger) is reportedly affected more than positive (happiness and surprise) ones. It has been argued that this reflects a specialized neural network underpinning negative emotions that is vulnerable to brain injury. However, studies typically do not equate for differential difficulty between emotions. We aimed to examine whether emotion recognition deficits in people with TBI were specific to negative emotions, while equating task difficulty, and to determine whether perception deficits might be accounted for by other cognitive processes. Twenty-seven people with TBI and 28 matched control participants identified 6 basic emotions at 2 levels of intensity (a) the conventional 100% intensity and (b) "equated intensity"-that is, an intensity that yielded comparable accuracy rates across emotions in controls. (a) At 100% intensity, the TBI group was impaired in recognizing anger, fear, and disgust but not happiness, surprise, or sadness and performed worse on negative than positive emotions. (b) At equated intensity, the TBI group was poorer than controls overall but not differentially poorer in recognizing negative emotions. Although processing speed and nonverbal reasoning were associated with emotion accuracy, injury severity by itself was a unique predictor. When task difficulty is taken into account, individuals with TBI show impairment in recognizing all facial emotions. There was no evidence for a specific impairment for negative emotions or any particular emotion. Impairment was accounted for by injury severity rather than being a secondary effect of reduced neuropsychological functioning. (c) 2015 APA, all rights reserved).

  11. Brief report: emotion regulation and coping as moderators in the relationship between personality and self-injury.

    Science.gov (United States)

    Hasking, Penelope A; Coric, Sarah J; Swannell, Sarah; Martin, Graham; Thompson, Holly Knox; Frost, Aaron D J

    2010-10-01

    Self-injury without conscious suicidal intent is an increasingly prevalent phenomenon particularly among adolescent populations. This pilot study examined the extent and correlates of self-injurious behaviour in a school population sample of 393 adolescents (aged 13-18 years) using a self-report questionnaire. Specifically, we aimed to determine whether personality was related to self-injury and whether this relationship was moderated by emotion regulation or coping strategies. Few personality and coping variables were directly related to self-injury after controlling for age and psychopathology. However the relationship between personality and self-injury was moderated by coping skills and emotion regulation. We suggest future research explore these relationships in order to determine the role of coping skills and emotional regulation training in prevention of self-injury.

  12. Perioperative Care for Pediatric Patients With Penetrating Brain Injury: A Review.

    Science.gov (United States)

    Mikhael, Marco; Frost, Elizabeth; Cristancho, Maria

    2017-05-19

    Traumatic brain injury (TBI) continues to be the leading cause of death and acquired disability in young children and adolescents, due to blunt or penetrating trauma, the latter being less common but more lethal. Penetrating brain injury (PBI) has not been studied extensively, mainly reported as case reports or case series, due to the assumption that both types of brain injury have common pathophysiology and consequently common management. However, recommendations and guidelines for the management of PBI differ from those of blunt TBI in regards to neuroimaging, intracranial pressure (ICP) monitoring, and surgical management including those pertaining to vascular injury. PBI was one of the exclusion criteria in the second edition of guidelines for the acute medical management of severe TBI in infants, children, and adolescents that was published in 2012 (it is referred to as "pediatric guidelines" in this review). Many reviews of TBI do not differentiate between the mechanisms of injury. We present an overview of PBI, its presenting features, epidemiology, and causes as well as an analysis of case series and the conclusions that may be drawn from those and other studies. More clinical trials specific to penetrating head injuries in children, focusing mainly on pathophysiology and management, are needed. The term PBI is specific to penetrating injury only, whereas TBI, a more inclusive term, describes mainly, but not only, blunt injury.

  13. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables

  14. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  15. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  16. Outcomes in nursing home patients with traumatic brain injury.

    Science.gov (United States)

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  17. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  18. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    Science.gov (United States)

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  19. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  20. Targeted treatment of severe head injury

    African Journals Online (AJOL)

    injury is not a homogeneous concept and is poorly classified for the purposes of treatment.1 The separation of patients into 3 categories of severity (mild, moderate and severe) remains a blunt measure used to guide therapy in individual patients. Patients with severe traumatic brain injury (TBI), i.e. a Glasgow Coma Score ...

  1. Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan: 2001-2006

    Science.gov (United States)

    2010-08-31

    and hemorrhage. Hemorrhage is further divided into epidural hematoma , subdural hematoma , and intracerebral hematoma . Diffuse brain injuries...fiber Brain Injury Focal Injuries Contusion Laceration Hemorrhage Epidural Hematoma Subdural Hematoma Intracerebral Hematoma Diffuse

  2. Sentence comprehension following moderate closed head injury in adults.

    Science.gov (United States)

    Leikin, Mark; Ibrahim, Raphiq; Aharon-Peretz, Judith

    2012-09-01

    The current study explores sentence comprehension impairments among adults following moderate closed head injury. It was hypothesized that if the factor of syntactic complexity significantly affects sentence comprehension in these patients, it would testify to the existence of syntactic processing deficit along with working-memory problems. Thirty-six adults (18 closed head injury patients and 18 healthy controls matched in age, gender, and IQ) participated in the study. A picture-sentence matching task together with various tests for memory, language, and reading abilities were used to explore whether sentence comprehension impairments exist as a result of a deficit in syntactic processing or of working-memory dysfunction. Results indicate significant impairment in sentence comprehension among adults with closed head injury compared with their non-head-injured peers. Results also reveal that closed head injury patients demonstrate considerable decline in working memory, short-term memory, and semantic knowledge. Analysis of the results shows that memory impairment and syntactic complexity contribute significantly to sentence comprehension difficulties in closed head injury patients. At the same time, the presentation mode (spoken or written language) was found to have no effect on comprehension among adults with closed head injury, and their reading abilities appear to be relatively intact.

  3. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  4. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  5. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD)

    Science.gov (United States)

    2017-10-01

    Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) PRINCIPAL INVESTIGATOR: Paul G. Harch, M.D. CONTRACTING ORGANIZATION...Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...injury (TBI) and post-traumatic stress disorder (PTSD) affect 11-28% and 13-17%, respectively, of U.S. combat troops returning from Iraq and

  6. Clinical evaluation of dose-volume-effect relationship in radiation injury of the brain

    International Nuclear Information System (INIS)

    Saito, Mari

    1990-01-01

    Radiation brain injury, including functional disturbances or morphological changes (brain atrophy, periventricular lucencies or ventricular dilatation), were studied by CT in patients with primary intracranial neoplasms who were followed-up for at least 5 months after receiving radiotherapy. Each of 33 patients with medulloblastoma, pinealregion tumor or malignant lymphoma received a total dose of 40-61 Gy by conventional fractionation using a whole brain irradiation field boosted by a localized field. Of these patients, 19 (58%) developed radiation brain injury. It was concluded that the volume-dose was one of the most important factors influencing the development of radiation brain injury. Age at the time of radiotherapy and time of follow-up after the treatment were also considered to be important factors. (author)

  7. The causal attributions of nursing students toward adolescent survivors of brain injury.

    Science.gov (United States)

    Linden, Mark A; McClure, John

    2012-01-01

    The hidden nature of brain injury means that it is often difficult for people to understand the sometimes challenging behaviors that individuals exhibit. The misattribution of these behaviors may lead to a lack of consideration and public censure if the individual is seen as simply misbehaving. The aim of this study was to explore the impact of visual cues indicating the presence or absence of brain injury on prejudice, desire for social interaction, and causal attributions of nursing and computing science students. An independent-groups design was employed in this research, which recruited 190 first-year nursing students and 194 first-year computing science students from a major university in Belfast, UK. A short passage describing an adolescent's behavior after a brain injury, together with one of three images portraying a young adolescent with a scar, a head dressing, or neither of these, was given to participants. They were then asked to answer questions relating to prejudice, social interaction, locus of control, and causal attributions. The attributional statements suggested that the character's behavior could be the result of brain injury or adolescence. Analysis of variance demonstrated a statistically significant difference between the student groups, where nursing students (M = 45.17, SD = 4.69) desired more social interaction with the fictional adolescent than their computer science peers (M = 38.64, SD = 7.69). Further, analysis of variance showed a main effect of image on the attributional statement that described adolescence as a suitable explanation for the character's lack of self-confidence. Attributions of brain injury were influenced by the presence of a visible but potentially specious indicator of injury. This suggests that survivors of brain injury who do not display any outward indicator may receive less care and face expectations to behave in a manner consistent with the norms of society. If their injury does not allow them to meet with

  8. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  9. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  10. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  11. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  12. Mechanisms of team-sport-related brain injuries in children 5 to 19 years old: opportunities for prevention.

    Directory of Open Access Journals (Sweden)

    Michael D Cusimano

    Full Text Available There is a gap in knowledge about the mechanisms of sports-related brain injuries. The objective of this study was to determine the mechanisms of brain injuries among children and youth participating in team sports.We conducted a retrospective case series of brain injuries suffered by children participating in team sports. The Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP database was searched for brain injury cases among 5-19 year-olds playing ice hockey, soccer, American football (football, basketball, baseball, or rugby between 1990 and 2009. Mechanisms of injury were classified as "struck by player," "struck by object," "struck by sport implement," "struck surface," and "other." A descriptive analysis was performed.There were 12,799 brain injuries related to six team sports (16.2% of all brain injuries registered in CHIRPP. Males represented 81% of injuries and the mean age was 13.2 years. Ice hockey accounted for the greatest number of brain injuries (44.3%, followed by soccer (19.0% and football (12.9%. In ice hockey, rugby, and basketball, striking another player was the most common injury mechanism. Football, basketball, and soccer also demonstrated high proportions of injuries due to contact with an object (e.g., post among younger players. In baseball, a common mechanism in the 5-9 year-old group was being hit with a bat as a result of standing too close to the batter (26.1% males, 28.3% females.Many sports-related brain injury mechanisms are preventable. The results suggest that further efforts aimed at universal rule changes, safer playing environments, and the education of coaches, players, and parents should be targeted in maximizing prevention of sport-related brain injury using a multifaceted approach.

  13. Brain-computer interface after nervous system injury.

    Science.gov (United States)

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders. © The Author(s) 2014.

  14. Sociosexual and communication deficits after traumatic injury to the developing murine brain.

    Directory of Open Access Journals (Sweden)

    Bridgette D Semple

    Full Text Available Despite the life-long implications of social and communication dysfunction after pediatric traumatic brain injury, there is a poor understanding of these deficits in terms of their developmental trajectory and underlying mechanisms. In a well-characterized murine model of pediatric brain injury, we recently demonstrated that pronounced deficits in social interactions emerge across maturation to adulthood after injury at postnatal day (p 21, approximating a toddler-aged child. Extending these findings, we here hypothesized that these social deficits are dependent upon brain maturation at the time of injury, and coincide with abnormal sociosexual behaviors and communication. Age-dependent vulnerability of the developing brain to social deficits was addressed by comparing behavioral and neuroanatomical outcomes in mice injured at either a pediatric age (p21 or during adolescence (p35. Sociosexual behaviors including social investigation and mounting were evaluated in a resident-intruder paradigm at adulthood. These outcomes were complemented by assays of urine scent marking and ultrasonic vocalizations as indices of social communication. We provide evidence of sociosexual deficits after brain injury at p21, which manifest as reduced mounting behavior and scent marking towards an unfamiliar female at adulthood. In contrast, with the exception of the loss of social recognition in a three-chamber social approach task, mice that received TBI at adolescence were remarkably resilient to social deficits at adulthood. Increased emission of ultrasonic vocalizations (USVs as well as preferential emission of high frequency USVs after injury was dependent upon both the stimulus and prior social experience. Contrary to the hypothesis that changes in white matter volume may underlie social dysfunction, injury at both p21 and p35 resulted in a similar degree of atrophy of the corpus callosum by adulthood. However, loss of hippocampal tissue was greater after p21

  15. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  16. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    Science.gov (United States)

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  17. Occupational therapy in patients after the brain injury with neglect syndrome

    OpenAIRE

    Říhová, Petra

    2015-01-01

    OF BACHELOR THESIS Title of bachelor thesis: Occupational therapy in patients after the brain injury with neglect syndrome This bachelor thesis is focused on summarizing the knowledge of the neglect syndrome, very interesting phenomenon accompanying brain injury. Thesis provides information about prevalence, etiopathogenesis, classification, clinical presentation and course of the disease. Special attention is devoted to diagnostic and therapeutic procedures and description of occupational th...

  18. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  19. The clinical application of determination of plasma IL-6, TNF-α and cortisol (at 8:00 and 20:00) levels for assessment of severity of the disease in patients with acute brain injury

    International Nuclear Information System (INIS)

    Zhao Ruoyu; Bao Yimin; Yang Yongqing

    2009-01-01

    Objective: To investigate the clinical usefulness of determination of plasma IL-6, TNF-α and cortisol (at 8:00 and 24:00) levels in patients with acute brain injury. Methods: Plasma IL-6, TNF-α and cortisol (at 8:00 and 24:00) levels were determined with RIA in 112 patients with acute brain injury and 58 controls. The 112 patients were of 3 groups: (1) mild, Glascow score 13-15, n=46 (2) moderate, score 9-12, n=31 (3) severe, score 3-8, n=35. Results: The plasma IL-6, TNF -α and cortisol (at 8:00 and 24:00) levels were significantly higher in the patients with brain injury than those in the controls (P all 0.05). Conclusion: Plasma IL-6, TNF-α and cortisol levels could reflect the severity of the disease in patients with acute brain injury and determination of which would be clinically useful. (authors)

  20. Caregiver ratings of long-term executive dysfunction and attention problems after early childhood traumatic brain injury: family functioning is important.

    Science.gov (United States)

    Kurowski, Brad G; Taylor, H Gerry; Yeates, Keith Owen; Walz, Nicolay C; Stancin, Terry; Wade, Shari L

    2011-09-01

    To evaluate the relationship of family and parenting factors to long-term executive dysfunction and attention problems after early childhood traumatic brain injury (TBI). We hypothesized that the magnitude of executive dysfunction and attention problems would be moderated by family and parenting factors. A multicenter, prospective cohort study that included an orthopedic injury (OI) reference group. Three tertiary academic children's hospital medical centers and one general medical center. Children, ages 3-7 years, hospitalized for OI, moderate TBI, or severe TBI. METHODS AND OUTCOME MEASUREMENTS: Parental ratings of family functioning and parenting styles were obtained 18 months after the injury occurred. The main outcome measurements, which were parental ratings of children's executive function and attention, were performed at least 24 months after the injury occurred (mean, 39 months; range, 25-63 months). Group comparisons were conducted with use of t-tests, χ(2) analysis, analysis of variance, and Pearson and Spearman correlations. Regression analysis was used to examine associations of the outcomes with family functioning and parenting styles and to test moderating effects of these factors on group differences. Participants with severe TBI demonstrated increased executive dysfunction and attention problems compared with those who sustained moderate TBI or OI. Lower levels of family dysfunction were associated with better executive function and attention across groups but did not moderate group differences. However, attention deficits after severe TBI were exacerbated under conditions of more permissive parenting relative to attention deficits after OIs. Executive function and attention problems persisted on a long-term basis (>24 months) after early childhood TBI, and positive global family functioning and nonpermissive parenting were associated with better outcomes. Better characterization of the optimal family environment for recovery from early childhood

  1. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis

    Directory of Open Access Journals (Sweden)

    De-An Zhao

    Full Text Available Abstract Background and objectives: Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. Methods: A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Results: Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Conclusions: Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis.

  2. Parents and teachers reporting on a child's emotional and behavioural problems following severe traumatic brain injury (TBI): the moderating effect of time.

    Science.gov (United States)

    Silberg, Tamar; Tal-Jacobi, Dana; Levav, Miriam; Brezner, Amichai; Rassovsky, Yuri

    2015-01-01

    Gathering information from parents and teachers following paediatric traumatic brain injury (TBI) has substantial clinical value for diagnostic decisions. Yet, a multi-informant approach has rarely been addressed when evaluating children at the chronic stage post-injury. In the current study, the goals were to examine (1) differences between parents' and teachers' reports on a child's emotional and behavioural problems and (2) the effect of time elapsed since injury on each rater's report. A sample of 42 parents and 42 teachers of children following severe TBI completed two standard rating scales. Receiver Operating Characteristic (ROC) curves were used to determine whether time elapsed since injury reliably distinguished children falling above and below clinical levels. Emotional-behavioural scores of children following severe TBI fell within normal range, according to both teachers and parents. Significant differences were found between parents' reports relatively close to the time of injury and 2 years post-injury. However, no such differences were observed in teachers' ratings. Parents and teachers of children following severe TBI differ in their reports on a child's emotional and behavioural problems. The present study not only underscores the importance of multiple informants, but also highlights, for the first time, the possibility that informants' perceptions may vary across time.

  3. [The consequences of closed traumatic brain injury and piracetam efficacy in their treatment in adolescents].

    Science.gov (United States)

    Zavadenko, N N; Guzilova, L S

    2008-01-01

    The efficacy of piracetam in the treatment of the consequences of moderate and severe closed traumatic brain injury was assessed in 42 patients, aged 12-18 years, who suffered traumatic disorders 1,5-5 years before this study. Adolescents from the main group (20 patients) received piracetam in dosage of 40-50 mg/kg (or 1600-2400 mg daily) during one month. 22 patients of the second group were examined as controls. The positive therapeutic effects of piracetam on cognitive (memory, attention, executive functions) and motor (coordination) functions as well as the speed of cognitive and motor performance were demonstrated in this study.

  4. Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners

    Science.gov (United States)

    Wright, Courtney J.; Zeeman, Heidi; Biezaitis, Valda

    2016-01-01

    Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well. PMID:27270604

  5. Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners.

    Science.gov (United States)

    Wright, Courtney J; Zeeman, Heidi; Biezaitis, Valda

    2016-01-01

    Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well.

  6. Evaluation of ultrasound techniques for brain injury detection

    Science.gov (United States)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  7. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  8. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  9. Clinical utility of the Wechsler Adult Intelligence Scale-Fourth Edition after traumatic brain injury.

    Science.gov (United States)

    Donders, Jacobus; Strong, Carrie-Ann H

    2015-02-01

    The performance of 100 patients with traumatic brain injury (TBI) on the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) was compared with that of 100 demographically matched neurologically healthy controls. Processing Speed was the only WAIS-IV factor index that was able to discriminate between persons with moderate-severe TBI on the one hand and persons with either less severe TBI or neurologically healthy controls on the other hand. The Processing Speed index also had acceptable sensitivity and specificity when differentiating between patients with TBI who either did or did not have scores in the clinically significant range on the Trail Making Test. It is concluded that WAIS-IV Processing Speed has acceptable clinical utility in the evaluation of patients with moderate-severe TBI but that it should be supplemented with other measures to assure sufficient accuracy in the diagnostic process. © The Author(s) 2014.

  10. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  11. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... Patients with severe taumatic brain injury may develop intractable raised ICP resulting in high mortality ... Glasgow coma score was 8/15 (E1V3M4) and he had left ... An emergency right fronto-temporo-parietal decompressive.

  12. Prevention and treatment of traumatic brain injury due to rapid-onset natural disasters

    Directory of Open Access Journals (Sweden)

    James L. Regens

    2014-04-01

    Full Text Available The prevention and treatment of traumatic brain injury (TBI attributable to rapid-onset natural disasters is a major challenge confronting disaster preparedness planners and emergency medical personnel responding to those incidents. The kinetic energy released by rapid-onset natural disasters such as earthquakes, hurricanes or typhoons, and tornadoes can cause mild, moderate or severe TBIs. As a result, neurotrauma is a major risk factor for mortality and morbidity outcomes within the spatial domain impacted by a rapid-onset natural disaster. This review article elucidates major challenges associated with immediate emergency medical response, long-term care, and prevention of post-event increases in pediatric TBIs because of child abuse when rapid-onset natural disasters occur.

  13. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility

    Directory of Open Access Journals (Sweden)

    Eric J. Neuberger

    2017-09-01

    Full Text Available Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury.

  14. A simple behavioral test for locomotor function after brain injury in mice.

    Science.gov (United States)

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Early monitoring of PtiO2, PtiCO2, pH and brain temperat ure in patients with brain injuries and the clinical significanc e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To explore the regulation of early br ain tissue metabolic changing after brain injuries and the clinical significance .   Methods: There were 17 patients with brain injuries. Early dire ct monitoring of PtiO2, PtiCO2, pH and brain temperature, dynami c observation of the relation between various parameters and clinics after brai n injuries were performed.   Results: Early changes of PtiO2, PtiCO2 and pH we re closely correlated with outcome. The death rate obviously increased when P tiO2 was continuously lower than 9 mm?Hg within 24 hours after injuries. Secondary brain injury prolonged and aggravated brain tissue metabolic disturban ce. When intracerebral pressure was over 30 mm?Hg PtiO2 began to de crea se. The brain temperature in brain death patients was evidently lower than axill ary temperature.   Conclusions: The direct monitoring of PtiO2, PtiC O2, pH and brain temperature is safe and accurate and can find early anoxia da mage to brain tissue and provide reliable basis for clinical therapy. It ha s an instructive significance in selecting and studying a new treatment method i n brain injuries. And it can be taken as a criterion in clinical judging brain d eaths.

  16. Epigenetic modulation of gene expression governs the brain's response to injury.

    Science.gov (United States)

    Simon, Roger P

    2016-06-20

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  18. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  19. Effect of Memantine on Serum Levels of Neuron-Specific Enolase and on the Glasgow Coma Scale in Patients With Moderate Traumatic Brain Injury.

    Science.gov (United States)

    Mokhtari, Majid; Nayeb-Aghaei, Hossein; Kouchek, Mehran; Miri, Mir Mohammad; Goharani, Reza; Amoozandeh, Arash; Akhavan Salamat, Sina; Sistanizad, Mohammad

    2018-01-01

    Traumatic brain injury (TBI) is a major cause of disability and death globally. Despite significant progress in neuromonitoring and neuroprotection, pharmacological interventions have failed to generate favorable results. We examined the effect of memantine on serum levels of neuron-specific enolase (NSE), a marker of neuronal damage, and the Glasgow Coma Scale (GCS) in patients with moderate TBI. Patients were randomly assigned to the control group (who received standard TBI management) and the treatment group (who, alongside their standard management, received enteral memantine 30 mg twice daily for 7 days). Patients' clinical data, GCS, findings of head computed tomography, and serum NSE levels were collected during the study. Forty-one patients were randomized into the control and treatment groups, 19 and 22 patients respectively. Baseline characteristics and serum NSE levels were not significantly different between the 2 groups. The mean serum NSE levels for the memantine and the control groups on day 3 were 7.95 ± 2.86 and 12.33 ± 7.09 ng/mL, respectively (P = .05), and on day 7 were 5.03 ± 3.25 and 10.04 ± 5.72 ng/mL, respectively (P = .003). The mean GCS on day 3 was 12.3 ± 2.0 and 10.9 ± 1.9 in the memantine and control groups, respectively (P = .03). Serum NSE levels and GCS changes were negatively correlated (r = -0.368, P = .02). Patients with moderate TBI who received memantine had significantly reduced serum NSE levels by day 7 and marked improvement in their GCS scores on day 3 of the study. © 2017, The American College of Clinical Pharmacology.

  20. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  1. Social problem-solving and social adjustment in paediatric traumatic brain injury.

    Science.gov (United States)

    Moran, Lisa M; Bigler, Erin; Dennis, Maureen; Gerhardt, Cynthia A; Rubin, Kenneth H; Stancin, Terry; Taylor, H Gerry; Vannatta, Kathryn A; Yeates, Keith Owen

    2015-01-01

    Little is known regarding the predictors of social deficits that occur following childhood traumatic brain injury (TBI). The current study sought to investigate social problem solving (SPS) and its relationship to social adjustment after TBI. Participants included 8-13 year old children, 25 with severe TBI, 57 with complicated mild-to-moderate TBI and 61 with orthopaedic injuries (OI). Children responded to scenarios involving negative social situations by selecting from a fixed set of choices their causal attribution for the event, their emotional reaction to the event and how they would behave in response. Parent ratings of social behaviours and classmate friendship nominations and sociometric ratings were obtained for a sub-set of all participants. Children with severe TBI were less likely than children with OI to indicate they would attribute external blame or respond by avoiding the antagonist; they were more likely to indicate they would feel sad and request adult intervention. Although several SPS variables had indirect effects on the relationship between TBI and social adjustment, clinical significance was limited. The findings suggest that, while children with TBI display atypical SPS skills, SPS cannot be used in isolation to accurately predict social adjustment.

  2. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  3. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain.

    Science.gov (United States)

    Semple, Bridgette D; O'Brien, Terence J; Gimlin, Kayleen; Wright, David K; Kim, Shi Eun; Casillas-Espinosa, Pablo M; Webster, Kyria M; Petrou, Steven; Noble-Haeusslein, Linda J

    2017-08-16

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  4. Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq

    National Research Council Canada - National Science Library

    Hoge, Charles W; McGurk, Dennis; Thomas, Jeffrey L; Cox, Anthony L; Engel, Charles C; Castro, Carl A

    2008-01-01

    .... Validated clinical instruments were used to compare soldiers reporting mild traumatic brain injury, defined as an injury with loss of consciousness or altered mental status (e.g., dazed or confused...

  5. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury

    OpenAIRE

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-01-01

    Abstract Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET). We consecutively enrolled 11 patients with FOG after HIBI. The patients’ overall brain metabolism was measured by F-18 FDG PET, and we co...

  6. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  7. Efficacy, Dosage, and Duration of Action of Branched Chain Amino Acid Therapy for Traumatic Brain Injury

    Science.gov (United States)

    Elkind, Jaclynn A.; Lim, Miranda M.; Johnson, Brian N.; Palmer, Chris P.; Putnam, Brendan J.; Kirschen, Matthew P.; Cohen, Akiva S.

    2015-01-01

    Traumatic brain injury (TBI) results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI), shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs), which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study, mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5, and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM nor BCAAs when dosed 5 days on then 5 days off was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function, which underlie and contribute to hippocampal cognitive impairment, which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy. PMID:25870584

  8. Efficacy, dosage and duration of action of branched chain amino acid therapy for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jaclynn eElkind

    2015-03-01

    Full Text Available Traumatic brain injury (TBI results in long-lasting cognitive impairments for which there is currently no accepted treatment. A well-established mouse model of mild to moderate TBI, lateral fluid percussion injury (FPI, shows changes in network excitability in the hippocampus including a decrease in net synaptic efficacy in area CA1 and an increase in net synaptic efficacy in dentate gyrus. Previous studies identified a novel therapy consisting of branched chain amino acids (BCAAs which restored normal mouse hippocampal responses and ameliorated cognitive impairment following FPI. However, the optimal BCAA dose and length of treatment needed to improve cognitive recovery is unknown. In the current study mice underwent FPI then consumed 100 mM BCAA supplemented water ad libitum for 2, 3, 4, 5 and 10 days. BCAA therapy ameliorated cognitive impairment at 5 and 10 days duration. Neither BCAA supplementation at 50 mM, nor BCAAs when dosed 5 days on then 5 days off, was sufficient to ameliorate cognitive impairment. These results suggest that brain injury causes alterations in hippocampal function which underlie and contribute to hippocampal cognitive impairment which are reversible with at least 5 days of BCAA treatment, and that sustaining this effect is dependent on continuous treatment. Our findings have profound implications for the clinical investigation of TBI therapy.

  9. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury

    Directory of Open Access Journals (Sweden)

    Ziebell Jenna M

    2012-10-01

    Full Text Available Abstract Background Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen, which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical ‘synaptic stripping’ but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI. Methods Rats were subjected to a moderate midline fluid percussion injury (mFPI, which resulted in transient suppression of their righting reflex (6 to 10 min. Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. Results We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF. Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent

  10. A pilot study on the operationalization of the Model of Occupational Self Efficacy: A model for the reintegration of persons with brain injuries to their worker roles.

    Science.gov (United States)

    Soeker, Shaheed

    2015-01-01

    Traumatic brain injury causes functional limitations that can cause people to struggle to reintegrate in the workplace despite participating in work rehabilitation programmes. The aim of the study was to explore, and describe the experiences of individuals with Traumatic Brain Injury regarding returning to work through the use of the model of occupational self-efficacy. In the study 10 individuals who were diagnosed with a mild to moderate brain injury participated in the study. The research study was positioned within the qualitative paradigm specifically utilizing case study methodology. In order to gather data from the participants, individual interviews and participant observation techniques were used. Two themes emerged from the findings of the study theme one reflected the barriers related to the use of the model (i.e. Theme one: Effective participation in the model is affected by financial assistance). The second theme related to the enabling factors related to the use of the model (i.e. Theme two: A sense of normality). The findings of this study indicated that the Model of Occupational Self Efficacy (MOS) is a useful model to use in retraining the work skills of individual's who sustained a traumatic brain injury. The participants in this study could maintain employment in the open labour market for a period of at least 12 months and it improved their ability to accept their brain injury as well as adapt to their worker roles. The MOS also provides a framework for facilitating community integration.

  11. Traumatic brain injuries from work accidents: a retrospective study.

    Science.gov (United States)

    Salem, A M O; Jaumally, B A; Bayanzay, K; Khoury, K; Torkaman, A

    2013-07-01

    The United Arab Emirates is a rapidly developing country with recent expansion in construction and manufacturing. To investigate the occurrence and outcomes following occupational traumatic brain injury (TBI) requiring hospital admission. Records for all TBI cases admitted to an Abu Dhabi hospital between 2005 and 2009 were reviewed. Data on mechanisms of occupational injuries, Glasgow Coma Scale (GCS) on admission and Glasgow Outcome Scale (GOS) on follow-up, were analysed. Of 581 TBI cases reviewed, 56 (10%) cases were reported as occupational by either the patient or the informant accompanying the patient. All cases were male migrants, and 63% were aged 25-44. Falls accounted for 63% of cases, falling objects 34% and motor vehicle collisions 4%. Median GCS score was 13 for all cases. Median hospital stay was 7.5 days. Intensive care unit admission data were available in 47 cases, of which 34% (16) were admitted with a median stay of 5 days. GOS data were available in 95% (53) of cases, with good recovery in 81% cases, moderate-to-severe disability in 11% of cases and death in 8% (4) cases. Occupational TBI requiring hospitalization is most frequently due to falls and falling objects, with potentially grave consequences. This study further highlights the urgent need to implement preventative measures to improve construction worker safety.

  12. Psychometric evaluation of the pediatric and parent-proxy Patient-Reported Outcomes Measurement Information System and the Neurology and Traumatic Brain Injury Quality of Life measurement item banks in pediatric traumatic brain injury.

    Science.gov (United States)

    Bertisch, Hilary; Rivara, Frederick P; Kisala, Pamela A; Wang, Jin; Yeates, Keith Owen; Durbin, Dennis; Zonfrillo, Mark R; Bell, Michael J; Temkin, Nancy; Tulsky, David S

    2017-07-01

    The primary objective is to provide evidence of convergent and discriminant validity for the pediatric and parent-proxy versions of the Patient-Reported Outcomes Measurement Information System (PROMIS) Anxiety, Depression, Anger, Peer Relations, Mobility, Pain Interference, and Fatigue item banks, the Neurology Quality of Life measurement system (Neuro-QOL) Cognition-General Concerns and Stigma item banks, and the Traumatic Brain Injury Quality of Life (TBI-QOL) Executive Function and Headache item banks in a pediatric traumatic brain injury (TBI) sample. Participants were 134 parent-child (ages 8-18 years) days. Children all sustained TBI and the dyads completed outcome ratings 6 months after injury at one of six medical centers across the United States. Ratings included PROMIS, Neuro-QOL, and TBI-QOL item banks, as well as the Pediatric Quality of Life inventory (PedsQL), the Health Behavior Inventory (HBI), and the Strengths and Difficulties Questionnaire (SDQ) as legacy criterion measures against which these item banks were validated. The PROMIS, Neuro-QOL, and TBI-QOL item banks demonstrated good convergent validity, as evidenced by moderate to strong correlations with comparable scales on the legacy measures. PROMIS, Neuro-QOL, and TBI-QOL item banks showed weaker correlations with ratings of unrelated constructs on legacy measures, providing evidence of discriminant validity. Our results indicate that the constructs measured by the PROMIS, Neuro-QOL, and TBI-QOL item banks are valid in our pediatric TBI sample and that it is appropriate to use these standardized scores for our primary study analyses.

  13. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  14. Characteristics of successful and unsuccessful completers of 3 postacute brain injury rehabilitation pathways.

    Science.gov (United States)

    Malec, James F; Degiorgio, Lisa

    2002-12-01

    To determine whether successful participants along different postacute brain injury rehabilitation pathways differ on demographic, injury-related, disability, and outcome variables. Secondary analysis of pre- and posttreatment, and 1-year follow-up data obtained in a previous study of specialized vocational services (SVS) for persons with brain injury. Outpatient brain injury rehabilitation clinic. One hundred fourteen persons with acquired brain injury. Participants in 3 distinct rehabilitation pathways were studied: SVS only; SVS and a 3-h/wk community reintegration outpatient group; and SVS and 6-h/d comprehensive day treatment (CDT). Mayo-Portland Adaptability Inventory (MPAI); Vocational Independence Scale; and "success," as defined by community-based employment (CBE) at 1-year follow-up. The percentage (77%-85%) of participants in CBE at 1-year follow-up did not differ among the 3 pathways. CDT participants had more limited educational backgrounds, were less recently injured, and showed greater disability and more impaired self-awareness than those receiving limited intervention (ie, SVS or community reintegration outpatient group). MPAI scores for limited-intervention participants who were unsuccessful were similar in level to successful participants in CDT. Logistic regression models were developed to predict the probability of success with limited intervention and CDT. Different rehabilitation pathways result in CBE for a large percentage of persons with brain injury if the intensity of service is appropriately matched to the severity of the disability, the time since injury, and other participant characteristics. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  15. Traumatic brain injury due to pressure cooker explosion in a child: case report

    Directory of Open Access Journals (Sweden)

    Calderon-Miranda Willem Guillermo

    2016-06-01

    Full Text Available Traumatic brain injury is a common condition in the emergency services, affecting the pediatric and adult population significantly. Patterns of head injury as well as management principles in children are important differences compared to adults. Traumatic brain injury by Domestic pressure cooker is rare and has not been described in children, which to our knowledge is the first report in the literature of this nature.

  16. [Consequence of secondary complications during the rehabilitation of patients with severe brain injury].

    Science.gov (United States)

    Dénes, Zoltán

    2009-01-25

    Recovery from brain injury is not only determined by the primary injury, but a very important element is the development of secondary complications which have a major role in determining the possibility of the achievement of available maximal functional abilities and the quality of life of the patients and their family after rehabilitation. This is why during medical treatment the prevention of secondary complications is at least as important as the prevention of primary injury. Determination of the most important secondary complications after severe brain injury, and observation of these effects on the rehabilitation process. Retrospective study in the Brain Injury Rehabilitation unit of the National Institute for Medical Rehabilitation in Hungary. 166 patients were treated with brain injury; the mean age of the patients was 33 (8-83) years in 2004. The majority of patients suffered traumatic brain injury in traffic accidents (125/166), while the rest of them through falls or acts of violence. Sixty-four patients were admitted directly from an intensive care unit, 18 from a second hospital ward (traumatology, neurosurgery or neurology) and the rest of the patients were treated in several different units before they were admitted for rehabilitation. The time that has elapsed between injury and rehabilitation admission was 50 days (21-177). At the time of admission 27 patients were in a vegetative state, 38 patients in a minimal conscious state, and 101 patients had already regained consciousness. 83 patients were hemiparetic, 54 presented tetraparesis, and 1 paraparesis, but 28 patients were not paretic. The most frequent complications in patients with severe brain injury at admission in our rehabilitation unit were: contractures (47%), pressure sores (35%), respiratory (14%) and urinary (11%) tract infections, malnutrition (20%). The functional outcome was worse in the cases arriving with secondary complications during the same rehabilitation period. The length of

  17. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  18. Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury

    Science.gov (United States)

    2011-04-01

    of Theresa Jones for sectioning and staining . To date, the brains have been sectioned and one set stained for Nissl . Using the Nissl stained ...three rehabilitations decreases contusion size compared to CCI-Yoked (#p=0.051). The remaining sets of brain sections have been stained with...optical densitometry, as appropriate, given staining patterns. Sample locations will be the remaining sensorimotor cortex around the injury, in the

  19. [Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis].

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury by suppressing apoptosis.

    Science.gov (United States)

    Zhao, De-An; Bi, Ling-Yun; Huang, Qian; Zhang, Fang-Min; Han, Zi-Ming

    Isoflurane is halogenated volatile ether used for inhalational anesthesia. It is widely used in clinics as an inhalational anesthetic. Neonatal hypoxic ischemia injury ensues in the immature brain that results in delayed cell death via excitotoxicity and oxidative stress. Isoflurane has shown neuroprotective properties that make a beneficial basis of using isoflurane in both cell culture and animal models, including various models of brain injury. We aimed to determine the neuroprotective effect of isoflurane on hypoxic brain injury and elucidated the underlying mechanism. A hippocampal slice, in artificial cerebrospinal fluid with glucose and oxygen deprivation, was used as an in vitro model for brain hypoxia. The orthodromic population spike and hypoxic injury potential were recorded in the CA1 and CA3 regions. Amino acid neurotransmitters concentration in perfusion solution of hippocampal slices was measured. Isoflurane treatment caused delayed elimination of population spike and improved the recovery of population spike; decreased frequency of hypoxic injury potential, postponed the onset of hypoxic injury potential and increased the duration of hypoxic injury potential. Isoflurane treatment also decreased the hypoxia-induced release of amino acid neurotransmitters such as aspartate, glutamate and glycine induced by hypoxia, but the levels of γ-aminobutyric acid were elevated. Morphological studies showed that isoflurane treatment attenuated edema of pyramid neurons in the CA1 region. It also reduced apoptosis as evident by lowered expression of caspase-3 and PARP genes. Isoflurane showed a neuro-protective effect on hippocampal neuron injury induced by hypoxia through suppression of apoptosis. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.